https://ntrs.nasa.gov/search.jsp?R=19730008828 2020-03-23T07:49:22+00:00Z

N 73- 17555

THEORY OF ZONE RADIOMETRY

January 1973

CASE FILE COPY

HREC-8089-1 LMSC-HREC D306101

LOCKHEED MISSILES & SPACE COMPANY INC. HUNTSVILLE RESEARCH & ENGINEERING CENTER HUNTSVILLE RESEARCH PARK 4800 BRADFORD DRIVE, HUNTSVILLE, ALABAMA

> THEORY OF ZONE RADIOMETRY

> > January 1973

Contract NAS8-28089

Prepared for National Aeronautics and Space Administration Marshall Space Flight Center, Alabama 35812

by

Richard C. Farmer Beverly J. Audeh

APPROVED:

John W. Benefield, Supervisor Fluid Mechanics Section

Ø. S. Farrior Resident Director

FOREWORD

This document is one of two documents that constitute the final report for Contract NAS8-28089, "Study of Viscous Mixing Plume Flow Field." This study was performed by the Lockheed-Huntsville Research & Engineering Center, Inc., for the National Aeronautics & Space Administration, George C. Marshall Space Flight Center, Alabama.

The other document is "Mathematical Representations of Turbulent Mixing," LMSC-HREC D306102, January 1973.

The NASA Contracting Officer's Representatives (COR) for this contract are Dr. T. F. Greenwood and Mr. D. C. Seymour, S&E-AERO-AT.

The authors extend appreciation to J.A.L. Thomson, W.F. Herget and in particular, J.E. Reardon for the helpful suggestions and comments.

LMSC-HREC D306101

CONTENTS

Section		Page
	FOREWORD	ii
1	INTRODUCTION AND SUMMARY	1
2	RADIATION ANALYSIS	. 3
	2.1 The Equation of Transfer	7
	2.2 The Evaluation of τ Average	14
3	DATA REDUCTION PROCEDURE	22
	3.1 One-Dimensional Isothermal Flows	24
	3.2 Axisymmetric Nonisothermal Flows	28
	3.3 Rocketdyne Zone Radiometer Data Reduction Program	
4	EXAMPLE PROBLEMS	33
5	CONCLUSIONS AND RECOMMENDATIONS	49
а А. — — — — — — — — — — — — — — — — — — —	REFERENCES	50
Appendix		
	Zone Radiometer Data Reduction Program	A-1

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER

Section 1 INTRODUCTION AND SUMMARY

A spectroscopic instrumentation system was developed by Rocketdyne Division of North American Rockwell which was used to measure temperature and concentration distributions in (hopefully) axisymmetric and twodimensional combusting flows (Ref. 1). This measurement technique has become known as zone radiometry.

The success of the method depends both on how accurately the detected radiation can be converted by analysis into the desired temperatures and concentrations and on how closely the flow meets the dimensional limitations of this measurement scheme. Since the technology of radiative transfer was being very actively researched during the same time that the zone radiometry experiments were being performed, a critique of the Rocketdyne data redcution procedures is in order to determine whether or not application of the present state-of-the-art radiation analyses can yield more accurate flowfield information.

Theoretically, a temperature and a partial pressure distribution for a given species can be determined from a set of measurements made at one particular spectral level. If sets of measurements at more than one spectral level are made, partial pressures of several species and some average temperature can be determined. Practically, such multiple determinations have not yet been possible. At best, one set of measurements has been used to establish temperature and the partial pressure of one species, and another set used to determine the partial pressure of a second species. Therefore, an analysis at one particular wavelength is all that is required of available zone radiometry data. Such an analysis is described in this report.

The final goal of this report is to present a recommended data reduction scheme for the zone radiometry system. The limitations in this scheme will be clearly stated and quantitatively evaluated when possible. To appreciate the utility of zone radiometry methods, one should realize that the technique was developed and used extensively to measure "axisymmetric" rocket motor plumes. All propellant systems cannot be measured with satisfactory accuracy by this method. Plumes with carbon particles may become too "optically thick" for the transmission part of the measurement to be made, and plumes with only water vapor as the optically active species may be too "thin" for accurate measurements. Furthermore, all motors lack axial symmetry to some degree; no good measure of this feature has yet been devised.

Despite the fact that much experimental data are available, no definitive comparison with calculated flows exists. Experiments with carefully designed burners are the primary source of radiation property data, but when a real rocket motor is studied both analysis and experiment become more difficult.

Zone radiometry has also been used on two-dimensional mixing studies. These studies have not been as extensive as those on motors. Again definitive comparisons with calculations have not been made, nor have error analysis for reducing data been previously reported.

This report serves as a prelude to a more complete data comparison study which will be forthcoming. A detailed treatment of the radiation analysis and synopsis of the zone radiometry method is reported herein, so that questions regarding the accuracy of reported data and experiments can be determined.

Section 2 RADIATION ANALYSIS

The zone radiometry system is an instrument used to determine temperature and composition of optically active species in either an axisymmetric or planar gas flow field. The radiative energy transfer analysis which must be used to relate the radiation measurements to the flow properties is described in this section.

The basic radiative exchange process is sketched in Fig. 1. Radiation from the hot zones is seen by the detector at all times. When the chopper is open, radiation from the source which is even hotter than the zones plus radiation from the hot zones is seen. Particular frequency (or wave length) intervals are measured with the detector by selectively filtering away the unwanted radiation. The radiative exchange process is essentially onedimensional, as the angle β is quite small; hence, one line of sight is viewed. The dimensions of the gases on the immediate sides of β are assumed to be such that radiative equilibrium with the adjacent, lateral-gas zones is maintained, so there is no net radiative exchange in the lateral direction.

To quantitatively describe radiative exchange, the concept of intensity must be used. At a point, P, consider the monochromatic intensity,

$$I_{\nu} = \underset{d\sigma, d\Omega, d\nu}{\operatorname{Limit}} \left(\frac{dE_{\nu}}{d\sigma \cos\theta \, d\Omega \, d\nu \, dt} \right)$$
(2.1)

The term E_{ν} represents the radiant energy in $(\nu, \nu + d\nu)$, where ν is the frequency of the radiation. The term t is time; the geometric factors σ , θ , Ω are defined by Fig.2. The fact that the above limit exists is an

Fig. 1 - Zone Radiometer System

- $d\sigma$ = incremental surface
- \overline{N} = surface normal
- Nl = parallel to surface normal
- $d\Omega$ = increment of solid angle
- θ = angle between solid angle direction and surface normal
- β = solid angle of all $d\Omega$ over $d\sigma$

(d σ is located at point R)

Fig. 2 - Definition of Geometric Terms Used to Define Intensity

experimentally observed fact (Milne, Ref. 2, p. 84). Radiation is emitted from each point on d σ ; therefore, an integration in Ω is required to calculate the radiation flux through d σ . In optics, this is not the case as intensity is defined at a point with d σ missing in the limit expression.

 I_{ν} is independent of S unless it is modified by the transmitting medium, whereas E_{ν} is not. There are other intensities which could have been defined; they are I_{ω} and I_{λ} . These are defined on the basis of a unit of wave number, ω , or wave length, λ , in the limiting expression. If the transporting medium has a unit or known index of refraction, conversions between these intensities can be easily made. I_{ν} is somewhat more basic because it is independent of the index of refraction. However, the overriding criteria to use in selecting the intensity to use is the availability of property data. These data are available in select wave number increments; therefore, I_{ω} will be used.

Radiation in the absence of emission is attenuated according to

$$I_{\omega} \{S_{i}\} = I_{\omega} \{S_{i+1}\} \exp \left(-\int_{s_{i}}^{s_{i+1}} K_{\omega} \rho \, dS\right)$$
(2.2)

where here and henceforth brackets indicate functionality and where K_{ω} is mass absorption coefficient and ρ is the density of the absorbing medium. If K_{ω} and ρ are independent of S this relationship is called the Beer-Lambert law. In general, optical thickness = $\int_{1}^{S_2} K_{\omega} \rho dS$. A spectral absorption coef- S_1

ficient may be defined by the equation shown on the following page.

$$\alpha_{\omega} = \frac{I_{\omega}(S_{i+1}) - I_{\omega}(S_{i})}{I_{\omega}(S_{i+1})} = \frac{I_{\omega}(absorbed)}{I_{\omega}(incident)}$$
(2.3)

In general, radiation may be absorbed, reflected or transmitted; or, fractionally,

$$\alpha_{(1)} + \rho_{(1)} + \tau_{(1)} = 1$$
 (2.4)

Thus

or

$$\tau_{\omega} = 1 - \alpha_{\omega} = \lambda - \lambda + \frac{I_{\omega}(S_i)}{I_{\omega}(S_{i+1})}, \text{ if } \rho_{\omega} = 0$$
 (2.5)

$$\tau_{\omega} = \exp\left(\int - K_{\omega} \rho \, \mathrm{d}S\right) \tag{2.6}$$

The two absorption coefficients are related by:

$$\alpha_{\omega} = 1 - \exp\left(\int - K_{\omega}\rho \, dS\right)$$
 (2.7)

Elements along the solid angle will not only absorb radiation but will emit at a rate of

 $\frac{d E_{\omega}}{dt} = J_{\omega} (\rho \, d\sigma \, dS) \, d\omega \, d\Omega \qquad (2.8)$

where J_{ω} is the emission coefficient. J_{ω} will be isotropic.

The geometry is such that the detector is normal to the view angle through the plume; hence, $\cos \theta = 1$.

2.1 THE EQUATION OF TRANSFER

Now a radiation heat balance on a control volume consisting of the solid angle β between S_i and S_{i+1} can be made. Consider three cross sections of β , those at S_i , S_{i+1} , $S_{i+1/2}$; call them A_i , A_{i+1} , $A_{i+1/2}$. Since we wish to calculate the radiation to the detector, let the radiation at S_{i+1} be I_{ω} and that at S_i be $I_{\omega} + d I_{\omega}$, i.e. I_{ω} is positive in the negative S direction. The heat balance becomes:

$$\int_{\Omega} I_{\omega} d\Omega A_{i} dt - \int_{\Omega} (I_{\omega} + dI_{\omega}) d\Omega A_{i+1} dt =$$

$$- \int_{\Omega} K_{\omega} \rho (S_{i+1} - S_{i}) I_{\omega} d\Omega dt A_{i+1/2}$$

$$+ \int_{\Omega} J_{\omega} \rho A_{i+1/2} (S_{i+1} - S_{i}) d\Omega dt \qquad (2.9)$$

The limits on the Ω integration are over the solid angle β ; all variables are constant with respect to this integration. The integration converts intensity to flux (Milne, Ref. 2, p. 85). Since β is small and $S_i \rightarrow S_{i+1}$, Eq. (2.9) becomes,

$$I_{\omega} A_{i} dt \int_{0}^{\beta} d\Omega - (I_{\omega} + dI_{\omega}) A_{i+1} dt \int_{0}^{\beta} d\Omega =$$

- $K_{\omega} \rho dS I_{\omega} dt A_{i+1/2} \int_{0}^{\beta} d\Omega$
+ $J_{\omega} \rho A_{i+1/2} dS dt \int_{0}^{\beta} d\Omega$

(2.10)

LMSC-HREC D306101

(2.11)

$$A_{i+1/2} = A_{i} + \frac{dA}{2} = A_{i+1} - \frac{dA}{2} \qquad (2.11)$$

$$I_{\omega} \left(A_{i+1/2} - \frac{dA}{2}\right) dt \beta - \left(I_{\omega} + dI_{\omega}\right) \left(A_{i+1/2} + \frac{dA}{2}\right) dt \beta$$

$$= -K_{\omega} \rho dS I_{\omega} dt A_{i+1/2} \beta$$

$$+ J_{\omega} \rho A_{i+1/2} dS dt \beta \qquad (2.12)$$

Dividing by $\left(A_{i+1/2}\right)$ dt β dS and neglecting products of differentials.

$$-\frac{dI_{\omega}}{dS} = -K_{\omega}\rho I_{\omega} + \rho J_{\omega}$$
(2.13)

Assume the flow to be in local thermodynamic equilibrium, such that Kirchoff's theory can be used to give

$$\mathbf{J}_{\boldsymbol{\omega}} = \mathbf{K}_{\boldsymbol{\omega}} \mathbf{I}_{\boldsymbol{\omega} \mathbf{b}} \tag{2.14}$$

where $\mathbf{I}_{\boldsymbol{\omega}\boldsymbol{b}}$ is Planck's blackbody intensity

Let

$$I_{\omega b} = \frac{2 C^2 \hbar \omega^3}{\left[\exp \left(\frac{\hbar C \omega}{kt} \right) - 1 \right]}$$
(2.15)

Similar intensities based on other measures of spectral interval may also be defined. For convenience, several of these are tabulated in Table 1. Let

$$dx = \rho \, dS \tag{2.16}$$

Table 1

RADIATION RELATIONSHIPS WITH RESPECT TO FREQUENCY, WAVELENGTH AND WAVE NUMBER

I. INTENSITIES (SIEGEL AND HOWELL, REF. 3, PP. 20 AND 31 - FOR THE INDEX OF REFRACTION EQUAL TO ONE)

$$I_{\nu b} = \frac{2 \pi v^3}{C^2 \left(\left[\exp \left(\frac{\pi v}{k T} \right) \right] - 1 \right)} = \frac{N_{\nu b}}{\pi}$$

$$\mathbf{I}_{\lambda \mathbf{b}} = \frac{2 \mathbf{\lambda} \mathbf{C}^2}{\lambda^5 \left(\left[\exp \left(\frac{\mathbf{X} \mathbf{C}}{\mathbf{X} \mathbf{\lambda} \mathbf{T}} \right) \right] - 1 \right)} = \frac{\mathbf{N}_{\lambda \mathbf{b}}}{\pi}$$

$$I_{\omega b} = \frac{2 h C^2 \omega^3}{\left(\left[\exp\left(\frac{\hbar C \omega}{k T}\right)\right] - 1\right)} = \frac{N_{\omega b}}{\pi}$$

where ν is frequency in (time⁻¹), λ is wavelength in (length), and ω is wave number in (length⁻¹). C is the speed of light in a vacuum, Λ is Planck's constant, and K is Boltzmann's constant.

(Continued)

9

Table 1 - (Continued)

II. ILLUSTRATION OF ν , λ AND ω RELATIONSHIPS (SIEGEL AND HOWELL, REF. 3, p. 20)

$$\begin{array}{rl} & \mbox{For Carbon Dioxide (CO_2)} & \mbox{For Water (H_2O)} \\ \lambda \nu = C (\text{Speed of light in a vacuum}) & \lambda \nu = C (\text{Speed of light in a vacuum}) \\ & \mbox{for } \lambda_0 = 4.45 \mu \mbox{ for CO}_2 & \mbox{for } \lambda_0 = 2.49 \mu \mbox{ for H}_2O \\ \nu_0 = \frac{C}{\lambda_0} = 6.736 \times 10^{13} \mbox{ sec}^{-1} & \nu_0 = \frac{C}{\lambda_0} = 1.2039 \times 10^{14} \mbox{ sec}^{-1} \\ \lambda_0 \omega_0 = 1 & \lambda_0 \omega_0 = 1 \\ \omega_0 = \frac{1}{\lambda_0} = 2247 \mbox{ cm}^{-1} & \omega_0 = \frac{1}{\lambda_0} = 4016 \mbox{ cm}^{-1} \\ & \mbox{for } \frac{d\omega = +25 \mbox{ cm}^{-1}}{\eta_0^2} \mbox{ dw} = -1.98 \times 10^{-7} \mbox{ dw} & \mbox{ d\lambda} = -\frac{1}{\omega_0^2} \mbox{ dw} = -6.20 \times 10^{-8} \mbox{ dw} \\ & \mbox{ d\lambda} = -\frac{1}{\omega_0^2} \mbox{ dw} = -1.514 \times 10^{-16} \mbox{ d\lambda} & \mbox{ dv} = -\frac{\nu_0^2}{C} \mbox{ d\lambda} = -4.834 \times 10^{17} \mbox{ d\lambda} \\ & \mbox{ dv} = +0.705 \times 10^{+11} \mbox{ sec}^{-1} & \mbox{ dv} = +0.748 \times 10^{+12} \mbox{ sec}^{-1} \\ & \mbox{ dv} = +0.748 \times 10^{+12} \mbox{ sec}^{-1} \\ & \mbox{ dv} = +0.748 \times 10^{+12} \mbox{ sec}^{-1} \\ & \mbox{ dv} = +0.748 \times 10^{+12} \mbox{ sec}^{-1} \\ & \mbox{ dv} = +0.748 \times 10^{+12} \mbox{ sec}^{-1} \\ & \mbox{ dv} = +0.748 \times 10^{+12} \mbox{ sec}^{-1} \\ & \mbox{ dv} = -\frac{1}{2} \mbox{ dv} = -\frac{1}$$

Then the energy balance becomes

$$-\left(\frac{d I_{\omega}}{K_{\omega} dx}\right) + I_{\omega} = I_{\omega b}$$
(2.17)

Equation (2.17) is called the <u>equation of transfer</u> and is of fundamental importance in radiative transfer. The derivation given is consistent with Milne (Ref. 2). Other discussions of this equation are given by Viskanta (Ref. 4) and Kourganoff (Ref. 5).

The detector in the zone radiometer system does not indicate I_{ω} , but rather the product (βI_{ω}). Since β is a constant, the signal is proportional to I_{ω} . β is a definite number, the view angle of the radiometer. The important point is that Eq. (2.17) is valid for any constant value of β . More will be said of these choices in subsequent pages.

To solve the equation of transfer, an integrating factor is introduced so that the two terms on the LHS of Eq. (2.17) may be combined.

 \cdot X

$$\frac{d}{K_{\omega} dx} \left[-I_{\omega} \exp\left(-\int_{0}^{x} K_{\omega} dx'\right) \right] = I_{\omega b} \exp\left(-\int_{0}^{x} K_{\omega} dx'\right)$$
(2.18)

Primes denote dummy variables.

$$I_{\omega} \exp\left(\int_{x_{1}}^{x_{2}} - K_{\omega} dx'\right) = \int_{0}^{x} - I_{\omega b} \exp\left(\int_{0}^{x'} - K_{\omega} dx'\right) K_{\omega} dx' \quad (2.19)$$

$$I_{\omega} \{0\} = I_{\omega} \{x\} \exp\left(\int_{0}^{x} - K_{\omega} dx'\right) + \int_{0}^{x} I_{\omega b} \exp\left(\int_{0}^{x'} - K_{\omega} dx''\right) K_{\omega} dx' \qquad (2.20)$$

This equation affirms that the intensity which arrives at 0 comes from x and is attenuated between x and 0 or from emission plus self-absorption along x to 0, thus the two terms on the RHS of Eq. (2.20).

Note the first term on the RHS of Eq. (2.20) is often omitted with the understanding that x becomes so large that the path becomes "optically thick." This point is discussed in Goody (Ref. 6) p. 456. When this omission is used, the term is recovered by using a boundary condition on the RHS, when the integration is performed, that equals the omitted term. Such a ploy will be used here.

