
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2015
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe.3709

A Heuristic Approach for the Allocation of Resources in
Large-Scale Computing Infrastructures

Kevin Lee1,∗, Georg Buss2 and Daniel Veit3

1 School of Science and Technology, Nottingham Trent University, Nottingham, UK.
2 Munich, Germany.
3 Faculty of Business and Economics, University of Augsburg, Germany.

SUMMARY

An increasing number of enterprise applications are intensive in their consumption of IT, but are infrequently
used. Consequently, organizations either host an oversized IT infrastructure or they are incapable of
realizing the benefits of new applications. A solution to the challenge is provided by the large-scale
computing infrastructures of Clouds and Grids which allow resources to be shared. A major challenge is the
development of mechanisms that allow efficient sharing of IT resources. Market mechanisms are promising,
but there is a lack of research in scalable market mechanisms. We extend the Multi-Attribute Combinatorial
Exchange mechanism with greedy heuristics to address the scalability challenge. The evaluation shows a
trade-off between efficiency and scalability. There is no statistical evidence for an influence on the incentive
properties of the market mechanism. This is an encouraging result as theory predicts heuristics to ruin the
mechanism’s incentive properties. Copyright c© 2015 John Wiley & Sons, Ltd.

Received 13 May 2014; Revised 3 July 2015; Accepted 3 September 2015

KEY WORDS: market mechanisms; heuristics; large-scale computing

1. INTRODUCTION

IT, as an enabler of information systems, plays a key role in adding value to the activities of
organizations. It is fundamental in supporting operations, management and research and provides
the foundation for applications that enable conducting business and research in new ways [1, 2].
Sophisticated applications are often intensive in the consumption of IT resources (e.g business
analytics [3]). From the perspective of a single organization, the demand for such applications is
variable, meaning that either the full IT capacity is not always used or peaks in demand cannot be
served. Studies covering peaks in demand requires maintaining an IT infrastructure operated at an
average capacity utilization of 5 to 35 percent [4, 5, 6].

The need for cost efficiency while maintaining reliability, flexibility and scalability of the
computing infrastructure is reflected in large-scale computing paradigms like Grid computing [7]

∗Correspondence to: Kevin Lee, School of Science and Technology, Nottingham Trent University, Nottingham, UK.
Email: kevin.lee@ntu.ac.uk,
3 veit@wiwi.uni-augsburg.de

Copyright c© 2015 John Wiley & Sons, Ltd.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham Trent Institutional Repository (IRep)

https://core.ac.uk/display/30650569?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 K. LEE, G. BUSS, D. VEIT

and Cloud computing [4, 8]. Both paradigms share the vision of providing an environment that
enables the dynamic allocation and aggregation of distributed IT resources, to execute computing
intensive applications [9]. The paradigm shift from local IT resources to remotely operated IT
resources allows for the outsourcing of parts of an organization’s IT-infrastructure or to offer idle IT
resources to others.

The set of IT services offered in large-scale computing infrastructures differs highly in the
level of abstraction [4, 10, 11]. The range is from low level infrastructure services looking much
like physical hardware to specific high level application oriented services such as application
domain specific platforms or specialized data services. The focus on infrastructure services that
provide access to computing resources like CPU, memory, storage, other hardware, combinations
of hardware, or aggregated resources. The spectrum of consumers is very board as each type
of application is executed on a set of computing resources. The services can be described by
a standardized vocabulary, which facilitates an automated matching of supply and demand. The
resource consumers are assumed to be capable of estimating the resource requirements for specific
tasks.

It is a major challenge to develop mechanisms that allow for the efficient sharing of resources.
In particular, modern large-scale infrastructures such as Grid computing and federated Cloud
Computing infrastructures consist of many simultaneous resource consumers and providers. One
of the defining characteristics of these modern infrastructures is distributed ownership, making
traditional centralised scheduling and allocation approaches not applicable e.g. its not possible to
use a round-robin allocation scheme when you don’t control all the resources. In particular, Hybrid
Clouds introduce additional complexity to scheduling due to the ability to use multiple resource
providers [12, 13].

Efficient allocation of resources for shared ownership infrastructures is becoming vital to their
usability. Price based market mechanisms are considered promising approach to this [14, 15, 16].
Allocations computed from prices are comprehensible for resource consumers, help shifting demand
from high load periods to low load periods and incentivize resource providers to contribute
computing resources due to demand.

This paper focuses on the application of heuristic optimization methods for the efficient sharing
of resources using market mechanisms. For many cases of NP-hard problems it may be possible
to have algorithms that produce reasonably fast close to optimal solutions [17, 18]. The impact on
the economic requirements will be analyzed in detail. The paper is organized as follows. Section 2
presents a background on market mechanisms for resource exchange. Section 3 formally defines the
problem of multi-attribute combinatorial exchange. Section 4 proposes a heuristic-based approach
to the resource allocation problem. Section 5 evaluates the heuristics from a theoretical and an
empirical perspective. Section 6 concludes the paper with a summary of the major results.

2. BACKGROUND

Large-scale computing infrastructures include Grid [7] and Cloud Computing [7]. Grids are
federated cluster services generally consisting of resource cluster pools in different geographical
locations managed by large governmental and educational organizations. Cloud Computing is an

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

A HEURISTIC APPROACH FOR THE ALLOCATION OF RESOURCES 3

extension of this into the commercial world with subscription-based resource provision. Cloud
Computing provides abstracted resources, elastic resource capacity, programmable self-service
interface, all using a pay-per-use pricing model.

Provision large-scale computing resources was previously restricted to a small number of
providers. The emergence and rapid growth of private and hybrid clouds has dramatically increased
the number of large-scale resource providers and consumers. This has been enabled through the
availability of Cloud Computing toolkits such as Eucalyptus [19], Nimbus [20], OpenNebula [21].

Accessing and provisioning resources in this heterogeneous environment is a challenge. Within
the Cloud, provisioning is achieved by specialist schedulers such as in OpenStack [22], Haizea in
OpenNebula [23]. Traditional scheduling techniques have been used for Grid scheduling, focusing
on time and cost trade-offs [24], however these are not suitable for Clouds. In particular, they are
not suitable were Hybrid Clouds enable the utilisation of resources from many providers [25].
Although, the Cloud gives the illusion of unlimited resources, it is about more than access to
infinite resources; there are also aspects of cost, programmability and flexibility which need to be
considered when deciding whether to consume resources. The rapid increase in available large-scale
resources has increased the need for market-places to allow the trading of these resources. There is
also the necessity for market mechanisms to support these market-places [26]. There are attempts
to meet the market for on-demand and resource-flexible resources, most notably with Amazon
spot-instances [27], however this is relatively isolated and is yet to spread into the wider Cloud
community.

The application of market mechanisms to large scale computing infrastructures requires the
consideration of economic and domain specific requirements. From an economic perspective an
ideal market mechanism should implement resource allocation efficiency, individual rationality,
incentive compatibility and budget balancing [17, 28]. For practical application computational
tractability is a key concern. [29] specifies that a suitable mechanism must be double sided to provide
resource consumers and resource providers with the ability to trade actively and it should allow for
the trading of multiple, mutually exclusive bids on bundles of computing resources. Bundle bids
remove the exposure risk [30]. Resource intensive applications may require the aggregation of the
capacities of several resource providers (co-allocation) with constraints specifying the parameters
of co-allocation and resource coupling. Usually resource consumers have to meet deadlines but are
flexible in the consumption of the resources within a certain time frame.

This problem can be framed as a combinatorial auction or a combinatorial exchange problem.
[31] introduced a time phased combinatorial auction format with double sided fair allocations (both
exact and heuristic based). [29] fit the Multi Attribute Combinatorial Exchange to the domain. In
a combinatorial auction a reserve price is used to ensure a minimal price for resources, an overall
surplus is calculated to optimise the auction, efficiency loss is when the resources are undervalued
due to equilibrium, and the notion of welfare is used to ensure a minimal level of resource provision.

The combinatorial auction mechanism is not scalable in the number of resource consumers
and providers. GreedEX is designed as a scalable exchange based mechanism [32, 33], which
does not allow for co-allocation and the trading resources other than a combination of CPU
and storage. Mossmann proposes a combinatorial exchange mechanism which is specialized to
auctioning computing resources for small size workflows [34]. Co-allocation is not considered and
the mechanism is not scalable. Because Multi-Attribute Combinatorial Exchange fits the domain

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

4 K. LEE, G. BUSS, D. VEIT

Approach AE BB IR IC CT

Fair Allocation (Exact) • X X X •
Fair Allocation (Heuristic) • X X • X
Multi-Attribute Combinatorial Exchange • X X • •
GreedEx (Exact) • X X • •
GreedEx (Heuristic) • X X ≈ X
Mossmann • X X • •

X: fulfilled, •: not fulfilled , ≈ : approximately fulfilled, ◦ : not evaluated

Figure 1. Comparison between combinatorial mechanism approaches and economic requirements.
AE is Allocative Efficiency, BB is Budget Balance, IR is Individual Rationality, IC is Incentive

Compatibility, and CT is Computational Tractability

Time Co-Alloc.

Approach Mechanism Trading Object D
ou

bl
e

Si
de

d

Q
ua

lit
y

A
ttr

ib
ut

es

A
m

ou
nt

Fr
am

e

B
un

dl
es

M
ul

tip
le

B
un

dl
es

E
na

bl
ed

Sp
lit

C
ou

pl
in

g

Fair Allocation (Exact) Combinatorial
Auction

CPU, Storage • single X • X • X • •

Fair Alloc. (Heuristic) Combinatorial
Auction

CPU, Storage • single X • X • X • •
Multi-Attribute

Combinatorial Exchange
Combinatorial

Exchange arbitrary X multiple X X X X X X X

GreedEx (Exact) Combinatorial
Exchange CPU, Storage X single X • X • • • •

GreedEx (Heuristic) Combinatorial
Exchange CPU, Storage X single X • X • • • •

Mossman
Combinatorial

Exchange arbitrary X multiple X X X X • • •

Figure 2. Comparison of combinatorial mechanisms with domain specific requirements.
X: fulfilled, •: not fulfilled , ◦: not evaluated

specific and economic requirements best heuristics are considered to induce scalability to the
mechanism. Figure 1 compares these approaches in relation to common economic requirements.
Figure 2 compares these approaches with respect to combinatorial exchange domain specific
requirements.

