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1. Introduction
Combinatorial auctions represent one of the most promi-
nent areas of research in the intersection of operations
research (OR) and economics. First proposed for practical
governmental applications by Rassenti et al. (1982), a com-
binatorial auction (CA) is an auction for many items in
which bidders submit bids on combinations of items, or
packages. CAs also are referred to as “package auctions” or
auctions with “package bidding.” In a general CA, a bidder
may submit bids on any arbitrary collection of packages.
The “winner-determination problem” identifies the value
maximizing assignment given the package bids. This prob-
lem is as complex as the weighted set-packing problem,
and hence NP-hard (see Rothkopf et al. 1998).

Thus, in the many real-world applications of CAs, the
computational techniques of OR facilitate more efficient
economic outcomes in environments too complex for clas-
sical (i.e., noncomputational) economic theory. Conversely,
the game-theoretic framework surrounding CAs provides
a host of new computational challenges and optimization
problems for OR.

One critical element of any CA is the pricing rule, which
determines what each winner pays for the package won.
In this paper, we present a new class of optimization-
based pricing rules for combinatorial auctions in general,
demonstrate some of their unique features, and elaborate
upon some properties of the larger class of core-selecting
mechanisms. We also describe the use of this algorithm
for recent and upcoming spectrum-license auctions in the
United Kingdom, for upcoming spectrum auctions in sev-
eral European countries (e.g., the Netherlands, Denmark,

Portugal, and Austria), and for use in the United States for
the Federal Aviation Administration’s (FAA) proposed allo-
cation of landing rights to control congestion at airports.1

Furthermore, we provide the relevant economic interpre-
tation and theoretical basis for our algorithm’s various
features.

2. Background
The use of auctions for allocating spectrum-license-rights
to telecommunications companies gained prominence in
1994 when the Federal Communications Commission
(FCC) began to use a simultaneous ascending auction
(SAA) to sell spectrum licenses in the United States.
The initial design, which is still used today with only
slight modifications, avoided the idea of a “combinatorial”
or “package” auction, in which bidders bid on packages
of licenses because of the inherent computational difficulty.

A main difficulty with the SAA and other auctions that
allow only bids on individual lots is the exposure problem.
A bidder finds it risky to bid on a collection of lots, because
of the risk of receiving an incomplete package of comple-
ments. For example, a bidder might need both A and B.
If the bidder is allowed to bid only on individual lots as in
the SAA, the bidder risks winning only one of the required
lots. A CA avoids this problem by letting the bidder bid
on the package 8A1B9 with no risk of winning just A or
just B. For a thorough discussion of the strengths and draw-
backs of the SAA and its implementation by the FCC, see
Cramton (2006). Also, for a general introduction to CAs,
see the edited volume by Cramton et al. (2006).
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To maintain many of the strengths of the SAA while
mitigating its primary weaknesses, several authors have
proposed hybrid auction formats, that combine the simple
price-discovery process of a “price-clock” with the effi-
ciency and exposure-problem-elimination of a CA. (See
Porter et al. 2003, Ausubel et al. 2006, and Cramton 2009.)
Here we present the latest development in this line of
research, a combinatorial-clock auction with quadratic-
core-pricing. For the remainder of the paper, we focus on
this pricing rule as adopted for several upcoming govern-
mental auctions.

In §§2.1–2.3 we introduce notation and a general
CA model and motivate the use of core-pricing as the most
usable generalization of the second-price concept from
single-item auctions. In §3.1 we describe the core of the CA
game formally, and elaborate upon some of the alternative
representations of the core. In §3.2 we describe the particu-
lar core-selection rule that we proposed for the U.K. spec-
trum license market, describing some of its properties in
§§3.3 and 3.4. The implementation of seller reserve values
is described in §4. In §5 we briefly describe our experi-
ence implementing these pricing rules for real-life auctions,
while §6 presents results from computational experiments.
Conclusions follow in §7.

An electronic companion to this paper is available as part
of the online version that can be found at http://dx.doi.org/
10.1287/opre.1110.0124. Supplementary material is pro-
vided in the electronic companion, with Appendix A.1
demonstrating how semi-sincere strategies eliminate a form
of envy, A.2 and A.5 providing technical details on compu-
tational implementations, and A.3 and A.4 providing proofs
of some results in the main text. The final appendix, A.6,
outlines some practical considerations regarding real-life
implementations.

2.1. The Environment: Heterogeneous
Goods and Bidders

We consider an environment in which a government intends
to sell many interrelated heterogeneous items. The hetero-
geneity of spectrum licenses arises from varying geograph-
ical coverage, as well as technological considerations, such
as interference with adjacent frequency bands, etc. The pri-
mary goal of the government agency is assumed to be effi-
ciency: the items should be sold to those who value them
the most. Stated differently, the government’s objective is
the maximization of social welfare.

In the case of spectrum-licenses, bidders might have
complex preferences over the items being auctioned, with
some bidders considering certain items to be substitutes,
while others treat the same items as complements. Differing
technologies might give rise to such heterogeneity among
the bidders’ preferences. One bidder might treat any two
items as substitutes because her communication technology
is neutral to the spectrum on which it is transmitted, while
another bidder might require a pair of adequately separated
licenses as uplink and downlink frequencies for two-way

communication. The latter bidder thus treats certain pairs
as complements.

With a variety of new communication technologies
emerging, it is important that the auction design be tech-
nology neutral. If, for example, bidders were homogeneous
in their desire for “paired” licenses with a certain optimal
spacing between uplink and downlink frequencies, it would
be appropriate for the auction design to specify that licenses
be sold as bundled pairs. If instead some bidders desire a
single contiguous strip of unpaired licenses while others
desire pairs, this pre-bundling of licenses into pairs would
be inappropriate. This is the case for the United Kingdom’s
2.6 GHz auction, in which Ofcom determined that bid-
ders could bid on contiguous blocks of either paired or
unpaired spectrum licenses, or some combination of both;
the strength of the bids themselves would determine the
quantity of spectrum of each type. In general, this flexibil-
ity of package bidding, the cornerstone of CAs, provides an
opportunity for OR tools to improve economic outcomes;
the problem of determining the optimal set of bids to accept
is generally complex and closely related to the NP-hard set-
packing problem. (See Rothkopf et al. 1998 and deVries
and Vohra 2003.)

Package bidding alone can often represent a daunting
challenge to both the bidders and the bid-taker. In the
United Kingdom’s 2.6 GHz spectrum auction, for example,
there are 39 unique licenses offered for sale, and thus 239

packages for each bidder to consider placing a bid on.
In practice, the auctioneer cannot accept this full set of
package bids from each bidder, so instead limits the num-
ber of package bids it will accept (in the U.K. auctions the
number of bids is usually capped in the thousands). The
bidders thus face the difficulty of deciding which are
the “best” packages to bid on, in addition to the problem
of deciding their value for any single package.

For the remainder of the paper, we therefore address the
computation of prices following the final sealed-bid round
in a two-stage hybrid design known as the “clock-proxy
auction,” as proposed by Ausubel et al. (2006). In this
design a final sealed-bid CA is preceded by a prelimi-
nary “clock stage” used as a preference elicitation tool,
allowing the bidders to learn about market competition and
discover valuable information about which packages seem
most profitable to bid on as competitive prices are revealed.
We propose the use of quadratic programming in conjunc-
tion with constraint generation to determine the best set of
final prices in the final sealed-bid auction of such a design,
which takes all clock-stage bids and any other “supple-
mentary” package bids made by the bidders as exclusive
package offers.

2.2. Winner Determination

Here, we consider bidders that have participated in a clock
auction (or, to be more precise, the clock-phase of a
two-phase hybrid auction) and have submitted any sup-
plementary package bids, and we consider the auction-
eer’s problem of determining the final set of package bids
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to accept and the payments to collect from each bidder.
Although some mechanisms considered in the mechanism
design literature consider the possibility of outcomes that
are not efficient with respect to submitted bids (for exam-
ple, Myerson 1981 or Goldberg and Hartline 2003) for the
governmental allocation of public resources, we consider
efficiency to be essential and indispensable in order to
achieve the government’s goals and to promote the per-
ceived fairness of the auction outcome.

