67 research outputs found
Sensors and methods for weather-independent remote sensing with microwaves
Sensors and methods of radar and microwave radiometry which operate in the millimeter wave range are discussed. The properties of electromagnetic waves are discussed as well as the resolution capacity and measurement accuracy of sensor systems
A proposed method for wind velocity measurement from space
An investigation was made of the feasibility of making wind velocity measurements from space by monitoring the apparent change in the refractive index of the atmosphere induced by motion of the air. The physical principle is the same as that resulting in the phase changes measured in the Fizeau experiment. It is proposed that this phase change could be measured using a three cornered arrangement of satellite borne source and reflectors, around which two laser beams propagate in opposite directions. It is shown that even though the velocity of the satellites is much larger than the wind velocity, factors such as change in satellite position and Doppler shifts can be taken into account in a reasonable manner and the Fizeau phase measured. This phase measurement yields an average wind velocity along the ray path through the atmosphere. The method requires neither high accuracy for satellite position or velocity, nor precise knowledge of the refractive index or its gradient in the atmosphere. However, the method intrinsically yields wind velocity integrated along the ray path; hence to obtain higher spatial resolution, inversion techniques are required
Numerical 3D modeling of heat transfer in human tissues for microwave radiometry monitoring of Brown fat metabolismo
Background: Brown adipose tissue (BAT) plays an important role in whole body metabolism and could potentially mediate weight gain and insulin sensitivity. Although some imaging techniques allow BAT detection, there are currently no viable methods for continuous acquisition of BAT energy expenditure. We present a non-invasive technique for long term monitoring of BAT metabolism using microwave radiometry. Methods: A multilayer 3D computational model was created in HFSS™ with 1.5 mm skin, 3-10 mm subcutaneous fat, 200 mm muscle and a BAT region (2-6 cm3) located between fat and muscle. Based on this model, a log-spiral antenna was designed and optimized to maximize reception of thermal emissions from the target (BAT). The power absorption patterns calculated in HFSS™ were combined with simulated thermal distributions computed in COMSOL® to predict radiometric signal measured from an ultra-low-noise microwave radiometer. The power received by the antenna was characterized as a function of different levels of BAT metabolism under cold and noradrenergic stimulation. Results: The optimized frequency band was 1.5-2.2 GHz, with averaged antenna efficiency of 19%. The simulated power received by the radiometric antenna increased 2-9 mdBm (noradrenergic stimulus) and 4-15 mdBm (cold stimulus) corresponding to increased 15-fold BAT metabolism. Conclusions: Results demonstrated the ability to detect thermal radiation from small volumes (2-6 cm3) of BAT located up to 12 mm deep and to monitor small changes (0.5°C) in BAT metabolism. As such, the developed miniature radiometric antenna sensor appears suitable for non-invasive long term monitoring of BAT metabolism
Theory of zone radiometry
A spectroscopic instrumentation system was developed which was used to measure temperature and concentration distributions in axisymmetric and two dimensional combusting flows. This measurement technique is known as zone radiometry
SeaWiFS technical report series. Volume 5: Ocean optics protocols for SeaWiFS validation
Protocols are presented for measuring optical properties, and other environmental variables, to validate the radiometric performance of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), and to develop and validate bio-optical algorithms for use with SeaWiFS data. The protocols are intended to establish foundations for a measurement strategy to verify the challenging SeaWiFS accuracy goals of 5 percent in water-leaving radiances and 35 percent in chlorophyll alpha concentration. The protocols first specify the variables which must be measured, and briefly review rationale. Subsequent chapters cover detailed protocols for instrument performance specifications, characterizing and calibration instruments, methods of making measurements in the field, and methods of data analysis. These protocols were developed at a workshop sponsored by the SeaWiFS Project Office (SPO) and held at the Naval Postgraduate School in Monterey, California (9-12 April, 1991). This report is the proceedings of that workshop, as interpreted and expanded by the authors and reviewed by workshop participants and other members of the bio-optical research community. The protocols are a first prescription to approach unprecedented measurement accuracies implied by the SeaWiFS goals, and research and development are needed to improve the state-of-the-art in specific areas. The protocols should be periodically revised to reflect technical advances during the SeaWiFS Project cycle
Thermographic Detection o Conducting Contaminants in Composite Materials Using Microwave Excitation
This paper describes microwave-source time-resolved infrared radiometry (MW-TRIR) as a method for the detection and characterization of microwave absorption by conductive fibers and other absorbing regions in dielectric materials. Due to recent technical developments in the speed, detector array size, and sensitivity of infrared focalplane arrays, time-resolved infrared radiometry has evolved into an important NDE tool which allows fast area inspection at high spatial resolution. While much prior work has focused on the detection of structural defects or disbonds in a variety of materials [1,2], the increasing importance of composite materials requires new approaches to inspection which allow characterization of local material properties. Defects in such materials may have little thermal contrast compared to the matrix material and may be invisible using conventional infrared radiometry methods. However, where the embedding material is a weak microwave absorber, localized microwave absorbing regions can be detected easily. There are three different classes of absorption processes: (1) dielectric loss (e.g. water), (2) magnetic loss, and (3) Joule heating (e.g. electromagnetic radiation interaction with conducting fibers)
Editorial for the special collection on noninvasive and non-destructive methods and applications, I: Festschrift—A tribute to Andreas Mandelis
- …