 I_{ω} is a monochromatic radiation intensity. Experimentally, a specific wave number cannot be isolated for study, so a wave number interval is used. An appropriately averaged intensity, called <u>radiance</u>, is obtained by

$$\overline{\mathbf{I}}_{\omega} = \frac{1}{\Delta\omega} \int_{\omega 1}^{\omega 2} \mathbf{I}_{\omega} \{0\} d\omega = + \frac{1}{\Delta\omega} \int_{\omega 1}^{\omega 2} \int_{0}^{\mathbf{x}} \mathbf{I}_{\omega b} \left[\exp\left(-\int_{0}^{\mathbf{x}'} \mathbf{K}_{\omega} d\mathbf{x}''\right) \right] \mathbf{K}_{\omega} d\mathbf{x}' d\omega \quad (2.21)$$

Recall

$$\tau_{\omega} = \exp\left(-\int_{0}^{x} K_{\omega} dx'\right) \qquad (2.22)$$

Therefore

$$\frac{\mathrm{d}\tau_{\omega}}{\mathrm{d}x} = \left[\exp\left(-\int_{0}^{x} K_{\omega} \,\mathrm{d}x'\right)\right] (-K_{\omega}) \qquad (2.23)$$

$$\overline{I}_{\omega} = \frac{1}{\Delta\omega} \int_{\omega 1}^{\omega} \int_{0}^{\infty} \int_{0}^{x} - I_{\omega b} \left(\frac{d\tau_{\omega}}{dx}\right) dx' d\omega \qquad (2.24)$$

To exchange the order of integration, define

$$\overline{\tau} = \frac{1}{\Delta \omega} \int_{\omega 1}^{\omega 2} \tau_{\omega} d\omega \qquad (2.25)$$

and

$$\overline{I}_{\omega b} = \frac{1}{\Delta \omega} \int_{\omega 1}^{\omega 2} I_{\omega b} d\omega$$
 (2.26)

Then

$$\overline{I}_{\omega} = -\int_{0}^{\tau} \overline{I}_{\omega b} d\overline{\tau}$$
(2.27)

To be consistent $\overline{\tau}$ should have a subscript ω , but this is not convenient.

Golden (Ref. 7) strongly contested the possibility of this inversion of order. Simmons (Ref. 8) presented several other ways of accomplishing the averaging and an alternate derivation.

Equation (2.27) may be approximated with finite-differences as:

$$\overline{\mathbf{I}}_{\omega} = \sum_{i=1}^{N} \overline{\mathbf{I}}_{\omega b} \left\{ \overline{\tau}_{i} \right\} \left[\overline{\tau}_{i-1} - \overline{\tau}_{i} \right]$$
(2.28)

or

7

$$\overline{\mathbf{I}}_{\omega} = \overline{\mathbf{I}}_{\omega b 1} (1 - \overline{\tau}_{1}) + \overline{\mathbf{I}}_{\omega b 2} (\overline{\tau}_{1} - \overline{\tau}_{2}) + \dots \overline{\mathbf{I}}_{\omega b N} (\overline{\tau}_{N-1} - \overline{\tau}_{N})$$
(2.29)

since

13

 $\overline{\alpha}_{0} = 0, \quad \overline{\tau}_{0} = 1.$

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER

It is crucial to the understanding of non-grey, radiation analysis to appreciate that the quantities in Eqs. (2.27), (2.28) and (2.29) are spectrally averaged; however, from this point on the overbars will not be shown because only averaged quantities are of interest.

2.2 THE EVALUATION OF τ AVERAGE

Equation (2.28) represents the intensity which is proportional to that detected in the zone radiometery experiments. The summation can be directly evaluated, but even though the blackbody intensities are well behaved the transmittances are not. This is the reason that Krakow et al. (Ref. 9) developed the Curtis-Godson approximation to properly average the $\tau^{1}s$. The development of this approximation is given below.

Two problems must be simultaneously solved. First, an average over a certain wave number interval must be established, because radiative transitions occur in a discontinuous manner even with respect to the narrow acceptance interval of the detecting device. For isothermal, homogenous gases, this wave number averaging has been accomplished with "band models." The Random Band model with constant line widths was chosen for this purpose. It is stated:

$$-\ln \tau = 2\pi \left(\frac{\gamma}{d}\right) f\{X\}$$
 (2.30)

where { } denotes functionality and

$$X = \frac{\left(\frac{s}{d}\right)s}{2\pi\left(\frac{\gamma}{d}\right)}$$
(2.31)

 $\left(\frac{s}{d}\right)$ and $\left(\frac{\gamma}{d}\right)$ are band model parameters and f is the probability distribution for line strengths. S is still distance. Specific values of the band model parameters will be subsequently quoted.

The second problem which must be overcome is to devise a way that the band model representation of the transmittance may be used for a nonhomogeneous, nonisothermal path. The Curtis-Godson approximation may be used to calculate an average for such paths. Let

$$\int \left(\frac{s}{d}\right) s = \sum_{h} \left(\frac{s}{d}\right)_{h} s_{h}$$
 (2.32)

and

$$\left(\frac{s}{d}\right) s\left(\frac{\gamma}{d}\right) = \sum_{h} \left(\frac{s}{d}\right)_{h} s_{h} \left(\frac{\gamma}{d}\right)_{h}$$
 (2.33)

where h represents a zonal increment of constant temperature and composition. By combining Eqs. (2.31) and (2.33)

$$X = \left[\sum_{h} (s/d)_{h} S_{h}\right]^{2} / 2\pi \sum_{h} (s/d)_{h} S_{h} (\gamma/d)_{h}$$
(2.34)

Within each zone

$$X_{h}^{*} = (s/d)_{h} S_{h}^{2\pi} (\gamma/d)_{h}$$
 (2.35)

-
$$\ln \tau_{\rm h}^* = 2\pi (\gamma/d)_{\rm h} f \left\{ {\rm X}_{\rm h}^* \right\}$$
 (2.36)

where stars emphasize zonal properties.

Therefore, Eq. (2.30) becomes

$$-\ln \tau = \frac{\sum_{h} x_{h}^{*} \left(-\ln \tau_{h}^{*} / f \left\{x_{h}^{*}\right\}\right)^{2}}{\sum_{h} x_{h}^{*} \left(-\ln \tau_{h}^{*} / f \left\{x_{h}^{*}\right\}\right)} \quad f \quad \left\{\frac{\left[\sum_{h} x_{h}^{*} \left(-\ln \tau_{h}^{*} / f \left\{x_{h}^{*}\right\}\right)\right]^{2}}{\sum_{h} x_{h}^{*} \left(-\ln \tau_{h}^{*} / f \left\{x_{h}^{*}\right\}\right)^{2}}\right\} \quad (2.37)$$

Equation (2.37) was derived and substantiated by experiments in Krakow et al., (Ref. 9). Two limits for this expression exist.

If $X \rightarrow 0$, i.e., is less than 0.1,

$$\ln \tau \cong \sum_{h} \left(-\ln \tau_{h}^{*}\right). \tag{2.38}$$

If $X \longrightarrow \infty$, i.e., is greater than 3,

$$-\ln \tau \cong \left[\sum_{h} \left(-\ln \tau_{h}^{*}\right)^{2}\right]^{1/2}.$$
 (2.39)

Now the equations developed in the two previous paragraphs may be used, if appropriate band model data are available. The General Dynamics experiments (Refs. 10, 11 and 12) provide such data. An exponential probability distribution was used and values of (s/d) and (γ/d) were determined.

$$f \{X\} = X \left[1 + \pi X/2\right]^{-1/2}$$
 (2.40)

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER

$$-\ln \tau = \frac{(s/d) S}{\left[1 + \frac{(s/d)}{4} \frac{S}{(\gamma/d)}\right]}$$
(2.41)

Furthermore, let (s/d) = k and $(\gamma/d) = a$

$$-\ln \tau = \frac{kS}{\left[1 + \frac{kS}{4a}\right]^{1/2}} = \frac{\sum_{h}^{h} k_{h} S_{h}}{\left[1 + \frac{\left(\sum_{h}^{h} k_{h} S_{h}\right)^{2}}{4\sum_{h}^{h} k_{h} S_{h} A_{h}}\right]^{1/2}}$$
(2.42)

This is the same relationship that is used by Reardon and Huffaker (Ref. 13) to calculate radiation from a line of sight. For a single isothermal, constant-composition zone:

$$\ln \tau^* = \frac{k S^*}{\left[1 + \frac{kS^*}{4a}\right]^{1/2}}$$
(2.43)

$$k = \left(\frac{k_o}{P_o}\right) \left(\frac{273}{T^o K}\right) P_i$$
 (2.44)

 P_0 = reference state of l atmosphere

 k_0 is in (cm^{-1}) and is tabulated for H_2O , CO and CO_2 in the General Dynamics reports (Refs. 10, 11 and 12). The term P_i represents the partial pressure of the radiating species in atmospheres.

Unless the pressure is much lower than one atmosphere, Doppler broadening is negligible with respect to collision broadening. Assuming such a case, "a" can be calculated from the tabulated data in Ref. 12, pp. 22-23 or from Reardon and Huffaker (Ref. 13) pp. 141-144.

For continuous radiators, grey gases (throughout the spectral range of interest), "a" $\longrightarrow \infty$ and

$$-\ln \tau^* = k S^*$$
 (2.45)

This correctly implies that the optically thin limit Eq. (2.38), can be used to calculate integrated values of τ . Thus non-grey gases, which are optically thin because of geometry and density distributions in addition to grey gases obey Eq. (2.38).

In general, "a" is the fine structure parameter which is the ratio of the line width, γ , to line spacing, d. Width of a radiating line is broadened by collisions between the atoms and molecules of the gas. The general form of the line width with collisional broadening terms included according to Reardon and Huffaker (Ref. 13) and Reardon et al. (Ref. 14) is

$$\gamma_{c_{i}} = \sum_{j} (\gamma_{i,j})_{at} P_{j} (\frac{273}{T})^{n_{i,j}} + (\gamma_{i,i})_{at} P_{i} (\frac{273}{T})^{n_{i,i}}$$
(2.46)

The term i is the species being considered, P_j are the species partial pressures in atmospheres. The exponent values of $n_{i,j} = 1/2$ and $n_{i,i} = 1$ were recommended by General Dynamics/Convair (Ref. 12). The summation, j, runs through the number of species in the gas. A representative set of the constants needed to calculate the line width with collisional broadening for, in this example, the water molecule is presented in Table 2.

LMSC-HREC D306101

The evaluation of the 1/d value to complete the calculation of a, is defined by Reardon and Huffaker (Ref. 13) as

$$\frac{1}{d} = \frac{a^{\circ}}{\gamma^{\circ}}$$
(2.47)

where

$$a^{\circ} = 10^{(b_{\nu} + c_{\nu} T^{2})}$$
(2.48)

The b_{ν} and c_{ν} are constant over spectral regions and for water are listed as a function of temperature in Ref. 13.

While

$$\gamma^{\circ} = \left[0.44 \left(\frac{273}{T} \right) + 0.09 \left(\frac{273}{T} \right)^{1/2} \right] C^{\circ} + 0.044 \left(\frac{273}{T} \right)^{1/2} (1 - C^{\circ})$$
(2.49)

where

$$C^{\circ} = -0.1002 + 0.2802 \times 10^{-3} T - 0.1089 \times 10^{-6} T^{2} + 0.0291 \times 10^{-9} T^{3}$$
 (2.50)

Values of 1/d shall be tabulated as a function of λ and T in Ref. 14. These tabulated values of 1/d provide an alternate method of obtaining the fine structure parameter, a.

If more than one species is optically active in a given spectral interval, Eq. (2.42) is modified and used thusly:

20

(2.51)

$$-\ln (\tau_{\rm MS}) = \sum_{i} \left(\frac{\sum_{h}^{k_{h}} s_{h}}{\left[\frac{\sum_{h}^{k_{h}} s_{h}^{2}}{\frac{1}{4\sum_{h}^{k_{h}} s_{h}^{2}} \frac{1}{4\sum_{h}^{k_{h}} s_{h}^{a} s_{h}^{2}} \right]^{1/2}} \right)_{i}$$

where the i summation is on all active species. Remember $\left[-\ln(\tau_{\rm MS})\right]$ is called optical depth and the MS indicates multi-species. The type of summation indicated in Eq. (2.51) is not obvious, but is what is used.

The origin of the relationships necessary to determine temperature and concentrantions from zone radiometry experiments has now been established. These relationships will now be applied to the specific experiments which have been performed by Rocketdyne.

Section 3 DATA REDUCTION PROCEDURE

The solution to the equation of transfer – Eq. (2.29), the Curtis-Godson approximation as stated in Eq. (2.37), and specified band model parameters may now be used to reduce zone radiometry data. Brewer (Ref. 16) describes a computer program to perform such a calculation; unfortunately, he uses a distribution function, f, which is not compatible with the reported General Dynamics/Convair k's and a's. This may not introduce a significant error, but it prevents one from using the reported program directly.

Rocketdyne chose not to reduce their data in this manner. They approximated Eq. (2.37) with its grey gas limit Eq. (2.38) and then reduced the radiometry data, arguing that since $a - \infty$, X - 0 for CO₂ and that experiments with water first were optically thin and second that they used water vapor radiation data which were taken with the same resolution as their spectrometer (Ref. 15). The first two of these arguments may well be valid, and their validity can be determined with analysis. The third is highly improbable because not only isothermal property data must be available (which may be) but data for the same temperature and compositions as those in the measured plumes must be also. However, if the first two arguments are valid, the third is unnecessary. Herget (Ref. 15) contends because of these arguments that his studies are not limited to optically thin cases. Let us reserve judgment on this contention until some subsequent calculations and experimental observations are made.

Specifically, Eq. (2.38) may be written as

$$\tau_{k} = (\tau_{1}^{*}) (\tau_{2}^{*}) \dots (\tau_{h}^{*})$$
(3.1)

where the subscript k represents the kth row of zones and h represents the number of zones. Eq. (2.29) may be multiplied by π , so that N_{wbi}'s appear on

22

the RHS where N_{ω_b} is emissive power. In fact, a summation of any of the terms listed in Table 1 could have been used. Actually neither intensity nor emissive power is measured but the radiation from the solid angle β which intersects the detector surface. This angle is not measured, but the radiation from an internal blackbody source along β is. Since any of the terms in Table 1 may be calculated from the internal blackbody temperature, the LHS of Eq. (2.29) is simply calibrated. Eq. (2.29) is used as stated below.

$$I_{\lambda} = I_{\lambda b 1} (1 - \tau_{1}^{*}) + I_{\lambda b 2} (\tau_{1}^{*} - \tau_{1}^{*} - \tau_{2}^{*}) + \dots$$

$$= I_{\lambda b 1} (\epsilon_{1}^{*}) + I_{\lambda b 2} (\tau_{1}^{*} - \tau_{2}^{*}) + \dots$$

$$= I_{\lambda b 1} (\epsilon_{1}^{*}) + I_{\lambda b 2} (\tau_{1}^{*} - \epsilon_{2}^{*}) + I_{\lambda b 3} \underbrace{(\tau_{1}^{*} - \tau_{2}^{*} - \tau_{1}^{*} - \tau_{2}^{*} - \tau_{3}^{*})}_{\tau_{2}^{*} - \epsilon_{3}^{*}} (3.2)$$

$$= \sum_{i} I_{\lambda b i} \epsilon_{i}^{*} - \tau_{i-1}$$

 ϵ^* is defined as $1 - \tau^*$, and τ^* is defined by Eq. (2.43). Since I_{λ} is an averaged intensity over some small spectral interval and is measurable, it will be called radiance.

Before considering the Rocketdyne experiments in more detail, consider the following definition of a new τ^* , namely,

$$-\ln (\tau_{h}^{**}) = \frac{k_{h} S_{h}}{\left[1 + \frac{\left(\sum_{n=1}^{h} k_{n} S_{n}\right)^{2}}{4 \sum_{n=1}^{h} k_{n} S_{n} a_{n}}\right]^{1/2}}$$

(3.3)

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER

This τ_{h}^{**} has the property that if it is used in Eqs. (3.1) and (3.2), Eq. (2.42) will result. This means that the assumption on optical depth which was used by Rocketdyne will be removed. Other means could be used to eliminate this assumption, but, as will be confirmed in subsequent discussion, this means would require the least amount of revision to the existing Rocketdyne data reduction program. An additional benefit is that a convenient check of the deviation from optical thinness can also be made with this parameter.

In summary, the following equation must be solved, either exactly or approximately, to reduce zone radiometry data for one component and wavelength. Functionality is emphasized for clarity.

$$I_{\lambda} \{\lambda, \Delta \omega\} = \sum_{i} I_{\lambda b} \{\lambda, T_{i}\} \left[\tau_{i-1} \{\lambda, \Delta \omega, T_{i-1}\} - \tau_{i} \{\lambda, \Delta \omega, T_{i}\} \right]$$
(3.4)

Now the specific geometry of the zone radiometry experiments can be considered.

3.1 ONE-DIMENSIONAL ISOTHERMAL FLOWS

The one-dimensional test situation (Fig. 3) such as the Rocketdyne Composite Engine Study (Ref. 17) will be used to demonstrate the procedure used to convert measured values of emissive power into temperature and composition values. Recalling Fig. 1, the basic geometry of this onedimensional flow contains all of the features shown except that there is a single zone. Two radiance readings are made using the zone radiometer. One radiance reading is made with the chopper closed giving the radiance of only the zone while the other reading made with the chopper open provides a radiance value containing the zone radiation and the grey body source radiation. Using the finite difference form of Eq. (3.2) with these measured

24

25

(3.7)

radiances, $I_{\lambda A}$ (with the chopper closed) and $I_{\lambda B}$ (with the chopper open), the transmittance and blackbody radiance of the zone can be calculated from:

$$I_{\lambda A} = I_{\lambda b} (1 - \tau) \tag{3.5}$$

$$I_{\lambda B} = I_{\lambda b} (1 - \tau) + I_{\lambda b}_{source} \tau$$
(3.6)

Note that the temperature of the radiating gas is assumed not be change when it is impinged upon by the radiating source.

The zone radiometry measurement data presented by Rocketdyne are in terms of radiance with units of $W \text{ cm}^{-2} \text{ sr}^{-1} \mu^{-1}$. The form of Planck's law applicable for relating the blackbody radiance at a particular wavelength to the temperature was used to evaluate the temperature of the zone (see Table 1).

$$I_{\lambda b} = \frac{2C^2}{\lambda^5 \left(\left[\exp\left(\frac{\hbar C}{\underline{k} \lambda T}\right) \right] - 1 \right)}$$

The evaluation of the partial pressure of the radiating species makes use of the representation of transmittance. When the species can be treated as a continuum radiator the transmittance can be calculated using Eq. (2.45)

$$-\ln \tau^* = kS$$

where the S is distance and the k value contains the partial pressure of the species as a correction factor to the absorption coefficient at standard conditions, k_0 . Repeating Eq. (2.44)

 $k = \left(\frac{k_o}{P_o}\right) \left(\frac{273}{T}\right) P_i$

The tabulated k_0 value corresponding to the calculated zone temperature makes the solution for the partial pressure straightforward.

