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Abstract: We study the problem of determining the majority type in an arbitrary
connected network, each vertex of which has initially two possible types. The vertices
may have a few additional possible states and can interact in pairs only if they share an
edge. Any (population) protocol is required to stabilize in the initial majority. We first
present and analyze a protocol with 4 states per vertex that always computes the initial
majority value, under any fair scheduler.This protocol is optimal, in the sense that there
does not exist any population protocol that always computes majority with fewer than
4 states per vertex. However this does not rule out the existence of a protocol with 3
states per vertex that is correct with high probability (whp). To this end, we examine
an elegant and very natural majority protocol with 3 states per vertex, introduced in [2]
where its performance has been analyzed for the clique graph. In particular, we study
the performance of this protocol in arbitrary networks, under the probabilistic scheduler.
We prove that, when the two initial states are put uniformly at random on the vertices,
the protocol of [2] converges to the initial majority with probability higher than the
probability of converging to the initial minority. In contrast, we show that the resistance
of the protocol to failure when the underlying graph is a clique causes the failure of the
protocol in general graphs.

This abstract paper is based on our work [14], which appeared in the Proceedings of
the 41st International Colloquium on Automata, Languages, and Programming (ICALP)
2014.

1 Introduction and Motivation

One of the most natural computational problems in many physical systems is to compute
the majority, i.e. to determine accurately which type of an element of the system appears
more frequently. For instance, the majority problem is encountered in various settings
such as in voting [9, 10], in epidemiology and interacting particles systems [13], in
diagnosis of multiprocessor systems [19], in social networks [17, 15] etc. In distributed
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2 Population Protocols for Majority in Arbitrary Networks

computing, the majority problem is an important and natural special case of the central
problem of reaching consencus within a system [12, 6], where a number of processes
have to agree on any single data value (e.g. leader election [8]). In all these physical
systems, some pairs of elements may interact with each other while other pairs may not
be able to interact directly. This structure of the possible pairwise interactions between
elements of the system can be modeled by a network (i.e. graph), where elements and
possible interactions are represented by vertices and edges, respectively.

In order to solve the majority computation problem in a network, we first need
to make some assumptions on the underlying model of computation. Much research
has been done under the assumption that there exists a central authority, as well as
unlimited available memory and full information about the whole network (see e.g.[20,
5]). However, in many real systems we do not have (or we do not wish to have) such a
powerful computational model. The weaker the considered model of computation is (e.g.
lack of central authority, partial or no information about the system, lack of memory
etc.), the more challenging the majority computation becomes.

One of the ways to study distributed systems where agents may interact in pairs and
each individual agent is extremely limited (in fact, being equipped only with a finite
number of possible states) is by using population protocols [1, 3]. Then the complex
behavior of the system emerges from the rules governing the possible pairwise interac-
tions of the agents. Population protocols have been defined by analogy to population
processes [11] in probability theory and have already been used in various fields, such as
in statistical physics, genetics, epidemiology, chemistry and biology [4].

In particular, population protocols are scalable, i.e. they work independently of the
size n of the underlying network (called the interaction graph) and the value of n is not
even known to the protocol. Furthermore they are anonymous, i.e. there is only one
transition function which is common to all entities/agents: the result of an interaction of
an agent u at state qu with an agent v at state qv is the same regardless of the identity
of u and v. The transition function of a population protocol only specifies the result of
every possible interaction, without specifying which pairs of agents interact or when they
are chosen to interact. Usually it is assumed that interactions between agents happen
under some kind of a fairness condition. For a survey about population protocols we
refer to [3].

In this direction, a very natural and simple population protocol for the majority
problem on the clique (i.e. the complete graph), where initially every vertex has one of
two possible types (states), has been introduced and analyzed in [2]. In particular, the
protocol of [2] assigns only 3 possible states to every agent (i.e. there is a 3×3 transition
table capturing all possible interactions) and the interactions between agents are dictated
by a probabilistic scheduler (i.e. all pairs have the same probability to interact at any
step). Every vertex has an identity v, but it is unaware of the identity of any other vertex,
as well as of its own identity. Although the underlying interaction graph in [2] is assumed
to be a clique, the authors distinguish in their protocol the agents u and v participating
in an interaction into an “initiator” and a “responder” of the interaction (when agents
u and v interact, each of them becomes initiator or responder with equal probability).
Their main result is that, if initially the difference between the initial majority from
the initial minority in the complete graph with n vertices is ω(