Solving the Multi-Attribute Combinatorial Exchange winner determination problem (MWDP)
to optimality is shown to be an NP-hard problem by [29]. There have been attempts to mitigate
computational intractability, by (i) the reduction of the complexity of the bidding language [35], ii)
the design of an indirect revelation mechanism [36], and (iii) the utilization of heuristics to solve
the winner determination problem [37].

3. MULTI-ATTRIBUTE COMBINATORIAL EXCHANGE

The bidding language specifies the syntax and the semantics of the bids submitted to Multi-Attribute
Combinatorial Exchange. The notations follow the work of [29]. The notation is specified in table 3
and described below.

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

A HEURISTIC APPROACH FOR THE ALLOCATION OF RESOURCES 5

Variable Description
g A computing resource
G All computing resources available
a Attributes of computing resources
A The set of all attributes for a given resource g
Si A bundle denoting a subset of all resources G
S The set of all bundles
t A single time slot
T The set of all time slots
n A resource consumer
N The set of all resource consumers
B A set of bundle bids
v Valuation for a resource bundle S

Figure 3. The Bidding Language Notation

The set G = {g1, . . . , g|G|} specifies all the computing resources gk ∈ G available. A bundle Si

denotes a subset of all the resources in G. The set S = {S1, . . . , S|S|} of bundles covers all the
possible subsets Si ⊆ G. A computing resource gk ∈ G itself is defined by a set of |Ak| cardinal
quality attributes Agk = {agk,1 . . . , agk,|Ak|} where agk,j denotes the jth attribute of resource gk.
The set of time slots T = {0, . . . , |T |} determines the range of discrete time slots the respective
bundles Si are to be traded in. t ∈ T denotes a single time slot out of the set T .

A resource consumer n out of the set N = {1, . . . , |N |} of resource consumers is allowed to
submit an order of multiple bundle bids Bn = {Bn(Si)⊕ . . .⊕Bn(Sj)}. The respective bundle
bids are XOR concatenated.

Bn(Si) ={〈vn(Si), sn(Si), en(Si), ln(Si), qn(Si, g1, ag1,1), . . . , qn(Si, g|G|, agG,|Ak|),

γn(Si, g1), . . . , γn(Si, g|G|), ϕn(Si, g1, g2), . . . , ϕn(Si, g|G|, g|G|−1)〉}

The valuation vn(Si) specifies the maximum amount the resource consumer n is willing to pay
for each time slot she is allocated the bundle Si. The number of slots the resources are required
for is given by sn(Si) where sn(Si) <= |T |+ 1. A resource consumer bid defines a period of
time slots within which the required slots have to be allocated. The period is given by en(Si) ∈ T
for the earliest possible time slot and ln(Si) ∈ T for the latest possible time slot. The minimum
quality restrictions for each of the attributes agk,j characterizing the resources gk contained in a
bundle bid Si are given by qn(Si, gk, agk,j) ≥ 0. In addition bundle bids may contain two types
of fulfillment constraints. i) A co-allocation constraint γn(Si, gk) > 0 that specifies the maximum
number of resource provider bundle bids allowed to allocate a required resource gk. ii) The coupling
constraint ϕn(Si, gk, gj) requires a pair of resources gk, gj to be allocated from the same resource
provider bid. The constraint equals one (ϕn(Si, gk, gj) = 1) in case the computing resources have
to be allocated from the same resource provider bid and equals zero (ϕn(Si, gk, gj) = 0) otherwise.

A potential resource provider m out of the set M = {1, . . . , |M |} of resource providers may
submit an order of multiple bundle bids Bm = {Bm(Si) ∨ . . . ∨Bm(Sj)}. A resource provider
bundle bid is considered to offer computing resources that are located on the same machine.
The bundle bids are of a similar form as resource consumer bundle bids but OR concatenated.
Any number of resource provider bids may be part of the final allocation. A single resource

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

6 K. LEE, G. BUSS, D. VEIT

B
1
(S

1
)

t
3

t
1

t
0

t
2

Sort

S
o
r
t

Slot t
1

1:M Problem

t
4

t
3

t
1

t
0

t
2

t
4

t
3

t
1

t
0

B
3,1

(S
1
)

B
4
(S

3
) B

3
(S

2
) B

1
(S

2
) B

2
(S

4
) B

4
(S

4
) B

0
(S

1
) B

1
(S

3
) B

5
(S

0
)

B
4
(S

1
)

B
3
(S

3
)

B
1
(S

1
)

B
5
(S

1
)

B
5
(S

4
)

B
2
(S

6
)

Figure 4. Problem representation of the Multi-Attribute Combinatorial Exchange winner determination
problem (MWDP)

provider bundle bid does not specify co-allocation and coupling constraints. Instead of a valuation
a reservation price rm(Si) is specified. The maximum quality of a computing resource gk is given
for each attribute by qm(Si, gk, agk,j) ≥ 0. The MWDP, which determines the allocation of resource
consumer to resource provider bids, is detailed in [29]. Given a collection of resource consumers’
and resource providers’ bundle orders the MWDP is to identify a set of winning bids out of the total
set of bids. An optimal set of winning resource consumer and resource provider bids determines
an allocation that maximizes the overall surplus. Free disposal of computing resources is if co-
allocation or coupling constraints are not present.

An instance of the MWDP is represented as depicted in Figure 4. The approach is to split up
the |N | : |M | allocation problem subject to |T | time slots to several 1 : |M | allocation problems
to be solved for a single time slot t. The partial results are aggregated to an overall allocation.
More specifically the resource consumer orders are split into the single bundle bids Bn(Si). The
single resource consumer bundle bids {B1(S1), . . . , Bn(Si)} are stored in a sortable set RCB. For
each resource consumer bid Bn(Si) a sortable list, Slot(Bn(Si)), of potential time slots t is kept.
The group of potential time slots is bounded by en(Si) and ln(Si). For each of these time slots
the available resource provider bundle bids Bm(Si) are stored in the set RPBt(Si). Formally the
problem representation R is constructed from the sets RCB, Slot(Bn(Si)) and RPBt(Si).

4. HEURISTIC SOLUTION TO RESOURCE ALLOCATION

A solution to the Multi-Attribute Combinatorial Exchange as defined in Section 3 using a greedy
type of heuristic is proposed in Algorithm 1. The resource consumer bundle bids are processed in the
order which is given by RCB. The decision whether to include a single resource consumer bundle
bid in an allocation requires an additional passing of the respective set of time slots Slot(Bn(Si)).
The time slots the resource consumer bundle bid is valid for are checked in the given order. A
check of a time slot requires solving the 1 : |M | allocation problem. A check of a time slot is

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

A HEURISTIC APPROACH FOR THE ALLOCATION OF RESOURCES 7

valid only if there is a valid solution to the 1 : |M | allocation problem. As soon as the amount
of computing resources requested is available for a sufficient number of time slots the resource
consumer bundle bid as well as the fractions of the respective resource provider bundle bids are
included into the allocation. Therefore, problem representation does not encode any infeasible
allocation. The construction process is continued with the subsequent resource consumer bundle bid.
The evaluation of a resource consumer bundle bid is skipped if the respective resource consumer is
already part of the allocation with a bundle bid previously checked. The ordering of the resource
consumer bundle bids influences the chance of being part of an allocation. The earlier a bundle bid
is evaluated the less is the risk that potential resource provider capacities are already taken.

Algorithm 1 The Proposed Greedy Heuristic based Combinatorial Exchange Algorithm
s← 0 \\welfare allocation
a← ∅ \\allocation
RCB \\set of resource consumer bundle bids
RPBt(Si) \\set of resource provider bundle bids available in time slot t for the bundle Si

Slot(Bn(Si)) \\set of slots for a specific resource consumer bundle bid
w1 \\ranking criterion resource consumer bundle bids
w2 \\ranking criterion for time slots

\\iterate over all resource consumer bids
while hasNext(RCB) do

Bn(Si)←next(RCB)

\\test if the resource consumer n is part of the allocation
if n ∈ a then

continue with the next iteration
end if

s
′ ← 0
a
′ ← ∅

sn(Si)← getNumberRequiredSlots(Bn(Si))

\\iterate over the slots
while hasNext(Slot(Bn(Si))) do

t← next(Slot(Bn(Si)))
a
′′ ← ∅

a
′′ ←solve(Bn(Si), RPBt(Si)) \\solve the 1 : |M | allocation problem

if isFeasilbe(a
′′
) then

a
′ ∪ a

′′ \\add the surplus to surplus of the allocation
sn(Si)← sn(Si)− 1 \\save that a slot was successfully allocated
s
′ ← s

′
+ surplus(a

′
)

end if
\\test if the allocation for Bn(Si) is completed
if sn(Si) == 0 then

a ∪+a
′

s← s+ s
′

continue with the next iteration
end if

end while
end while

In Figure 4 B3(S1) takes the leading position in RCB the evaluation process is started with. The
time slots, the resource consumer bundle bid is valid for, are given by en(S1) = 0 and ln(S1) = 4.
The time slots are checked in the order: 3, 1, 0, 2, 4. Once the resources are allocated for sufficient
number time slots the allocation process is stopped. B3,1 as well as the fractions of the respective
resource provider bids are added to the allocation. B4(S3) is the next bid to be evaluated followed
by B3(S2). In case B3(S1) is part of the allocation B3(S2) is not subject to any further evaluation

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

8 K. LEE, G. BUSS, D. VEIT

(XOR constraint). The procedure is continued to the end of the sequence of resource consumer
bundle bids.