Whenever band models must be used to represent the radiation process, the transmittance is given by Eq. (2.42). The solution for the partial pressure is no longer a simple process. The line width parameter, a, is dependent on temperature, the local pressure and partial pressure of all the constituent species as described previously. An iterative method is used in which an estimate of the partial pressure of the radiating spacies is made using the simpler continuum radiation transmittance (Eq. (2.45)). With this estimated pressure and the calculated temperature, a corresponding "a" value is evaluated using Eqs. (2.46-2.50). The first iteration on the partial pressure can then be made using Eq. (2.43). The iteration procedure is continued until the desired degree of agreement is obtained between succeeding pressure values.

Summarizing the procedure for evaluating the temperature and partial pressure from zone radiometry measurements of a one-dimensional flow:

- 1. Obtain the zone radiance and transmittance using Eqs. (3.5) and (3.6).
- 2. Solve for the zone temperature using Eq. (3.7).
- 3. Use Eq. (2.45) for continuum radiation to calculate the partial pressure to complete the solution, or
- 4. Use an iterative procedure to calculate the partial pressures for non-continuum radiation requiring a band model representation of transmittances as follows:
 - a. Estimate a partial pressure value using the continuum radiation representation for the transmittance, Eq. (2.45).

- b. Evaluate the fine structure parameter, a, with Eqs.(2.46) through (2.50) using the temperature and the estimated pressure value.
- c. Calculate the partial pressure using Eq. (2.43).
- d. Compare the newly calculated partial pressure with that used in Step 4b.
 - "Poor" agreement: Repeat from Step 4b using new partial pressure.
 - "Good" agreement: Consider solution complete.

3.2 AXISYMMETRIC NONISOTHERMAL FLOWS

Application of zone radiometry measurement techniques to axisymmetric flows uses the same principles as for the one-dimensional situation but the reduction of the measured intensities to temperature and partial pressure becomes more complex.

A schematic of the axisymmetric zone layout is given in Fig. 4.

The zones consist of concentric circular regions in which the physical properties are assumed uniform. The line of sight (LOS) is defined such that the n^{th} LOS passes through the n^{th} zone and all zones outside of it. The zones are not necessarily of the same size. (In the Rocketdyne zone radiometry data reduction program (see Appendix and Ref. 18) the zones are nevertheless assumed to all be of the same size.) Whether or not the same size zones are used the path lengths within the zones are variable and dependent upon the location of the zone within the axisymmetric array. The path length is calculated using geometric relationships. For example the path length, l, in the fourth zone on the third line of sight is (see Fig. 5) calculated as

$$\ell = \sqrt{R_3^2 - R_1^2} - \sqrt{R_2^2 - R_1^2}$$
(3.8)

^{*}Zone Number

From Fig. 4 it can be seen that the signal received by the detectors along a respective LOS has in general passed through an inhomogeneous region. The radiances measured for the LOS can be used to calculate the temperatures and partial pressure within the zones using the following procedure.

Again the two radiance readings (one with the chopper and one without it) are made along each line of sight. The zones are maintained at sufficiently small sizes that the line of sight through the concentric zones can be approximated by one-dimensional slabs as in Fig. 6.

Fig. 6 - One-Dimensional Approximation of the Lines of Sight for Axisymmetric Zone Radiometry

The radiance values measured for these lines of sight can be mathematically represented as they were in Eqs. (3.5) and (3.6) for the single onedimensional case.

$$I_{\lambda A j} = \sum_{i=1}^{n} I_{\lambda b i, j} \epsilon_{i}^{*}, j \tau_{i-1, j}$$
(3.9)

$$I_{\lambda\beta j} = \sum_{i=1}^{n} I_{\lambda bi, j} \epsilon_{i, j}^{*} \tau_{i-1, j}^{+} I_{\lambda b} \text{ Source } \tau_{j} \qquad (3.10)$$

where j is the line of sight under study and the i is summed over all the zones to n. Subtracting Eq. (3.9) from Eq. (3.10) provides n relationships for τ_j which is the mean transmittance of the entire $_j$ th line of sight. The other n equations needed to solve for the 2n unknowns, T_i and P_i come from Eq. (3.9). The representation of the transmittance now becomes the prime question. Rocketdyne uses the grey gas limit for the transmittance, Eq. (3.1). The n values of τ_i can then be expanded as

$$\tau_{j} = \prod_{i=1}^{n} \tau_{i,j}^{*} = (\tau_{1,j}^{*}) (\tau_{2,j}^{*}) \dots (\tau_{n,j}^{*})$$
(3.11)

The 2n equations consisting of Eqs. (3.9) and (3.11) are solved using matrix algebra. Since Rocketdyne has automated the solution procedure in a data reduction program, an iterative process is used to evaluate the unknowns.

Summarizing the procedure for evaluating the temperatures and partial pressures in the n zones of an axisymmetric flow using the zone radiometry measurements is:

- 1. Construct equations for the measured line of sight radiance using Eq. (3.9).
- 2. Construct equations for the mean transmittance through an entire line of sight using Eq. (3.11).
- 3. Place the transmittance represented by Eq. (3.1) in matrix form. (Using the measured mean line-of-sight transmittance values, τ_j , the matrix can be solved for the zone transmittances τ_{i}^* .)

- 4. Replace the transmittances in the equations constructed in Step 1 with the calculated zone transmittances. (The matrix representing the mean measured radiance is then ready for solution for the zonal blackbody radiance functions.)
- 5. Solve for the temperatures in the zones using Eq. (3.7). (For continuum radiators this completes the solution procedure since the zone partial pressures can be evaluated using the calculated k.'s, tables of k versus temperature and Eq. (2.44).)¹
- 6. Use an iteration procedure (for noncontinuum radiation, requiring a band model representation of the transmittance) to solve for the temperatures and partial pressures in the zones as follows:
 - a. Use Eqs. (2.46) and (2.50) to evaluate the fine structure parameter, a, using the zone temperatures and the zone partial pressures from Step 5.
 - b. Reevaluate the zone transmittance values using Eq. (2.43) The modification to the Rocketdyne program to define the transmittance of the zone with Eq. (3.3) would eliminate the grey gas assumption inherent in Eq. (2.43) and make the solution valid for all optical thicknesses.
 - c. Return to Step 4 and repeat Steps 4 and 5.
 - d. Compare the newly calculated partial pressures and temperatures of the zones with those obtained previously in Step 5.
 - "Poor" agreement: Repeat from Step 6 using new partial pressures and temperatures for the zones.
 - "Good" agreement: Consider solution complete.

3.3 ROCKETDYNE ZONE RADIOMETER DATA REDUCTION PROGRAM

The Rocketdyne automated data reduction program is listed in the Appendix. An input guide and flow chart of the program are also presented. To aid potential users of the data reduction program, a sample case is given along with sample input and output.
Section 4 EXAMPLE PROBLEMS

To illustrate the calculation techniques discussed in this report, several example problems will be solved. The first is one typical of an axisymmetric alcohol-burning Atlas vernier engine; the second represents a planar, hydrogenoxygen diffusion flame, i.e., the composite engine experiment.

• Problem 1 – LOX-Alcohol Engine

Due to the behavior of gaseous radiation properties, it is desirable to choose example problems in which the temperature and composition are specified. Consider first the following thermal path:

Zones 1, 2, 4 and 5 are 2 cm long; zone 3 is 4 cm long.

Partial pressure, CO₂: 0.27 atm

H₂O: 0.58 atm

Wave lengths of measurement: $4.45 (\mu)$ or 2247 (l/cm) 2.49 (μ) or 4016 (l/cm)

Solution Procedure

1. Evaluate
$$k = k_{o} \left(\frac{273^{o}K}{T^{o}K}\right) \left(\frac{P_{i} \text{ atm}}{1 \text{ atm}}\right)$$

k _o (1/cm)	т (^о к)			ω (1/cm)	Ref.
Species:	1500	2000	2500		
H ₂ O	1.22×10^{-2}	2.33×10^{-2}	3.05×10^{-2}	2247	(12), p. 70
	1.47×10^{-1}	1.43×10^{-1}	1.50×10^{-1}	4016	(12), p. 73
co ₂	10.99	13.30	13.55	2247	(10), p. 104
	(Not measu	ured but assu	med zero)	4016	(12), p. 33

т (^о к)	T/273 (⁰ K)	$\left[T/2.73(^{0}\mathrm{K})\right]^{1/2}$	T ²	T ³
1500	5.50	2.35	2.25×10^{6}	3.38×10^9
2000	7.34	2.73	4.0×10^6	8.0×10^9
2500	9.15	3.03	6.25×10^{6}	15.63×10^9

k (1/cm)	т (^о к)			ω (1/cm)
Species:	1500	2000	2500	
н ₂ о	1.29×10^{-3} 1.55×10^{-2}	1.84×10^{-3} 1.12 x 10^{-2}	1.94×10^{-3} 0.95 x 10^{-2}	2247 4016
co ₂	0.540	0.485	0.400	2247

2. Evaluate fine structure parameters.

a. line density, (1/d)

(i) CO_2 , (1/d) = (1/DLR) (cm) at $\omega = 2247$ (1/cm)

(1/DLR)	т (⁰ к)
181.1 356	1500 2000
510	2500

Ref. 11, p. 59

34

(ii)
$$H_2O$$
, $(1/d) = a^*/\gamma^*$ Ref. 13, p. 194

Evaluation of a^* is a rather nebulous operation, but Rocketdyne's programmed values will be presented. Reference 14 is supposed to have tabulated values of (1/d) when it is published.

$$a^* = 10^{(b_i + C_i T^2)}$$

b _i	° _i	i	Ref. 12
-1.366	0.165×10^{-6}	2247 (1/cm)	p. 1 34
-1.62	0.180×10^{-6}	4016 (l/cm)	

T(^o K)	c _i t ²	$b_i + C_i T^2$	í i	1/a*	* a
1 500	0.370	-0.996	2247 (1/cm)	9.9	0.101
2000	0.660	-0.706		5.09	0.196
2 500	1.030	-0.336		2.166	0.461
1500	0.405	-1.215	4016 (1/cm)	16.4	0.061
2000	0.720	-0.900		7.92	0.126
2500	1.125	-0.495		3.13	0.319

To complete the (1/d) calculation for H₂O, define $\gamma^* = \left[0.44 (T_o/T) + 0.09 (T_o/T)^{1/2} \right] C^* + 0.044 (T_o/T)^{1/2} (1 - C^*)$ Ref. 13, p. 194

where

$$C^* = -0.1002 + 0.2802 \times 10^{-3} \text{ T} - 0.1089 \times 10^{-6} \text{ T}^2$$

+ 0.0291 x 10⁻⁹ T³.

Evaluate C^* and γ^* for the temperatures in the zones.

For T =
$$1500^{\circ}$$
K

$$C^{*} = -0.1002 + 0.423 + 0.098 + 0.521 = +0.176$$
T = 2000° K

$$C^{*} = -0.100 + 0.560 + 0.233 + 0.257$$
T = 2500° K

$$C^{*} = -0.100 + 0.701 + 0.793 = +0.257$$
T = 2500° K

$$C^{*} = -0.100 + 0.701 + 0.456 + 1.157 = +0.377$$
 $\gamma^{*} = \left[0.44 (T_{o}/T) + 0.09 (T_{o}/T)^{1/2}\right] C^{*} + 0.044 (T_{o}/T)^{1/2} (1 - C^{*})$
Use the C^{*} values to calculate the γ^{*} values.
 $\gamma^{*}_{1500} = \left[0.080 + 0.0383\right] (0.176) + (0.0187) (0.824) + (0.1183) (0.176) + 0.0154 + 0.0363$
 $\gamma^{*}_{2000} = \left[0.0593 + 0.033\right] (0.257) + (0.0161) (0.743) + 0.0237 + 0.0120 = 0.0357$
 $\gamma^{*}_{2500} = \left[0.0481 + 0.0297 [0.377] + (0.0145) (0.623) + 0.0292 + 0.0091 = 0.0393$

The (1/d) values for H_2O at the temperatures and in the wave lengths of interest are:

(1/d) (cm)	т (⁰ К)	i(1/cm)
2.78 5.49 11.78 1.68 3.52 8.15	1500 2000 2500 1500 2000 2500	2247 4016

b. Obtain the collision half widths, γ_c 's, to complete the calculation of the fine structure parameters, a's.

$$\gamma_{c_{i}} = \sum_{j} \gamma_{i,j} P_{j} \left(\frac{273}{T}\right)^{1/2} + \gamma_{i,i} P_{i} \left(\frac{273}{T}\right)$$
(2.46)

j = all species.

For CO₂ at 1500⁰K,

Ref. 14

 $\gamma_{\rm CO_2} = (0.07)(0.58)/2.35 + (0.09)(0.27)/2.35 + (0.01)(0.27)/5.50$ = 0.0173 + 0.0103 + 0.0005 = 0.0281(1/cm)

At 2000⁰K,

$$\gamma_{CO_2} = (0.07) (0.58)/2.73 + (0.09) (0.27)/2.73 + (0.01) (0.27)/7.34$$
$$= 0.0149 + 0.0089 + 0.0004 = 0.0242$$

At 2500⁰K

$$\gamma_{\rm CCO_2} = \frac{(0.07)(0.58) + (0.09)(0.27)}{3.03} + (0.01)(0.27)/9.15$$
$$= \frac{(0.0406 + 0.0243)}{3.03} + 0.0003 = 0.0217$$

$$\gamma_{\rm c}_{\rm H_2O} = \frac{(0.09)(0.58) + (0.12)(0.27)}{(T/273)^{1/2}} + (0.44)(0.58)/(T/273)$$

$$\frac{0.0845}{(T/273)^{1/2}} + \frac{0.255}{(T/273)}$$

At 1500⁰K

 $\gamma_{c_{H_2O}} = 0.0360 + 0.0465 = 0.0825$

At 2000⁰K

$$\gamma = 0.0310 + 0.0347 = 0.0657$$

At 2500⁰K

$$\gamma_{c_{H_2O}} = 0.0279 + 0.0279 = 0.0558$$

The radiation parameters for this sample problem are summarized on the following page.

LMSC-HREC D306101

$a = (\gamma_c)(1/d)$	т(⁰ к)	Species	$\omega(1/cm)$	k (1/cm)
5.09 8.61 11.10	1500 2000 2500	co ₂	2247	0.540 0.485 0.400
0.229 0.358 0.658	1500 2000 2500	н ₂ о	2247	1.29×10^{-3} 1.84×10^{-3} 1.94×10^{-3}
0.139 0.230 0.455	1500 2000 2500	H ₂ O	4016	1.55×10^{-2} 1.12×10^{-2} 0.95×10^{-2}

The intensities measured by the detector are the blackbody radiation of the species within the zones attenuated by the zones between that particular zone and the detector.

The blackbody intensity for the zonal temperatures and the wave numbers of interest are

$I_{\lambda b}$ (Ref. 19)	Т	i
0.8942 (W/cm ² - μ -sr) 1.691 2.580 4.493 2.687 7.271 13.56 29.19	1500 (⁰ K) 2000 2500 3500 1500 2000 2500 3500	2247 (1/cm) 4016

The attenuation (or in the converse sense, the transmittance, τ) of the radiation of the zones to the detector is calculated for each of the optical paths. Starting from the detector, the first transmittance, τ_1 , involves only zone one. The calculation of the second transmittance, τ_2 , includes the first and second zones. These calculations continue until all the transmittances are determined.

For CO_2 radiation:

$$K_{1}L_{1} = (0.540 \text{ cm}^{-1})(2 \text{ cm}) = 1.080$$

$$-\ln \tau_{1} = \frac{1.080}{\left(1 + \frac{1.080}{4(5.09)}\right)^{1/2}} = \frac{1.080}{(1.053)^{1/2}} = 1.050$$

$$\frac{\tau_{1} = 0.350}{K_{2}L_{2}} = (0.485)(2) = 0.970$$

$$\sum_{h=1}^{K} K_{h}L_{h}$$

$$-\ln \tau_{2} = \frac{\sum K_{h}L_{h}}{\left(1 + \frac{\left(\sum K_{h}L_{h}\right)^{2}}{4 \sum (\gamma_{c}/d)_{h}K_{h}L_{h}}\right)^{1/2}}$$

$$= \frac{2.05}{\left(1 + \frac{4.20}{4 \left[(5.09)(1.08) + (8.61)(0.97)\right]}\right)^{1/2}}$$

$$= \frac{2.05}{\left(1 + \frac{1.05}{5.50 + 8.35}\right)^{1/2}} = \frac{2.05}{1.04} = 1.94$$

$$\tau_2 = 0.144$$

$$K_3L_3 = (0.400)(4) = 1.60$$

$$-\ln \tau_3 = \frac{2.05 + 1.60}{\left(1 + \frac{(3.65)^2}{[4(13.85 + (11.1)(1.6)]}\right)^{1/2}} = \frac{3.65}{(1.052)} = 3.48$$

$$\tau_3 = 0.0310$$

$$K_4L_4 = K_2L_2 = 0.970$$

$$-\ln \tau_4 = \frac{3.65 + 0.97}{\left(1 + \frac{(4.62)^2}{4 \left[31.65 + (8.61)(0.97)\right]}\right)^{1/2}} = \frac{4.62}{1.06} = 4.35$$

 $\tau_4 = 0.0130$

$$K_5L_5 = K_1L_1 = 1.080$$

$$-\ln \tau_5 = \frac{4.62 + 1.08}{\left(1 + \frac{(5.70)^2}{4 \left[40.00 + (5.09)(1.08)\right]}\right)^{1/2}} = \frac{5.70}{1.09} = 5.25$$

$$\tau_5 = 0.0053$$

Use the zonal blackbody radiation and transmittance values to evaluate the measured intensity.

$$\mathbf{I}_{\lambda} = \mathbf{I}_{\lambda \mathrm{b} \mathrm{I}} (1 - \tau_{\mathrm{I}}) + \mathbf{I}_{\lambda \mathrm{b} 2} (\tau_{\mathrm{I}} - \tau_{2}) + \mathbf{I}_{\lambda \mathrm{b} 3} (\tau_{2} - \tau_{3}) + \mathbf{I}_{\lambda \mathrm{b} 4} (\tau_{3} - \tau_{4}) + \mathbf{I}_{\lambda \mathrm{b} 5} (\tau_{5} - \tau_{4})$$

$$I_{\lambda} = \begin{pmatrix} 0.894 (1 - 0.350) &= (0.894) (0.650) = 0.580 \\ 1.691 (0.350 - 0.144) &= (1.691) (0.206) = 0.348 \\ 2.580 (0.144 - 0.0310) &= (2.580) (0.113) = 0.292 \\ 1.691 (0.0310 - 0.0130) &= (1.691) (0.018) = 0.031 \\ 0.894 (0.0130 - 0.0053) &= (0.894) (0.008) = 0.007 \end{pmatrix}$$

 $I_{\lambda} = 1.258 \quad W/cm^2 - \mu - sr$

If a 3500[°]K blackbody source has also been transmitting,

 $I_{\lambda WS} = 1.258 + (0.0053)(4.493)$ = 1.272 W/cm²- μ -sr

Neglecting non-grey effects introduces errors of 5 to 10% in intensity; these become a smaller precentage when they are converted to temperature. Such errors do not become unreasonably increased when using the data reduction programs — as evidenced by Appendix D of Ref. 18.