Let M = 81121 0 0 0 1m9 represent the set of m items being
auctioned and N = 81121 0 0 0 1 n9 represent the set of n bid-
ders. Each bidder has submitted a collection of bundle bids,
with bj4S5 representing bidder j’s monetary bid on any
bundle S ⊆M . The efficient winner determination problem
over the set of bidders N is defined by the following inte-
ger program, which maximizes the value of accepted bids
without selling the same item to more than one bidder:

wd4N5= max
∑

j∈N

∑

S⊆M

bj4S5 · xj4S51 4WD5

subject to
∑

S⊇8i9

∑

j∈N

xj4S5¶ 11 ∀ i ∈M1 (1)

∑

S⊆M

xj4S5¶ 11 ∀ j ∈N1 (2)

xj4S5 ∈ 801191 ∀4S1 j51 such that

a bid bj4S5 was submitted0 (3)

Additionally, we note that this formulation implies a spe-
cific “XOR” bidding language in which, in accordance with
constraint set (2), no two bids made by the same bidder
may be accepted by the auctioneer. Although a host of
alternative bidding languages have been described in the
literature (see Nisan 2006), we maintain this XOR formu-
lation because it is general enough to describe any other
bidding language (albeit exhaustively). Furthermore, it is
this bidding language that has been used in practice in the
U.K. spectrum auctions, because in general, the clock phase
narrows the number of bids that will need to be bid upon
substantially, keeping this formulation from growing too
large, and because the implication of each bid is most eas-
ily understood by the bidders in this setting, allowing lit-
tle room for confusion regarding the implication of any
bid made. Each bid is an exclusive offer that cannot be
recombined with any other bids of the same bidder.

2.3. Payment Determination: Second Price
Rules and Core-Selection

We now consider the algorithm for the determination of
payments in the final sealed-bid auction. First, we moti-
vate core pricing as the appropriate generalization of the
“second-price” rule.

A fundamental development of early auction theory is
the equivalence (under the assumption of private values) of
the outcomes in the well-known English auction (in which

an item is offered at increasing prices until only one bid-
der continues to indicate willingness to purchase) and the
second-price sealed-bid auction for a single item. Krishna
(2002) provides an overview of auction theory. In the
second-price sealed-bid auction, bidders submit a sealed
bid for the single item being auctioned, with the highest
bid winning the item and the winner paying the amount
of the second highest bid. The second-price sealed-bid auc-
tion (for a single item) is well known to satisfy each of the
following properties:

1. Individual rationality: each bidder expects a non-
negative payoff for participating. In the case of auctions,
this simply means that nonwinners do not pay, and that
each winner pays an amount less than or equal to her bid.

2. Efficiency: the highest valued bid wins. In the combi-
natorial case, this will be interpreted as the winning bidders
form an optimal solution to (WD).

3. Dominant strategy incentive compatibility: misreport-
ing one’s value for the item(s) never gives an advantage.

4. The “core” property: no coalition (subset of all play-
ers) can form a mutually beneficial renegotiation among
themselves. In the case of an auction, this simply means
that the seller would not prefer to ignore the outcome dic-
tated by the auction and renegotiate with a subset of the
bidders.

It is also well known that the Vickrey auction, also
known as the Vickrey-Clarke-Groves or VCG mechanism,
is the unique mechanism in the combinatorial setting that
satisfies properties 1, 2, and 3 from this list. The VCG
outcome implements the efficient solution described by
(WD), and each winning bidder j receives a discount from
her winning bid amount, equal to wd4N5 − wd4N\8j95,
which induces her to bid honestly. Unfortunately, it is easily
shown that property 4 does not hold for the VCG mech-
anism. The reader may easily verify that in a two item
auction for items A, and B, with bids by three bidders
b14A5= 2, b24B5= 2, b34A1B5= 2, the VCG payments are
both zero for winning bidders 1 and 2, despite a competing
bid of 2 on the items they win. Thus this simple example
(from Ausubel and Milgrom 2002) illustrates that the core
property is not upheld by the VCG auction, because both
the seller and bidder 3 would prefer to renegotiate for both
items at any price in the open interval 40125.

Given the beauty of the VCG mechanism in its abil-
ity to elicit truthful revelations of preferences from the
bidders, it is not surprising that it has received a great
amount of attention in the literature. However, several
authors have noted that the VCG auction is not practi-
cal for actual implementation. (The reader may refer to
Rothkopf 2007, Ausubel and Milgrom 2006, or Rothkopf
et al. 1990 for example.) We instead contribute to the
growing literature that “core-selecting mechanisms” or
“auctions with core pricing” provide the most usable gen-
eralization of the second-price sealed-bid auction paradigm
to the combinatorial setting. In this category of CAs, we
eschew the approach of the VCG mechanism (which treats
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properties 1–3 as constraints and ignores property 4) and
instead treat properties 1, 2, and 4 as constraints while min-
imizing (with respect to some metric) the deviation from
property 3. We do not, however, completely disregard the
VCG outcome, but instead use it as a baseline for incen-
tive compatibility; the closer we get to the VCG payments,
the incentives to distort one’s bids become less and less.
Furthermore, when the VCG mechanism does happen to
satisfy property 4, our mechanism will also produce the
VCG outcome.

A core-selecting mechanism is one that satisfies prop-
erty 4 when bids are treated as true values for the cor-
responding bundles. (This distinction about true values is
necessary, because property 3 does not hold in general, so
we cannot claim that bids are equal to true values.) Before
delving into the technical description of how we propose
to compute core prices in the aforementioned governmental
auction applications, we now briefly summarize some of
the properties of core selecting mechanisms which motivate
our claim that bidder-optimal core prices provide a useful
notion of second prices for the combinatorial setting.

To begin, for any core-selecting mechanism:
• An allocation must be efficient with respect to reported

preferences (see Milgrom 2004).
• No bidder can ever earn more than her payoff under

the VCG auction by disaggregating and using false-name
or shill-bidders (see Day and Milgrom 2008). Note that this
is not true of the VCG auction.

• Determining a core outcome is NP-hard whenever the
winner-determination problem is NP-hard (see Day and
Raghavan 2007).

• For any profile of opponents’ bids, each bidder has a
best reply that is a semi-sincere strategy, i.e., given true
utility uj4S5 for each item set S, each bidder j has a
best strategy of the form bj4S5 = max401 uj4S5−�j5 with
the same �j ¾ 0 for each bundle S ⊆ M (see Day and
Milgrom 2008).

This last point says that there exists a semi-sincere strat-
egy among any bidder’s set of optimal strategies (so-called
as a bidder is truthful about the relative values of bun-
dles receiving positive bids), which is elsewhere referred
to alternatively as either a truncation strategy (by analogy
to truncation strategies in matching markets) or a profit-
target strategy (as a bidder j targets an amount of profit �j

and cannot receive less than this amount of profit when
among the winning bidders). In Appendix A.1, we provide
further motivation for the use of semi-sincere strategies
in core selecting auctions, in their ability to eliminate ex
post envy. Similar connections between envy reduction and
core-selection are provided in the concurrent work of Oth-
man and Sandholm (2010).

Next, we consider bidder-optimal core mechanisms,
which are optimal, or efficient, in the Pareto sense. That
is, if the auction determines an efficient allocation and
prescribes payment vector p, then there is no alternative
payment vector p′ also in the core, such that p′ ¶ p.

As is typical in Pareto-optimality, this can be read as: no
bidder can be made better off without another being made
worse off. If the core-selecting mechanism is also bidder-
optimal, we have the following:

• The incentives to unilaterally misreport are not domi-
nated by any other core-selecting mechanism (see Day and
Milgrom 2008).

• If the buyer-submodularity condition holds, then
the Vickrey outcome is the unique bidder-optimal core
point. Thus any bidder-optimal core-selecting mechanism
is equivalent to the Vickrey mechanism whenever bids
and valuations satisfy buyer-submodularity, in which case
the auction is dominant-strategy incentive-compatible. The
same result holds if the more restrictive gross-substitutes
condition is satisfied for bids and valuations (see Ausubel
and Milgrom 2006). Furthermore, if it is common knowl-
edge that the buyer-submodularity condition holds (for
valuations) then truth-telling by all bidders is a Nash equi-
librium in any core-selecting auction, even if bidders are
free to use shill bidders. (This follows from Theorem 1 of
Day and Milgrom 2008, which implies that any player’s
payoff is no more than her induced Vickrey payoff in any
core-selecting auction, even if using shills.)

• Any bidder-optimal core payoff vector induces a semi-
sincere strategy that is a full-information Nash equilibrium
(see Day and Milgrom 2008 or Day and Raghavan 2007).

• Any Nash equilibrium in which winners use semi-
sincere strategies and losers bid truthfully achieves a
bidder-optimal core point with respect to the true valuations
of the bidders. Thus at any such full-information equilib-
rium an outcome must be efficient with respect to true pref-
erences, not just relative to reported preferences/bids (see
Day and Milgrom 2008 or Day and Raghavan 2007).

These last two points elucidate what might be seen as
a “strategic correction” property of bidder-optimal core-
selecting auctions. Bernheim and Whinston (1986) show a
similar theorem that the bidder-optimal core points are pre-
cisely the full-information Nash equilibria in a first-price
(i.e., pay-as-bid) format. Thus in a core-selecting auction,
if all bidders bid truthfully, the auction makes them pay an
amount equal to what they “should have bid” in a first-price
format, effectively correcting their strategies. By analogy,
the second-price sealed-bid auction corrects the winner’s
bid to what she should have bid to just tie the bid of the
next highest bidder, if she had known how much that was.
The main difference in the combinatorial setting is that
there are many bidder-optimal outcomes and thus many
equilibrium strategies, so the auction additionally helps the
bidders by selecting an equilibrium to coordinate to. In this
paper, we explore various attractive criteria for selecting
such an equilibrium outcome.

