17,675 research outputs found

    Randomized Algorithms for Determining the Majority on Graphs

    Get PDF
    Every node of an undirected connected graph is colored white or black. Adjacent nodes can be compared and the outcome of each comparison is either 0 (same color) or 1 (different colors). The aim is to discover a node of the majority color, or to conclude that there is the same number of black and white nodes. We consider randomized algorithms for this task and establish upper and lower bounds on their expected running time. Our main contribution are lower bounds showing that some simple and natural algorithms for this problem cannot be improved in general

    Quantum query complexity of minor-closed graph properties

    Get PDF
    We study the quantum query complexity of minor-closed graph properties, which include such problems as determining whether an nn-vertex graph is planar, is a forest, or does not contain a path of a given length. We show that most minor-closed properties---those that cannot be characterized by a finite set of forbidden subgraphs---have quantum query complexity \Theta(n^{3/2}). To establish this, we prove an adversary lower bound using a detailed analysis of the structure of minor-closed properties with respect to forbidden topological minors and forbidden subgraphs. On the other hand, we show that minor-closed properties (and more generally, sparse graph properties) that can be characterized by finitely many forbidden subgraphs can be solved strictly faster, in o(n^{3/2}) queries. Our algorithms are a novel application of the quantum walk search framework and give improved upper bounds for several subgraph-finding problems.Comment: v1: 25 pages, 2 figures. v2: 26 page
    • …
    corecore