For H_2O radiation at 2247 (1/cm), the transmittances are

$$K_{1}L_{1} = 2.58 \times 10^{-3}$$

- $ln \tau_{1} = \frac{2.58 \times 10^{-3}}{\left(1 + \frac{2.58 \times 10^{-3}}{4(0.229)}\right)^{1/2}} = \frac{2.58 \times 10^{-3}}{(1.0028)^{1/2}} = 2.58 \times 10^{-3}$

 $\tau_1 \cong 1$

$$K_2L_2 = 3.68 \times 10^{-3}$$

$$-\ln \tau_2 = \frac{6.26 \times 10^{-3}}{\left(1 + \frac{(6.26 \times 10^{-3})^2}{4 \left[0.59 \times 10^{-3} + 1.32 \times 10^{-3}\right]}\right)^{1/2}} = \frac{6.26 \times 10^{-3}}{1.0026} = 6.26 \times 10^{-3}$$

$$\frac{\tau_2 \cong 1}{K_3 L_3} = 7.76 \times 10^{-3}$$

$$-\ln\tau_3 = \frac{14.02 \times 10^{-3}}{\left(1 + \frac{(1.40 \times 10^{-2})^2}{4\left[1.91 \times 10^{-3} + 5.11 \times 10^{-3}\right]}\right)^{1/2}} = \frac{1.40 \times 10^{-2}}{1.005} = 1.40 \times 10^{-2}$$

$$\tau_3 = 0.9861$$

$$K_4 L_4 = K_2 L_2 = 3.68 \times 10^{-3}$$

$$-\ln\tau_4 = \frac{17.70 \times 10^{-3}}{\left(1 + \frac{(1.770 \times 10^{-2})^2}{4\left[7.02 \times 10^{-3} + 1.32 \times 10^{-3}\right]}\right)^{1/2}} = \frac{1.77 \times 10^{-2}}{1.005} = 1.77 \times 10^{-2}$$

$$\frac{\tau_4 = 0.9825}{K_5 L_5} = K_1 L_1 = 2.58 \times 10^{-3}$$

$$-\ln\tau_5 = \frac{20.28 \times 10^{-3}}{(1 + 2.58 \times 10^{-3} + 1.32 \times 10^{-3})} = 1.20 \times 10^{-2}$$

$$-\ln \tau_5 = \frac{20.28 \times 10}{\left(1 + \frac{400 \times 10^{-6}}{4 \left[8.34 \times 10^{-3} + 0.59 \times 10^{-3}\right]}\right)^{1/2}} = \frac{2.03 \times 10}{1.005} = 2.03 \times 10^{-2}$$

 $\tau_{5} = 0.9799$

$$I_{\lambda b1} (1 - \tau_1) = 0$$

$$I_{\lambda b2} (\tau_1 - \tau_2) = 0$$

$$I_{\lambda b3} (\tau_2 - \tau_3) = (1 - 0.9861) = 0.0139$$

 $I_{\lambda b4} (\tau_3 - \tau_4) = (0.9861 - 0.9825) = 0.0036$ $I_{\lambda b5} (\tau_4 - \tau_5) = (0.9825 - 0.9799) = 0.0026$

$$I_{\lambda} = \begin{array}{c} 0.892 (0) + = 0 \\ 1.691 (0) + = 0 \\ 2.580 (0.0139) + = 0.0358 \\ 1.691 (0.0036) + = 0.0061 \\ 0.8921 (0.0026) = 0.0023 \end{array}$$

$$I_{\lambda} = 0.0442 \quad W/cm^2 - \mu - sr$$

The intensity when the 3500°K blackbody source is also transmitting is

$$I_{\lambda WS} = 0.0442 + (0.9799)(4.493)$$

= 4.434 W/cm²- μ -sr

In this example, water vapor radiation is very optically thin.

Total Radiation at 2247 (1/cm)

Since both CO_2 and H_2O are optically active at 2247 (1/cm), both contribute to the total radiation flux. To account for multi-species emission, the natural log of the transmittance of each is calculated and then all such logs are summed.

$$-\ln (\tau_1)_{MS} = 1.050 + 0.0026 = 1.053$$
$$-\ln (\tau_2)_{MS} = 1.940 + 0.0062 = 1.946$$
$$-\ln (\tau_3)_{MS} = 3.48 + 0.014 = 3.49$$
$$-\ln (\tau_4)_{MS} = 4.35 + 0.018 = 4.37$$
$$-\ln (\tau_5)_{MS} = 5.25 + 0.020 = 5.27$$

$(\tau_h)_{MS}$	$(\tau_{h-1} - \tau_h)_{MS}$	$I_{\lambda b} (\tau_{h-1} - \tau_{h})_{MS}$
0.348 0.143 0.0305 0.0126 0.0051	0.652 0.205 0.112 0.0179 0.0075	In this case the results are identical to those for CO ₂ alone.

Since the radiance from the water vapor is only 4% of that from CO_2 , Rocketdyne assumed it negligible (consistent with the exact calculation).

Repeat the transmittance and intensity calculations for H_2O radiation at 4016 (1/cm)

$$K_{1}L_{1} = (1.55 \times 10^{-2})(2) = 3.10 \times 10^{-2}$$

$$a_{1} = 0.139$$

$$-\ln \tau_{1} = \frac{3.10 \times 10^{-2}}{\left(1 + \frac{3.10 \times 10^{-2}}{4(0.139)}\right)^{1/2}} = \frac{3.10 \times 10^{-2}}{1.025} = 3.02 \times 10^{-2}$$

$$\frac{\tau_{1}}{1.025} = \exp(-0.031) = 0.9704$$

$$K_{2}L_{2} = 2.24 \times 10^{-2}$$

$$-\ln \tau_{2} = \frac{5.34 \times 10^{-2}}{\left(1 + \frac{28.4 \times 10^{-4}}{4[4.31 \times 10^{-3} + 5.15 \times 10^{-3}]}\right)^{1/2}} = \frac{5.34 \times 10^{-2}}{1.04} = 5.13 \times 10^{-2}$$

$$\frac{\tau_2 = 0.950}{K_3 L_3 = 3.80 \times 10^{-2}}$$

-ln $\tau_3 = \frac{9.14 \times 10^{-2}}{\left(1 + \frac{83 \times 10^{-4}}{4 \left[9.46 \times 10^{-3} + 1.73 \times 10^{-2}\right]}\right)^{1/2}} = \frac{9.14 \times 10^{-2}}{1.04} = 8.80 \times 10^{-2}$

$$\frac{\tau_3 = 0.916}{K_4 L_4} = 2.24 \times 10^{-2}$$

- $\ln \tau_4 = \frac{11.38 \times 10^{-2}}{\left(1 + \frac{130 \times 10^{-4}}{4[26.76 \times 10^{-3} + 5.15 \times 10^{-3}]}\right)^{1/2}} = \frac{1.138 \times 10^{-1}}{1.05} = 1.08 \times 10^{-1}$

$$\tau_{A} = 0.898$$

$$K_5 L_5 = 3.10 \times 10^{-2}$$

$$-\ln \tau_5 = \frac{14.48 \times 10^{-2}}{\left(1 + \frac{210 \times 10^{-4}}{4 \left[31.91 \times 10^{-3} + 4.31 \times 10^{-3}\right]}\right)^{1/2}} = \frac{1.448 \times 10^{-1}}{1.07} = 1.35 \times 10^{-1}$$

 $\tau_{5} = 0.874$

$$I_{\lambda b} = I_{\lambda b1} (1 - \tau_1) = (2.687) (0.0296) = 0.080$$

$$I_{\lambda b2} (\tau_1 - \tau_2) = (7.271) (0.0204) = 0.150$$

$$I_{\lambda b3} (\tau_2 - \tau_3) = (13.56) (0.034) = 0.460$$

$$I_{\lambda b4} (\tau_3 - \tau_4) = (7.271) (0.018) = 0.131$$

$$I_{\lambda b5} (\tau_4 - \tau_5) = (2.687) (0.024) = 0.065$$

$$I_{\lambda} = 0.886 \quad W/cm^2 - \mu - sr$$

$$I_{\lambda_{WS}} = 0.886 + (0.874)(29.19) = 0.886 + 25.50 = 26.39 \quad W/cm^2 - \mu - sr$$

Problem 2 – Composite Engine

This is an example of single-zone radiation. Let the path length be the distance between the side walls less the initial jet widths of coolant gases, 4.46 - 0.80 = 3.66 in. or 9.30 cm. Static pressure 15.3 psia. Mass fractions: 0.9438, water and 0.0545, hydrogen.

The mole fraction of water is 0.656, giving a partial pressure of 0.683 atm. The wave number of interest is 4016 (1/cm).

k (1/cm)	т (^о к)	kL	$(1 + kL/4a)^{1/2}$	τ
$\begin{array}{r} 1.825 \times 10^{-2} \\ 1.33 \times 10^{-2} \\ 1.12 \times 10^{-2} \end{array}$	1500	0.1695	1.145	0.8630
	2000	0.1235	1.065	0.8910
	2500	0.1040	1.030	0.9040

The measured intensity for the zone can be represented by $I_{\lambda} = (1-\tau)(I_{\lambda b})$. In particular for each zone

> (0.137)(2.687) = 0.368 at 1500° K (0.109)(7.271) = 0.792 at 2000° K (0.096)(13.56) = 1.310 at 2500° K

When a 3500[°]K blackbody source is also radiating, the measured intensity for each zone is calculated as

 $I_{\lambda WS} = 0.368 + (0.863)(29.19) = 0.368 + 25.05 = 25.418 \text{ at } 1500^{\circ}\text{K}$ $= 0.792 + (0.891)(29.19) = 0.792 + 25.95 = 26.74 \text{ at } 2000^{\circ}\text{K}$ $= 1.310 + (0.904)(29.19) = 1.310 + 26.20 = 27.51 \text{ at } 2500^{\circ}\text{K}.$

The experiment corresponding to this calculation would indicate:

$$I_{\lambda WS} = 27.51$$

 $I_{\lambda} = 1.310$

therefore,

$$\tau = \frac{27.51 - 1.310}{29.19} = \frac{26.20}{29.19} = 0.900$$

$$1 - \tau = 0.100$$

$$I_{\lambda b} = \frac{1.310}{0.100} = 13.10, \quad \therefore T = 2470^{\circ}K \cong 2500^{\circ}K$$

Not using band models would introduce intensity errors of up to 15% in the variable range presented here; temperature errors would be somewhat less. If ϵ is much less than 0.1, serious errors would be introduced into the temperature determination.

The assumption of a grey gas may be used for CO_2 and of an optically thin gas may be used for H_2O , in the examples presented, without introducing excessive errors. Such errors could be removed by using a more complete data analysis program. The theoretical radiation analysis presented in Section 2 should provide a very adequate basis for an accurate data analysis calculation in ranges of experiments for which the illustrative examples are typical, i.e., no improvement to the Curtis-Godson approximation is necessary.

Section 5 CONCLUSIONS AND RECOMMENDATIONS

This report has demonstrated that sufficient radiation property data exist to study zone radiometry of CO_2 and H_2O . Such data also exist for soot and CO.

Data reduction procedures currently used are adequate for the studies which Rocketdyne has performed. These work because CO_2 is a grey gas and H_2O is optically thin in their experiments. Sample problems show this behavior. More accurate data reduction schemes could be devised, but this would not substantially improve existing data. However, to remove that criticism such procedures should be developed.

The only apparent reason for experiments of the alcohol-LOX vernier engine type not yielding accurate temperature and partial pressure data is lack of axial symmetry. The two-dimensional mixing study is probably so optically thin, that accurate transmittances would be very difficult to determine. In any event, all future studies should be preceded by an error analysis of expected data.

LMSC-HREC D306101

REFERENCES

- North American Rockwell Corp., "An Instrumentation System to Study Rocket Exhaust Plume Radiative Processes," R-6288, Rocketdyne Division, Canoga Park, Calif., 27 August 1965.
- 2. Milne, E. A., "Thermodynamics of the Stars," <u>Selected Papers on the Transfer of Radiation</u>, D. H. Menzel, ed., Dover Publications, Inc., New York, 1966.
- 3. Siegel, R., and J. R. Howell, <u>Thermal Radiation Heat Transfer</u>, McGraw-Hill, St. Louis, 1972.
- 4. Viskanta, R., <u>Heat Transfer in Thermal Radiation Absorbing and Scattering</u> <u>Media</u>, Ph. D. Thesis, Purdue University, University Microfilms, Inc., Ann Arbor, Mich., 1960.
- 5. Kourgonoff, V., and I. W. Busbridge, <u>Basic Methods in Transfer Problems</u>, Dover, New York, 1963.
- 6. Goody, R. M., <u>Atmospheric Radiation</u>, Oxford University Press, London, 1964.
- Golden, S. A., W. F. Herget, V. F. Olson and J. D. Enloe, "A Study of the Spectral Line Shapes of Water and Carbon Dioxide in the 2.7 Micron Region," R-6403P, North American Rockwell Corp., Rocketdyne Div., Canoga Park, Calif., 22 November 1965.
- Simmons, F. S., C. B. Arnold and G. H. Lindquist, "Measurement of Temperature Profiles in Flames by Emission-Absorption Spectroscopy," NACA CR-WRL 30410-19-F, NASA-Lewis Research Center, Cleveland, Ohio, February 1972.
- 9. Krakow, B., H. J. Babrov, G. J. Maclay and A. L. Shabott, "Use of the Curtis-Godson Approximations in Calculations of Radiant Heating by Inhomogeneous Hot Gases," <u>Applied Optics</u>, Vol. 5, No. 11, November 1966.
- General Dynamics/Convair, "Study on Exhaust Plume Radiation Predictions, Interim Progress Report," GD/C-DBE-66-001, Space Science Laboratory, San Diego, Calif., January 1966.
- General Dynamics/Convair, "Study on Exhaust Plume Radiation Predictions, Interim Progress Report - Part II," GD/C-DBE-66-001a, Space Science Laboratory, San Diego, Calif., February 1966.

- General Dynamics/Convair, "Study on Exhaust Plume Radiation Predictions, Final Report," GD/C-DBE66-017, Space Science Laboratory, San Diego, Calif., December 1966.
- Reardon, J. E. and R. M. Huffaker, "Radiative Heat Transfer Calculations for Saturn Exhaust Plumes," <u>Specialist Conference on Molecular Radiation</u>, NASA TM X-53711, Marshall Space Flight Center, Ala., 5-6 October 1967, pp. 184-218.
- Reardon, J. E. and J. A. L. Thomson, <u>Handbook of Infrared Radiation from</u> <u>Combustion Gases</u>, Editors, R. Goulard, C. B. Ludwig and W. Malkmus, (to be published by NASA).
- 15. Private Communication with W. F. Herget of Environmental Protection Agency, Durham, N. C., 1972.
- Brewer, L. E., "A Noninterference Method for Determining Temperature and Water Vapor Concentration Profiles in Cylindrically Symmetrical Combustion Systems," AEDC-TR-71-80, Arnold Engineering Development Center, Tullahoma, Tenn., July 1971.
- Wrubel, J. A., "Performance Analysis of Propulsion Systems, Final Report," R-8390, North American Rockwell Corp., Rocketdyne Div., Canoga Park, Calif., November 1970.
- North American Rockwell Corp., "A Compendium of Zone Radiometry Measurements of Exhaust Plumes," R-8140, Rocketdyne Div., Canoga Park, Calif., 25 February 1970.
- North American Rockwell Corp., "Tables for the Spectral Radiant Intensity of a Blackbody and of a Tungsten Ribbon," Research Rpt. 59-32, Rocketdyne Div., Canoga Park, Calif.

Appendix

ZONE RADIOMETER DATA REDUCTION PROGRAM

Appendix

The data reduction procedure for axisymmetric zone radiometry readings was automated by Rocketdyne in a computer program^{*} called the Axisymmetric Zone Radiometer Data Reduction Program. A description of the program is given here by outlining the operations occurring in the subroutines, a detailed flow chart of the procedure and a listing of the program. An input guide is given, and also a sample input and output are included to aid potential users of the program.

PROGRAM SUBROUTINES

MAIN Subroutine

The Axisymmetric Zone Radiometer Data Reduction Program main driver is responsible for reading the program input and calculating the local temperature and species concentrations of water or carbon dioxide.

The main program does the following (in sequence):

- 1. Evaluates the path lengths
- 2. Reads data
- 3. Solves for the product of zonal absorption coefficient and zonal partial pressure of radiating species, (kp).
- 4. Constructs attenuation matrix to solve for zonal blackbody radiance
- 5. Solves for the zonal blackbody radiance
- 6. Uses Planck's distribution law to solve for zonal temperatures
- 7. If the radiating species are considered to be continuous radiators, the solution is complete. The local temperatures along with the product of the absorption coefficient and partial pressures for each zone is output.

North American Rockwell Corp., "A Compendium of Zone Radiometry Measurements of Exhaust Plumes," R-8140, Rocketdyne Div., Canoga Park, Calif., 25 February 1970.

- 8. If the radiating species require the use of spectral averaged data (band models), the zonal temperatures and partial pressures are iterated.
- 9. Evaluate the fine structure parameter, a, for each zone using the zonal temperatures and partial pressures.
- 10. Calculate new absorption coefficients for each zone.
- 11. Repeat calculation steps from Step 4 until successive values of the temperatures and partial pressures are within a preset limit.

QUAD Subroutine

This subroutine contains three entries: QUAD0, QUAD1 and QUAD2. The QUAD0 entry generates the appropriate weighting function for quadratic distribution of properties. The QUAD1 entry sums the product of path lengths and weighting factors to obtain the coefficient for the average (kp) values. The QUAD2 entry sets up the average kp values using the path lengths and the weighting factors.

SLIT Subroutine

A routine to correct for spatial resolution in deflection data. The correction technique is from the University of Tennessee described in AF CRL 465, pages 59-62. These corrections are usually small and occur at the edge of the plume. Rocketdyne has modified the experimental procedure such that radiance and transmission (smoothed) data are available rather than deflection data making it unnecessary to apply the slit corrections in this subroutine. For completeness the capability to read in deflection data and correct it for spatial resolution has been left in the program.

ISIMEQ Function Subroutine

This subprogram solves a set of simultaneous linear equations with up to 30 variables. This is a standard matrix solution subprogram. Throughout the zone radiometry data reduction program, this subroutine is used to solve for the variable of interest in each zone and then returns the answers as a column matrix in column one.