This point regarding strategic correction is worth empha-
sizing for its relevance in response to regulators worried
about the adoption of a core-selecting auction, who may
ask (as they did at the FAA when adopting a core-selecting
rule), “Aren’t the core-prices overly complicated? Wouldn’t
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the bidders prefer the simplicity of a pay-as-bid bid rule?”
The results on the Nash equilibria in these auctions allows
us to answer that in fact the opposite is true. In a first-
price auction, it is difficult to determine the correct bidding
strategy which will result in payments as small as pos-
sible fixing the other bidders’ bids, and every dollar bid
above this optimal amount is a dollar wasted. However, in
a core-selecting auction, the auctioneer effectively corrects
the bids for you so that at the conclusion, having seen the
payments of the other bidders, each bidder would agree to
bid exactly her payment amount, given that all other bid-
ders bid exactly their payment. Furthermore, this is exactly
what they would have liked to have bid as a group in a
pay-as-bid auction. This point will be further illustrated
numerically with Figure 1 and Example 1, provided in the
following section.

3. Selecting a Core Outcome
As noted in §2.3, the bidder-optimal points in the core
represent satisfactory outcomes from the auction. Bidders
are satisfied that they are just paying enough to beat out
competitors, and that no one can be made better off with-
out another being made worse off. The seller is satisfied
to receive competitive revenues determined by competition
and for which no readily apparent better alternative is
available. We now define the core formally, noting a few
interesting alternative formulations and their uses, and
demonstrate some new techniques for selection among core
outcomes.

In addition to notation already introduced, let payment
vector p ∈Rn

+
represent the nonnegative vector of payments

for each bidder, and let �j = bj4Sj5 − pj represent the
observable surplus or profit experienced by bidder j when
the auction awards bidder j set Sj . Bidders are said in this
case to have quasi-linear utility (in that their profit is linear
in payment). Also, one may note that we are dealing only

Figure 1. The core point closest to VCG payments.

The core

b4(A) = 14
b3(AB) = 32

b5(B) = 12

b1(A) = 28

b2(B) = 20

p2

p1

VCG
prices

14

12

3228

20

17

15

with observable surplus, not true net utility uj4Sj5 − pj ,
because without a guarantee of incentive compatibility, the
auctioneer will have no knowledge of these amounts. Also,
we may write �0 =

∑

j∈N pj for the profit of the seller.
(For now, we assume that prices are normalized by reserve
amounts, so that we need not subtract the value of each
item from the seller’s profit. Stated differently, the seller
has no value for keeping the items herself.)

An outcome is represented by a feasible solution to prob-
lem (WD), which we will specify by the set of awarded
(possibly empty) bundles 8Sj9 for each bidder and a pay-
ment vector p, thus inducing a profit vector �. An outcome
is said to be blocked by coalition C ⊆ N if there is some
alternative outcome with awarded bundles 8S̄j9 and pay-
ments p̄, such that �̄j = bj4S̄j5 − p̄j ¾ �j for all j ∈ C,
and for which �̄0 =

∑

j∈C p̄j >�0. An outcome that is not
blocked in this context is said to be in the core with respect
to the submitted bids b. For this paper, we may simply say
that the outcome is in the core, because we do not consider
the underlying utility functions. Also, because in other eco-
nomical settings the core is not always guaranteed to exist,
it is worth noting that in this setting the pay-what-you-bid
point is always in the core, and thus the core is always
nonempty.

It might be helpful at this point to consider an example.
Let m = 2 items, A and B, n = 5 bidders, and let bids be
as follows (each bidder submits only one bid).

Example 1.

b14A5= 281 b24B5= 201

b34AB5= 321 b44A5= 141 b54B5= 120

It is easy to determine that the unique winners in the effi-
cient allocation are bidders 1 and 2 and that the VCG pay-
ments are pVCG

1 = 14 and pVCG
2 = 12. The core itself can be

graphed in payment space as in Figure 1.
Here we note that due to the simplicity of the exam-

ple, the constraints defining the core are simply the bids
of the losing bidders (this is not always the case). In par-
ticular, because bidder 4 would always object (block) if
bidder 1 paid less than 14 for item A, we have the con-
straint p1 ¾ 14. Similarly, bidder 5 dictates p2 ¾ 12. Bidder
3 would object if bidders 1 and 2 together did not beat his
bid on the items they have won, thus p1 + p2 ¾ 32. Upper
bounds on payments are given by the bids themselves, con-
sistent with our assumption of individual rationality. Next,
one will note from the picture that we are in a situation for
which the VCG outcome is not in the core; bidder 3 alone
forms a blocking coalition.

Using the technique of Day and Raghavan (2007), one
can guarantee bidder-optimality by minimizing total pay-
ments over the core, so for Example 1 we could deter-
mine any payment vector on the line segment connecting
the point (14, 18) to (20, 12), any of which represents a
bidder-optimal core point. This simple example also clearly
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illustrates the statements from §2.3 regarding Nash equi-
libria in a first-price auction. Fixing the bid b2 of bidder 2
anywhere in the range [12, 18], bidder 1’s optimal strategy
in the first-price auction is to bid 32 − b2, and conversely,
fixing b1 within the range [14, 20], bidder 2’s best bid is
32−b1. In practice, however, each bidder will not know the
bid of the other, making coordination to any one of these
points difficult if not impossible. Thus a risk-averse bidder
would typically have to bid more than the optimal amount
(i.e., where he would bid if he knew what the other were
bidding). In the first-price auction, this problem, caused
by lack of information, costs the bidder in a one-to-one
fashion. From bidder 1’s perspective, every dollar bid over
32−b2 is a dollar wasted. In any core-selecting auction, on
the other hand, the bidders need only bid somewhere within
the core (including bidding truthfully) and the auction will
charge them a total of 32.

But still, there is a lack of precision because the Day and
Raghavan (2007) algorithm does not specify which of these
bidder-optimal points should be chosen. We are motivated,
however, by the observation of Parkes et al. (2001), that the
difference between a final payment and the VCG payment
represents a measure of “residual incentive to misreport,”
and so should be minimized. As one method to achieve a
simple to compute minimization of the groups’ incentive to
deviate from truth-telling, we propose the following refine-
ment of the Day and Raghavan (2007) procedure: over all
total-payment minimizing core points, select the one that
minimizes the sum of square deviations from the VCG
payment point. Of course, minimization of this amount is
equivalent to minimizing the positive square root of this
amount, so one may rightly describe this selection as the
core point with minimum Euclidean distance from VCG.
This rule can be referred to as a VCG-nearest or Vickrey-
nearest rule.

For Example 1, this results in the unique payment out-
come 4171155. Interestingly, this outcome is unchanged
(for Example 1) as long as bidder 1 bids at least 20 and
bidder 2 bids at least 18, fixing the bids of the losing bid-
ders. The values 20 and 18 are the minimum amounts that
could be bid, respectively, without the bid of 32 emerg-
ing in the VCG computations. If bidders 1 and 2 bid more
than 32 in total, and less than 20 and 18, respectively, than
the VCG point can in fact move, causing a slightly differ-
ent outcome. For example, if the bids for 1 and 2 changed
to 19 and 16, the VCG point shifts to 4161135, and final
payments become 41705114055. Thus, when the VCG point
moves, the relative payments can also change slightly, but
the payoff to the seller remains unchanged.

One may also note that bidders 1 and 2 in Example 1
each pay an equal amount (3 units) above their VCG pay-
ments in order to match the blocking bid made by bid-
der 3. This is indeed a general phenomenon (based on the
Karush-Kuhn-Tucker optimality conditions) and one that
we describe in detail in §3.4. First, however, we describe
a few distinct presentations of the core and the interesting
implications/economic interpretations of each formulation.