Resource consumer bundle bids are sorted prior to allocating resource consumers to resource
providers. The time slots are sorted at the time a bundle bid is evaluated. The 1 : |M | allocation
problem equals an instance of the MWDP with a single resource consumer n, submitting a single
bundle bid which is valid for a single time slot t. Furthermore, the resource providers offer their
resources for the same single time slot to this specific resource consumer only. Formally Multi-
Attribute Combinatorial Exchange is reduced to:

max vn(Si)−
∑
m∈M

∑
Si∈S

rm(Si)ym (1)

Additionally the respective constraints are reduced to:

s. t.
∑
Si3gk

qn(Si, gk, agk,j)−
∑
Si3gk

∑
m∈M

ym(Si)qm(Si, gk, agk,j) ≤ 0

∀gk ∈ G,∀agk,j ∈ Agk (2)

∑
Si3gk

∑
m∈M

dm(Si)−
∑
Si3gk

γ(Si, gk) ≤ 0, ∀gk ∈ G (3)

∑
Sj3gk,gl

ϕn(Sj , gk, gl)

(∑
Si3gk

dm(Si)−
∑
Si3gl

dm(Si)

)
= 0

∀m ∈M,∀gk, gl ∈ G (4)

∑
Sj3gk,gl

ϕn(Sj , gk, gl)

(∑
Si3gk

∑
m∈M

dm(Si) +
∑
Si3gl

∑
m∈M

dm(Si)− 2

)
≤ 0,

∀gk, gl ∈ G (5)

An allocation is described by the variables ym(Si) ∈ [0, 1], and dm(Si) ∈ {0, 1}. The real valued
variable ym(Si) denotes the percentage of bundle Si allocated from resource provider m to resource
consumer n for a given time slot. In the context of the variable ym(Si) the binary variable
dm(Si) = 1 if the bundle Si is allocated from resource provider m to resource consumer n and
dm(Si) = 0 otherwise. The variable bound cm(Si) allows for the specification of resource provider
capacities, ym(Si), equal or smaller than one. The objective function, which is defined in 1, is
designed to maximize the surplus of an allocation. To model the domain specific requirements,
the objective function is subject to the constraints 2-5. Constraint 2 controls for the fulfillment of
the capacity requirements of an allocated resource consumer bundle Si by the respective resource
provider?s bundles. Constraint (3) guarantees that the limit γn(Si, gk) for aggregating a specific
computing resource gk from different resource provider bundles is met. The constraints (4) and (5)
implement the coupling functionality. Constraint (6) limits the capacity of a provider bundle bid to
cm(Si). The constraints (8) and (9) model the relation between the variables ym(Si) and dm(Si).
For a specific resource provider m and a bundle Si the respective variable dm(Si) is greater than
zero only if ym(Si) is greater than zero.

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

A HEURISTIC APPROACH FOR THE ALLOCATION OF RESOURCES 9

ym(Si) ≤ cm(Si), ∀m ∈M,∀Si ∈ S (6)

ym(Si)− dm(Si) ≤ 0 (7)

dm(Si)− ym(Si) < 1 (8)

ym ≥ 0 (9)

dm(Si) ∈ 0, 1 (10)

In case neither coupling nor collocation constraints exist (3-5) the problem reduces from a
combinatorial to a linear, continuous, optimization problem which is solved efficiently by a linear
programming solver. In comparison to the original |N | : |M | allocation problem the complexity
is reduced significantly. In case of constraints the 1 : |M | allocation problem is an NP-hard
optimization problem. The set partitioning problem is reducible to the 1 : |M | allocation problem
[38]. Consider a problem instance with a single resource consumer bid which is valued with zero.
Each of the resources of the bundle is described by a single quality attribute. Each of these resources
is restricted with respect to co-allocations to 1. The resource provider bundle bids are valid for a
subset of the resources requested and offer exactly the level of quality demanded. This scenario is
equal to solving the set partitioning problem.

Prior to introducing the ordering procedures several concepts have to be introduced. The factor

flex(Bn(Si)) =
sn(Si)

ln(Si)− en(Si) + 1

measures the flexibility of a resource consumer bundle bid in a time scheduling sense. The parameter
acon(Si) =

∑
Si3gk

max
agk,j∈Aj

qn(Si, gk, agk,j)

measures the average consumption of computing resources for a given bundle bid Si by aggregating
the maximum quality requirements for each resource. The parameter

wac(Si) =

∑
Si3gk

∑ln(Si)
t=en(Si)

maxagk,j∈Aj

qn(Si,gk,agk,j)∑
RPBt(Si)3Sj

qm(Sj ,gk,agk,j)

ln(Si)− en(Si) + 1

measures the weighted average consumption of resources per time slot in dependency of the amount
of resources offered.

The attractiveness of a resource consumer bundle bid can be assessed by the descending order
according to the following criteria:

1. w1(Bn(Si)) = vn(Si) ∗ (flex(Si))0.5:
The weight is determined by the bundle valuation scaled by the parameter flex. Highly
flexible bundle bids are more likely to fit into an allocation while some computing resources
are taken

2. w2(Bn(Si)) =
vn(Si)∗sn(Si)∗(flex(Si))

0.5

acon(Si)
:

The valuation is scaled by the flexibility and the number of slots the respective computing
resources are requested for. It is adjusted by the average demand for computing resources.

3. w3(Bn(Si), RPBt(Si)) =
vn(Si)∗sn(Si)∗(flex(Si))

0.5

wac(Si)
:

The weight of resource consumer bundle bids is based on resource scarcity with the requested
amount of resources weighted by the available supplies.

The options for sorting the slots of a resource consumer bundle bid are:

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

10 K. LEE, G. BUSS, D. VEIT

N Sj vn(Sj) qn(Sj , gk, a
k
i) en(Sj) ln(Sj) sn(Sj)

1 S1 2 g1, a
1
1 = 1; g2, a

1
1 = 2 1 1 1

2 S1 2 g1, a
1
1 = 1; g2, a

1
1 = 2 1 1 1

Figure 5. Suboptimal allocation of computing resources: Resource consumer bids.

M Sj rn(Sj) qn(Sj , gk, a
k
i) en(Sj) ln(Sj)

1 S1 1 g1, a
1
1 = 2; g2, a

1
1 = 2 1 1

2 S1 1.1 g1, a
1
1 = 0; g2, a

1
1 = 2 1 1

Figure 6. Suboptimal allocation of computing resources: Resource provider bids.

1. wa(Bn(Si), RPBt(Si)) =

∑
Sj3RPBt(Si)

rm(Sj)

|gk∈Sj |

|RPBt(Si)| :
The time slots are weighted according to the ascending average resource provider reservation
price for a single computing resource.

2. wb(Bn(Si), RPBt(Si)) = wa1∗∑
Si3gk maxagk,j∈Aj

qn(Si,gk,agk,j)∑
RPBt(Si)3Sj

qm(Si,gk,agk,j)
:

The time slots are sorted according to the ascending average resource provider reservation
price for a single resource weighted by the aggregated average resource demand versus supply
ratios. The demand versus supply ratio for a single resource is defined as the sum of maximum
ratios between demand quality and the aggregated supplies.

3. wc(Bn(Si), RPBt(Si)) = optimal allocation:
This w weights the time slots according to the result of the optimal solution to the 1 : |M |
allocation problem in descending order.

The combinations (w1, wa) , (w2, wb), (w3, wc) are chosen for evaluation. The combinations
reflect the trade-off of the complexity of evaluation versus the power of additional information
included into the evaluation process ((w1, wa) is labeled GreedyLow, (w2, wb) is entitled
GreedyMedium and (w3, wc) is named GreedyComplex.

5. EVALUATION

5.1. Illustrative Example

The representation may exclude feasible allocations from the search space which is illustrated
by two examples. The first example is composed of two equal bundle bids submitted by two
independent resource consumers (Figure 5). The offer of the resource providers matches the
resource consumers’ needs (Figure 6). The welfare maximizing allocation involves a sharing of the
computing resources. The welfare is: 2 + 2− 1− 1.1 = 1.9. The heuristic optimization methods
allocate the resources offered by resource provider 1 completely to the resource consumer 1. This is
the welfare maximizing decision considering a single resource consumer bid. The second resource
consumer is not part of the allocation as the remaining capacities are not sufficient to serve her
needs. The welfare drops from 1.9 to 2− 1 = 1.

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

A HEURISTIC APPROACH FOR THE ALLOCATION OF RESOURCES 11

N Sj vn(Sj) qNn (Sj , gk, a
k
i) eNn (Sj) lNn (Sj) sn(Sj)

1 S1 1 g1, a
1
1 = 1 1 2 2

Figure 7. Suboptimal allocation of computing resources: Resource consumer bid.

M Sj rn(Sj) qNn (Sj , gk, a
k
i) eNn (Sj) lNn (Sj)

1 S1 0.5 g1, a
1
1 = 1 1 1

2 S1 1.1 g1, a
1
1 = 1 2 2

Figure 8. Suboptimal allocation of computing resources: Resource provider bids.

The second example is made up from a single resource consumer bid and two resource provider
bids (Figure 7 and Figure 8). Each of the resource provider bids covers the need of the resource
consumer for a single but different time slot. The welfare maximizing allocation yields a welfare of
2 ∗ 1− 1.1− 0.5 = 0.4. In contrast the heuristics check the two time slots according to a predefined
order. For the first time slot an allocation is determined that yields a welfare of 1− 0.5 = 0.5. For
the second time slot no allocation is provided because of a negative welfare of 1− 1.1 = −0.1. In
consequence the heuristic optimization method does not provide an allocation. The welfare drops
by 0.5.