A-2

LMSC-HREC D306101

1

PROGRAM FLOW CHART

LMSC-HREC D306101

LMSC-HREC D306101

LISTING OF THE DATA REDUCTION PROGRAM FOR AXISYMMETRIC ZONE RADIOMETRY

SONF R	TINE MAIN Adiometry data reduction	30
DESIGN	ED TO PROCESS DATA ON CYLINDRICALLY SYMMETRIC PLUMES	60 00000070
USES S	IMULTANEOUS FOUATION APPROACH TO OBTAIN TEMPERATURES.	00000080
CAN US	E NON-LINEAR ABSORPTION AND ITERATIVE TECHNIQUE FOR	
r	FUCCING STUCTABLET AVERAGED DATA	110
MODIFI	ED TO INCLUDE SLIT FUNCTION CORRECTION USING TECHNIQUE FROM	00000111
• ∩	OF TENNESSEE DESCRIBED IN AFCRL 465, PAGES 59-62.	00000112
DEFAUL	T OPTION NOW USES A QUADRATICALLY VARYING PRESSURE DISTRIBU-	-00000113
•	ON ALTHOUGH A DISCRETE STEP VARIATION CAN BE SELECTED	00000114
THE RA	DIANCE AND TEMPERATURE ARE STILL ASSUMED CONSTANT IN A ZONE	C11 000000
INPUT	DATA	120
C A R	D CONTENTS	130
-1	TITLE	140
N	NO. OF ZONES	150
	ZONE WIDTH IN CM.	151
	CORRECTION TO PLUME RADIANCE DUE TO WINDOW ABSORPTION	00000152
	PLACKBODY PADIANCE IN WATTS /(CM**2 MICRON STER)	00000153
	QUADRATIC PROPERTY VARIATION (0) OR STEP FUNCTION (1)	00000154
	SLIT FUNCTION CORRECTION CONTROL PARAMETER	00000160
•	= 1 TO APPLY A NEW FUNCTION	00* *161
	= 0 TO APPLY PREVIOUSLY USED FUNCTION	00000162
	=-1 TO NOT CORRECT FOR SLIT FUNCTION	00000163
	DATA TYPF = 0 OR 1 FOR SPFCTRAL DATA	00000170
	2 FOR SPECTRALLY AVERAGED DATA	00000180
	POSITIVE FOR SMOOTHED INPUT	00000190
	ZERO CR NEGATIVE FOR DEFLECTION VALUES AS INPUT	00000500
	WAVELENGTH IN MICRONS	0 205
Ū E E	LECTION DATA BLACKBODY	0 210
	FLAME	220
	BLACKBODY PRIME	00 230
	FLAME PRIME	00 240
	GREYBODY ALONE	00 250
	GREYBODY THRU FLAME	000 260
	GREYBODY ALONE PRIME	00000270
	GREYBODY THRU FLAME PRIME	00000280
	g	062

A-13

í

SMOOTHED DATA RADIANCE TRANSMISSION	* 300 310
6 POINTS / CARD	320
	330
ABSORPTION COEFFICIENT PARAMETERS FOR SPECT. AVG. DATA	00000340
TO USE PREVIOUS PARAMETERS SET DATA TYPE = 3	00000350
REAL * 4 SMN(30.30). DZ(30.30). ZAT(30.30). PAL(30.30). PAL	
PRIME PROPERTY FRAME PROVIDE PROVE PROVE PROVED FRAME PROFESSION - ENVIRONMENTER PROVESSION - X (30) - 2 FRAME FRA	00000380
3 DF(30) • DGP(30) • DGPF(30) • DGPP(30) • DGPP(30) • DGPP(30) •	
4 DBEP(30) • DBB(30) • AK(30) • P(30) • POLD(30) • TOLD(30) •	00000410
5 ASTAR(30)	420
	430
INTEGER * 4 1A(30)	440
	450
COMMON N. A. SMN. DZ. B. AKP. AVKP(30,30)	00 451
	460
	470
I FORMAT (IRA4)	480
2 FORMAT (112, 3F12,8+ 213, 16+ F12,8)	00 490
3 FORMAT (6F12+8)	500
4 FORMAT (1)1. 18X. 1844 / 1-1. 7X. 1K1. 9X. 1TN(K)1. 6X. 1TP(K)1.	00000510
1 9X+ IT(K)+. 7X+ INFN(K)+. 6X+ INFP(K)+. 6X+ INF(K)+ / 10+)	00000250
5 FORMAT (111, 18X, 1844 / 1-1, 7X, 1K1, 7X, 1T(K)1, 8X, 1NF(K)1/)	00000230
6 FORMAT (' ', 18, 2F12.4)	540
7 FORMAT (' ', 18, 6F12.4)	550
R FORMAT (111, 18X, 18A4 / 101, 1AX, 1RADIAL PROPERTIES: / 101, 9X,	00000260
1 IKI, KX, I KP(K), 6X, EPS(K), 6X, IRAD(K), 7X, IT(K), /	00000270
2 30(1 1, 110, 3F12.4, 6X, F6.0 /))	00 580
<pre>a FrRMAT*(111.1.18 / 150(1 1.6F12.8 /))</pre>	00 200
IC FURMAT (1] ITERATION NO.1.13 / 101. FX.1ZONE1. BX. 1K1. 11X. 1P1.	000000000
1 11X • • T • • 11X • • A*• / 30(• • • 18• 2F12•4• F12•1• F12•4/))	00000610
11 FORMAT (+1++18X+18A4/ +01NPUT DATA++112+3F12+4+213+16+F12+4)	02900000
12 FORMAT (+0 ITERATION NO.++ 13+ + WAS CONSISTENT AT ITERP =+ 13)	00000000000
13 FORMAT (101, 18%, 13, 1 ITERATIONS WERE REQUIRED!)	00000640
14 FORMAT (19X, 'SLIT COPRECTION INCLUDED')	00 642
15 FORMAT (19X+ STEP FUNCTION PROPERTY DISTRIBUTION ASSUMED*)	00000644
IF FORMAT (101. 18X. IZONE WIDTH =1. F6.3. 1 CM USED TO COMPUTE EPS!)	00000646
GENERATE SMN AND X	650

LMSC-HREC D306101

υ

A-14

ł j

υ

U

υυ

0000000

С С) 1r4 1 = 1.3r	660
×	(1) = 1	670
õ) 104 J = 1+30	680
104 01	*N(1.4)) = SQRT(FLOAT(J*J - 1*1))	0 690
U		100
U S E	EDUCED PATH LENGTH MATRIX. OTH LOS OMITTED - DZ(LOS.ZONE)=(Y2-	1)0000011
0	0 110 1 = 1.29	702
_	i	E04 .
<u>ت</u>) 108 J = 1•L	705
10A D7	(1·J) = U.O	707
00) 110 J = 1.29	209
110 02	(1, 0) = SMN(1, 0+1) - SMN(1, 0)	711
C)	· ·	713
U U U	NEPATE QUADRATIC FUNCTION WEIGHTING FACTORS	00000715
CP		717
1)		719
α Ψ	AD TITLE AND PARAMETER CARDS	0 720
	00P TO HERE FOR MULTIPLE PROBLEMS	00 730
•		740
120 RE	EAD (5.1) AM	750
Ω Π	EAD (5.2) N.A.WC.FNRB.IQA.ISF.KDATA.WL	00 760
ц М М	21TF (6.11) AM. N. A. WC. ENBA. IOA. ISF. KDATA. WL	00000170
4	· (ISF.EQ.1) CALL SLITI	775
L L	F (N.EQ.0) GO TO 120	トトト
4	- (KDATA•GT•O) GO TO 150	780
5	EAD DEFLECTION DATA	064
ŭ Ĉ	EAD (5.3) (DAB(K),K=1.N)	800
Å.	-An (5.3) (DF(K), K=1.N)	810
RF	AD (5.3) (DRAP(K).K=1.N)	820
ш. С	-AD (5.3) (DFP(K), K=1.N)	830
Ω Ω	EAD (5.3) (DGB(K), K≈1.N)	84Ú
ŭ	<pre>AD (5.3) (DGHF(K).K=1.N)</pre>	850
ŭ.	EAD (5.3) (DGRP(K)+K=1.N)	860
U C	EAD (F.3) (DGRFP(K),K=1.N)	870
Ð		880
9 9 0	ET TRANSMISSION AND PADIANCE FROM DEFLECTIONS	00000890
0	· · · · · · · · · · · · · · · · · · ·	006
4 U		016
2		920
4	$J(K) = DGRF(K) \times DGR(K)$	656

A-15

~

LMSC-HREC D306101
			:	
	TP(K) = DGBEP(K) / DGAP(K		940	
	IF (TN(K).GT.1.0) TN(K)	u 1•0	950	
	<pre>IF (TP(K).GT.1.0) TP(K)</pre>	n 1•0	960	
	T(K) = 0.53 * (TN(K) + TP(640	
	ENNF(K) = CAL * DF(K) / D	08B(K)	066 0	
	FNPF(K) = CAL * NFP(K) /	DRRP(K)	00 1000	
	144 ENF(K) = 0.51 * (ENNF(K)	+ ENDF(K))	0101 *00	
	WRITE (6.4) AM		1020	
	WRITF (6.7) (K.TN(K).TP(K	<) • T (K) • ENNF (K) • ENPF (K) • ENF (K) • K=	(· N) 00001030	
	GO TO 160	· · ·	1040	
υ		·	1050	
υ	C READ SMOOTHED DATA		1060	•
Ų			1070	
	150 READ (5.3) (ENF(K), K=1.N	(7	* 1080	
	READ (5.3) (1(K), K=1.N)		1090	
υ	·		1120	
υ	C - LIST LINE OF SIGHT TRANSM	MISSION AND RADIANCE	00001130	
	155 WRITE (6.5) AM		1140	
	MRITE (6+6) (K+T(K)+ENF(K	<)• K=1•N)	00 1120	
υ	υ		1160	
C	C		1170	
U	Ŭ		1180	
υ	C CHECK FOR SLIT FUNCTION		1190	
	160 IF (ISF.LT.0) 60 TO 165		1200	
	CALL SLITO(T)		1210	
	CALL SLITO(ENF)		1215	
υ	υ		1220	
U	C DELETE EXTRA POINTS		1221	
	161 IF (T(N) .LT.1.0) GO TO 1	162	0 1222	
			1223	
	GO TO 161	· · ·	1224	
ΰ	C LIST CORRECTED PROPERTIES		0 1225	
	162 ISF = - 1		1226	
	WRITE (6,163) N		1230	
	163 FORMAT (OMODIFIED BY APF	PLYING SLIT FUNCTION 16 POIN	rs LEFT.)00001232	
	GO TO 155		1235	
υ	C CONVEPT TRANSMITTANCE		1237	
	165 DO 170 K = 1.N		1240	
	170 FFN(K) = -ALOG(T(K))		1250	
Ù	υ.		1260	