3.1. Core Formulations

First, working straight from the definition, the coalitional
core constraints are most commonly modeled (in the eco-
nomics literature) as in Day and Milgrom (2008):
∑

j∈C∪0

�j ¾wd4C5 ∀C ⊆N1 (4)

emphasizing that final payoffs (on the left) must exceed the
value that each coalition C can generate if they alone deal
with the seller (on the right). Yet from the point of view
of computation, this formulation hides the (discrete) selec-
tion of a bundle for each bidder, and is thus not guaranteed
to be convex in �-space, making it a difficult formulation
for use in a direct computational implementation. In prac-
tice, we take a divide-and-conquer approach, first solving
the winner-determination problem and then computing core
payments once a particular set of winning bundles 8Sj9
has been determined. Substituting in these bundles, can-
celing payments that are duplicated in the �0 term, and
recognizing that wd4N5=

∑

j∈N bj4Sj5 yields an alternative
formulation:
∑

j∈W

pj ¾wd4C5−
∑

j∈C

4bj4Sj5−pj5 ∀C ⊆N1 (5)

where W represents the set of bidders who win nonempty
bundles. Here the right-hand side reflects what coalition C
is willing to offer to the seller at payment vector p; they
will offer as much as can be obtained from them as a group,
wd4C5, less the profit they are already making at payment
vector p, which is

∑

j∈C4bj4Sj5−pj5.
As shown by Day and Raghavan (2007), this formula-

tion is convenient from an algorithmic point-of-view, when
we treat computations modularly (i.e., with a blackbox
mindset). If we already have code (a blackbox) that solves
winner-determination problems, and we are considering
whether a particular payment vector p is in the core, we
can simply reduce each bid by the surplus at p and re-run
the winner determination. This will find the coalition mak-
ing the highest offer to the seller and if this is more than
the current total payments, then a violated core constraint
has been identified. (In fact, this finds the most violated
constraint.) This complexity equivalence between separa-
tion and winner determination is helpful to demonstrate that
finding core outcomes is indeed of equivalent complexity as
winner determination (see Day and Raghavan 2007). Also,
this formulation is noteworthy because it is in this form
that the “core” was defined legally within the regulations
for the U.K. spectrum auctions. Rather than defining the
core in terms of possible renegotiations, this separation for-
mulation gives a clearly defined, mechanically checkable
stopping criterion, or provides a certificate that a payment
vector is not in the core.

Finally, from a math programming standpoint, it is most
helpful to segregate decision variables and constants on
their respective sides of the inequality. This yields the
following formulation, which follows from the previous
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formulation by simply canceling payment terms appearing
on both sides:

∑

j∈W\C

pj ¾wd4C5−
∑

j∈C

bj4Sj5 ∀C ⊆N0 (6)

We use this formulation for our actual computations of
core prices, which we find by quadratic optimization over
the core. This formulation, too, has its own interesting
economic interpretation, lending further credence to core-
mechanisms as selecting “fair” payments. Given the effi-
cient allocation 8Sj9, the right-hand side of (6) finds what
coalition C would pay to get everything, wd4C5, minus
what they would pay for what they actually get and is thus
equal to the most coalition C would be willing to pay to
take away what the complementary set of bidders is get-
ting. Thus each core constraint says that any set of bidders
pays at least as much as their opponents would pay to take
their stuff away from them, a competitively pleasing and
arguably fair proposition indeed.

3.2. Quadratic Rules for Payment Determination

Letting �C =wd4C5−
∑

j∈C bj4Sj5, and denoting the vector
of all such �C values as �, formulation (6) can be written
more compactly as

pA¾ �1

where each column aC is the characteristic vector of the
complementary set of winners. (That is, the jth entry in aC

equals 0 if bidder j is in set C and equals 1 if bidder j is not
in C0 Because nonwinners never pay, the dimension of each
aC is �W �×1, rather than n×1.) The core-selection region
is defined by these constraints as well as the individual
rationality constraints: p¶ b, where each component bj in
the vector b is given by bj = bj4Sj5.

We now present a class of algorithms for core-selection
based on quadratic programming. Motivated by the concur-
rent work of Erdil and Klemperer (2009), these rules can be
referred to as reference rules, in which payments are deter-
mined by minimizing the Euclidean distance to a reference
vector of prices. A p0-reference rule finds final payments
p∗ that minimize the sum of squared deviations from pay-
ment reference point p0, which might be either constant or
dynamically determined but is constant with respect to the
following optimization:

min4p−p054p−p05T 1 (7)

pA¾ �1 (8)

p¶ b0 (9)

Also, Day and Raghavan (2007) provided some motiva-
tion that payment minimization over the core may deter
certain types of group deviation and that a threshold rule

(as described by Parkes et al. 2001) without explicit pay-
ment minimization might not result in payment minimiza-
tion. Similarly, a reference rule as just described might not
minimize total payments over the core, unless this payment
minimization is enforced explicitly. (Example 2 on page 34
provides an example of this phenomenon.) We therefore
also describe MRC-reference rules in which the feasible
set of payments is limited to those core points that min-
imize total revenue, referred to as the minimum revenue
core or MRC by Erdil and Klemperer (2009). To employ
such a rule, we first find minimal core payments by solving
the LP:

�= minp11 4LP5

pA¾ �1 (10)

p¶ b0 (11)

Then determine final payments p∗ as the optimal solution
to the following QP:

min4p−p054p−p05T 1 4QP5

pA¾ �1 (12)

p¶ b1 (13)

p1 =�0 (14)

This last MRC-reference rule with p0 = pVCG is the auction
format adopted by Ofcom for spectrum license auctions
in the United Kingdom.

In practice, evaluating each �C requires the solution of
a winner-determination problem, so with 2n − 1 nonempty
coalitions to consider, it is advantageous to employ a core-
constraint-generation procedure as in Day and Raghavan
(2007), which we henceforth abbreviate CCG. Starting at
the payment vector p0, reduce each bid by the current sur-
plus, i.e., for all S ⊆ M , let bj4S5 = b̂j4S5 − bj4Sj5 + p0

j ,
where b̂ represents the fixed, submitted bid. Then solve
(WD) with these new bids, finding the first violated coali-
tion C1, the set of bidders winning nonempty bundles in
this altered version of (WD). We then let our first approxi-
mation of matrix A be simply A1 = aC1

, and let �1 = �C1
.

Next we solve formulation (LP) with A1 and �1 replac-
ing A and �, yielding minimum payment solution �1, and
then solve formulation (QP) with A1, �1, and �1 replac-
ing A, �, and �, labeling the solution to (QP) as p1. The
algorithm continues in this fashion, finding a new violated
constraint paCt

¾ �Ct
at pt−1 and concatenating the corre-

sponding column to At−1 and new entry to �t−1, forming
At and �t , as long as this solution to the surplus-reduced
(WD) exceeds pt−11. If the solution to the surplus-reduced
(WD) does not exceed pt−11, then we may set p∗ = pt−1

and terminate with a solution to (QP), representing final
payments in the auction. Further discussion on the efficacy
of this CCG approach is given in Appendix A.2.
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3.3. Robustness and Constant Reference Rules

It has been observed by Ott (2009) and Lamy (2010) that
revenues might in some cases decrease when bids increase
in any bidder-optimal core-selecting auction, contradicting
an erroneous proposition put forth in Day and Milgrom
(2008). Here we provide a result regarding the relative
insensitivity of the auction outcome (including total rev-
enues of the seller) under a special set of assumptions,
helping to motivate the use of certain reference rules, and
provide further insight into the types of strategies that lead
to profitable deviation from truth-telling.

Theorem 1. Consider a reference rule (or an MRC-
reference rule) in which the reference vector p0 is inde-
pendent of winners’ bids. Suppose that bidders restrict to
semi-sincere strategies and that for a fixed set of bids,
the individual rationality constraints are never binding,
i.e., suppose that p∗ < b. Then, the auction outcome does
not change for any uniform increase in a semi-sincere strat-
egy made by a winning bidder.

Proof. See Appendix A.3. �

Although the exploration of appropriate reference vectors
that satisfy the condition of independence from winners’
bids remains open, it is easy to see that a constant refer-
ence vector selected in advance by the auctioneer would
be independent, satisfying that hypothesis of the theorem.
Interestingly, this theorem states that if a bidder focuses on
semi-sincere strategies (perhaps to relieve envy possibilities
via Lemma 7.2), then if she bids enough that she will have
paid more than she had bid, she might as well have bid
honestly.

Also, this theorem can also be stated “locally” for a sin-
gle winning bidder, if p0 does not change with a uniform
increase in semi-sincere strategy by bidder j ∈ W , and if
p∗
j < bj , then the overall auction outcome does not change

with any uniform increase in semi-sincere bidding strategy
by bidder j . Indeed, this local result applies under a VCG-
nearest rule when it is the case that p∗

j < bj and that bidder
j participates in the efficient solution even when any other
single bidder is removed. In that case, each VCG payment
for a bidder j̄ 6= j remains unchanged following the semi-
sincere increase via cancellation of the increase, and thus
p0 is unaffected by the increase. The reader may verify that
this is the case for Example 1, that any bid increase by a
winning bidder leaves the outcome unchanged.