Instances of the MWDP exist where feasible allocations are not included in the search space of
the heuristic optimization methods. The effect has to be determined empirically considering realistic
problem instances.

The asymptotic running time of an algorithm is given in dependence of the size of the input to
the algorithm. In theory the size of the input to the MWDP depends on the number of resource
consumers |N |, the number of resource providers |M |, the number of time slots |T |, the number of
computing resources |G| as well as the number of attributes |A|. However, the number of time slots,
the number of computing resources and the number of attributes are fixed numbers considering
real world problem instances. The sorting of the resource consumer and provider bids runs in
polynomial time in case the 1 : |M | problem is not solved optimality. Solving the 1 : |M | problem to
its optimality is subject to polynomial time consumption if no constraints on the resource consumer
bid are present, but it is subject to exponential time consumption otherwise. The exact asymptotic
behavior is not available for the commercial MILP solver utilized for solving the 1 : |M | problem
to optimality. The actual impact on scalability is evaluated by means of an empirical analysis.

5.2. Experimental Evaluation

This section presents computational experiments to solve the MWDP problem to optimality using
CPLEX 12.1 with a single CPU.

The generation of meaningful artificial problem instances for combinatorial exchange
mechanisms requires a realistic, consistent, and economically motivated modelling of the bidding
behavior of the market participants [39, 40]. To generate economically motivated bundle bids the
arbitrary mode of the Combinatorial Auction Test Suite (CATS) [39, 41] is used. Having created
a number of resource bundles and the respective valuations (reservation prices) the characteristics
of the attributes have to be defined. An economic motivation requires the valuation for a bundle
bid to be by trend positively correlated to the attribute requirements. This is modelled drawing

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

12 K. LEE, G. BUSS, D. VEIT

Inst. Res. Attr. Time Constraints XOR

I1 5 3 [0, 7],[1, 4] none none
I2 5 3 [0, 7],[1, 4] none two
I3 5 3 [0, 15],[1, 6] none none
I4 5 3 [0, 7], [1, 4] Coup.: 90%, 2

Split: 90%, 80%, [1, 3]
none

Figure 9. Parameters for the generation of different types of problem instances.

the attribute values from a normal distribution N(µ, σ2) where µ and σ2 depend on the valuation
and the number of goods requested [42]: µ = x · vi(Sj) · (y + 0.5) and σ2 = z · vi(Sj) ·GSj

. The
parameters x and z are scaling factors set to x = 3 and z = 0.15. The parameter y ∈ [0, 1] is picked
from a uniform distribution and models differences in price estimates. The split constraints are
drawn from a uniform distribution. The coupling constraints are set to a fixed number of resources.
The number of time slots as well as the earliest and latest possible time slot for the allocation are
drawn from a uniform distribution.

For the balanced problem instances the number of resource consumers equals the number of
resource providers. For the competitive ones, which model peaks in demand, the number of
resource consumers exceeds the number of resource providers threefold. The balanced type and
the competitive type problem instances are both sub categorized into four categories. I1 represents
the base line problem instances, I2: differs in the number of XOR bids submitted by the resource
consumers, I3 is varied in the number of time slots and I4 is characterized by constraints on the
computing resources.

The parameters are summarized in Figure 9. For the base line scenario (I1) the earliest and the
latest slot are chosen out of the interval [0, 7]. The number of required slots is chosen from the
interval [1, 4]. For I2 type problem instances each resource consumer is assumed to submit two
mutually exclusive bundle bids. For the instances of type I3 interval for the earliest and latest is
enlarged. In I4 type problem instances constraints are present. 90 percent of the resource consumer
bids are subject to coupling and split constraints. In case of coupling constraints two resources are
coupled. In case of split constraints 80 percent of the resources of the bundle are constrained which
allows a maximum split in the interval of [1, 3].

For the investigation of allocative efficiency and scalability each of the four sub categories of
competitive and balanced instance types is differentiated further into six categories. 30 problem
instance are generated per category. The investigation of strategic behavior is based on competitive
and balanced I1 problem instances with a single resource consumer or provider manipulating its
valuation or reservation price. The instances are made up from 20 resource consumers and 20
resource providers for the balanced problem instance types. The evaluation is based on small scale
instances because theory implicates the effect of manipulation to be strongest for these instances
[43, 44]. 50 problem instances are generated per scenario. Each of the optimization methods is
given a three minute time frame to solve any problem instance.

Results of Allocative Efficiency Test runs show that the welfare maximizing allocation is
computable within a reasonable time frame for small scale problem instances only. A limitation
of the study to these small scale problem instances would introduce bias to the evaluation. There
is a tendency to underestimate the performance of the heuristics [40]. To resolve the challenge,

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

A HEURISTIC APPROACH FOR THE ALLOCATION OF RESOURCES 13

Instance I1 I2 I3 I4

0/1.5/>1.5 0/1.5/>1.5 0/1.5/>1.5 0/1.5/>1.5

balanced

10/10 30/0/0 30/0/0 30/0/0 30/0/0
30/30 30/0/0 29/1/0 30/0/0 30/0/0
50/50 30/0/0 3/27/0 30/0/0 30/0/0
70/70 30/0/0 1/29/0 23/7/0 22/8/0
90/90 29/1/0 0/29/1 9/21/0 18/12/0

110/110 25/5/0 0/29/1 3/27/0 0/28/2

competitive

30/10 30/0/0 30/0/0 30/0/0 30/0/0
90/30 30/0/0 0/30/0 22/8/0 28/2/0

150/50 23/7/0 0/26/4 2/28/0 4/26/0
210/70 10/20/0 0/4/26 0/30/0 3/23/4
270/90 0/29/1 0/0/30 0/29/1 0/3/27
330/110 0/29/2 0/0/30 0/29/1 0/1/29

Figure 10. Quality of the allocations provided by the exact optimization method for the balanced and
competitive problem instances.

the evaluation is conducted according to the efficiency loss which is incurred in comparison to the
welfare of the best known allocation. The best known allocation is to be determined by any of the
optimization methods.

If the exact optimization method does not provide the optimal allocation within the reasonable
time frame of three minutes, the solution process is interrupted and the current best allocation is
noted. In addition, the upper bound on the welfare of the optimal allocation is logged. In case a non
optimal allocation is identified, its quality can be judged by the respective upper bound. Prior tests
provide evidence for a very close match of the welfare maximizing allocation if the upper bound
deviates by less than 1.5 percent from the welfare of the identified allocation. Therefore, those
allocations serve as a meaningful benchmark for the quality of the heuristic optimization methods.

In Figure 10 the results for the performance of the exact optimization method with respect to
balanced and competitive problem instances are given, detailing the number of problem instances
solved to optimality, the number of problem instances solved with a maximum deviation of 1.5
percent to the optimum quality and the number of problem instances for which no meaningful bound
on the quality of the allocation is provided are reported. Starting from a size of 150 (210) resource
consumer bids I2 (I4) competitive type problem instances exist no allocation is determined for that
fits the bound of 1.5 percent. For many of these problem instances not even a feasible allocation is
computable within the three minute time frame.

To fully judge the approximation of the welfare maximizing allocation by the greedy type
optimization methods a lower bound in terms of a randomized search procedure, Greedy Random,
is introduced. GreedyRandom operates the same way as the greedy approaches presented but the
sorting processes are randomized. A comparison shows whether the greedy type optimization
methods perform superior to simply guessing an allocation.

Figures 11 and 12 present an overview on the mean values of the efficiency loss. The results
provide evidence that a consistent ordering of the optimization methods according to the mean
allocative efficiency loss is possible for all types of problem instances: GreedyComplex outperforms
GreedyMedium which outperforms GreedyLow. The ordering is confirmed at a significance level

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

14 K. LEE, G. BUSS, D. VEIT

Instance Exact GreedyComplex GreedyMedium GreedyLow GreedyRandom

I1 10/10 0.00 0.05*** 0.06** 0.13 0.13
30/30 0.00 0.09*** 0.14*** 0.22 0.23
50/50 0.00 0.08*** 0.13*** 0.21** 0.18
70/70 0.00 0.10*** 0.13*** 0.24* 0.20
90/90 0.00 0.10*** 0.14*** 0.25** 0.21
110/110 0.00 0.11*** 0.15*** 0.24 0.20

Avg. 0.00 0.09 0.12 0.21 0.19

I2 10/10 0.00 0.08*** 0.12** 0.15 0.23
30/30 0.00 0.17*** 0.20*** 0.33 0.36
50/50 0.00 0.17*** 0.20*** 0.29** 0.33
70/70 0.00 0.15*** 0.18*** 0.31 0.31
90/90 0.04 0.10*** 0.13*** 0.25 0.26
110/110 0.05 0.08*** 0.12*** 0.26 0.25

Avg. 0.02 0.13 0.16 0.26 0.29

I3 10/10 0.00 0.06*** 0.09** 0.17 0.15
30/30 0.00 0.09*** 0.14** 0.22 0.19
50/50 0.00 0.08*** 0.13*** 0.22** 0.17
70/70 0.00 0.08*** 0.14** 0.22*** 0.17
90/90 0.00 0.09*** 0.15** 0.23*** 0.17
110/110 0.00 0.09*** 0.15 0.22*** 0.17

Avg. 0.00 0.08 0.14 0.21 0.17

I4 10/10 0.00 0.08* 0.08 0.14 0.13
30/30 0.00 0.13** 0.15 0.14** 0.19
50/50 0.00 0.14*** 0.16* 0.18 0.21
70/70 0.00 0.16*** 0.18** 0.19 0.22
90/90 0.00 0.16*** 0.19* 0.19 0.22
110/110 0.08 0.16** 0.17 0.15*** 0.22

Avg. 0.01 0.14 0.15 0.16 0.20

Figure 11. Mean efficiency loss for balanced problem instances. * denotes significance at level p < 0.1, **
denotes significance at level p < 0.05, *** denotes significance at level p < 0.01 comparing the specific

greedy type method to GreedyLow with a Wilcoxon rank-sum test.

of p < 0.01 with a Wilcoxon rank-sum test applied to each subcategory. The difference in solution
quality between the optimization methods depends on the type of problem instance investigated.
The range of the results for the constrained I4 type problem instances is observed to be considerably
less diverse. Constraints on minimize the set of feasible allocations and direct the different greedy
optimization methods to similar allocations. The choice of the optimization method has a larger
effect for unconstrained problem instances.