CET WEIGHTFD LOS MATRIX IN B * RP				
CALL MUDICION LN T = D7 * KP D0 125 121 TA TPULI = FENCID SOLVE WATRIX EQUATION LN T = D7 * KP D1 121 TA TPULI = FENCID SOLVE WATRIX EQUATION LN T = D7 * KP D1 121 TA TPULI = FENCID FENCID D1 120 D1 121 TA TPULI = FENCID FENCID D1 120 D1 120 TA TPULI = FENCID FENCID D1 120 D1 120 TA TPULI = FENCID D1 120 D1 120 D1 120 TA TRIX OF AVERAGE VALUES - AVKP(LOS+11, ZONE+1) = INCLUDES A D0 120 D1 120 TAL OUAD2(TOA) ERT NATENUATION FOR EACH ZONE ALONG EACH LOS D000143 CALL OUAD2(TOA) CALL OUAD2(TOA) D1 120 D1 120 CALL OUAD2(TOA) ERTENTION FACH ZONE ALONG EACH LOS D000143 CALL OUAD2(TOA) ERTURNIA D1 120 D1 120 CALL OUAD2(TOA) ERTURNIA EACH ZONE ALONG EACH LOS D000143 CALL OUAD2(TOA) ERTURNIA EACH LOS D000144 CALL OUAD2(TOA) ERTURNIA EACH ZONE ALONG EACH LOS D141 CALL OUAD2(TOA) ERTURNIA EACH LOS D000145	υ	GET WEIGHTED LOS MATRIX IN B	*	1270
00 157 TEL TOUNTION LN T = D7 * KP 00 133 175 T = 1.0 11 11 11 11 175 T = 1.0 00 133 132 179 AKP(1) = FI(1) 00 142 179 AKP(1) = FI(1) 00 142 179 COUPTE EFERS, LAW ATTENUATION FOR EACH ZONE ALONG EACH LOS 0000145 00 153 1 142 179 CALL OUDPRIOD NATENUATION FOR EACH ZONE ALONG EACH LOS 0000145 00 153 1 1 142 00 153 1 1 1 00 153 1 1 1 00 153 1 1 1 1 00 153 1 1 1 1 1	;			1 280
Colve MATRIX FOLIATION LN T = DZ * KP 0 131 174 TP(1) = FEN(1) 131 131 174 TP(1) = FEN(1) 131 131 174 TP(1) = FEN(1) 0 133 174 TP(1) = FEN(1) 0 131 174 TP(1) = FEN(1) 0 131 174 TP(1) = FEN(1) 0 134 179 AKP(1) = F(1,1) 0 141 179 AKP(1) = F(1,1) 0 141 179 AKP(1) = F(1,1) 141 141 170 DOTOPIC AVECLOSHICS 0 143 171 CALL DUADZ(10A) 141 141 141 171 CALL DUADZ(10A) 171 171 141 171 CALL DUADZ(10A) 171 141 141 171 CALL DUADZ(10A) 171 171 141 <t< td=""><td>ι</td><td></td><td></td><td>1290</td></t<>	ι			1290
00175 1 = 1.0 131 175 F0(1) = EFN(1) 132 175 F(xGT+1) WRITE (6.9) K. A 0 132 1793 F0 1799 F = 1.0 142 1794 F0 1799 F = 1.0 143 1794 F0 1799 F = 1.0 143 1794 F0 1799 F = 1.0 143 1795 F0 1791 F0(1) 143 1794 F1 100 F0 100 143 1794 F1 100 F0 100 143 1795 F1 100 F0 100 143 1795 F1 100 F0 100 143 185 F1 100 F0 100 143 <	່ ບ	SOLVE MATRIX FOUATION LN T = D7 * KP	0 C	1300
175 FP(1) = EFN(1) 133 F = 1:0 10.0.1.15.TP.F.1A) 0 133 F = 1:0 10.0.1.15.TP.F.1A) 0 141 7 7 10.0.1.15.TP.F.1A) 0 141 7 7 11.0 11.0 141 7 70 1798 7 141 7 70 1798 401.11 141 7 70 1798 401.11 141 7 6ET MATRY OF AVERAGE VALUES - AVKP(LOS+1). ZONE+1) 142 7 2AL 0402(10.4) 143 143 7 2AT(105+1:20F+1) 141 143 7 7 143 143 7 155 11.0 143 7 155 11.0 143 155 747(1:0) 570(1:0) 143 156 747(1:0) 571(1:0) 143 157 1571(1:0) 571(1:0) 153 7 155 747(1:0) 161 7 156 161 161	:	0.175 I = 1.0		1310
<pre>F = 1:0 F = 1:0 F</pre>	179	TP(1) = EFN(1)		1320
K = ISIMEO (30.N.I.B.TD.F.IA) 0 133 IF (k.GT.1) WRITE (6.0) K. A 0 143 179A AKP(1) = B(1:1) 0 143 C GET MATRIX OF AVERAGE (VALUES - AVKP(LOS+1). ZONE+1) - INCLUDES A 000143 C GET MATRIX OF AVERAGE (VALUES - AVKP(LOS+1). ZONE+1) - INCLUDES A 000143 C GET MATRIX OF AVERAGE (VALUES - AVKP(LOS+1). ZONE+1) - INCLUDES A 000143 C CMPUTE BEER'S LAW ATTENUATION FOR EACH ZONE ALONG EACH LOS 000145 144 C COMPUTE BEER'S LAW ATTENUATION FOR EACH ZONE ALONG EACH LOS 000145 144 C DO 185 J = 1:N 11 147 147 D 0 185 J = 1:N 1 1 147 D 0 185 J = 1:N 1 1 148 B 5 ZAT(1,J) = EXP(-AVK11,J) 01153 143 D 0 185 J = 1:N 1 1 147 D 0 185 J = 1:N 1 1 143 B 5 ZAT(1,J) = EXP(-AVK11,J) 01153 143 D 0 185 J = 1:N 1 1 143 D 0 185 J = 1:N 1 1 1 D 0 185 J = 1:N 1 1 1 D 0 1		C•I = L		1380
IF (k.GT.1) WRITE (6.9) K. A 140 179A AKP(1) = B(1:1) 141 179A AKP(1) = B(1:1) 143 179A AKP(1) = B(1:1) 143 179A AKP(1) = B(1:1) 143 179A CALL OUAD2(10A) AVEP(LOS+1: ZONE+1) - INCLUDES A 0000144 184 144 185 COMPUTE BEER'S LAW ATTENUATION FOR EACH ZONE ALONG EACH LOS 0000143 185 COMPUTE BEER'S LAW ATTENUATION FOR EACH ZONE ALONG EACH LOS 0000144 185 COMPUTE BEER'S LAW ATTENUATION FOR EACH ZONE ALONG EACH LOS 0000145 185 COMPUTE BEER'S LAW ATTENUATION FOR EACH ZONE ALONG EACH LOS 0000155 185 ZAT(LOS+1:ZONE+1) 143 186 TILIOS-1 = 1,N 140 187 T = 1,N 140 188 ZAT(LOS+1:JON 2000145 188 T = 1,N 110 188 ZAT(LOS+1) 2000155 188 COMPUTE ATTENUATION MATRIX PAL(LOS, ZONE) 000155 198 T = 1,N 110 143 198 T = 1,N 100 154 198 T = 1,N 100 110 <		K = 1.51MEQ (30.N.1.B.TP.F.1A)	0	1390
1793 70 1793 1 = 1:N 143 1794 487(1) = B(1:1) 143 143 1795 6 GET MATRIX OF AVERAGE VALUES - AVKP(LOS+1: ZONE+1) 143 184 6 GET MATRIX OF AVERAGE VALUES - AVKP(LOS+1: ZONE+1) 143 184 6 GET MATRIX OF AVERAGE VALUES - AVKP(LOS+1: ZONE+1) 143 185 CALL QUAD2(10.1) 144 186 7AT(LOS+1:ZONE+1) 143 187 70 185 1 = 1:N 188 7AT(1:0.1) 1 = 7:N 189 7AT(1:0.1) 1 = 7:N 181 1 = 1:N 1 = 1:N 200 1 = 1:N 1 = 1:N 201 1 = 1:N <t< td=""><td></td><td>IF (K.GT.1) WRITE (6.9) K. B</td><td>С</td><td>1400</td></t<>		IF (K.GT.1) WRITE (6.9) K. B	С	1400
100 1793 15 143 1794 4KP(11) = B(11,1) 143 143 1795 6 6ET MATRIX OF AVERAGE VALUES - AVKP(LOS+11, ZONE+11) - INCLUDES A 143 179 6 6ET WATRIX OF AVERAGE VALUES - AVKP(LOS+11, ZONE+11) - INCLUDES A 143 179 001 15 144 170 01 15 141 170 01 15 143 185 77(1:0) 10 143 185 77(1:0) 10 143 185 77(1:0) 10 143 185 77(1:0) 10 143 185 77(1:0) 10 143 185 77(1:0) 10 143 185 77(1:0) 10 143 185 77(1:0) 10 143 185 77(1:0) 10 143 185 77(1:0) 10 143 185 77(1:0) 10 10 185 77(1:0) 10 10 17FP 0 10	υ			1410
<pre>1799 AKP(I) = B(I.1) 1798 AKP(I) = B(I.1) 1798 AKP(I) = B(I.1) 149 2 GET WATRY OF AVERAGE VALUES - AVKP(LOS+1. ZONE+1) - INCLUDES A 0000145 2 CANDUTE BEER'S LAW ATTENUATION FOR EACH ZONE ALONG EACH LOS 2 ZAT(I.0) IS J = 1.N 185 ZAT(I.J) = EXP(-AVKP(I.J)) 185 ZAT(I.J) = EXP(-AVKP(I.J)) 185 ZAT(I.J) = EXP(-AVKP(I.J)) 185 ZAT(I.J) = EXP(-AVKP(I.J)) 185 ZAT(I.J) = FXP(-AVKP(I.J)) 195 ZAT(I.J) = FXP(-AVKPVIII) 205 ZAA J = PAL(I.AUJI) 205 ZAA ZAA ZAA ZAA ZAA ZAA ZAA ZAA ZAA ZA</pre>		$N \cdot I = I \cdot B \circ L I \circ G$		1,420
GET MATRIX OF AVERAGE VALUES - AVKP(LOS+1, ZONE+1) - INCLUDES A 0000144 CALL OUAD2(10A) COMPUTE BERPS LAW ATTENUATION FOR EACH ZONE ALONG EACH LOS DO 185 J = 1.N DO 200 J = 1.N DO 201 J = 1.N DO 201 J = 1.N DO 201 J = 2.N DO 202 J = 2.N	1795	$AKP(1) = B(1 \cdot 1)$		1430
C GET MATRIX OF AVERAGE (VALUES - AVKP(LOS+1, ZONE+1) - INCLUDES A 0000145 C CALL OUAD2(10A) C CALL OUAD2(10A) C CALL OUAD2(10A) C COMPUTE BEER'S LAW ATTENUATION FOR EACH ZONE ALONG EACH LOS O IRS T 1+1 DO IRS T 1+1 DO IRS T 1+1 DO IRS T 1+1 DO IRS DO IRS T 1+1 DO IRS T DO DO IRS T DO T T T T T DO T T T DO T T T T T T <td< td=""><td>υ</td><td></td><td></td><td>1440</td></td<>	υ			1440
call guad2(10Å) call guad2(10Å) 144 colurt BEER'S Law ATTENUATION FOR EACH ZONE ALONG EACH LOS 0000145 constructs to the structure of the structure stru	υ	GET MATRIX OF AVERAGE (VALUES - AVKP(LOS+1, ZONE+1) - INCLUDES A	0000	1442
Compute BEER'S LAW ATTENUATION FOR EACH ZONE ALONG EACH LOS 0000145 C ZAT(LOS+1.ZONE+1) 00145 D0 185 1 = 1.N D0 185 J = 1.N D0 195 J = 1.N C COMPUTE ATTENUATION MATRIX PAL(LOS.ZONE) 000 153 C COMPUTE ATTENUATION MATRIX PAL(LOS.ZONE) 000 153 C COMPUTE ATTENUATION MATRIX PAL(LOS.ZONE) 000 153 D 00 218 J = 1.N D 0 209 J = 2.N D 0 200 J = 2.N D 0 0 200 J = 2.N D 0 0 2.N D 0 2.N D 0 0 2.N D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		CALL QUAD2(10A)		1444
COMPUTE BEER'S LAW ATTENUATION FOR EACH ZONE ALONG EACH LOS 145 C ZAT(1.0S+1.20NE+1) 149 DO 185 J = 1.N 149 C RE-ENTRY POINT FOR ITERATIVE CALCULATION 149 TER = 0 0001556 00001556 C COMPUTE ATTENUATION MATRIX PAL(LOS.ZONE) 000156 POND DO 218 I = 1.N 0000156 POND DO 218 I = 1.N 0000156 POND DO 218 I = 1.N 161 POND DO 218 I = 1.N 0000156 POND DO 218 I = 1.N 0000200 POND 2002 I = 1.N 0000200 POND 2002 I = 1.N 0000200 POND 2	U			1446
C ZAT(LOS+1.ZONE+1) 146 0001ES 1 = 1.N 149 1001ES 1 = 1.N 149 1001ES 1 = 1.N 149 112 RE-EMTRY POINT FOR ITERATIVE CALCULATION 149 112 RE-EMTRY POINT FOR ITERATIVE CALCULATION 151 112 RE-EMTRY POINT FOR ITERATIVE CALCULATION 153 112 RE-EMTRY POINT FOR ITERATIVE CALCULATION 151 112 RE-EMTRY POINT FOR ITERATIVE CALCULATION 153 112 REAL 0000156 153 112 REAL 1 = 1.N 153 114 RALITON RATION 161 115 RALITON 1 = 1.0 161 115 RALITON 2 = 1.0 161 115 RALITON 2 = 1.0 161 116 RALITON 1 = 1.0 161 <t< td=""><td>υ</td><td>COMPUTE BEER'S LAW ATTENUATION FOR EACH ZONE ALONG EACH LOS</td><td>0000</td><td>1450</td></t<>	υ	COMPUTE BEER'S LAW ATTENUATION FOR EACH ZONE ALONG EACH LOS	0000	1450
00 185 1 = 1.N 143 100 185 J = 1.N 143 112 27(1.J) = EXP(-AVKP(1.J)) 1140 152 1152 2 1154 0 1155 0 1156 1 1157 0 1158 0 1159 0 1150 0 1151 0 1151 0 1152 0 1151 0 1151 0 1152 0 1153 0 1154 0 1155 0 1151 0 1151 0 1151 0 1151 0 1155 0 1155 0 1151 0 1151 0 1151 0 1151 0 1151 0 1151 0 1151 0 1151 0 1151<	U	ZAT (1 0S+1•ZONE+1)		1460
D0 145 J = 1.N 148 185 ZAT(1.J) = EXP(-AVKP(1.J)) 152 C RE-ENTRY POINT FOR ITERATIVE CALCULATION 153 C RE-ENTRY POINT FOR ITERATIVE CALCULATION 000 153 17ER = 0 0000156 155 C COMPUTE ATTENUATION MATRIX PAL(LOS,ZONE) 0000156 POL (1.N) = 1.0 0000156 157 POL (1.N) = 1.0 0000156 157 D D02 209 J = 2.N 0000156 D 200 J = 2.N 000156 D 200 J = 2.N 000156 D 201 J = 2.N 000156 D 202 J = 2.N 000156 D 201 J = 2.N 000156 D 202 J = 2.N 000156 D 201 J = 2.N 000156 D NJ = N + 11 - J 0.0 163 D NJ = N + 11 - J 0.0 164 D NJ = N + 11 - J 0.0 163 D NJ = N + 11 - J 0.0 163 D NJ = 2.N <td></td> <td>DO 185 I = 1.0N</td> <td></td> <td>1470</td>		DO 185 I = 1.0N		1470
<pre>185 ZAT(I,J) = EXP(-AVKP(I,J)) 152 153 154 1758 = 0 1759 = 0 1759 = 0 1759 = 1.0 1750 D0 218 I = 1.0 1750 17 0.0 218 I = 1.0 175 17 0.0 218 I = 1.0 175 17 0.0 218 I = 1.0 175 17 0.0 15 17 0.0 20 18 0.0 18 18 0.0 18 0.0 18 18 0.0 18 0.0 18 18 0.0 18 0.0 18 18 0.0 18 18 0.0 18 18 0.0 18 18 0.0 18 18 0.0 18 18 0.0 18 18 0.0 18 18 0.0 18 18 0.0 18 18 0.0 18 18 0.0 18 18 0.0 18 18 18 18 18 18 18 18 18 18 18 18 18</pre>		DO 185 J = 1.N		1480
CRE-ENTRY POINT FOR ITERATIVE CALCULATION152ITER = 0ITER = 0153ITER = 0COMPUTE ATTENUATION MATRIX PAL(LOS.ZONE)0000156CCOMPUTE ATTENUATION MATRIX PAL(LOS.ZONE)0000156CCOMPUTE ATTENUATION MATRIX PAL(LOS.ZONE)153P^L(I;N) = 1.0000156P^L(I;N) = 1.0000156CWORK IN FROM ZONE N-1 TO CENTER000156P^L(I;N) = 1.000 2n9 J = 2.4N153DO 2n9 J = 2.4N00 2n9 J = 2.4N164NJ = N + 1 - J00 2n9164NJ = N + 1 - J00 157DO 2n9 J = 2.4N161NJ = N + 1 - J163NJ = N + 1 - J163DO 2n9 J = 2.4N164NJ = N + 1 - J163NJ = N + 1 - J163NJ = N + 1 - J163DO 2n9 J = 2.4N00 155DO 2n9 J = 2.4N00 165NJ = N + 1 - J164NJ = N + 1 - J164NJ = N + 1 - J164NJ = N + 1 - J166NJ = N + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	185	2 2 A T (1, J) = E X P (-A V K P (1, J))		1490
C RE-ENTRY POINT FOR ITERATIVE CALCULATION 0000 153 17ER = 0 17ER = 0 1554 C COMPUTE ATTENUATION MATRIX PAL(LOS,ZONE) 0000156 200 D0 218 I = 1.0 0000156 200 D0 218 I = 1.0 110 200 D0 200 J = 2.0 0000156 200 D0 200 J = 2.0 000156 201 NJ = N + 1 - J 000156 201 NJ = N + 1 - J 163 201 NJ = N + 1 - J 163 201 D1 = N + 1 - J 163 201 NJ = N - 1 + 1 163 201 NJ = N - 1 + 1 163 201 NJ = N - 1 + 1 163 201 NJ = N - 1 + 1 164 201 NJ = N - 1 + 1 164 201 NL = N - 1 + 1 164 200	υ			1520
17ER = 0 155 0 COMPUTE ATTENUATION MATRIX PAL(LOS.ZONE) 155 0 COMPUTE ATTENUATION MATRIX PAL(LOS.ZONE) 155 0 C COMPUTE ATTENUATION MATRIX PAL(LOS.ZONE) 155 0 C C COMPUTE ATTENUATION MATRIX PAL(LOS.ZONE) 155 0 C P^L(1+N) = 1+0 0 156 0 D 2-0 U 158 0 C WORK IN FROM ZONE N-1 TO CENTER 00 0 D 2-0 U 158 0 D ZON U D 160 0 N U = N-100 1 160 168 0 D E NU-LOO 168 168 0 D E NU-LOO 168 168 0 D E MORK BACK OUT FROM SYMMETRY PLANE 000 168 0 D CONTINUE D 000 168 000 168 0 MORK BACK OUT FROM SYMMETRY PLANE 000 168 000 167 000 167	υ	RE-ENTRY POINT FOR ITERATIVE CALCULATION	000	1530
155 0 COMPLIFE ATTENUATION MATRIX PAL(LOS.ZONE) 700 D0 218 1 = 1.0 700 D0 218 1 = 1.0 153 700 D0 218 1 = 1.0 153 700 D0 218 1 = 1.0 153 700 D0 210 100 154 700 D0 200 0 161 700 E NJ E 161 700 E 1 161 163 700 E AL(1,NJ) E 163 700 E AL(1,NJ) E 164 700 E AL(1,NJ) E 164 700 F AL(1,NJ) E 164 700 F AL(1,NJ) E 000 165 700 F AL(1,NJ) E 000 165 700 F AL(1,NJ) E 000 165 700 F AL(1,NJ) F 000 165	. `	ITER = 0		1540
C COMPLIFE ATTENUATION MATRIX PAL(LOS.ZONE) 0000156 POD D0 218 1 = 1.0 157 PON D0 218 1 = 1.0 158 POR D0 218 1 = 1.0 158 PAL(1.00) = 1.0 159 158 POR D0 209 J = 2.0 00 159 D0 209 J = 2.0 00 160 160 D0 209 J = 2.0 00 161 161 D1 NJ = N + 1 - J 00 161 163 163 D1 = N-1.0.1 0.0 200 163 163 PAL(1.0.J) = PAL(1.0.J+1) * ZAT(1.0.J+1) 200 164 PAL(1.0.J) = PAL(1.0.J+1) * ZAT(1.0.J+1) 200 164 PAL(1.0.J) = PAL(1.0.J+1) * ZAT(1.0.J+1) 200 165 PAL(1.0.J) = PAL(1.0.J+1) * ZAT(1.0.J+1) 200 166 POD PAL(1.0.J) = PAL(1.0.J+1) * ZAT(1.0.J+1) 200 200 200 200	υ			1550
200 D0 218 I = 1.N 157 20 D0 209 J = 2.N 158 D0 209 J = 2.N 00 159 D0 209 J = 2.N 00 159 D0 209 J = 2.N 161 D0 200 J = 2.N 161 D1 2 N + 1 - J 161 C NJ = N + 11 - J C NJ = N + 11 - J C NJ = N - 111.1 D1 = N - 111.1 201 (1.NJ+1) * 241(1.NJ+1) PAL(11NJ) = PAL(11NJ+1) * 241(1.NJ+1) 163 PAL(11NJ) = PAL(11NJ+1) * 241(1.NJ+1) 163 PAL(11NJ) = PAL(11NJ+1) * 241(1.NJ+1) 163 PAL(11NJ) = PAL(11NJ+1) * 241(1.NJ+1) 164 PAL(11NJ) = PAL(11NJ+1) * 200 164 PAL(11NJ) = PAL(11NJ+1) 163 PAL(11NJ) = PAL(11NJ+1) 164 PAL(11NJE 000 200 PAL(11NJE 000 165 PAL(11NJE 000 165 PAL(11NJE 164	υ	COMPUTE ATTENUATION MATRIX PAL (LOS.ZONE)	0000	01560
C WORK IN FROM ZONE N-1 TO CENTER 158 DC ZC9 J = 2.N 00 159 DC ZC9 J = 2.N 160 160 NJ = N + 1 - J N 1 - J 161 161 C NJ = N + 1 - J 160 161 161 C NJ = N + 1 - J 161 161 161 C NJ = N - 11 - 1 161 163 163 C NJ = N - 11 - 1 161 163 163 PAL(11-NJ) = PAL(11-NJ+1) # ZAT(1.NJ+1) 163 163 PAL(11-NJ) = PAL(11-NJ+1) # ZAT(1.NJ+1) 163 163 POD PAL(11-NJ) # PAL(11-NJ+1) 163 163 POD PAL(11-NJ) # PAL(1-NJ+1) 163 164 POD PAL(11-NJ) # PAL(1-NJ+1) 164 164 POD PAL(1-NJ+1) # ZAT(1-NJ+1) 164 164 POD POD POD POD 164 164 POD POD POD POD POD 164 POD	202	0 D0 218 1 = 1 • N		1570
C WORK IN FROM ZONE N-1 TO CENTER 00 159 00 209 J = 2.N 00 209 J = 2.N 01 = N + 1 - J 0 NJ = N + 1 - J 0 NJ = N + 1 J 0 NJ = N + 1 J 161 162 163 163 163 163 163 163 163 163		$P^{1}(1, N) = 1, 0$		1580
D0 2n9 J = 2.N 160 NJ = N + 1 - J 161 NJ = N - 1.1.1 161 R NJ = N - 1.1.1 161 PAL(1.NJ) = 0.0 163 PAL(1.NJ) = 0.0 163 PAL(1.NJ) = 0.0 163 PAL(1.NJ) = PAL(1.NJ+1) * ZAT(1.NJ+1) 163 PAL(1.NJ) = PAL(1.NJ+1) * ZAT(1.NJ+1) 164 PAL(1.NJ) = PAL(1.NJ+1) * PALF 000 165 PAL(1.NJ) = PAL(1.NJ+1) * ZAT(1.NJ+1) 164 PAL(1.NJ) = PAL(1.NJ+1) * PALF 000 165 PALTIPLYING TO GET ATTENUATION 000 168 PALTIPLYING TO GET ATTENUATION 000 168	υ	WORK IN FROM ZONE N-1 TO CENTER	00	1590
NJ = N + 1 - J 161 C NJ = N-1.1.1-1 PAL(1.NJ) = 0.0 163 IF (NJ-LT-1) GO TO 209 163 PAL(1.NJ) = PAL(1.NJ+1) * ZAT(1.NJ+1) 163 POOD TO 200 165 POD CONTINUE 166 POD CONTINUE 167 POD CONTINUE 167 POD CONTINUE 168 POD CONTINUE 168 POD CONTINUE 167 POD CONTINUE 168 POD CONTINUE 168 POD CONTRIBUTION FROM OTHER HALF 000*169 POD POD CONTRIBUTION FROM OTHER HALF 000*170 POD POD POD POD 168 POD POD POD 168 POD POD 100*170 POD POD 100 FROM POD POD 100 FROM POD 100 FROM POD 170		DO 240 J = 2.1N		1600
C NJ = N-1.11 162 PAL(1.NJ) = 0.0 163 IF (NJ-LT.1) GO TO 209 163 PAL(1.NJ) = PAL(1.NJ+1) * ZAT(1.NJ+1) 164 POO TO 200 165 POO CONTINUE 166 PO CONTINUE 167 PO CONTINUE 166 PO CONTINUE 167 PO CONTINUE 168 PO CONTRIBUTION FROM OTHER HALF 000*169 PO PO CONTRIBUTION FROM OTHER HALF 000*169 PO PO CONTRIBUTION FROM OTHER HALF 000*169 PO P				1610
PAL(1,NJ) = 0.0 163 IF (NJ-LT.1) GO TO 209 164 PAL(1,NJ) = PAL(1,NJ+1) * ZAT(1,NJ+1) 164 POO 165 000 165 POO CONTINUE 166 C WORK BACK OUT FROM SYMMETRY PLANE C WORK BACK OUT FROM SYMMETRY PLANE C ADDITIVE CONTRIBUTION FROM OTHER HALF C ADDITIVE CONTRIBUTION FROM OTHER HALF O NULTIPLYING TO GET ATTENUATION	υ	$N_{\rm c} = N - 1 \cdot 1 \cdot 1 \cdot - 1$		1620
IF (NJ-LT-I) GO TO 209 164 PAL((1-NJ) = PAL((1-NJ+1)) * ZAT((1-NJ+1)) 000 165 POG CONTINUE 165 C WORK RACK OUT FROM SYMMETRY PLANE C WORK RACK OUT FROM SYMMETRY PLANE C MDDITIVE CONTRIBUTION FROM OTHER HALF C ADDITIVE CONTRIBUTION FROM OTHER HALF C KEEP MULTIPLYING TO GET ATTENUATION		PAL(1.NJ) = 0.0		1630
PAL(1,NJ) = PAL(1,NJ+1) * ZAT(1,NJ+1) 000 165 POG CONTINUE 166 C WORK BACK OUT FROM SYMMETRY PLANE C MDDITIVE CONTRIBUTION FROM OTHER HALF C KEEP MULTIPLYING TO GET ATTENUATION OO* 170		IF (NJ.LT.I) GO TO 209		1640
209 CONTINUE C WORK BACK OUT FROM SYMMETRY PLANE C WORK BACK OUT FROM SYMMETRY PLANE C ADDITIVE CONTRIBUTION FROM OTHER HALF C KEEP MULTIPLYING TO GET ATTENUATION OO* 170		PAL((*NJ) = PAL((*NJ+1) * ZAT(!*NJ+1)	000	1650
C WORK BACK OUT FROM SYMMETRY PLANE C WORK BACK OUT FROM SYMMETRY PLANE C ADDITIVE CONTRIBUTION FROM OTHER HALF C KEEP MULTIPLYING TO GET ATTENUATION OO* 170	200) CONTINUE		1660
C WORK BACK OUT FROM SYMMETRY PLANE C ADDITIVE CONTRIBUTION FROM OTHER HALF C REEP MULTIPLYING TO GET ATTENUATION 00* 170	C			1670
C ADDITIVE CONTRIBUTION FROM OTHER HALF C KEEP MULTIPLYING TO GET ATTENUATION 00* 170	υ	WORK BACK OUT FROM SYMMETRY PLANE	c	1680
C KEEP MULTIPLYING TO GET ATTENUATION	U	ADDITIVE CONTRIBUTION FROM OTHER HALF	0000	1690
	C	KEEP MULTIPLYING TO GET ATTENUATION	*00	1700