But of course, the hypothesis that p∗ < b is indeed
a strong assumption, and considering a violation of such an
assumption elucidates situations in which there is scope for
profitable deviation from truth-telling. For example, let us
revisit Example 1 from page 592, but now consider a situa-
tion in which rather than a dynamic VCG-nearest rule, the
auctioneer had arbitrarily selected the point 4141125 as p0,
resulting in a confirmation of the independence assumption.
(The following explanation would change little if we used
another constant vector as p0.) We see that the outcome

of the auction is unchanged as long as bidders 1 and 2
bid any amount greater than or equal to 4171155, respec-
tively, on their bundles of interest. (Notice that any bids less
than or equal to value on the bundle of interest constitute
semi-sincere strategies when bidders are single-minded.)
The scope for profitable bid-shading occurs only when one
of the bidders bids below her final payment under truth-
telling, and only when the other winning bidder bids at
least as much in the other direction, strictly above her own
final payment. For example, if bidder 1 knows that bidder 2
will bid 19, she can bid any amount down to 14, which
(assuming preference in a tie-breaking rule) results in no
change of allocation. (We see that in addition to being sure
that bidder 2 bids enough to make the sum of their bids
exceed 32, bidder 1 would also like to be sure to beat the
competing bid of bidder 4.) If this new bid amount for
bidder 1 is less than 17 (her payment if she were honest),
she will pay exactly as bid, violating the assumption of
Theorem 1, and bidder 2 will be forced to pick up the dif-
ference 32 − b1. Of course, without knowledge of bidder
2’s bid and bidder 4’s bid, this shading below 17, which
is profitable, also carries the risk of missing the efficient
allocation, resulting in zero payoff.

This example shows the limitations of Theorem 1, but
because a bidder j will often not have enough knowledge
to safely shade to a point where p∗

j = bj4Sj5, the theorem is
likely to be relevant in many situations. Roughly speaking,
if we consider pay-as-bid outcomes to be unlikely, then this
theorem states that decreases in �j to reduce risk will likely
not be costly. Also, this alteration of Example 1 seems
to suggest that the most attractive combinatorial auction
would be one in which the auctioneer knew the VCG point
based on true valuations and used this true VCG point as
the reference price vector p0. But it is hard to imagine a
situation in which the auctioneer would have enough fore-
knowledge to predict the true VCG point accurately yet still
feel the need to conduct an auction.

Still, this motivates the goal of the auctioneer conducting
a reference rule auction, to attempt to select an independent
reference point that approximates the true VCG point as
well as possible, in an effort to maintain the desired notion
of “near-truthfulness.” Prior to the influence of Erdil and
Klemperer (2009), we did consider constant-p0-reference
rules, but rejected this idea in our consultation to Ofcom
for U.K. spectrum auctions due to the distortions caused in
the final payments, favoring large bidders, and because this
approach makes the final distribution of payments highly
dependent on the assumptions and actions of the auctioneer.
Let us elaborate on these points, again by example.

It is easy to see with a two-winner auction that a con-
stant reference rule, such as p0 = E0, favors larger bidders.
If we were to apply such a rule to the data for Example 1,
for example, bidders 1 and 2 both pay 16, an equaliza-
tion of payments despite higher marginal competition on
item A from bidder 4. The following more extreme exam-
ple demonstrates how this problem can get worse as the
situation becomes more lopsided.
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Example 3.

b14A5= 1001 b24B5= 201

b34AB5= 601 b44A5= 500

In this example, which is similar to Example 1, the VCG
payments for efficient winners 1 and 2 of 450105 are not
in the core; the two must raise their combined payments to
60 in order to keep bidder 3 from blocking. If the reference
rule p0 = 0 is used, the result is that bidder 2 will pay the
entire burden of this total payment increase; final payments
become 4501105, while a VCG-nearest rule (MRC or not)
results in a sharing of this burden, with payments 455155.
This problem can be mitigated by using a more sophisti-
cated constant value (for example, selecting the reference
vector with each term set equal to the sum of the reserves
values for each item in the respective winning bundles),
but the problem persists that bundles with high value rela-
tive to the auctioneer’s expectations pay less of the burden
of overcoming a competing coalitional offer. Because the
underlying assumption of an auction is often that the seller
has poor a priori knowledge of value relative to that of
the bidders, we are motivated to select an outcome based
on good (bid-based) information over poor (seller prior)
information.

Furthermore, a one-for-one change on the part of the
seller often results in a corresponding one-for-one change
in payments under a constant reference rule, making the
outcomes highly sensitive to the pre-auction actions of the
seller. For example, considering Example 1 with a seller-
predefined constant reference rule p0 = 4141125, we end
at the payment vector p∗ = 4171155. But if the seller
had instead selected the reference vector p0 = 4151115, a
one-for-one change, the resulting payment vector is p∗ =

4181145, a corresponding one-for-one change. This sen-
sitivity puts a great deal of pressure on the auctioneer
in the selection of the constant reference point and opens
the possibility of post-auction lawsuits if the criteria for
the reference point selection cannot be adequately justi-
fied. A zero-reserve (or a bound-only reserve, as will be
discussed in §4) VCG-nearest rule, however, does not suf-
fer from this sensitivity to auctioneer selection and could
therefore be seen as a safer design choice on the part of
the seller.

3.4. The Karush-Kuhn-Tucker
Optimality Conditions

Employing a typical tool from the nonlinear programming
toolkit (see for example Bazaraa et al. 1979) we derive the
Karush-Kuhn-Tucker (KKT) conditions for the optimality
of problem (QP).2 These conditions are necessary and suf-
ficient because the constraint-defining functions are linear
(hence quasiconvex) and the objective is convex, as long as
the reference point p0 ¶ p for all p in the core.3 Letting Ã
be the submatrix of A consisting of the columns that are
tight at p, then the KKT conditions indicate that p is an

optimal solution to (QP) if and only if there exist a vector
z¾ 0, a vector w¾ 0, and a scalar v¾ 0, such that

p = p0
+zÃT

−vE1−wIp1 (KKT)

where the matrix Ip contains a row of the identity matrix
ej for each bidder j who pays as bid at p.

Thus the final payment vector p∗ can be decomposed as
follows for each bidder:

p∗

j = p0
j +

∑

aC∈Ã�jyC

zC − v−wj1

that is, each bidder j pays her VCG value plus a penalty
for any marginally unblocking (i.e., tight) coalition C that
j does not belong to (and this penalty is equal for all bid-
ders not in C), minus an offset term v that is equal across
all bidders and serves to guarantee payment minimization,
and minus a personal offset term wj to guarantee individual
rationality for a pay-as-bid bidder j . The equity of these
z terms across bidders contributes to the “fairness” of this
payment rule; payments are based on equal contributions
to overcome a competitive challenge from other bidders,
except where individual rationality constraints cap the con-
tributions of a bidder, in which case the personalized offset
wj takes affect. If a non-MRC-reference rule is employed,
then the v terms disappear from this decomposition, as
the relevant constraint disappears from the derivation of
these KKT conditions. Furthermore, we have the following
lemma.

Lemma 3.1. Under a VCG-nearest rule, wj = 0 for all
j ∈N .

Proof. See Appendix A.4. �
Thus a non-MRC VCG-nearest rule provides the simplest

payment decomposition. Winners only pay equal penalties
for a coalition C they do not belong to, zC , with no universal
adjustment v and no personalized adjustment wj .

If one were to consider using the same feasible region
but a different strictly convex objective function, the
KKT derivation changes only in the objective gradient
terms. So strictly speaking, with a new objective function
f 4p−p05, rather than a linear decomposition of p−p0, we
get a linear decomposition ïf 4p − p05 = zÃT −wIp − v1.
So if we instead minimized

∑

j∈W 4pj −p0
j 5

4, we would have
for each bidder a linear decomposition of 4p∗

j −p0
j 5

3, seem-
ing only to add confusion to the breakdown of payments
and further motivating the quadratic objective as the most
simple convex objective function to interpret.

It is also worth noting that the optimal solution p∗ to
(QP) is unique because we are minimizing an L2-distance
to a fixed point over the convex set of payment minimizing
core points (and if there were multiple optima, the trian-
gle inequality would verify that a convex combination of
these “optima” had a lower objective value, a contradic-
tion). But the vector 4v1w1 z5 on the other hand, which
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decomposes these payments, might not be unique. We elab-
orate upon this phenomenon in Appendix A.5. Also, the
KKT conditions allow us to identify a quick solution tech-
nique for solving (QP) at intermediate stages of the con-
straint generation algorithm, which we also elaborate upon
in Appendix A.5.

4. Seller Reserves
Here we consider the subtleties of applying the quadratic
core-selection approach when the seller has a nonzero
reserve value for some or all of the items being sold.
For example, in many single-item auction environments,
reserve prices from the seller are easily modeled by sim-
ply having the seller submit a “dummy” bid equal to the
reserve amount on the item; if the seller wins, then the item
is kept. Here we note that this approach might be misap-
plied in the context of a core-selecting auction if the proper
care is not taken.