To assess the efficiency loss due to the heuristic optimization methods the results are compared
to the allocations provided by the exact approach. To prevent the falsification of the results the
focus is on problem instance types for which a majority of the problem instances is solved with
an efficiency loss smaller than 1.5 percent. The comparison is limited to the balanced problem
instance types and the competitive I1 and I3 problem instance types. GreedyComplex matches
the reference values computed by the exact optimization method best. A comparable drop of the
allocation quality between the balanced and competitive problem instances is observed for all greedy
type optimization methods. The greedy optimization methods show only for a single small scale
problem instance the worst case behavior of identifying not any feasible allocation although one
exists. On an overall average GreedyComplex, GreedyMedium and GreedyLow approximate the
allocation provided the exact optimization method with an efficiency loss of 13, 17 and 25 percent.

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

A HEURISTIC APPROACH FOR THE ALLOCATION OF RESOURCES 15

Instance Exact GreedyComplex GreedyMedium GreedyLow GreedyRandom

I1 30/10 0.00 0.14** 0.17 0.16 0.22
90/30 0.00 0.15*** 0.20*** 0.31 0.29
150/50 0.00 0.21*** 0.24*** 0.37** 0.33
210/70 0.00 0.22*** 0.26*** 0.40*** 0.34
270/90 0.03 0.20*** 0.23*** 0.38*** 0.33
330/110 0.07 0.21*** 0.25*** 0.41*** 0.36

Avg. 0.02 0.19 0.22 0.34 0.31

I2 30/10 0.00 0.15*** 0.18*** 0.24* 0.31
90/30 0.00 0.19*** 0.23*** 0.39 0.41
150/50 0.15 0.11*** 0.13*** 0.31 0.31
210/70 0.88 0.01*** 0.04*** 0.29*** 0.24
270/90 1.00 0.01*** 0.03*** 0.27 0.26
330/110 1.00 0.01*** 0.02*** 0.30* 0.26

Avg. 0.50 0.08 0.10 0.30 0.30

I3 30/10 0.00 0.12*** 0.15* 0.26 0.22
90/30 0.00 0.17*** 0.22*** 0.32 0.29
150/50 0.00 0.18*** 0.23*** 0.34*** 0.29
210/70 0.00 0.18*** 0.24*** 0.34* 0.31
270/90 0.03 0.20*** 0.24*** 0.36** 0.31
330/110 0.03 0.20*** 0.24*** 0.36*** 0.30

Avg. 0.01 0.17 0.22 0.33 0.29

I4 30/10 0.00 0.12** 0.14 0.18 0.20
90/30 0.00 0.20*** 0.25** 0.20*** 0.31
150/50 0.00 0.22*** 0.25* 0.25*** 0.29
210/70 0.13 0.21*** 0.22** 0.22*** 0.27
270/90 0.90 0.05*** 0.07*** 0.07*** 0.16
330/110 0.97 0.03*** 0.04*** 0.06*** 0.13

Avg. 0.33 0.14 0.16 0.16 0.23

Figure 12. Mean efficiency loss for competitive problem instances. * denotes significance at level p < 0.1,
** denotes significance at level p < 0.05, *** denotes significance at level p < 0.01 comparing the specific

greedy type method to GreedyLow with a Wilcoxon rank-sum test.

An evaluation of GreedyComplex, GreedyMedium and GreedyLow with respect to the minimum
quality benchmark GreedyRandom indicates that GreedyComplex and GreedyMedium provide a
measurable improvement to GreedyRandom while GreedyLow performs comparable or even worse
as GreedyRandom. Further statistical evidence for the ranking of GreedyComplex, GreedyMedium
and GreedyLow is provided by comparing the optimization methods for each of the problem
instances to GreedyRandom applying the Wilcoxon rank-sum test (Figure 11 and Figure 12).
GreedyComplex is found to significantly outperform GreedyLow for 42 (88 percent) of the problem
instances categories at a significance level of p < 0.01 and for additional five (10 percent) of the
problem instances categories at a significance level of p < 0.05. A strong outlier at a significance
level of p < 0.1 is present for the balanced I4 problem instance category with the minimum number
of resource consumers (2 percent). This is reasoned by the small number of constrained resource
consumer bids that considerably restricts the number of feasible allocations. The probability that a
randomly drawn allocation is of high quality and does not considerably differ from an allocation
provided by GreedyComplex is increased.

The improvement on the efficiency loss provided by GreedyMedium in comparison to
GreedyRandom is significant at a level of p < 0.01 for 29 (60 percent) of the instance categories,
at a level of p < 0.05 for 9 (19 percent) of the instance categories and at a level of p < 0.1 for

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

16 K. LEE, G. BUSS, D. VEIT

4 (8 percent) of the instance categories. It is not significant for the remaining 6 (13 percent)
categories of problem instances. The results of GreedyMedium significantly differ from the results
of GreedyRandom for balanced and competitive I1, I2 as well as I3 type problem instances.
It is observed that a differentiation between the efficiency loss incurred by both optimization
methods is possible for balanced I3 and competitive I4 type problem instances but at a lower level
of significance of p < 0.05. The results provide evidence that for the balanced I4 type problem
instances a differentiation is not possible at a high level of significance. The comparison between
GreedyLow and GreedyRandom shows for 22 (46 percent) of problem instances categories no
significant difference in the quality of the allocation computed.

In summary, the greedy type optimization methods perform significantly different. On average
GreedyComplex approximates the allocation with a mean efficiency loss of 13 percent followed
by GreedyMedium (17 percent) and GreedyLow (25 percent). The optimization methods are
comparably robust in solving different problem instances. GreedyComplex significantly improves
on all kind of problem instances. GreedyMedium in comparison to GreedyRandom significantly
improves in allocation quality on most of the problem instances types, but falls short for three of the
balanced I4 instances. GreedyLow cannot be shown to outperform GreedyRandom to a significant
extent. As a result the sorting provided by GreedyLow does not capture the nature of the problem
instances well and is therefore considered not to be a valuable approach.

Results of Scalability Figure 13 shows the results for the running time in seconds as an average
value over the solution times for the problem instances solved. The results for the exact
optimization approach clearly indicate that the effort of solving a problem instance to optimality
is subject to exponential growth in the number of resource consumer and resource provider
bids. Computationally most expensive, whether balanced or competitive, are the I2 type problem
instances followed by the I3, I4 and I1 type problem instances.

It is to be noted that the average values starting from 50 to 70 resource consumer bids do not
reflect the exponential running time of the exact optimization approach as the solution process is
interrupted after three minutes no matter if the optimal allocation, an intermediate allocation or
no allocation is provided (cf. Figure 10).A comparison of the running time results of the exact
optimization approach to the running time results of the greedy optimization methods shows that
the greedy optimization methods strikingly outperform the exact approach. The greedy optimization
methods provide results for each of the problem instances tested while the exact method consumes
the total amount of three minutes for 49 percent of the problem instances and does not guarantee for
a feasible allocation at all.

The results show that GreedyComplex on average consumes a significantly higher amount of
time to determine an allocation in comparison to GreedyMedium and GreedyLow. Many times
GreedyMedium in comparison to GreedyLow consumes an additional amount of time to determine
an allocation. The relation is reversed for I2 problem instances. None of the three approaches tested
consumes approximately three minutes for the identification of an allocation. While the difference
for average time consumption between GreedyLow and GreedyMedium is in the range of two to
three milliseconds GreedyComplex requires approximately double the amount of time required by
GreedyLow or GreedyMedium to determine an allocation. On average I1 problem instances require

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

A HEURISTIC APPROACH FOR THE ALLOCATION OF RESOURCES 17

Inst. Balanced Competitive

Type Size Exact Greedy
Com-
plex

Greedy
Medium

Greedy
Low Size Exact Greedy

Com-
plex

Greedy
Medium

Greedy
Low

I1 10/10 0.04 0.05 0.01 0.01 30/10 0.14 0.06 0.03 0.03
30/30 0.51 0.13 0.05 0.05 90/30 8.73 0.31 0.15 0.14
50/50 8.62 0.21 0.09 0.09 150/50 91.03 0.64 0.31 0.31
70/70 13.12 0.33 0.15 0.14 210/70 148.50 1.05 0.53 0.53
90/90 43.47 0.50 0.23 0.21 270/90 180.00 1.58 0.80 0.79
110/110 75.74 0.70 0.34 0.30 330/110 180.00 2.17 1.11 1.05

Avg. 23.58 0.32 0.15 0.13 Avg. 101.40 0.97 0.49 0.47

I2 10/10 0.18 0.03 0.01 0.02 30/10 3.91 0.12 0.05 0.06
30/30 58.10 0.18 0.07 0.08 90/30 180.00 0.59 0.26 0.28
50/50 175.73 0.38 0.14 0.16 150/50 180.00 1.19 0.57 0.59
70/70 178.60 0.63 0.24 0.25 210/70 180.00 1.99 0.93 1.00
90/90 180.00 0.89 0.39 0.40 270/90 180.00 2.85 1.40 1.42
110/110 180.00 1.20 0.50 0.53 330/110 180.00 3.97 1.93 1.98