√
n log n), their protocol

converges to the correct initial majority value in O(n log n) time with high probability.
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Most works on population and majority dynamics so far considered only two entity
types (e.g. the voter model [9], the Moran process [16]). The analysis of population
dynamics with more than two types is challenging. As an example we refer to the model
of [2], in which, although agents can have initially one of only two types (red and green),
the protocol itself allows every agent to be in one among three different states (red, green
and blank) at every subsequent time point. Even though this model is quite simple, it is
very hard to be analyzed. Computing the majority with as few states as possible in the
more general case, where the interaction graph has an arbitrary structure (as opposed to
the complete graph that has been mainly considered so far) remained an open problem.

2 Our Contribution

In [14] we study the majority problem in an arbitrary underlying interaction graph G,
where initially every vertex has two possible states (red and green). We consider the
weakest and simplest possible model of computation. In particular, we assume the ex-
istence of no central authority and we allow every vertex of G to have only a (small)
constant number of available types (or states). Although every vertex of G has a unique
identity, no vertex is aware of its own identity or the identity of any other vertex. Fur-
thermore, although only two adjacent vertices can interact, vertices of G do not even
know to which other vertices they are adjacent.

2.1 Stable computation of majority

We initially focus on the problem of always computing the correct majority value in
an arbitrary (directed or undirected) interaction graph G, regardless of how large the
initial difference between the majority and the minority is. In particular, assuming that
the interacting pairs of vertices are chosen by an arbitrary fair scheduler, we derive
matching lower and upper bounds on the number of available states, for which there
exists a population protocol that always computes the correct majority value. For the
lower bound, we prove the following:

Theorem 1 Any population protocol that stably computes the majority function uses at
least 4 states.

The proof is based on a contradiction argument; assuming there is a population
protocol computing majority using 3 states, we construct two distinct instances C1 and
C2 that (a) have different initial majorities and (b) there is a fair scheduler that brings
both C1 and C2 to the same intermediate configuration (after which the protocol will
have no way of determining whether it started from C1 or C2).

On the other hand, for the matching upper bound we provide a population protocol
with 4 states per vertex, namely the Ambassador protocol, which always computes the
correct majority value, even if initially the difference between majority and minority is
1. A different 4 state protocol for majority was independently presented in [7]. Using
standard results on random walks on graphs and coupon collector arguments, we provide
polynomial upper bounds on the expected time needed by our Ambassador protocol to
converge, and we show that in certain cases the running time is O(n log n), i.e. the same
as for the fast protocol of [2].
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2.2 The protocol of [2] on arbitrary graphs

In [14], we also provide a detailed analysis of the 3-state protocol of [2] on an arbitrary
interaction graph G. Our first result in this direction is the following:

Theorem 2 For any strongly connected directed graph G, if the initial assignment of
individuals to the vertices of G is random, then the majority protocol described in [2]
correctly identifies the initial majority with probability at least 1

2 .

The proof of this relies on a well known result in extremal combinatorics (in partic-
ular, on Hall’s marriage Theorem).

On the other hand, we proved the following:

Theorem 3 There exists an infinite family {Gn}n∈N of interaction graphs where the
protocol fails with high probability, even when the initial difference between majority /
minority is n−Θ(logn).

Theorem 4 There exists an infinite family {G′
n}n∈N of interaction graphs where the

protocol terminates in exponential expected time.

In particular, Theorem 4 rules out the possibility to use a Markov chain Monte-Carlo
approach to approximate the probability that the protocol of [2] converges to the correct
majority value.

The proofs of Theorems 3 and 4 employ an intermediate result concerning the ro-
bustness of the protocol of [2] on the clique. In particular, for any ε > 0, if the minority
has size at most (17 − ε)n in the complete graph with n vertices, then the protocol of [2]
converges to the initial minority with exponentially small probability. This result shows
that, although the performance of the protocol of [2] can drop significantly when the
interaction graph G is not the complete graph, it is quite robust when G is the complete
graph. After submission of our original work in [14], we became aware of the paper [18],
the results of which can also be used to prove a tighter version of our result concerning
the robustness of the protocol of [2] on the clique. However, the techniques used there
cannot be applied to graph structures other than the clique. On the other hand, our
proof technique can also be applied to graph structures that are different than (but close
to being) cliques by using a non-trivial coupling argument which can be of independent
interest.
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