Let us consider a seller who has an additive reserve
value ri for each item i in the auction, or collectively, the
seller has a reserve vector r , which will be treated addi-
tively. That is, the seller’s net payoff is given by �0 =
∑

j∈W pj − r · x, where x is the characteristic vector of the
items sold. Letting rS =

∑

i∈S ri for any S ⊆M , the social-
welfare-maximizing objective of the winner determination
problem then becomes

wd4N5= max
∑

j∈N

∑

S⊆M

6bj4S5 · xj4S57− r · x1

which is in turn equivalent to

max
∑

j∈N

∑

S⊆M

6bj4S5− rS7 · xj4S50

Thus as is standard when considering VCG mechanisms
with reserves (see, for example, Ausubel and Cramton
2003), the auction outcome can be computed by first reduc-
ing each package bid by the total reserve amount for the
package, then proceeding as if the seller had zero reserves,
and finally adding the bundle reserve back in to determine
final payments.

Consider the following simple two-bidder, two-item
example.

Example4 4. b14A5= 40, b24AB5= 40, and the seller has
a reserve value of 10 for each item.

Efficiency demands that item A be sold to bidder 1, while
B remains unsold. With the reduction of bids approach, we
may begin by reducing each bid by the total reserve amount
for the package, resulting in reduced bids, br

14A5= 30 and
br

24AB5= 20. We then compute a VCG payment of 20 for
bidder 1, and applying CCG, we note that bidder 2 does
not block this VCG outcome. These reserve amounts must
be added back into any final payment to produce the actual
final payment for bidder 1, p1 = 20 + 10 = 30. (Notice that
if p1 = 20, the seller and bidder 2 would prefer an exchange

of both items for any price in the open interval 4301405.
Also note that if the seller instead had a zero reserve value,
either bid could be accepted as an efficient solution, and in
either case the winner would pay 40.)

This procedure might seem to contain a redundancy,
given that we first reduce each package bid by the reserve
amount for the package, and then add this package reserve
amount back into any final payment. Given that seller
reserves are adequately modelled using “dummy bids” in
the context of single-item auctions, for example, one might
be tempted to try the following approach: leave bids in
their “unreduced” form, treating the seller as if his reserve
value was zero, and insert a “dummy bidder” or “reserve
bidder” to represent the interests of the seller, bidding the
reserve amount for each item. In this example, we would
add bids b34A5= 10 and b44B5 = 10. This approach does
necessarily lead to the correct determination of the efficient
solution; the bids made by 1 and 4 win, with a winning
reserve bidder indicating that item B stays with the seller.
But a naïve application of the CCG algorithm proceeds as
follows: following determination of the efficient solution,
VCG payments are computed for bidder 1 and (dummy)
bidder 4 as p1 = 30, p4 = 0. But this set of payments is
blocked by bidder 2, who would be willing to pay up to
40 to take both items away from the winners. Minimizing
the distance to the VCG point (for example) after apply-
ing the relevant core constraint payments are adjusted to
p1 = 35, p4 = 5, which is in the core with respect to these
four bids, given that the dummy bidders are treated just as
any other bidder.

But this treatment of the dummy bidders just as any other
bidder is at the heart of the problem, and as we can see, this
misapplication causes bidder 1 to pay more. Although the
determination of the efficient solution proceeds correctly
when the seller’s reserve amount is replaced with a seller-
dummy in the objective of the WDP, the surplus reduction
step in the generation of core constraints proceeds incor-
rectly; it fails to consider that the seller loses the value of
item B if it were to be reallocated to bidder 2, thus over-
stating the seller’s willingness to form a blocking coalition
with bidder 2.

But the use of seller-dummy bidders is intuitively appeal-
ing; the seller wants to leave open the possibility of buy-
ing back some of its own property if competition is too
low, and wishes the competition for its own property to
be reflected both in the determination of winners and in
payments. An easy fix is available that maintains this intu-
itively appealing use of dummy bidders to reflect reserves,
however, and it is this variation which was used in the rules
published as part of the December 2008 FAA slot-auction
bidder seminar. Those rules included the following (para-
phrased) treatment of seller reserves:

• The seller will specify a reserve amount for each item,
ri, stipulating that any bid bj4S5 must not be less than
rS and that any payment made by any bidder for package
S must not be less than rS .
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• The seller will introduce into the auction, for every
item i, a reserve bidder bidding the amount ri for the
package 8i9.

The main discrepancy here is that any payment (includ-
ing the “payments” made by reserve bidders) must be
greater than or equal to the package reserve amount. This
forces the “payment” within the algorithm for any reserve
bidder to be exactly equal to the reserve amount ri, which
in turn forces the seller to be fully compensated by a
potential blocking coalition if it involves a reserve bidder.
For example, applied to the previously considered scenario,
we would still have p1 = 30, but with a VCG payment for
reserve bidder 4 under the reserve amount 10, we are forced
to set the initial payment p4 = 10. The bid by bidder 2 is
no longer blocking, as she cannot overcome the additional
10 units that must be compensated to the seller to obtain
item B, which appear as payments from the fictional bid-
der 4. Although logically equivalent, the two rules above
were deemed more appealing than the following possibility
based on the “reduced bid,” which can be thought of as
“moving the origin” according to the reserve vector, and
then “moving it back” at the end of the auction:

• The seller will specify a reserve amount for each
item, ri, stipulating that each bid bj4S5 be reduced by
the amount rS prior to the winner determination and CCG
implementation.

• Each bidder j winning package Sj will pay the amount
pj determined using reduced bids, plus the base reserve
amount rS .

Relative to the equivalent former pair, this latter pair of
rules seems a bit more confusing for participating bidders,
because it introduces a second reduction of bids that is
different from the “surplus-based” reduction of bids that
occurs in the CCG computation of a core outcome. It might
also be unclear at first glance that the “movement of the
origin” in bid space prior to running the algorithm, fol-
lowed by an equivalent “move-back” in payment space at
the end of the auction is a non-trivial operation.

Next, we note a different reserve-setting procedure,
appropriate for a seller who has zero value for keeping any
item but wishes to set reserve payments in order to ensure
adequate compensation is received when there is a lack of
competition on a particular item or bundle. (For example,
a spectrum authority might not have any value for holding
a spectrum license unsold but also would like to charge a
nominal fee.) This procedure is implemented by simply set-
ting a lower bound rS on any bundle S, without the insertion
of dummy bidders. In this case we see that if we compared
a situation where an item i went unsold and bidder j is
awarded set Sj with bid amount bj4Sj5 = a, to an alter-
native solution in which bidder j is awarded set Sj ∪ 8i9
with a bid of bj4Sj ∪ 8i95 = a, there would be no change
in social welfare, consistent with a seller who literally has
zero value for keeping item i.

Next we note, via example, a peculiar finding regarding
the use of dummy “reserve bidders” (as previously out-
lined) and the more simple use of “bounds-only” reserves

on any bundle payment (as in the previous paragraph).
Consider the following example.

Example 5.

Reserve Bounds
Bids bidders only

b14AB5= 100 b24CD5= 100 p1 = 55 p1 = 45
b34BC5= 90 Seller reserve for p2 = 55 p2 = 45

each item, ri = 10

If the seller employs reserve bidders (and bounds as out-
lined above) or equivalently runs the auction after reducing
bids by reserve amounts and adds the reserve amounts back
into final payments, the result is higher payments than if
the seller simply set a lower bound on any bundle payment
of 10�S�. This result seems intuitive; if the seller is aggres-
sively bidding for items, this might drive up the prices
on those items. But the result is reversed in the following
example.

Example 6.

Reserve Bounds
Bids bidders only

b14A5= 100 b24B5= 100 p1 = 35 p1 = 45
b34ABCD5= 90 Seller reserve for p2 = 35 p2 = 45

each item, ri = 10

In both Examples 5 and 6, the reserve bounds are always
loose for the actual winners. For Example 5, we see that
the dummy bidders participate in coalition formation but
are not part of the efficient solution; losing bidder 3 forces
the winning bidders to pay at least 90 on her own, but at
least 110 with the help of reserve bidders who are willing
to buy back the items A and D at 10 each.

In Example 6, we see the reverse phenomenon; the active
reserve bidders participate in the efficient solution but not
in coalition formation for price setting. Without reserve bid-
ders, the two winners need to raise 90 units of revenue to
ensure that bidder 3 is not blocking. When the reserve bid-
ders are present, however, the winning bidders “get help”
from the reserve bidders, who contribute 20 to buy back
the items C and D, and thus 20 less is collected from the
actual winning bidders. Note that depending on the actual
utility function of the seller, both outcomes are logically
consistent. If the seller actually perceives a loss of 10 units
of value for giving away an item, then for Example 6, the
seller perceives 90 units of utility from her revenue com-
bined with her value for keeping items C and D. If the
seller instead had no value for the items she keeps, then
she gets 90 units of utility from revenue only.

Thus these two approaches to reserve setting are highly
dependent on the utility of the seller for keeping items,
and the revenue implications of choosing one method over
the other are not always clear. So for a telecommuni-
cations authority like Ofcom, we recommended “bounds
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only” reserve setting because they did favor allocating as
much spectrum as possible. But for the FAA we recom-
mended “reserve bidders” because the potential reduction
of delay from unallocated slots had value according to the
FAA’s objectives, who planned to (potentially) retire slots
that were not sold at auction.