Avg. 128.77 0.55 0.22 0.24 Avg. 150.65 1.78 0.86 0.88

I3 10/10 0.06 0.03 0.01 0.01 30/10 0.68 0.08 0.04 0.04
30/30 4.12 0.15 0.07 0.07 90/30 74.43 0.47 0.23 0.22
50/50 34.10 0.31 0.14 0.13 150/50 179.03 0.96 0.47 0.47
70/70 94.57 0.49 0.23 0.21 210/70 180.00 1.55 0.81 0.76
90/90 154.57 0.72 0.34 0.31 270/90 180.00 2.25 1.16 1.12
110/110 174.00 1.00 0.47 0.45 330/110 180.00 3.20 1.64 1.52

Avg. 76.90 0.45 0.21 0.20 Avg. 132.38 1.42 0.72 0.69

I4 10/10 0.02 0.02 0.01 0.01 30/10 0.06 0.05 0.02 0.02
30/30 0.55 0.15 0.07 0.07 90/30 33.06 0.45 0.24 0.22
50/50 7.68 0.39 0.23 0.19 150/50 160.93 1.61 0.86 0.88
70/70 79.96 1.04 0.54 0.49 210/70 180.00 3.38 1.56 1.70
90/90 147.13 1.35 0.67 0.67 270/90 174.20 5.32 2.70 2.55
110/110 180.00 2.58 1.30 1.15 330/110 180.00 8.42 4.52 4.29

Avg. 69.84 0.92 0.47 0.43 Avg. 121.38 3.20 1.65 1.61

Figure 13. Comparison of the mean runtime in seconds for balanced and competitive problem instances.

the least effort to be solved followed by I3, I2 and I4 type problem instances which require the
highest effort.

The growth in solution time with respect to the increase in the number of resource consumer and
resource provider bids is approximated best by a quadratic function. Statistical evaluation confirms
the validity of the estimated functions. For the I1 instances the coefficient of determination (R2), is
at minimum 0.922 indicating a very good fit. The F-test shows at a significance level of p < 0.01 that
the estimated parameters are of relevance in explaining the postulated relation between the number
of bids included into a problem instance and the solution time. A t-test provides evidence that each
of the β2 parameters differs at a significance level of p < 0.01 from zero emphasizing the fit of the
quadratic function. The results for the functions fitted to the the I4 problem instances differ in R2

(at minimum 0.598) indicating a good but worse fit in comparison to the functions fitted to the I1
problem instances. The worse fit is partly caused by the higher standard deviation of the running
time for I4 problem instances.

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

18 K. LEE, G. BUSS, D. VEIT

-1.4
-1.2

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4

75 80 85 90 95 100 105 110 115 120 125

R
el

at
iv

e
ut

ili
ty

 g
ai

n

Manipulated bid

Exact
GreedyComplex

GreedyLow

(a) Resource consumer, balanced problem
instances

-1.4
-1.2

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4

75 80 85 90 95 100 105 110 115 120 125

R
el

at
iv

e
ut

ili
ty

 g
ai

n

Manipulated bid

Exact
GreedyComplex

GreedyLow

(b) Resource consumer, competitive problem
instances

-1.6
-1.4
-1.2

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2

75 80 85 90 95 100 105 110 115 120 125

R
el

at
iv

e
ut

ili
ty

 g
ai

n

Manipulated bid

Exact
GreedyComplex
GreedyMedium

(c) Resource provider, balanced problem
instances

-2

-1.5

-1

-0.5

 0

 0.5

75 80 85 90 95 100 105 110 115 120 125

R
el

at
iv

e
ut

ili
ty

 g
ai

n

Manipulated bid

Exact
GreedyComplex
GreedyMedium

(d) Resource consumer, competitive problem
instances

Figure 14. Median of the relative utility gain for a manipulating resource consumer or a manipulating
resource provider against balanced and competitive problem instances.

Since the determination of an allocation to I1 instances takes on average the minimum amount
of time and the determination of an allocation to I4 instances takes the maximum amount of time,
the corresponding fitted functions for balanced problem instances are used to provide an estimate
of the bounds on scalability for the heuristic optimization methods. According to these estimates
GreedyComplex is limited to 2018 resource consumer and resource provider bids, GreedyMedium
is limited to 2850 resource consumer and resource provider bids and GreedyLow is applicable up
to 3191 resource consumer and resource provider bids. In case constraints on bids for computing
resources are allowed (I4 type problem instances) scalability is reduced to 850 (GreedyComplex),
1228 (GreedyMedium) and 1325 (GreedyLow) resource provider and resource consumer bids for.

Results of Incentive Compatibility The scenario is illustrated with an example considering balanced
problem instances and GreedyComplex for solving the Multi-Attribute Combinatorial Exchange
winner determination problem. The results for a resource consumer manipulating her valuation are
given in Figure 14(a). Understating her valuation for a bundle bid from 75 up to 80 percent of the real
valuation results in at minimum 50 percent of the cases in a total loss of the utility that would have
been gained if the valuation would have been reported truthfully. A less aggressive manipulation
strategy understating the true valuation by at most 15 percent is beneficial.

The utility gained is raised in more than 50 percent of the cases compared to reporting the
valuation truthfully. Overstating the valuation by 5 to 25 percent results in more than 80 percent
of the cases tested in a loss of utility (see 17). In case the valuation is overstated by 25 percent

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

A HEURISTIC APPROACH FOR THE ALLOCATION OF RESOURCES 19

Percentage bid Resource consumer Resource provider

µ Med. Q0.2 Q0.8 µ Med. Q0.2 Q0.8

75 -0.37 -1.00 -1.00 0.62 -15.94 -1.30 -2.69 -0.73
80 -0.17 0.35 -1.00 0.58 -12.39 -0.92 -1.79 -0.58
85 0.01 0.36 -1.00 0.66 -9.00 -0.67 -1.14 -0.37
90 0.03 0.27 -1.00 0.50 -4.43 -0.44 -0.77 -0.22
95 0.12 0.18 0.11 0.32 -2.05 -0.22 -0.40 -0.13
100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
105 -0.40 -0.23 -0.37 -0.13 0.10 0.15 -0.14 0.31
110 -0.80 -0.45 -0.75 -0.26 0.04 0.14 -0.43 0.42
115 -1.19 -0.68 -1.12 -0.36 -0.02 -0.04 -0.73 0.46
120 -1.59 -0.91 -1.49 -0.52 -0.26 -0.37 -1.00 0.26
125 -1.99 -1.13 -1.88 -0.67 -0.45 -0.74 -1.00 0.07

Figure 15. Relative resource consumer and resource provider utility gain for balanced I type problem
instances applying the exact optimization method.

Percentage bid Resource consumer Resource provider

µ Med. Q0.2 Q0.8 µ Med. Q0.2 Q0.8

75 -0.37 -1.00 -1.00 0.59 -4.73 -1.35 -3.80 -0.92
80 -0.30 -1.00 -1.00 0.50 -3.46 -1.06 -2.27 -0.62
85 -0.10 0.33 -1.00 0.47 -2.31 -0.79 -1.62 -0.40
90 0.12 0.27 0.16 0.45 -1.08 -0.48 -0.92 -0.25
95 0.04 0.15 0.10 0.24 -0.22 -0.22 -0.41 -0.03
100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
105 -0.30 -0.17 -0.32 -0.12 0.06 0.15 -0.29 0.35
110 -0.59 -0.33 -0.64 -0.24 0.08 0.08 -0.87 0.57
115 -0.89 -0.51 -0.95 -0.35 0.08 -0.01 -1.00 0.60
120 -1.19 -0.68 -1.27 -0.47 -0.27 -0.65 -1.00 0.58
125 -1.48 -1.13 -1.62 -0.59 -0.43 -0.87 -1.00 0.23

Figure 16. Relative resource consumer and resource provider utility gain for competitive I type problem
instances applying the exact optimization method.

a resource consumer incurs a minimum loss of 124 percent for 50 percent of the problem
instances analyzed. A detailed overview on the results for the exact optimization method as well
as GreedyComplex and GreedyMedium is presented in Figures 15-20.

The results for the exact and the heuristic optimization methods provide evidence that dependent
on the degree of manipulation an average positive utility gain is achievable for resource consumers
who are understating their valuation and resource providers who are overstating their reservation
price. This holds for both competitive and balanced problem instance types.

Considering the exact optimization method and balanced (competitive) problem instances a
resource consumer realizes an average utility gain in case the valuation is not manipulated by more
than 15 (10) percent. A resource provider does not incur a utility loss for balanced (competitive)
problem instances in case the reservation price is manipulated by less than 10 (15) percent. A
manipulating resource provider reaps an average utility gain up to a manipulation factor of 15
percent. The mean results for GreedyMedium deviate to a higher degree. A resource consumer
incurs an average utility gain manipulating the respective valuation up to 20 percent considering
balanced and competitive problem instance types. For resource providers, manipulation is on
average beneficial up to 20 percent for balanced problem instance types and up to 25 percent for
competitive problem instances.

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

20 K. LEE, G. BUSS, D. VEIT

Percentage bid Resource consumer Resource provider

µ Med. Q0.2 Q0.8 µ Med. Q0.2 Q0.8

75 -0.41 -1.00 -1.00 0.61 -6.11 -1.20 -2.42 -0.68
80 -0.27 -1.00 -1.00 0.55 -4.62 -1.04 -1.92 -0.48
85 0.00 0.36 -1.00 0.68 -2.95 -0.78 -1.26 -0.38
90 0.01 0.27 -1.00 0.50 -0.17 -0.45 -0.84 -0.28
95 0.07 0.18 0.10 0.31 -0.04 -0.19 -0.42 -0.09
100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
105 -0.46 -0.25 -0.53 -0.13 0.12 0.17 -0.14 0.39
110 -0.92 -0.50 -1.05 -0.26 0.08 0.14 -0.30 0.40
115 -1.39 -0.74 -1.58 -0.40 0.03 -0.08 -0.61 0.54
120 -1.82 -0.99 -2.10 -0.52 -0.32 -0.36 -1.00 0.23
125 -2.28 -1.24 -2.76 -0.66 -0.53 -0.93 -1.00 -0.13

Figure 17. Relative resource consumer and resource provider utility gain for balanced I type problem
instances applying GreedyComplex.

