788 research outputs found

    Ranking web services using centralities and social indicators

    Get PDF
    Nowadays, developers of web application mashups face a sheer overwhelming variety and pluralism of web services. Therefore, choosing appropriate web services to achieve specific goals requires a certain amount of knowledge as well as expertise. In order to support users in choosing appropriate web services it is not only important to match their search criteria to a dataset of possible choices but also to rank the results according to their relevance, thus minimizing the time it takes for taking such a choice. Therefore, we investigated six ranking approaches in an empirical manner and compared them to each other. Moreover, we have had a look on how one can combine those ranking algorithms linearly in order to maximize the quality of their outputs

    Complex networks and public funding: the case of the 2007-2013 Italian program

    Get PDF
    In this paper we apply techniques of complex network analysis to data sources representing public funding programs and discuss the importance of the considered indicators for program evaluation. Starting from the Open Data repository of the 2007-2013 Italian Program Programma Operativo Nazionale 'Ricerca e Competitivit\`a' (PON R&C), we build a set of data models and perform network analysis over them. We discuss the obtained experimental results outlining interesting new perspectives that emerge from the application of the proposed methods to the socio-economical evaluation of funded programs.Comment: 22 pages, 9 figure

    Using network centrality measures to manage landscape connectivity

    Get PDF
    We use a graph-theoretical landscape modeling approach to investigate how to identify central patches in the landscape as well as how these central patches influence (1) organism movement within the local neighborhood, and (2) the dispersal of organisms beyond the local neighborhood. Organism movements were theoretically estimated based on the spatial configuration of the habitat patches in the studied landscape. We find that centrality depends on the way the graph-theoretical model of habitat patches is constructed, although even the simplest network representation, not taking strength and directionality of potential organisms flows into account, still provides a coarse-grained assessment of the most important patches according to their contribution to landscape connectivity. Moreover, we identify (at least) two general classes of centrality. One accounts for the local flow of organisms in the neighborhood of a patch and the other for the ability to maintain connectivity beyond the scale of the local neighborhood. Finally, we study how habitat patches with high scores on different network centrality measures are distributed in a fragmented agricultural landscape in Madagascar. Results show that patches with high degree-, and betweenness centrality are widely spread, while patches with high subgraph- and closeness centrality are clumped together in dense clusters. This finding may enable multi-species analyses of single-species network models

    Which Sectors of a Modern Economy are most Central?

    Get PDF
    We analyze input-output matrices for a wide set of countries as weighted directed networks. These graphs contain only 47 nodes, but they are almost fully connected and many have nodes with strong self-loops. We apply two measures: random walk centrality and one based on count-betweenness. Our findings are intuitive. For example, in Luxembourg the most central sector is “Finance and Insurance” and the analog in Germany is “Wholesale and Retail Trade” or “Motor Vehicles”, according to the measure. Rankings of sectoral centrality vary by country. Some sectors are often highly central, while others never are. Hierarchical clustering reveals geographical proximity and similar development status.

    A New Influence Measure Based on Graph Centralities and Social Network Behavior Applied to Twitter Data

    Get PDF
    In this paper, we use graph theory to explore concepts of influence in socialized groups. When analyzing social networks, centrality indicators make it possible to assess the power of an individual. We discuss various centrality indicators and focus on degree and betweenness. After observing a strong correlation between them, we propose defining new assessments based on a decorrelation method that we characterize from different mathematical perspectives (algebraic, probabilistic, and statistical). We apply this theoretical framework to a network of tweets about the Uber versus taxi conflict, which took place in June, 2015, and for which we detected different influential individuals

    Ranking places in attributed temporal urban mobility networks

    Get PDF
    Drawing on the recent advances in complex network theory, urban mobility flow patterns, typically encoded as origin-destination (OD) matrices, can be represented as weighted directed graphs, with nodes denoting city locations and weighted edges the number of trips between them. Such a graph can further be augmented by node attributes denoting the various socio-economic characteristics at a particular location in the city. In this paper, we study the spatio-temporal characteristics of “hotspots” of different types of socio-economic activities as characterized by recently developed attribute-augmented network centrality measures within the urban OD network. The workflow of the proposed paper comprises the construction of temporal OD networks using two custom data sets on urban mobility in Rome and London, the addition of socio-economic activity attributes to the OD network nodes, the computation of network centrality measures, the identification of “hotspots” and, finally, the visualization and analysis of measures of their spatio-temporal heterogeneity. Our results show structural similarities and distinctions between the spatial patterns of different types of human activity in the two cities. Our approach produces simple indicators thus opening up opportunities for practitioners to develop tools for real-time monitoring and visualization of interactions between mobility and economic activity in cities.This work is supported by the Spanish Government, Ministerio de Economía y Competividad, grant number TIN2017-84821-P. It is also funded by the EU H2020 programme under Grant Agreement No. 780754, “Track & Know”

    Network Analysis of World Trade using the BACI-CEPII dataset

    Get PDF
    In this paper we explore the BACI-CEPII database using Network Analysis. Starting from the visualization of the World Trade Network, we then define and describe the topology of the network, both in its binary version and in its weighted version, calculating and discussing some of the commonly used network's statistics. We finally discuss some specic topics that can be studied using Network Analysis and International Trade data, both at the aggregated and sectoral level. The analysis is done using multiple software (Stata, R, and Pajek). The scripts to replicate part of the analysis are included in the appendix, and can be used as an handson tutorial. Moreover,the World Trade Network local and global centrality measures, for the unweighted and the weighted version of the Network, calculated using the bilateral aggregate trade data for each country (178 in total) and each year (from 1995 to 2010,) can be downloaded from the CEPII webpage

    Trip Centrality: walking on a temporal multiplex with non-instantaneous link travel time

    Get PDF
    In complex networks, centrality metrics quantify the connectivity of nodes and identify the most important ones in the transmission of signals. In many real world networks, especially in transportation systems, links are dynamic, i.e. their presence depends on time, and travelling between two nodes requires a non-vanishing time. Additionally, many networks are structured on several layers, representing, e.g., different transportation modes or service providers. Temporal generalisations of centrality metrics based on walk-counting, like Katz centrality, exist, however they do not account for non-zero link travel times and for the multiplex structure. We propose a generalisation of Katz centrality, termed Trip Centrality, counting only the paths that can be travelled according to the network temporal structure, i.e. "trips", while also differentiating the contributions of inter- and intra-layer walks to centrality. We show an application to the US air transport system, specifically computing airports' centrality losses due to delays in the flight network

    Trip Centrality: walking on a temporal multiplex with non-instantaneous link travel time

    Get PDF
    In complex networks, centrality metrics quantify the connectivity of nodes and identify the most important ones in the transmission of signals. In many real world networks, especially in transportation systems, links are dynamic, i.e. their presence depends on time, and travelling between two nodes requires a non-vanishing time. Additionally, many networks are structured on several layers, representing, e.g., different transportation modes or service providers. Temporal generalisations of centrality metrics based on walk-counting, like Katz centrality, exist, however they do not account for non-zero link travel times and for the multiplex structure. We propose a generalisation of Katz centrality, termed trip Centrality, counting only the walks that can be travelled according to the network temporal structure, i.e. \u201ctrips\u201d, while also differentiating the contributions of inter- and intra- layer walks to centrality. We show an application to the US air transport system, specifically computing airports\u2019 centrality losses due to delays in the flight network
    corecore