We note finally that the reserve bidder technique, since
equivalent to a reduction of each bundle bid by the bun-
dle reserve amount, does indeed represent a “shift of the
origin” in payment space, and thus like a constant-p0-
reference results in payments that are highly sensitive to
changes in the reserve structure set by the auctioneer
before the auction. For example, a one-for-one shift of
the reserve amounts so that rA = 11 and rB = 9 in Exam-
ples 5 and 6 results in the identical shift in payments by
the bidders when using a reserve-bidder scheme. Final pay-
ments become 4561545 and 4361345 in Examples 5 and 6,
respectively. But with a bounds-only technique, payments
are relatively insensitive to changes in the seller-specified
reserve amount. In general, unless a bidder is paying an
amount exactly equal to the seller-specified bundle reserve
amount, the choices made by the auctioneer regarding bun-
dle reservation value are inconsequential under a bounds-
only method, while the previous argument showed that this
is not true of a reserve-bidder approach.

5. Applications
The practical applicability of the techniques proposed here
is limited mainly by our computational ability to solve
larger and more complex winner determination problems.
For assurance of a timely auction in real life, we would
usually like to guarantee worst-case run times for any win-
ner determination problem within a few minutes or hours.
In practice, computational run time was not an issue at all
during our testing for Ofcom, in which we reviewed several
hundred test cases in anticipation of the United Kingdom’s
three spectrum auctions. In all testing, we implemented the
algorithm described in §3.2 using CPLEX 11.1, and test
cases were run in parallel by consulting company dotEcon
and by associates at the Smith Institute for Industrial Math-
ematics and System Engineering. Run times were consis-
tently under 20 minutes for even the worst cases, with the
median cases taking a few seconds or less to solve. For the
two real-world auctions, run times for winner and payment
determination were around 1 second.

A few other practical points regarding the applications of
the techniques proposed here are outlined in Appendix A.6.
One minor point of caution did arise in our testing, which
we mention here, however. In the assignment stage of the
10–40 GHz or of the 2.6-GHz auctions, Ofcom wanted to
assure that any unsold spectrum was kept as one contiguous
block so that it could be readily used or resold at a later
date. This condition was solved easily enough with an IP
formulation by having an appropriately sized space-holding

bid for unsold blocks, and having the IP determine a par-
tition of the spectra within a category because the quan-
tities of lots had already been determined in the principal
stage. But care must be taken with a partitioning formula-
tion when computing either the VCG payments or the core
payments.

Specifically, if we tried to find a VCG payment by
removing a bidder, the partitioning IP became infeasible.
The simple solution is to not remove a bidder, but instead
lower all of his bids to zero for his VCG computation.
Similarly, when attempting to separate a violated core con-
straint, we reduce each bid by the bidder’s current sur-
plus. When solving the ensuing partitioning formulation IP,
we noticed that it was necessary to replace any negative
bid with zero, or else certain blocking coalitions would be
ignored. Furthermore, the algorithm as proposed in §3.2
said that a constraint was generated with a 1 for every bid-
der not receiving items in the separation IP solution, but
every bidder must receive items in the assignment stage
partitioning formulation. Again, the simple fix is to place
a 1 into the constraint for any bidder who is forced to
take a zero-valued bundle (under the surplus adjusted bids).
These are fairly straightforward modifications of the core-
selection algorithm, but we include these facts for com-
pleteness that a slightly different procedure must be taken
in winner-determination problems for which each bidder
must receive items.

6. Computational Experiments
In this section we describe the results of a set of com-
putational experiments performed using data generated by
the Combinatorial Auction Test Suite (CATS) as intro-
duced by Leyton-Brown et al. (2000). The CATS software
simulates bidding behavior in a number of realistic eco-
nomic environments, for example, when bidders are inter-
ested only in bundles of contiguous geographic regions
in a spectrum license auction, or in bundles that form
a path in a shipping-lane auction, etc. We used the
same instances used by Day and Raghavan (2007) (which
are available at http://users.business.uconn.edu/bday/CATS-
CCG.zip), restricting to the auctions for 16, 32, and
64 items. Among these instances with three different
sizes for the number of auction items, we allowed the
CATS number-of-bids parameter to vary among the val-
ues 810125150110012501110009, and we replicated each
of these parameter values 50 times, for a total of 1,050
randomly generated auction instances.

All instances were run using CPLEX 11.1 on a Win-
dows Vista, AMD Turion 64 2-GHz processor with 2 GB
RAM. Relative to the earlier computations performed by
Day and Raghavan (2007) on these instances, all worst-
case and average run times (with one exception) actu-
ally decreased; the computational gains from an upgrade
to CPLEX 11.1 from CPLEX 9.0 more than outweighed
the increased burden of solving quadratic programs to
select among MRC-points, and the increased burden of
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the randomized tie-breaking rule put in place for the FAA
slot auction, which itself constituted an additional winner-
determination run. The only exception was in the worst-
case run time for 64 items and 1,000 bids, which increased
from 3,703 to 7,583 seconds, but this entire increase
could be accounted for by the additional winner determi-
nation needed to implement the randomized tie-breaking
rule (6,472 seconds were spent in the winner-determination
phase, which included both runs). When this single instance
is removed, all worst-case run times are an improvement
over the Day and Raghavan (2007) results. All 16-item auc-
tions concluded in under 2.5 seconds, all 32-item auctions
in under 30 seconds, and all 64-item auctions in under 2.5
hours (under 49 minutes when the single worst case was
removed). The average performances for the largest 1,000
bid cases were 0.96, 5.6, and 611 seconds, for 16, 32, and
64 items, respectively, indicating that this class of algo-
rithms does indeed perform in a comfortable time-scale for
these auction sizes.

Also as in Day and Raghavan (2007), we found that
a large minority (roughly 42%) of these CATS instances
result in VCG outcomes when a VCG-nearest rule is
applied. Considering all instances in this study, the VCG
outcome delivers an average of 42% surplus to the bidders,
while the VCG-nearest MRC rule delivers 33% surplus,
leaving about 9% of value as a potential benefit from uni-
lateral misrepresentation of preferences, because the VCG
payment gives the maximum amount of benefit available
from a unilateral deviation. Restricting only to instances
in which the VCG outcome differs from an MRC out-
come (about 58% of instances), the average bidder surplus
becomes 33% for VCG, 18% for the VCG-nearest MRC
rule, leaving a maximum of about 15% of value available
through unilateral misrepresentation. Thus the majority of
the possible benefits of bid shading are removed by this
quadratic core-selecting rule, relative to a pay-as-bid rule.
These results are summarized in Table 1. Also, although
15% of value might seem substantial, one should remem-
ber that this measures the maximum possible gain from
deviation, assuming that the bidder knows to shade by this
amount and not more, and that opponents do not shade their
bids as well.

6.1. VCG-Nearest vs. Zero-Nearest

With Example 3 on page 596, we showed that the use of a
zero-nearest reference rule (i.e., when p0 = E0) can result in
a high-valued winner shouldering little if any of the mon-
etary burden of overcoming a blocking coalition. Here we
show that this phenomenon is not peculiar to a carefully

Table 1. Average bidder surplus as a % of value.

Method All instances (%) MRC 6= VCG instances (%)

VCG 42 33
MRC 33 18

constructed example, but instead that it occurs frequently
when using a random data-set, in this case the CATS data.
Toward this end, we duplicated the runs described above
using a zero-nearest MRC reference rule rather than a
VCG-nearest MRC rule. Then we looked at the difference
between the final MRC payment and the VCG payment for
each bidder. For any instance in which this amount was
positive, and for which there were at least two winners, we
isolated the highest-valued and lowest-valued winning bid-
der and measured the percentage of increase from the VCG
total that was paid for by each of these two bidders. That
is, we computed

p∗

j̄
−pVCG

j̄
∑

j∈N 4p
∗
j −pVCG

j 5
1 (15)

where j̄ was the index of the highest-valued winning bid-
der, and the lowest-valued winning bidder, respectively.
Using this measure, we confirmed that the intuition shown
by Example 3 did indeed persist. (In that example, this
statistic took the values 0 and 1, for the highest- and lowest-
valued winners, respectively, under the zero-nearest rule,
and 400510055 under the VCG-nearest rule.) For the VCG-
nearest computations, this statistic (15) averaged roughly
20% for the highest-valued winner, while the zero-nearest
computations resulted in a value of about 6% for the
highest-valued winner; the use of a zero-nearest rule results
in high-valued winners shouldering less of the burden of
overcoming blocking coalitions when the VCG outcome is
not in the core. Similarly, we found that the lowest-valued
winner paid about 7% of the burden under a VCG-nearest
rule, while they paid 12% under the zero-nearest imple-
mentation. Furthermore, the extreme behavior of Exam-
ple 3, in which the higher-valued winner paid none of
the burden of overcoming a blocking coalition (beyond the
VCG payment) was also observed in the CATS data. This
phenomenon, in which the statistic (15) equalled zero for
the highest-valued winning bidder, occurred in only 8%
of the relevant instances under a VCG-nearest rule, but
over 32% of the instances using a zero-nearest rule showed
this extreme lopsided-ness. Figure 2 visually indicates the
overall disproportionate burden placed on the lowest-valued
winner relative to the highest-valued winner under a zero-
nearest rule. Clearly, from viewing these graphs, this dis-
parity between the two approaches is most pronounced
when the number of winners is small. (Using the CATS
data, the presence of more bids makes it more likely to
have more winners.)