Percentage bid Resource consumer Resource provider

µ Med. Q0.2 Q0.8 µ Med. Q0.2 Q0.8

75 -0.36 -1.00 -1.00 0.60 -6.27 -1.34 -4.26 -0.54
80 -0.25 -0.34 -1.00 0.52 -3.93 -1.11 -3.23 -0.41
85 -0.01 0.32 -1.00 0.51 -2.37 -0.93 -2.55 -0.28
90 0.06 0.26 -1.00 0.49 -0.84 -0.54 -1.52 -0.24
95 0.07 0.13 0.09 0.28 -0.35 -0.26 -0.49 -0.12
100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
105 -0.28 -0.19 -0.37 -0.12 0.16 0.15 -0.19 0.43
110 -0.59 -0.38 -0.67 -0.23 0.11 0.24 -0.63 0.66
115 -0.90 -0.56 -1.05 -0.33 0.07 0.04 -0.98 0.80
120 -1.20 -0.74 -1.33 -0.46 -0.20 -0.40 -1.00 0.51
125 -1.48 -1.24 -1.60 -0.56 -0.39 -0.63 -1.00 0.10

Figure 18. Relative resource consumer and resource provider utility gain for competitive I type problem
instances applying GreedyComplex.

A comparison of the mean values indicates for some degrees of manipulation a significant
difference in the mean utility gain with respect to the different optimization methods (e.g. Figure 15
and Figure 17). An analysis of the mean values and the respective median values indicates that
this is caused by a small number of problem instances where the respective bidder achieves a
disproportional high utility gain or loss. The conjecture is emphasized considering the bounds of
the upper and lower quintiles for each sample. For all tested sets these bounds are relatively close
to the respective median. Further statistical support is provided by comparing the distribution of
the utility gains between the degrees of manipulation and the types of problem instances with a
Kruskal-Wallis test. None of the tests provides significant evidence for rejecting the null hypothesis
of equal variances.

5.3. Discussion of the Results of Greedy Optimization Methods

Allocative Efficiency. The results show that GreedyLow is a valuable approach for determining high
quality allocations because it does not outperform GreedyRandom. GreedyComplex is found to
minimize the efficiency loss in comparison to GreedyMedium. It improves on all kind of problem
instances in comparison to GreedyRandom. GreedyMedium is found to outperform GreedyRandom
on all but balanced I4 type problem instances. Considering real world problem instances constraints

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

A HEURISTIC APPROACH FOR THE ALLOCATION OF RESOURCES 21

Percentage bid Resource consumer Resource provider

µ Med. Q0.2 Q0.8 µ Med. Q0.2 Q0.8

75 -0.06 -1.00 -1.00 0.69 -6.91 -1.56 -2.78 -0.87
80 0.01 -0.33 -1.00 0.69 -5.30 -1.02 -1.95 -0.61
85 0.13 0.37 -1.00 0.75 -3.61 -0.69 -1.43 -0.34
90 0.07 0.27 -1.00 0.55 -0.74 -0.49 -0.89 -0.28
95 0.06 0.18 0.08 0.34 -0.39 -0.23 -0.46 -0.12
100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
105 -0.56 -0.25 -0.77 -0.14 0.12 0.15 -0.15 0.37
110 -1.07 -0.51 -1.55 -0.27 0.18 0.18 -0.20 0.52
115 -1.72 -0.76 -2.09 -0.41 0.08 -0.01 -0.65 0.58
120 -2.54 -1.02 -2.55 -0.54 -0.21 -0.25 -1.00 0.22
125 -3.05 -1.27 -3.49 -0.69 -0.54 -0.88 -1.00 -0.01

Figure 19. Relative resource consumer and resource provider utility gain for competitive I type problem
instances applying GreedyMedium.

Percentage bid Resource consumer Resource provider

µ Med. Q0.2 Q0.8 µ Med. Q0.2 Q0.8

75 -0.36 -1.00 -1.00 0.55 -14.15 -1.75 -4.70 -0.68
80 1.15 0.27 -1.00 0.53 -8.42 -1.38 -4.02 -0.43
85 1.15 0.24 -1.00 0.66 -4.90 -1.08 -2.55 -0.32
90 1.07 0.26 -1.00 0.54 -2.01 -0.71 -1.55 -0.19
95 0.52 0.17 0.08 0.35 -0.46 -0.33 -0.57 -0.12
100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
105 -0.54 -0.19 -0.63 -0.11 0.32 0.25 -0.02 0.49
110 -1.16 -0.43 -1.06 -0.23 0.34 0.25 -0.49 0.99
115 -1.81 -0.68 -1.90 -0.35 0.45 0.16 -0.78 1.05
120 -3.24 -0.91 -2.36 -0.46 0.38 -0.14 -1.00 1.11
125 -4.12 -1.27 -2.91 -0.56 0.12 -0.46 -1.00 0.85

Figure 20. Relative resource consumer and resource provider utility gain for competitive I type problem
instances applying GreedyMedium.

on computing resources are likely as computational tasks are parallelizable to a certain degree only.
Splitting each consumer bid to an unlimited number of resource providers is an assumption of
theoretical nature. Consequently GreedyComplex is argued to be applicable to the Multi-Attribute
Combinatorial Exchange approach while GreedyMedium is of limited applicability. A significant
loss in efficiency is observed comparing the results for the balanced and competitive problem
instance types. This is caused by the enlargement of the decision space, which can lead to a situation
where the heuristic optimization methods are guided to a local maximum. Furthermore, the problem
representation does not cover the entire search space.

Scalability. The results for the exact optimization method clearly indicate the limits due to
computational tractability. An efficiency loss of 100 percent for larger problem instances, which is
similar to a breakdown of the market, is not tolerable for the practical application of the mechanism.
In consequence, as constraints on bids as well as multiple bids by a single resource consumer
are considered to appear frequently, determining the optimal allocation is a feasible approach for
balanced problem instances up to 70 resource consumer bids and for competitive problem instances
up to 90 resource consumer bids. The estimates provided for the greedy type optimization methods
indicate an applicability to a minimum of 850 (GreedyComplex) or 1228 (GreedyMedium) and
a maximum of 2018 (GreedyComplex) or 2080 (GreedyMedium) resource consumer bids. The

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

22 K. LEE, G. BUSS, D. VEIT

estimate is not accurate but rather conservative because a quadratic function tends to overestimate
the influence of the dependent variable [45].

Incentive Compatibility. The results show that the effect of manipulation by a resource consumer
or a resource yields on average a comparable relative utility gain for all optimization methods
over all types of problem instances tested, which is an important and interesting finding. The
potential relative gain incurred by manipulation is basically caused by the pricing scheme and
independent of the optimization method applied. The results show an efficiency loss in the majority
of the cases with the heuristic optimization method of the Multi-Attribute Combinatorial Exchange
approach to tackle the winner determination problem. An allocation which is provided by a
heuristic optimization method does not ensure that the traded computing resources are assigned
to the resource consumers who value them most, and, at the same time are supplied by the
resource providers who value them least. However, the theoretical worst case scenario of a total
efficiency loss is found to be highly unlikely as indicated by the average efficiency loss for all
types of problem instances. A comparison of the different heuristic optimization methods shows
the efficiency loss to be smallest for GreedyComplex followed by GreedyMedium and GreedyLow.
The Multi-Attribute Combinatorial Exchange mechanism is not incentive compatible, but is reported
not to incentivize resource consumers and resource providers strongly manipulate their valuations
or reservation prices [29]. From a theoretical perspective heuristic optimization methods ruin the
incentive properties of incentive compatible exchange mechanisms [35]. A plausible conjecture
that heuristic optimization methods negatively affect the incentive properties of the Multi-Attribute
Combinatorial Exchange mechanism. However, no statistical evidence for such an effect could be
found in the results of this work. The application of heuristic optimization methods to the Multi-
Attribute Combinatorial Exchange approach is a trade-off between efficiency and scalability that
does not negatively affect the property of incentive compatibility. The advances in scalability at the
cost of an efficiency loss are a step forward in making a theoretically valuable mechanism applicable
for large-scale computing infrastructures.

Limitations. Effort was taken to realistically model important details of possible real world
problem instances to provide an unbiased evaluation of the approaches presented. However,
the statistical generation of valuations and reservation prices which can make hard problem
instances computationally easy [39] necessitates a confirmation of the findings presented when
data from real world problem instances becomes available. The benefits of strategic behavior are
investigated considering a single manipulating resource consumer or a single manipulating resource
provider. The possible benefits of forming strategic coalitions between participants are require
further investigation [37]. The prototypical implementation of the framework, which the heuristic
optimization methods are integrated into, is designed for scientific testing [46]. Consequently, the
running time results for the heuristics have to be interpreted as lower bounds while the results for
the exact optimization method are obtained from established code.

