261 research outputs found

    A Pareto-metaheuristic for a bi-objective winner determination problem in a combinatorial reverse auction

    Get PDF
    The bi-objective winner determination problem (2WDP-SC) of a combinatorial procurement auction for transport contracts comes up to a multi-criteria set covering problem. We are given a set B of bundle bids. A bundle bid b in B consists of a bidding carrier c_b, a bid price p_b, and a set tau_b of transport contracts which is a subset of the set T of tendered transport contracts. Additionally, the transport quality q_t,c_b is given which is expected to be realized when a transport contract t is executed by a carrier c_b. The task of the auctioneer is to find a set X of winning bids (X is subset of B), such that each transport contract is part of at least one winning bid, the total procurement costs are minimized, and the total transport quality is maximized. This article presents a metaheuristic approach for the 2WDP-SC which integrates the greedy randomized adaptive search procedure, large neighborhood search, and self-adaptive parameter setting in order to find a competitive set of non-dominated solutions. The procedure outperforms existing heuristics. Computational experiments performed on a set of benchmark instances show that, for small instances, the presented procedure is the sole approach that succeeds to find all Pareto-optimal solutions. For each of the large benchmark instances, according to common multi-criteria quality indicators of the literature, it attains new best-known solution sets.Pareto optimization; multi-criteria winner determination; combinatorial auction; GRASP; LNS

    Quadratic Core-Selecting Payment Rules for Combinatorial Auctions

    Get PDF
    We report on the use of a quadratic programming technique in recent and upcoming spectrum auctions in Europe. Specifically, we compute a unique point in the core that minimizes the sum of squared deviations from a reference point, for example, from the Vickrey-Clarke-Groves payments. Analyzing the Karush-Kuhn-Tucker conditions, we demonstrate that the resulting payments can be decomposed into a series of economically meaningful and equitable penalties. Furthermore, we discuss the benefits of this combinatorial auction, explore the use of alternative reserve pricing approaches in this context, and indicate the results of several hundred computational runs using CATS data.Auctions, spectrum auctions, market design, package auction, clock auction, combinatorial auction

    A heuristic approach for the allocation of resources in large-scale computing infrastructures

    Get PDF
    An increasing number of enterprise applications are intensive in their consumption of IT, but are infrequently used. Consequently, organizations either host an oversized IT infrastructure or they are incapable of realizing the benefits of new applications. A solution to the challenge is provided by the large-scale computing infrastructures of Clouds and Grids which allow resources to be shared. A major challenge is the development of mechanisms that allow efficient sharing of IT resources. Market mechanisms are promising, but there is a lack of research in scalable market mechanisms. We extend the Multi-Attribute Combinatorial Exchange mechanism with greedy heuristics to address the scalability challenge. The evaluation shows a trade-off between efficiency and scalability. There is no statistical evidence for an influence on the incentive properties of the market mechanism. This is an encouraging result as theory predicts heuristics to ruin the mechanism’s incentive properties. Copyright © 2015 John Wiley & Sons, Ltd

    Resource Allocation Among Agents with MDP-Induced Preferences

    Full text link
    Allocating scarce resources among agents to maximize global utility is, in general, computationally challenging. We focus on problems where resources enable agents to execute actions in stochastic environments, modeled as Markov decision processes (MDPs), such that the value of a resource bundle is defined as the expected value of the optimal MDP policy realizable given these resources. We present an algorithm that simultaneously solves the resource-allocation and the policy-optimization problems. This allows us to avoid explicitly representing utilities over exponentially many resource bundles, leading to drastic (often exponential) reductions in computational complexity. We then use this algorithm in the context of self-interested agents to design a combinatorial auction for allocating resources. We empirically demonstrate the effectiveness of our approach by showing that it can, in minutes, optimally solve problems for which a straightforward combinatorial resource-allocation technique would require the agents to enumerate up to 2^100 resource bundles and the auctioneer to solve an NP-complete problem with an input of that size

    Lazy auctions for multi-robot collision avoidance and motion control under uncertainty

    Get PDF
    We present an auction-flavored multi-robot planning mechanism where coordination is to be achieved on the occupation of atomic resources modeled as binary inter-robot constraints. Introducing virtual obstacles, we show how this approach can be combined with particlebased obstacle avoidance methods, offering a decentralized, auction-based alternative to previously established centralized approaches for multirobot open-loop control. We illustrate the effectiveness of our new approach by presenting simulations of typical spatially-continuous multirobot path-planning problems and derive bounds on the collision probability in the presence of uncertainty

    Socially-optimal online spectrum auctions for secondary wireless communication

    Get PDF
    Spectrum auctions are efficient mechanisms for licensed users to relinquish their under-utilized spectrum to secondary links for monetary remuneration. Truthfulness and social welfare maximization are two natural goals in such auctions, but cannot be achieved simultaneously with polynomial-time complexity by existing methods, even in a static network with fixed parameters. The challenge escalates in practical systems with QoS requirements and volatile traffic demands for secondary communication. Online, dynamic decisions are required for rate control, channel evaluation/bidding, and packet dropping at each secondary link, as well as for winner determination and pricing at the primary user. This work proposes an online spectrum auction framework with cross-layer decision making and randomized winner determination on the fly. The framework is truthful-inexpectation, and achieves close-to-offline-optimal time-averaged social welfare and individual utilities with polynomial time complexity. A new method is introduced for online channel evaluation in a stochastic setting. Simulation studies further verify the efficacy of the proposed auction in practical scenarios.published_or_final_versio
    corecore