4,927 research outputs found

    Rational-operator-based depth-from-defocus approach to scene reconstruction

    Get PDF
    This paper presents a rational-operator-based approach to depth from defocus (DfD) for the reconstruction of three-dimensional scenes from two-dimensional images, which enables fast DfD computation that is independent of scene textures. Two variants of the approach, one using the Gaussian rational operators (ROs) that are based on the Gaussian point spread function (PSF) and the second based on the generalized Gaussian PSF, are considered. A novel DfD correction method is also presented to further improve the performance of the approach. Experimental results are considered for real scenes and show that both approaches outperform existing RO-based methods

    On the shear estimation bias induced by the spatial variation of colour across galaxy profiles

    Full text link
    The spatial variation of the colour of a galaxy may introduce a bias in the measurement of its shape if the PSF profile depends on wavelength. We study how this bias depends on the properties of the PSF and the galaxies themselves. The bias depends on the scales used to estimate the shape, which may be used to optimise methods to reduce the bias. Here we develop a general approach to quantify the bias. Although applicable to any weak lensing survey, we focus on the implications for the ESA Euclid mission. Based on our study of synthetic galaxies we find that the bias is a few times 10^-3 for a typical galaxy observed by Euclid. Consequently, it cannot be neglected and needs to be accounted for. We demonstrate how one can do so using spatially resolved observations of galaxies in two filters. We show that HST observations in the F606W and F814W filters allow us to model and reduce the bias by an order of magnitude, sufficient to meet Euclid's scientific requirements. The precision of the correction is ultimately determined by the number of galaxies for which spatially-resolved observations in at least two filters are available. We use results from the Millennium Simulation to demonstrate that archival HST data will be sufficient for the tomographic cosmic shear analysis with the Euclid dataset.Comment: MNRAS submitted, 18 pages, 13 Figure

    Computational localization microscopy with extended axial range

    Get PDF
    A new single-aperture 3D particle-localization and tracking technique is presented that demonstrates an increase in depth range by more than an order of magnitude without compromising optical resolution and throughput. We exploit the extended depth range and depth-dependent translation of an Airy-beam PSF for 3D localization over an extended volume in a single snapshot. The technique is applicable to all bright-field and fluorescence modalities for particle localization and tracking, ranging from super-resolution microscopy through to the tracking of fluorescent beads and endogenous particles within cells. We demonstrate and validate its application to real-time 3D velocity imaging of fluid flow in capillaries using fluorescent tracer beads. An axial localization precision of 50 nm was obtained over a depth range of 120μm using a 0.4NA, 20× microscope objective. We believe this to be the highest ratio of axial range-to-precision reported to date

    High-resolution transport-of-intensity quantitative phase microscopy with annular illumination

    Full text link
    For quantitative phase imaging (QPI) based on transport-of-intensity equation (TIE), partially coherent illumination provides speckle-free imaging, compatibility with brightfield microscopy, and transverse resolution beyond coherent diffraction limit. Unfortunately, in a conventional microscope with circular illumination aperture, partial coherence tends to diminish the phase contrast, exacerbating the inherent noise-to-resolution tradeoff in TIE imaging, resulting in strong low-frequency artifacts and compromised imaging resolution. Here, we demonstrate how these issues can be effectively addressed by replacing the conventional circular illumination aperture with an annular one. The matched annular illumination not only strongly boosts the phase contrast for low spatial frequencies, but significantly improves the practical imaging resolution to near the incoherent diffraction limit. By incorporating high-numerical aperture (NA) illumination as well as high-NA objective, it is shown, for the first time, that TIE phase imaging can achieve a transverse resolution up to 208 nm, corresponding to an effective NA of 2.66. Time-lapse imaging of in vitro Hela cells revealing cellular morphology and subcellular dynamics during cells mitosis and apoptosis is exemplified. Given its capability for high-resolution QPI as well as the compatibility with widely available brightfield microscopy hardware, the proposed approach is expected to be adopted by the wider biology and medicine community.Comment: This manuscript was originally submitted on 20 Feb. 201

    Extending AMCW lidar depth-of-field using a coded aperture

    Get PDF
    By augmenting a high resolution full-field Amplitude Modulated Continuous Wave lidar system with a coded aperture, we show that depth-of-field can be extended using explicit, albeit blurred, range data to determine PSF scale. Because complex domain range-images contain explicit range information, the aperture design is unconstrained by the necessity for range determination by depth-from-defocus. The coded aperture design is shown to improve restoration quality over a circular aperture. A proof-of-concept algorithm using dynamic PSF determination and spatially variant Landweber iterations is developed and using an empirically sampled point spread function is shown to work in cases without serious multipath interference or high phase complexity
    corecore