A-17

i

U	MILTIPLY BY EMISSIVITY = 1 - ZAT FOR EACH ZONE AFTER ADDITION	00001710
υ		1720
	ATT = PAL([].]) * ZAT([].])	1730
	DO 218 J = 1.0N	1740
	PAL(1.) =(PAL(1.) + ATT) * (1 - ZAT(1.))	00001750
α. Ι.Ο.	ATT = ZAT(1.J) * ATT	1760
υ		1770
υ	SAVE LOS RADIANCF	1780
	DO 222 1 = 1.N	1790
202	RAD(1) = FNF(1)	1800
υ	SOLVF FOR ZONAL PLACKBODY FUNCTIONS	00 1810
	C•	1820
	K = ISIMEQ(30.N.1.PAL.RAD.F.1A)	00 1830
1	IF (K.GT.) WRITE (6.9) K.PAL	00 1840
υ		1850
0000	DAD(*) = 100 = 24((*)) DAD(*) = DAL(1.1)	
i J U		1890
Ċ	FIND RIACKRODY TEMP	1900
•	IF (WL+LE+0+0) GO TO 270	1910
	DO 235 1 = 1.N	1920
	IF (RAD(I) .LT. 0.001) RAD(I) = 0.001	000 1925
	TS = ALOG (1.0 + 11909.0 / (RAD(1) * WL**5))	00001930
	TB(1) = 14388.0 / (WL *TS)	+ 1940
2 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CONTINUE	1970
υ		1980
υ	CHECK FOR ITERATION	1990
	<pre>IF (] ARS(KDATA) • GT • 1) GO TO 300</pre>	0 2000
υ		2010
U U	DONF - OUTPUT	2020
250	WRITE (6.8) AM. (K. AKP(K), EPS(K), RAD(K), TR(K), K=1.N)	00005030
	WRITE (6.16) A	2032
	IF (ISF .GE. 0) WRITE(6.14)	0 2033
	IF (70A .NE. 0) WRITE(6.15)	0 2035
	IF ([ABS(KDATA).GT.]) WRITF (6.13) ITER	00002040
υ		2050
	$DO 2^{4}$ = 1 = 1 • N	2060
	IF (TB(I).LT.4000.0) GO TO 252	00 2070
	$f_{10}(1) = 0.00$	000Z

	PAD(f) = 0.0	2090	
202	CONTINUE	2100	
U	MAKE CHARTS	2110	
1		2120	
	TB(N) = 0.0	2130	
	RAD(N) = 0.0	2140	
	FPS(N) = 0.0	2150	
υ		2250	
U	GO GET NEXT DATA SET	2260	
	GO TO 120	2270	
υ		2280	
υ	DATA ERROR	2290	
270	WPITE (6.271) WL	2300	,
271	FORMAT ('O RAD VALUE FOR WL=', E12.2)	00* 2310	
	IF (1APS(KDATA).LE.1) GO TO 120	00 2320	
	READ (5.1) DUMMY	2330	
	READ (5.1) DUMMY	2340	
	GO TO 120	2350	
()		2360	
U		2370	
υ	ITERATE - IS THIS FIRST TIME	0 2380	
300	IF (ITER.GT.0) GO TO 350	2390	
	IF (1ABS(KDATA).E0.3) GO TO 340	00 2400	
U	READ DATA ON K AND A	2410	
c		2420	
U	LN K = FO + F1/T + F2/T**2 + F3/T**3	00 2430	
C	LOG ARAR = A0 + A2*T**2	0 2440	
U	DATA AND ANALYSIS ARE FROM GD/C REPORT OF DEC. 1966	00002450	
	READ (5.307) FO. FI. F2. F3. AO. A2	00 2460	
	READ (5.307) PT	2470	
100	FORMAT (GE12.7)	2480	
U		2490	
340	WRITE (6.341) F0.F1.F2.F3.A0.A2.PT	00 2493	
341	FORMAT (19X. BAND MODEL DATA USED! / 19X. 6E12.4/ 19X.PT ='.	00002495	
	1 F12.4)	2496	
υ		2500	
22C	TER = TER + I	2510	
	1TERP = 0	2520	·
E		2530	
C	COMPUTE K FOR EACH ZONF - ALSO P AND ASTAR	00002540	

353	DO 355 I = 1.N	2550	
	T(1) = TB(1)	2560	
	IF (T(l)•GT•4Ω00•Ω) T(l) = 4000•Ω	00 2570	
	AK(1) = EXP (FO + F1/T(1) + F2/T(1)**2 + F3/T(1)**3)	00002580	
	AK(1)=(273.0/T(1)).AK(1)		
	P(1) = (AVKP(1, 1) / A) / AK(1)	0 2590	
	TS = T(1) / 273.0	2600	
	THETA = 0.44 / TS + 0.09 / SQRT(TS)	00 2610	
	CSTAP = -0.1002 + TS*(0.076495 - TS*(0.008116 - TS * 0.000592))	00002620	
	G = THFTA * P(1) +(PT -P(1)) * 0.044 / SORT(TS)	00002630	
	GS = THETA * CSTAR + (1.0 - CSTAR) * 0.044 / SORT(TS)	00002640	
355	ASTAR(1) = 10.0 ** (A0 + A2*T(1)**2) * G / GS	00002650	
		2660	
	WRITE (6.10) ITER. (K. AK(K). P(K). T(K). ASTAR(K). K=1.N)	00002670	
	IF (1TERP.LT.O) GO TO 406	2680	
	IF (]TER.F.Q.]) GO TO 377	* 2690	
	IF (ITERP.GT.O) GO TO 377	0 2700	
	STO = ST	2710	
	dy = 0q2	2720	
	ST = 0.0	2730	
	C•C = 45	2740	
	CALCULATE DEVIATION	2750	
	$D0 \ 365 \ 1 = 1 \cdot N$	2760	
	ST = ST + (T(1)-TOLD(1))**2	0 2770	
365	2n = 2p + (p(1) - po(p(1)) + +2	0 2780	
	ST = SORT (ST / N)	2790	
	SP = SORT (SP / N)	2800	
	WRITE (6+368) ITER+ ST+ SP	2810	
	IF(ITER.EQ.2) GO TO 377	* 2820	
368	FORMAT (10 ITER =1,13, 1 ST =1, FI2.2, 1 SP =1 F12.4)	00:002830	
		2840	
	ARE WE DOING RETTER	2850	
	IF (cT.GT.CTO.OR.CP.GT.SPO) 60 TO 425	00* 2860	
	IF (<pre>ct.lt.in.0.AND.SP.Lt.0.01*PT) G0 T0 Z50</pre>	00002870	
		2880	
	TRY AGAIN	2890	
		2900	
	STORE PRESENT VALUES	2910	
377	DO 379 I = 1.N	2920	
	TOLD(1) = T(1)	2930	

	379	POLD(1) = P(1)	2940	
υ			2950	
υ			2960	
U		LOOP TO OBTAIN CONSISTENT PRESSURES	00 2970	
U		E = V*L /(1+KPL/44)**C.	2980	
U			2990	
		CALL QUADI(IQA)	2662	
		DO 3A6 I = 1.N	3000	
		TP(1) = EFN(1)	3010	
		DO 3A6 J = 1 • N	3020	
υ		CONVERT FOR STATISTICAL REPRESENTATION	00003030	
	386	B(I.J) = B(I.J) / SORT(I.O + AVKP(I.J) / (4.0 * ASTAR(J)))	00003070	
		F = 1.0	3080	
		K = 1SIMEQ (30.N.1.8.TP.F.1A)	0 3090	
		IF (K.GT.1) WRITE (6.9) K.D	0 3100	
U		B(1.1) CONTAINS NEW KP	3110	
		DO 30R 1 = 1.N	3120	
		DELTA =(B([+]) - AKP(])) / AKP(])	00 3130	
	39 8	IF (ABS(DELTA).GT.0.01) GO TO 400	00 3140	
		WRITE (6412) ITER. ITERP	3150	
		TERD = -100	3160	
	400	DO 401 I = 1.0N	3170	
	401	AKP(1) = B(1,1)	3180	
		CALL QUAD2(10A)	3185	
		IF (ITERP+LT+0) GO TO 353	0 3190	
U		NFED TO ITERATE ON P	3200	
		WRITE (6.403) ITERP	3210	
		TERD = TERD + I	3220	
	403	FORMAT (*0 ITERP = *,13)	3230	
		IF (ITERP.GT.10) 60 TO 425	0 3240	
		GO TO 353	3250	
υ			3260	
υ		SET UP ZAT USING STATISTICAL MODEL	00 3270	
	406	DO 411 I = 1.0	3280	
		DO 411 J = 1.N	3310	
	411	ZAT(1.)) = FXP(-AVKP(1.)/SORT(1.0 + AVKP(1.)/(4.0 * ASTAR(J)))	00003330	
U		SALVE FOR NEW TEMP	3340	
		GO TO 200	3350	
U			3360	
U		DIVEDGING	3370	

00 3380 00003390 00003400 3410 3420 3420 F12.2. •ST =• F12.2) 14. • • SPO • R ITER 425 WRITE (6.426) ITER. ST. STO. SP. SPO 426 FORMAT (1) DIVERGING - TOO BAD - ITER F12.2. ISP = 1. F12.2. •STO =•• GO TA 250 FND GIVE UP •

υ

	SUBRAUTINE QUAD	4000
		4010
	USED WITH ZR-5 TO REPLACE STEP FUNCTION WITH QUADRATIC	00004020
• •	IOA .NE. O REVERTS TO STEP FUNCTION	00 4030
	3 ENTRIES9 QUADC GENERATES WEIGHT MATRICES WIN(LOS+1.ZONE+1)	00004040
	QUADI SUMS WIN TO GET COEFFICIENT OF AKP(ZONE+1) (00004050
	QUADZ DOFS AVKP = WIN * AKP	00004060
	WIN DOES NOT CONTAIN ZONE LENGTH = A SO NEEDS ONLY TO BE SET ONCE	00004070
		4080
	ROTH QUADI AND QUADZ APPLY LENGTH FACTOR	001 4090 4100
	COMMON N. A. SMN(30.30). DZ(30.30). B(30.30). AKP(30).AVKP(30.30)	00004110
		4120
	REAL *8 WIN(30+30+3)+ CO+ CI+ C2+ DY+ Y1+ Y2	00004130
	· ·	4140
	SFTUP WEIGHT MATRIX	0 4150
	FNTRV QUADO	4.160
	n0.3 I = 2.30	4170
	ZERO EXTRA ELEMENTS FOR THIS LOSHI	00 4180
	1 = 1 = 1	4190
	DO 1 J = 1.11	4200
	DO 1 K = 1.3	4210
	1 win(1)(K) = 0.0	4220
		4230
	GET FEM FOR FACH ZONF+1	4240
	CO = (1-1) * (1-1)	4245
	DO 3 J = 1.30	4250
	く) = DcORT((J-1)*(J-1) - Ci)	0 4260
	4S = DCORT(J + J - CO)	4270
	1 ~ ご ~ ご ~ こ ~ ご	4280
	C1 = C0 + V1 * V2	4290
	C2 = 12•0 * (Y2 + C0 * DLOG((Y2 + J) / (Y1 + J - 1))) / DY	0004300
	UX = DX / 54°U	4310
	M1N(1•J•1) = DX *(1•0 + 4•0 *(C1 + C * (1• + 2 * J)) = C * C2)	00004320
	MIN(L.) = DX *(25°C + 4*7*(1+4*7) = 8°C * C1 + (2*7-1) * C2)	00004330
	3 WIN(1.0.3) = DX *(1.0 + (0-1) * (8.*0 + C2) + 4.0 * C1)	00004340
		4320
•	DO FIRST ROW = 0TH LOS	4360
		4370
	WIN(1, J, 1) = 0.04167	4380

1

WIN11.1.3) = 0.00167	0624
4 WIN(1.J	4400
GO TO 20	4410
	44ZO
	4440
IF (TOA.NE.C) GO TO 7	4450
	4460
DO 6 I = 1 • N	0644
B(1,1) = 0,0	4495
10 J = 2 + K	4500
5 B([+)) = DY * (WIN([+)+1+3) + WIN([+)+2) + WIN([+)+1+1))	1)) 00004505
$\mathcal{L} = \mathcal{L} + $	000 4510
B(1,1) = DY	4515
B(2,1) = DY + W[N(2,2,1)]	4520
GO TO 20	4530
	4540
STEP FUNCTION OPTION	4550
7 DO R I = 1 • N	4560
B(1,1) = 0,0	4570
P(1,1) = DV	4580
DO 9 1 = 2.1N	4590
N•2 = 7 6 0ŭ	. 4600
9 B([,]) = DY * DZ([-1,]-1)	4610
CO IV 20	4620
	4630
CALCULATE AVKP	4640
ENTRY QUADZ(10A)	4650
DY = A	.4660
IF(IDA.NF.O) GO TO 11	4670
AKP(N+1) = C.O.	4675
AVKP(1.1) = DY*((WIN(1.1.1)+WIN(1.1.2))*AKP(1)+ WIN(1.1.3)*A	(+1+3)*AKP(2))00004680
	4685
$2010 = 2 \cdot N$	4690
AVKP(1.1) = DY*(WIN(1.1.1)*AKP(1-1) + WIN(1.1.2)*AKP(1)	
1 + ×IN(1•1•3)*AKP(1+1))	00 4710
٩٨٨٩(١•٨) = ٢٧ * (١٩١٨(١•٨٠)) * ٩٨٩(٩٠) + ١٩٨٩(٩٠) = ٩٨٩(٩	* AKP(N)) 00004715
	4 1 1 2 0 4 1 4
	t - UC

υυ

A-24

υυ

υυ

4770 4780 4810 4815 4820 4830 4840 4850 4760 4790 4800 00004730 000 4740 c c AKP(J-1) + WIN(1, J, 2) * AKP(J) AKP(J+1)) = DY * DZ(1-1.J-1) * AKP(J) * * (E+C+L)NIM (I.C.L)NIM) = DV * AKP(1) AKP(1) * c ≻ • c ⊪ ॥ ≭ Z•∂ ⊲ ≣ Z•3 NON-QUAD AVKP IN AVKP(1.J) AVKP(1.1) AVKP(I.J) AVKP(1.1) AVKP(1.1) 00 TC 20 RFTUDN 00 10 00 12 ON 2 ~ c - √

	NUDATION AND AND AND AND AND AND AND AND AND AN	
υ	KUUTINE TU CURRECT FOR SPATIAL RESOLUTION ELEMENT	
υ	TWO FNTRIES9 SLITI READ A NEW SLIT FUNCTION	0202020
υ	SLITO APPLY SLIT FUNCTION	00002030
ι		5040
)		
	REAL * 4 SFO(50) • SF1(50) • X(400) • Y(400) • Z(400) • 1(30)	
	INTEGER JCHAR(2)/55.16/	2010
υ		5080
U	READ SLIT FUNCTION	5090
,	ENTRV CLITI	5100
		00* 2110
	READ (JAI) NOVE ADDA (JAU/ HIJA HINDAI)	
	I FORMAT (IIZ+ BFIZ+6 / (GFIZ+6))	071C 00
υ	NSO # NOO OF FLEMENTS TO BE READ IN	00005130
U	ASO = SPACING BETWEEN ELEMENTS IN CM.	00005140
	WRITE (6.10) NSO. ASO. (1.SFO(1+1). 1=1.NSO)	00005145
	10 FORMAT (IOSLIT FUNCTION INPUT! / 101. 13. 1 POINTS WITH! F7.4.	00005150
	1 • CM SPACING• // (• • 16• E12•4))	00005151
		n 1 n n
	SFO(NSO+2) = 0.0	5160
	ASI = 0.	5165
U		5167
	GO TO 99	5168
υ		5169
د	APPLY SLIT FUNCTION	5170
;	ENTRY SLITO(T)	5180
ι	EXPAND T BY FACTOR OF IN USING CUBIC FIT TO 4 POINTS	00002190
, ر	USE I INFAR WEIGHTED AVERAGE TO REDUCE DISCONTINUITIES	00005192
) ر	LISE EXAMPTRY TO GET EXTRA POINTS IN CENTER	00005195
, ر	OTH I DE EDFE TO Y(31)	5200
,	Y1) = T(4)	5210
	X(11) = T(3)	5220
	x(21) = T(2)	5230
	DO P I = 1.070 ME	5240
		5250
L	EXTEND OUTER FDGF	5260
;	K = 10 × NZONE + 31	5265
		5270
	1 + (T(NZCNE) - GT - T(NZONE - 1)) = X0 = 1 - 0	r00 5275
	IF $(T(NZONE) \bullet FQ \bullet T(NZONE-1))$ X0 = T(NZONE)	~~~~

	X(K) = X0	5290
	X(K+10) = X(K-10)	9625
υ	FILL IN GAPS	5300
	$D^{2} = 21 + 10$	5310
	$x_0 = x(1)$	5315
	X2 = (X(1+1u) + X(1-10) - 2•0 * X0) / 400•0	00002320
	$x_3 = x_0 - x(1-1_0) - (x(1+1_0) - x(1-2_0)) / 3_0$	00005325
	XI = (X(1+1c) - X(1+1c) - X3) / 40°C	00 5330
	0° 2° 0° 1° 0° 1° 0°	5335
	X3 = X3 / 4000.0	5340
	DO 20 J = 1.9	5345
	X(1-) = Xu + Λ = (X) + Λ = (X) + Λ = (Λ) = (Λ-1)	00005350
	C = (10• - J) / 10•0	5322
	X(1+7) =(X) - 7 + (X] - 7 + (X5 - 7 + X3))) + C	00002360
	L = J + 10	5365
	□ X(I+F) =(X∪ + F * (XI + F * (X2 + F * X3))) * C + X(I+F)	00005370
υ		5375
υ	ADJUST LAST ZONE USING QUADRATIC CONTRIBUTION	00002380
	C = (X(K+1v) - X(K)) / 2000+0	5385
	X1 = X(K) / 20•0	5387
	00 20 1 = 1.9	5390
		5392
	XO = X(X) + 1 + (X) + C + C + C)	.00 2362
	JF(XO - LT - O - O) XO = O - O	5400
	IF(X) - GT - 1 - 0) X = 1 - 0	5405
	<pre>LF (ABS(X0-X(K)) .GE. ABS(X(K-J-1)-X(K)))X0= X(K) + (J/(J+1.0))</pre>	00005410
	1 ** C * (X(Y-J-I) - X(Y))	5411
	y X(K−J) = X0	5415
C		5420
υ	FIND FIRST CROSSING POINT	* 5425
	X0 = X(X)	5430
	1F(X0 .EQ. 1.0) GO TO 24	* 5405
		5440
	23 IF(X(1).LF. 0.0) GO TO 26	* 10445
	24 DO 25 1 = 62+K	5450
	25 [F(X(]).GF. 1.0) GO TO 26	+ 5455
	26 DO 27 J = 1.K	5460
	vX = (r)X + c	5465
	DO 24 I = 1+30	5470
	X(K+1) = XU	5475