6.2. Reserve Bidders vs. Bounds-Only Reserves

To observe the effect of the two seller-reserve formats dis-
cussed here, we ran each CATS auction instance using a
VCG-nearest MRC reference rule, once using the bounds-
only approach and once using the reserve-bidders approach.
Although Examples 5 and 6 demonstrated that drastically
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Figure 2. When total payments are more than the total VCG payments, these graphs show the proportion of the difference
paid (on average) by the winner with the highest valued bundle, the lowest valued bundle and all other winners,
under (a) the VCG-nearest rule, and (b) the zero-nearest rule, as a function of the number of bids parameter.
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different outcomes could occur in some specially con-
structed examples and that neither was a universally better
approach, we wanted to demonstrate that the discrepancies
between the two approaches persisted in the robust envi-
ronment provided by the CATS data. Because the CATS
data did not generate a seller-reserve value for each item,
we arbitrarily asserted a reserve value of ri = 20 monetary
units for half of the items in each auction instance, and
reserve value ri = 40 for the other half of the items. After
this we pruned out any bids that did not meet the implied
(additive) bundle reserve value, and we removed any auc-
tion instances for which fewer than two bids remained,
leaving us with 706 or roughly 67% of the original auction
instances for further investigation.

As expected, a bounds-only approach tended to cause
an increase in the number of units sold, but only a mod-
est increase; for these data, less than 66% of items were
sold if reserve bidders were used, and just above 70%
were sold under the bounds-only approach. If considering
a seller who has no value for keeping an item, and thus
whose utility is specified exactly by the amount of rev-
enue generated, we found that about 56% of the instances
experienced an increase in revenue under the bounds-only
approach, although the overall performance showed a small
(1%) average reduction in revenue with the bounds-only
approach. In the extreme cases, the largest positive effect
of switching to bounds-only was a 78% increase in rev-
enue, while the largest negative effect was a nearly 40%
reduction in revenue with bounds-only. But mostly, the rev-
enue effects were noticeable but modest, averaging a 6%
absolute deviation between the two reserve formats. These
results indicate that in specific circumstances, the effect
of reserve-format selection might be substantial in either
direction, but that these large discrepancies are not typical
(79% of the instance has an absolute revenue change of
10% or less from switching approaches). Also as might be
expected, the revenue effect of the reserve-format selection
had less impact on auctions with a larger number of bids.
When auctions with fewer than 250 bids were removed

from our analysis, 99.6% had a revenue change of less
than 10% when switching approaches, and here we saw a
1% average increase in revenue over all instances when
switching to bounds-only. Also, when these auctions with
a small number of bids were removed, the extreme cases
were much less extreme; revenue decreased by no more
than 7%, and increased by no more than 11% when switch-
ing to bounds-only.

The full set of total revenue comparisons is given in Fig-
ure 3, where each vertical bar represents one of the 706
instances, grouped by the number of items in the auction
(16, 32, or 64) and ordered within a group by the number
of bids as indicated on the horizontal axis. Values on the
vertical axis indicate total auction revenue as a percentage
of the revenue sum of the two methods for that instance;
thus 50% indicates equal revenue across the two methods,
66.6̄% indicates that one method had twice the revenue of
the other, etc. This picture indicates that the direct revenue
comparison is indeed unclear but seems visually to slightly
favor the reserve-bidder approach if just considering rev-
enue, consistent with the overall 1% revenue disadvantage
of bounds-only indicated above. Also, we see that regard-
less of the number of items being sold, the discrepancy
between the two approaches becomes less pronounced with
more bids in the auction, indicated by the convergence to
the 50% line as we move from left to right in each item-
quantity group.

When we consider a seller who does value keeping
unsold items, the seller’s net utility from the auction is
then the value of the revenue received minus the value of
the items sold. In this case our results more clearly favor
a reserve-bidder format for this type of seller, although
again, not in all instances. In about 7% of these instances
(including auctions with both many and few bids) a seller
would relinquish 100% of her utility if choosing a bounds-
only approach over a reserve-bidder approach. Although a
single extreme instance did show a nearly 105% increase
in seller utility under bounds-only, 71% of all instances
showed a reduction of seller utility when switching to
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Figure 3. Revenue comparison of the reserve bidder and bounds-only approaches over all relevant instances.
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bounds-only. Furthermore, of the roughly 29% showing
an increase in seller utility, 95% showed only a modest
increase of less than 15%. On average, switching to a
bounds-only approach resulted in a 15% loss of seller util-
ity. This average effect was much less for auctions with
less than 250 bids, only a 1.5% reduction in average seller-
utility when switching to bounds-only. Furthermore, the
scope for large increases in seller utility in extreme cases
nearly disappeared when looking only at these many-bid
instances; the biggest increase when switching to bounds-
only then became about 9%.

7. Conclusions
We presented a general algorithm for selecting among core
outcomes for use in any combinatorial auction, and we
described the many beneficial properties of the approach.
We motivated the idea that quadratic core-pricing is simple
to understand (via Example 1) but that it is also general
enough and extensible enough to handle the full complex-
ity of any combinatorial auction problem. For instances in
which the winner-determination problem can be solved in
a reasonable time, then “fair” payments can also be com-
puted in a reasonable time. This development represents
an important milestone in operations research, in which a
computational, algorithmic development opens the door to
efficient solutions for a wide class of economic resource-
allocation problems.

The prices we generate represent a natural generalization
of the second-price paradigm from single-item auctions.
Among core-selecting mechanisms, the pricing rule mini-
mizes the incentives for bidders as a whole to misreport
their true values for packages. Using standard nonlinear
programming tools, we demonstrated how the underlying
mathematics induces an equitable decomposition of pay-
ments, so that different bidders each contribute an equal
amount for any payment goal that they must achieve as
a group. We also showed the computational simplicity of

the specific quadratic programming problem we encounter,
and we demonstrated several different interpretations and
formulations of the core, each one providing a different
perspective to help motivate the core property as a natural
requirement in combinatorial auctions.

Our computational experiments lent further support for
the practical viability of these computational techniques,
using a standard benchmark from the CA literature. These
experiments also helped to demonstrate some of the seem-
ing distortions that arise when a zero-nearest version of
the algorithm is implemented, in which the proportion of
the burden needed to overcome a blocking coalition is
unevenly spread across winners. Because any constant ref-
erence rule is equivalent to a zero-nearest reference rule
with the corresponding change of coordinates, this moti-
vates our slight preference for VCG-nearest rules in prac-
tice. As the concurrent work of Erdil and Klemperer (2009)
begins to hint, though, there might be alternative dynamic
selection rules, which are, like the VCG-nearest rule, not
skewed by pre-auction parameter settings made by the auc-
tioneer, but this remains the subject of future study. Also,
our computations indicated that the selection of a reserve
scheme might be less trivial than it first appears, and this
as well remains a interesting avenue of future research.

As the benefits of this class of quadratic payment deter-
mination algorithms become more well-known, we expect
further applications to emerge. Based on preliminary pre-
sentations of this research and the early successes of the
auctions held in the United Kingdom, the FAA adopted
this pricing rule for the auction of landing-slot rights in the
three New York City airports. To minimize disruption to
the status quo, the plan was to auction only a small portion
of time-slots at the three airports. As a result, the associated
winner-determination problems solve easily using standard,
off-the-shelf-software such as CPLEX. The greatest chal-
lenge for the landing-slot application, however, has proved
to be the politics of auctioning, not any difficulties in com-
puting winners or payments.
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Electronic Companion

An electronic companion to this paper is available as part of the
online version at http://dx.doi.org/10.1287/opre.1110.1024.

Endnotes

1. In December 2008, one month prior to the actual auction of
landing rights for the three New York City airports, a federal
court stayed the auction. The plans for auctioning slots are now
uncertain.
2. Of course, we multiply the objective by 1

2 prior to taking a
gradient, as is typical in quadratic optimization.
3. Note that this is always true for the VCG-nearest rule, while
other selections of p0 would require additional arguments to just-
isfy p0 as a lower bound on payments.
4. We thank Larry Ausubel for helping to devise this simple
example.
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