6. CONCLUSION

Large-scale computing infrastructures enable the sharing of distributed computing resources
providing the potential for more cost efficient utilization of IT. A key concern in leveraging large-
scale computing infrastructures is the scheduling of available capacities. This paper argued for

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

A HEURISTIC APPROACH FOR THE ALLOCATION OF RESOURCES 23

a market based approach to resource scheduling, focused on developing an efficient allocation.
Current approaches work well for a limited number of resource consumers and providers, but they
necessitate a rethinking to make them applicable to larger scales. The objective of the research in this
paper is the conceptualization, implementation, and evaluation of a scalable market mechanism that
is suitable for the needs of large-scale computing infrastructures. The Multi-Attribute Combinatorial
Exchange approach is not scalable in the number of participants but fits both the domains specific
and the economic requirements. We provide a generic representation of the allocation problem based
on the Multi-Attribute Combinatorial Exchange approach which is suitable for greedy optimization
methods. Three greedy approaches differing in the computational complexity are customized to the
problem representation.

The theoretical evaluation of the problem representation shown a reduction of the search space,
i.e. the efficient allocation of resource consumers to resource providers may not be encoded. The
empirical evaluation measured the actual efficiency loss, the scalability as well as the influence on
incentive compatibility. There is no statistical evidence for an influence on the incentive properties
of the Multi-Attribute Combinatorial Exchange mechanism, i.e. the application of the evaluated
heuristic optimization methods presents a trade-off between efficiency and scalability. The average
efficiency loss for the recommended greedy heuristic is 13 percent. The scope of the mechanism is
increased from 70 resource consumer and provider bids to a minimum of 850 resource consumer and
provider bids. In consequence, using heuristics are a step forward in making theoretically valuable
mechanisms applicable for large-scale computing infrastructures.

REFERENCES

1. Brynjolfsson E, Saunders A. Wired for Innovation: How Information Technology is Reshaping the Economy. MIT
Press: Cambridge, MA, 2010.

2. Hey T. The next scientific revolution. Harvard Business Review 2010; 88(11):57–63.
3. Davenport TH, Harris JG. Competing on Analytics - The New Science of Winning. Harvard Business School

Publishing: Boston, 2007.
4. Armbrust M, Fox A, Griffith R, Joseph AD, Katz RH, Konwinski A, Lee G, Patterson D, Rabkin A, Stoica I, et al..

A view of cloud computing. Communications of the ACM 2010; 53(4):50–58.
5. Siegle L. Let it rise: A special report on corporate it. The Economist, http://www.economist.com/node/

12411882 (25.07.2010) 2008; .
6. Carr NG. The end of corporate computing. MIT Sloan Management Review 2005; 46(3):67–73.
7. Foster I, Kesselman C, Tuecke S. The anatomy of the grid: Enabling scalable virtual organizations. International

Journal of High Performance Computing Applications 2001; 15(3):200–221.
8. M Vaquero L, Rodero-Merino L, Caceres J, Lindner M. A break in the clouds: Towards a cloud definition. ACM

SIGCOMM Computer Communication Review 2009; 39(1):50–55.
9. Foster I, Yong Z, Raicu I, Lu S. Cloud computing and grid computing 360-degree compared. In Proceedings of the

IEEE Grid Computing Environments Workshop, 2008. GCE ’08, Austin, TX, USA, 2008; 1–10.
10. Neumann D, Stösser J, Weinhardt C, Nimis J. A framework for commercial grids - economic and technical

challenges. Journal of Grid Computing 2008; 6(3):325–347.
11. Eymann T, Neumann D, Reinicke M, Schnizler B, Streitberger W, Veit D. On the design of a two-tiered grid market

structure. In Proceedings of the Multikonferenz Wirtschaftsinformatik 2006, Passau, Germany, 2006.
12. Van den Bossche R, Vanmechelen K, Broeckhove J. Cost-Optimal Scheduling in Hybrid IaaS Clouds for Deadline

Constrained Workloads. IEEE 3rd International Conference on Cloud Computing (CLOUD), 2010; 228–235, doi:
10.1109/CLOUD.2010.58.

13. Rahman M, Li X, Palit H. Hybrid heuristic for scheduling data analytics workflow applications in hybrid cloud
environment. IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum
(IPDPSW), 2011; 966–974, doi:10.1109/IPDPS.2011.243.

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

24 K. LEE, G. BUSS, D. VEIT

14. Lai K. Markets are dead, long live markets. SIGecom Exchanges 2005; 5(4):1–10.
15. Shneidman J, Ng C, Parkes DC, AuYoung A, Snoeren AC, Vahdat A, Chun B. Why markets could (but don’t

currently) solve resource allocation problems in systems. Proceedings of the 10th conference on Hot Topics in
Operating Systems, vol. 10, USENIX Association: Santa Fe, NM, USA, 2005.

16. Smidt S. Flexible pricing of computer services. Management Science 1968; 14(10):B–581–B–600.
17. Nissan N. Introduction to mechanism design (for computer scientists). Algorithmic Game Theory, Nissan N,

Roughgarden T, Tardos E, Vazirani VV (eds.). Cambridge University Press: New York, NY, 2007.
18. Garey MR, Johnson DS. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman:

San Francisco, CA, 1979.
19. Nurmi D, Wolski R, Grzegorczyk C, Obertelli G, Soman S, Youseff L, Zagorodnov D. The eucalyptus open-

source cloud-computing system. Cluster Computing and the Grid, 2009. CCGRID’09. 9th IEEE/ACM International
Symposium on, IEEE, 2009; 124–131.

20. Marshall P, Keahey K, Freeman T. Elastic site: Using clouds to elastically extend site resources. Proceedings of the
2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, IEEE Computer Society,
2010; 43–52.

21. Milojičić D, Llorente IM, Montero RS. Opennebula: A cloud management tool. Internet Computing, IEEE 2011;
15(2):11–14.

22. Pepple K. Deploying OpenStack. O’Reilly Media, 2011.
23. Sotomayor B, Montero RS, Llorente IM, Foster I. Virtual infrastructure management in private and hybrid clouds.

Internet Computing, IEEE 2009; 13(5):14–22.
24. Garg SK, Buyya R, Siegel HJ. Time and cost trade-off management for scheduling parallel applications on utility

grids. Future Generation Computer Systems 2010; 26(8):1344–1355.
25. Reiss C, Tumanov A, Ganger GR, Katz RH, Kozuch MA. Heterogeneity and dynamicity of clouds at scale: Google

trace analysis. Proceedings of the Third ACM Symposium on Cloud Computing, ACM, 2012; 7.
26. Alrawahi AS, Lee K. Multi-attribute combinatorial marketplaces for cloud resource trading. Cloud and Green

Computing (CGC), 2012 Second International Conference on, IEEE, 2012; 81–88.
27. Amazon E. Amazon elastic compute cloud (amazon ec2). Amazon Elastic Compute Cloud (Amazon EC2). Dispon

2013; .
28. Dash RK, Jennings NR, Parkes DC. Computational-mechanism design: A call to arms. IEEE Intelligent Systems

2003; 18(6):40–47.
29. Schnizler B, Neumann D, Veit D, Weinhardt C. Trading grid services - a multi-attribute combinatorial approach.

European Journal of Operational Research 2008; 187(3):943–961.
30. Pekeĉ A, Rothkopf MH. Combinatorial auction design. Management Science 2003; 49(11):1485–1503.
31. Bapna R, Das S, Garfinkel R, Stallaert J. A market design for grid computing. INFORMS Journal on Computing

2008; 20(1):100–111.
32. Stösser J, Neumann D, Weinhardt C. Market-based pricing in grids: On strategic manipulation and computational

cost. European Journal of Operational Research 2010; 203(2):464–475.
33. Stösser J, Neumann D. Greedex–a scalable clearing mechanism for utility computing. Electronic Commerce

Research 2008; 8(4):235–253.
34. Mossmann M, Stösser J, Ouorou A, Gourdin E, Krishnaswamy R, Neumann D. A combinatorial exchange for

complex grid services. Economic Models and Algorithms for Distributed Systems, Neumann D, Rana OF, Altmann
J, Baker M (eds.). Birkhäuser: Basel, 2010.

35. Lehmann D, Müller R, Sandholm T. The winner determination problem. Combinatorial Auctions, Crampton P,
Shoham Y, Steinberg R (eds.). MIT Press: Cambridge, MA, 2006.

36. de Vries S, Vohra RV. Combinatorial auctions: A survey. INFORMS Journal on Computing 2003; 15(3):284–309.
37. Parkes DC. Iterative combinatorial auctions: Achieving economic and computational efficiency. PhD Thesis,

University of Pennsylvania 2001.
38. Lewis M, Kochenberger GA, Alidaee B. A new modeling and solution approach for the set-partitioning problem.

Computers & Operations Research 2008; 35(3):807–813.
39. Leyton-Brown K, Shoham Y. A test suite for combinatorial auctions. Combinatorial Auctions, Crampton P, Shoham

Y, Steinberg R (eds.). MIT Press: Cambridge, MA, 2006.
40. Rardin RL, Uzsoy R. Experimental evaluation of heuristic optimization algorithms: A tutorial. Journal of Heuristics

2001; 7(3):261–304.
41. Leyton-Brown K, Pearson M, Shoham Y. Towards a universal test suite for combinatorial auction algorithms.

Proceedings of the 2nd ACM conference on Electronic Commerce, ACM: Minneapolis, MN, USA, 2000; 66–76.
42. Schnizler B. Resource allocation in the grid: A market engineering approach. Dissertation, University of Karlsruhe

(TH) 2007.

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

A HEURISTIC APPROACH FOR THE ALLOCATION OF RESOURCES 25

43. Cripps MW, Swinkels JM. Efficiency of large double auctions. Econometrica 2006; 74(1):47–92.
44. Roberts DJ, Postlewaite A. The incentives for price-taking behavior in large exchange economies. Econometrica

1976; 44(1):115–127.
45. Backhaus K, Erichson B, Plinke W, Weiber R. Multivariate Analysemethoden, vol. 12. Springer: Heidelberg, 2008.
46. Hooker JN. Testing heuristics: We have it all wrong. Journal of Heuristics 1995; 1(1):33–42.

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