	2A X(1) = X(62 -1)	5480
U		5490
υ	ADJUST SLIT FUNCTION SPACING TO MATCH DATA	00002200
υ		5501
	IF (ASI •EQ• A/10•) GO TO 55	0 5503
	AS1 = A/10.	5055
	AS2 = AS1 / AS0	5507
υ	EQUALLY SPACED - SYMMETRY NOT ASSUMED - GIVEN CENTER TO EDGE	00005510
υ	NO. OF POINTS TO MATCH DATA SPACING	00 5540
	NSI = ((NSO - 1) / AS2 + 1.75)	0 5550
U	MAKF NFW SLIT FUNCTION ODD	0 5552
	IF (MOD(NS1.2).EQ.0) NS1 = NS1 + 1	00 5554
U		5560
	ICO = NSO / 2 + 2	5270
	1C1 = NS1 / 2 + 1	5580
	J = NSI - ICI	2290
	IF (MOD(NSO+2)+EQ+0) GO TO 45	0 5600
υ	ODD NO. IN ORIGINAL	5610
υ	0DD - 0DD	5630
	SF1(1C1) = SF0(1C0)	5640
	DO 30 I = 1.J	5650
	X0 = 1 * AS2	5660
		5670
	X - UX = UX	5680
	M = N + 1C	5690
	SF1(1C1 + 1) = SF0(M) + XO *(SF0(M+1) - SF0(M))	00002200
		5710
	30 SF1(1C1 - 1) = SF0(M) + XO * (SF0(M-1) - SF0(M))	00005720
	C0 LV 52 UD	5730
υ		5740
		5820
υ	EVEN IN ORIGINAL	5860
	45 SF1(1C1) = 0.5 * (SF0(1C0-1) + SF0(1C0))	00* 2890
	DO 50 1 = 1.J	2000
	XU = 1 * VSS + 0°2	5910
		2650
	N I UX I UX	2030
	M = 1CO + N	5940
	<pre>2E1(1C1 + 1) = 2E0(W) + X0 * (2E0(W+1) - 2E0(W))</pre>	00002620
		5960

•

A-28

•

	50 SF1(1C1 - 1) = SF0(M) + X0 * (SF0(M-1) - SF0(M))	02650000
U		2665
υ		6100
c	NORMAL 1 ZE	6120
		. 6125
	DO 53 1 = 1.NS1	6130
]E (cEl(1)•[L4•∪) ZEl(1) = v•U	0 6135
	53 C = c + SF1(1)	6140
	DO 54 1 = 1.NS1	6142
	54 $51(1) = 51(1) / C$	6144
U		6150
	WRITE (6.61) NSI: ASI: (1. SFI(1): I = 1.NSI)	00006151
	61 FORMAT (1)SLIT FUNCTION USED! / 101. 13. 1 POINTS WITHI. F7.4.	00006152
	1 . CM SPACING. / 50(. 1. 16. F7.4/))	00006153
U		6155
υ	SET LOOP PAPAMETERS	6157
	55 J = Mc1 / 2	6158
	1 + 1 + 1 ÷ ún	6160
υ	FIND LAST OBSERVED DEVIATION	0 6162
	XU = X(Y)	6164
		6166
	56 JF (x(1).NE.xn) 60 TO 57	6168
		6170
	GO TO 56	6172
	57 KMAX = 1 - J	6175
U	KMAX IS LAST ALLOWED DEVIGTION IN TRUE FUNCTION - IST TRY Z = X	00006180
	DO 5R 1 = 1.KMAX	6182
	5A Z'I) = X(I)	6184
U	CLAMD FND OF TRUF FUNCTION	* 6186
	CO 20 1 = KMAX+K	6188
	$59 \ 7(1) = x0$	6190
U		6192
		6194
U	LOOP FOR SLIT CORRECTION	00 6196
	$4^{\circ} 00 6^{\circ} 1 = J0.4 KMAX$	6200
	C = c E I (C) * Z(I)	6210
	nn 67 L = 1.J	6220
	67 C = C + SFI(JC = L) * Z(I = L) + SFI(JC + L) * Z(I + L)	00006230
	6R + (1) = C	6270
C		6280

6290 6300 6310	6320	6340	6360	6370	6375	6380	6382	6385	* 6387	6390	6392	6X. 00006394	* 6395	6400	0 6410	6420	6430	6440	6450	6460	6480	6490	6500	6510	6520	6530	
												='. E12.3.															
- -				L			×.					MAX. DEV.														<i>.</i>	
	•								•			• I4• 6X•							·								
САВРЕСТ AND COMPARE C3 = 0.0 C1 = 0.0	DO 40 I = CO+KRAX To = <11 - <11	Z(1) = Z(1) + CZ	CZ = ABS(CZ)	IF (r2 •67• C1) C1 = C2	C3 = C3 + C2 + C2	70 CONTINUE	$10 71 1 = 1 \cdot J$	$71 \ 7(1) = 2(62 - 1)$	C3 = SORT (C3 / (KMAX -J))	NC = NC + 1	MRITE (6.72) NCY, C1, C3	72 FORMAT(+ SLIT FUNCTION CYCLE +	1 'STD. DEV. ='. F12.3)	1F(NCY.GT.10) GO TO 75	IF (r1 .GT. 0.005) 60 TO 69			75 D0 74 I = 1.K	76 Y(1) = 1-1	PLOT BESHLTS		REPLACE FLEMENTS	DO BA I = 1 • NZONE	Bn T(1) = Z(21 + 10 + 1)	99. RET(JDN	FND	

A-30

υU

υυυ

υ

	FUNCTION ISIMER(DSM + NF + NC + SUBPROGRAM TO SOLVE SIMULTANEOUS ARGUMENTS-	A · B · DET · C) LINEAR EQUATIONS	AWCT0190 AWCT0030 AWCT0030
			AWCTOOSO
D	DATE- 1/13/67 MODIFIED FOR	COMPILATION IN RELEASE 14	AWCT0060
Ð			AWCT0070
Ð	DSM DIMENSIONE	D SIZE OF COEFFICIENT MATRIX	AWCTOOBO
L)	NE ACTUAL NUM	BER OF EQUATIONS FOR THIS CALL	AWCT000
e	NC NUMBER OF	COLUMNS IN CONSTANT MATRIX	AWCT0100
 D	COEFFICIEN COEFFICIEN	T MATRIX	AWCT0110
Ð	E CONSTANT M	ATRIX	AWCT0120
υ	DET INPUT - SC	ALE FACTOR, OUTPUT - FACTOR TIMES	AWCTC130
U	DETERMINAN	T VALUE OF COEFFICIENT MATRIX	AWCTO140
υ	C TEMPORARY	STORAGE FOR SUBROUTINE	AWCT0150
Ð	ISIMEO RETURNS 1	IF OK, 2 IF OVFLO. 3 IF SINGULAR	AWCT0160
Ð	IF NC IS NEGATIVE . TH	E INVERSE OF THE COEFFICIENT	AWCT0170
Ð	MATRIX IS REQUIRED. M	ATRIX B'IS SET UP AS IDFNTITY.	AWCT0180
	LOGITAL DVO		FWCTC200
	INTERER DSM. C. T. SUBI. SUB2.	С • Х	AWCT0210
	DIMENSION B(1) . C(1)		AWCTO220
0	INITIALIZE		AWCT0230
			AWCT0240
			AWCT0250
	M = TABS(NC)		AWCTO260
	ISIMEQ = 1		AWCT0270
	DVO = •FALSE•		AWCT0280
	N = 1 + N		AWCT0290
	1 C(1) = 1		AWCTO300
	1F(Nr) 5, 15, 15		AWCT0310
υ	INVERSE REQUIRED		AWCTO320
	2 20135 = 0	· ·	AWCTO330
	N0 10 1 = 1 •N	· ·	AWCT0340
. •			AWCT0350
	DO 6 I = 1.N		AWCT0360
	S(I) = $S(I)$ = 1 + 1	•	AWCT0370
	6 B(cUB1) = 0.0		AWCT0380
	SUB1 = SUB2 + J		AWCT0390
	$B(S()B1) = 1 \cdot 0$		AWCT0400
	n sub2 = sub2 + D	· ·	AWCT0410
	GO TO 15		AWCT0420

AWCT0490 AWCT0830 AWCT0840 AWCT0850 AWCT0860 AWCT0440 AWCT0450 AWCT0460 AWCT0480 AWCT0690 AWCTO730 AWCT0740 AWCT0760 AWCT0790 AWCT0800 AWCT0810 AWCT0820 ONCTO430 AWCTÓSOO AWCTO510 AWCT0670 AWCT0680 AWCT0700 AWCT0710 AWCT0720 AWCT0750 AWCT0770 AWCT0780 NUCTO520 AWCT0530 AWCT0540 AWCT0550 AWCT0560 AWCT0570 AWCTO580 AWCT0590 AWCT0600 AWCT0610 AWCT0630 AWCT0640 C N ABS(A(SUB1))) GO TO **7071** LOV I d • FQ. 0.0) GO TO 2000 ENTRY IDETRM(DSM, NE, A, DFT) 260 • ЦС • SINGULAP MATPIX 5 GO TO 24 = P(SUB1) = A (SUB2) 5 = A(S()B1)31 C SUB2 = SUB2 + DС IF (ABS (PIVOT) ۲. ۳ Z• | || <u>م</u> 1F (JP •FQ. L) GO 4 .TRUF DO 20 J = L•N = SUB1 + NTEPCHANGE COLUMNS COMPUTE DETERMINANT = DET * PIVOT (PVO) GO TO 110 ۵ (01 09 (010) nsw subl = sublĽ. Z 1F (1 •EQ• L) z A(1) START MAIN LOOP Z J F(.NOT. DVO) = SUR1 DO 25 J DO 30 J B(SUB1) A (SUB2) <u>ה ה</u> כ n PIVOT 11 H 11 H sUB1 = SUB1 CONTINUE = C(L) DIMFNSION DO 1000 L tı C 0 DO 40 PIVOT SRUS TEST FOR ر (_____ 11 SUP 1 IF (P 1 VOT (d)) 11 6 L D I DET ۵ L ۲ ⊢ 020 L z C 24 ເ **C** ญ រ ខ 0 0 0 ເ ເ С М 4 C υ U U υ

A-32

WCT0880 AWCT0890 AWCT0870 AWCT0900 AWCT0910 AWCT0920 AWCT0930 AWCT0940 AWCT0950 AWCT0960 AWCT0970 AWCT1020 AWCT1080 AWCT1090 AWCT1100 AWCT1160 AWCT1170 AWCT1200 AWCT1210 AWCT1230 AWCT1240 AWCT1250 AWCT1260 AWCT0980 AWCT0990 AWCT1010 AWCT1030 AWCT1040 AWCT1060 AWCT1070 AWCT1110 AWCT1130 AWCT1140 AWCT1150 AWCT1180 AWCT1190 AWCT1220 AWCT1000 AWCT1050 AWCT1120 **C**•O = * S)) A(SUB2) •EQ. L •OR. PIVOT •EQ. 0.0) GO TO 400 - PIVOT * B(SUBI) ABS(2.0E-6 GO TO 350 LP1) G0 T0 300 COEFFICIENT MATRIX (DVO .OR. J .GT. M) * A (SUB1) F (ABS(A(SUB2)) .LT A (SUB2) B(SUB2) = R(SUB2)GO TO 3000 A (SUB2) ∩ + COLUMN IF (NVO) GO TO 1500 REARDANGE VARIABLES = B(S)B2Ş z 4 DO 1200 J = 1.M z SUB1 = SUB1Z•[=] $P_{IVOT} = A(IP)$ A (SUB2) = SUB2 m = PIVOTH SUB2 c = A(SUB)C = SUB1 A(SUB1) = Ħ DO 360 J 11 REDUCE PIVOT DET = -DET ר ט ב A (SUE2) 00 120 SUB1 = sub2 = A (SUB1) H 2 L CONTINUE 11 2 = 0 ו וו D0 400 1201 s()B2 SINGULAR CONTINUE CONT INUE SUB2 F C S()B1 v, SUB2 SUB1 IF (DVO) RETUON L Cawly SUBI SUBS 000 0001 1201 000c 120 200 300 350 360 400 しいで 1500 1100 υ U υ

A-33

GO TO 1500 3000 CONTINUE GO TO 1500 END

AWCT1290 AWCT1300

AWCTIZTO

INPUT GUIDE TO THE DATA REDUCTION PROGRAM FOR AXISYMMETRIC ZONE RADIOMETRY

INPUT GUIDE TO THE DATA REDUCTION PROGRAM FOR AXISYMMETRIC ZONE RADIOMETRY

Card	<u>Col</u> .	Format	Description
1 ·	1-72	18A4	Title card
2	1-12	I12	Number of zones
	13-24	F12.8	Zone width, cm
	25-36	F12.8	Correction to plume radiance due to window absorption
•	37-48	F12.8	Blackbody radiance, $W/cm^2 - \mu - sr$
	49-51	I3	Property variation
			= 0 Quadratic property variation
			= 1 Step function; constant zonal properties
	52-54	13	Slit function correction control parameter
			= 1 Apply a new function
			= 0 Apply previously used function
			=-1 Do not correct for slit function
	55-60	I6	Data type
			= 0 or 1 For spectral data
			= 2 For spectrally averaged data
	-	· ·	(Positive values imply smoothed input — zero or negative values imply deflection values input)
2	61-72	F12.8	Wavelength in microns
3a			Deflection Data (or) Smoothed Data For Deflection Data
	1-12	F12.8	
	13-24	F12.8	Blackbody Data: 6 values to a card until
		F12.8	all zone data are input
	61-72	F12.8	
3b	1-12	F12.8	
	13-24	F12.8	Flame Data; 6 values to a card until
		F12.8	all zone data are input
	61-72	F12.8	

Card	<u>Col</u> .	Format	Description
3c	1-12	F12.8	
	13-24	F12.8	Blackbody Prime Data; 6 values to a card
		F12.8	until all zone data are input
	61-72	F12.8	
3d	1-12	F12.8	
	13-24	F12.8	Flame Prime Data; 6 values to a card
1	—— ·	F12.8	until all zone: data are input
	61-72	F12.8	
3e	1-12	F12.8	
	13-24	F12.8	Greybody Alone Data; 6 values to a card
		F12.8	until all zone data are input
	61-72	F12.8	
3f	1-12	F12.8	
	13-24	F12.8	Greybody through Flame Data; 6 values
		F12.8	to a card until all zone data are input
	61-72	F12.8	
3g	1-12	F12.8	
	13-24	F12.8	Greybody Alone Prime Data; 6 values to
		F12.8	a card until all zone data are input
	61-72	F12.8	
3h	1-12	F12.8	
	13-24	F12.8	Greybody through Flame Prime Data;
		F12.8	6 values to a card until all zone data are input
	61-72	F12.8	
3 a	1-12	F12.8	For Smoothed Data Line of Sight Spectral Radiance Data in
,	13-24	F12.8	W/cm^2 -micron-ster: 6 values to a card
		F12.8	until all zone data are input
	61-72	F12.8	
3 b	1-12	F12.8	
	13-24	F12.8	Line of Sight Transmittance Data which is dimensionless: 6 values to a card until all
		F12.8	zone data are input
	61-72	F12.8	

SAMPLE INPUT TO THE DATA REDUCTION PROGRAM FOR AXISYMMETRIC ZONE RADIOMETRY

	SAMPLE CASE	FOR ZONE RADIO	METRY CO2	RADIATING		
	16 0.45			1 -1	1	4.45
1.229	1.219	1.196	1.163	1.114		1.05
•953	•823	•647	•442	•28		•167
• 09	•033	•004	• 00 1			· .
•18	•182	•184	•19	•203		•227
•263	•31	•372	•453	•549		•661
• 784	• 92	•99	• 999	·		
	*					

				•
	0			-
	t tu		- -	
	•			
,	-			
ى				
2				
AT				
01				
8 8				,
2	ī			
Ű		,		
	C		· · · ·	
`≻ œ	00			
► 5	C.			
ΣC		· · ·		
101				
a a			•	
u Z	0			
102	00			
œ	•	•		· ,
Ci Li				
Lul				
 <td></td><td></td><td></td><td></td>				
				·
ີ	3			
Σ				
S.				
	•			
	÷			
	TA			
	D A			
	F	•		
	D d			
	Z			

OUTPUT OF THE DATA REDUCTION PROGRAM FOR AXISYMMETRIC ZONE RADIOMETRY

A-38

		SAMPLE	CASE	FOR	ZONE	RADIOMETRY	C 0 2	RADIATING
K	Т(К)	NF(K)		•				
1	•1800	1.2290						
2	•1820	1.2190				• .		
3	• 1840	1.1960			· .			
	1900	1.1630.	· -			•	•	
5	.2030	1.1140				,		
6	+2270	1.0500	•					·
- 7	• 2630	•9530						
8	•3100	.8230						
9	• 3720	•6470						
10	•4536	. 4420						
11	•5490	.2800						
12	•6610	.1670						ŧ
13	•7840	.0900						
14	• 9 2 0 0	+0330						
15	• 9 9 0 0	.0040						
16	• 9 9 9 0	.0010						

SAMPLE CASE FOR ZONE RADIOMETRY CO2 RADIATING

RADIAL PROPERTIES

ĸ	KP(K)	EPS(K)	RAD(K)	ткк
1	.1800	•0778	1.9660	2159.
2	.1743	•0754	1.9430	2146.
3	.1823	• 0787	1.8430	2088.
- 4	.1895	•n8 <u>1</u> 8	1.7679	2045.
5	.1922	.0829	1.6944	2002.
6	.1851	.0799	1.6733	1990.
7	.1707	•0740	1.6249	1961.
8	1551	• n 6 7 4	1.5330	1906.
9	.1366	.0596	1.3270	1781.
10	.1140	.0500	.9889	1564.
11	.0917	.0404	.7069	1367.
12	.0687	•03 <u>0</u> 5	.5231	1224.
13	.0458	.0204	.4173	1133.
14	.0169	.0076	+4121	1128.
15	.0020	•0004	.3736	1093.
16	.0002	+0001	1.0000	1572.

ZONE WIDTH = .450 CM USED TO COMPUTE EPS STEP FUNCTION PROPERTY DISTRIBUTION ASSUMED