359 research outputs found

    Microwave Devices for Wearable Sensors and IoT

    Get PDF
    The Internet of Things (IoT) paradigm is currently highly demanded in multiple scenarios and in particular plays an important role in solving medical-related challenges. RF and microwave technologies, coupled with wireless energy transfer, are interesting candidates because of their inherent contactless spectrometric capabilities and for the wireless transmission of sensing data. This article reviews some recent achievements in the field of wearable sensors, highlighting the benefits that these solutions introduce in operative contexts, such as indoor localization and microwave sensing. Wireless power transfer is an essential requirement to be fulfilled to allow these sensors to be not only wearable but also compact and lightweight while avoiding bulky batteries. Flexible materials and 3D printing polymers, as well as daily garments, are widely exploited within the presented solutions, allowing comfort and wearability without renouncing the robustness and reliability of the built-in wearable sensor

    Towards Touch-to-Access Device Authentication Using Induced Body Electric Potentials

    Full text link
    This paper presents TouchAuth, a new touch-to-access device authentication approach using induced body electric potentials (iBEPs) caused by the indoor ambient electric field that is mainly emitted from the building's electrical cabling. The design of TouchAuth is based on the electrostatics of iBEP generation and a resulting property, i.e., the iBEPs at two close locations on the same human body are similar, whereas those from different human bodies are distinct. Extensive experiments verify the above property and show that TouchAuth achieves high-profile receiver operating characteristics in implementing the touch-to-access policy. Our experiments also show that a range of possible interfering sources including appliances' electromagnetic emanations and noise injections into the power network do not affect the performance of TouchAuth. A key advantage of TouchAuth is that the iBEP sensing requires a simple analog-to-digital converter only, which is widely available on microcontrollers. Compared with existing approaches including intra-body communication and physiological sensing, TouchAuth is a low-cost, lightweight, and convenient approach for authorized users to access the smart objects found in indoor environments.Comment: 16 pages, accepted to the 25th Annual International Conference on Mobile Computing and Networking (MobiCom 2019), October 21-25, 2019, Los Cabos, Mexic

    Fully Integrated Biochip Platforms for Advanced Healthcare

    Get PDF
    Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications

    Developing a person guidance module for hospital robots

    Get PDF
    This dissertation describes the design and implementation of the Person Guidance Module (PGM) that enables the IWARD (Intelligent Robot Swarm for attendance, Recognition, Cleaning and delivery) base robot to offer route guidance service to the patients or visitors inside the hospital arena. One of the common problems encountered in huge hospital buildings today is foreigners not being able to find their way around in the hospital. Although there are a variety of guide robots currently existing on the market and offering a wide range of guidance and related activities, they do not fit into the modular concept of the IWARD project. The PGM features a robust and foolproof non-hierarchical sensor fusion approach of an active RFID, stereovision and cricket mote sensor for guiding a patient to the X-ray room, or a visitor to a patient’s ward in every possible scenario in a complex, dynamic and crowded hospital environment. Moreover, the speed of the robot can be adjusted automatically according to the pace of the follower for physical comfort using this system. Furthermore, the module performs these tasks in any unconstructed environment solely from a robot’s onboard perceptual resources in order to limit the hardware installation costs and therefore the indoor setting support. Similar comprehensive solution in one single platform has remained elusive in existing literature. The finished module can be connected to any IWARD base robot using quick-change mechanical connections and standard electrical connections. The PGM module box is equipped with a Gumstix embedded computer for all module computing which is powered up automatically once the module box is inserted into the robot. In line with the general software architecture of the IWARD project, all software modules are developed as Orca2 components and cross-complied for Gumstix’s XScale processor. To support standardized communication between different software components, Internet Communications Engine (Ice) has been used as middleware. Additionally, plug-and-play capabilities have been developed and incorporated so that swarm system is aware at all times of which robot is equipped with PGM. Finally, in several field trials in hospital environments, the person guidance module has shown its suitability for a challenging real-world application as well as the necessary user acceptance

    SciTech News Volume 70, No. 1 (2016)

    Get PDF
    Columns and Reports From the Editor 3 SciTech News Call for Articles 3 Assistant Editor wanted 4 Division News Science-Technology Division 5 Chemistry Division 7 Engineering Division 12 Aerospace Section of the Engineering Division 13 Call for Nominations & Applications Sparks Award for Professional Development11 Reviews Sci-Tech Book News Reviews 1

    Physical Diagnosis and Rehabilitation Technologies

    Get PDF
    The book focuses on the diagnosis, evaluation, and assistance of gait disorders; all the papers have been contributed by research groups related to assistive robotics, instrumentations, and augmentative devices

    Security and privacy services based on biosignals for implantable and wearable device

    Get PDF
    Mención Internacional en el título de doctorThe proliferation of wearable and implantable medical devices has given rise to an interest in developing security schemes suitable for these devices and the environment in which they operate. One area that has received much attention lately is the use of (human) biological signals as the basis for biometric authentication, identification and the generation of cryptographic keys. More concretely, in this dissertation we use the Electrocardiogram (ECG) to extract some fiducial points which are later used on crytographic protocols. The fiducial points are used to describe the points of interest which can be extracted from biological signals. Some examples of fiducials points of the ECG are P-wave, QRS complex,T-wave, R peaks or the RR-time-interval. In particular, we focus on the time difference between two consecutive heartbeats (R-peaks). These time intervals are referred to as Inter-Pulse Intervals (IPIs) and have been proven to contain entropy after applying some signal processing algorithms. This process is known as quantization algorithm. Theentropy that the heart signal has makes the ECG values an ideal candidate to generate tokens to be used on security protocols. Most of the proposed solutions in the literature rely on some questionable assumptions. For instance, it is commonly assumed that it possible to generate the same cryptographic token in at least two different devices that are sensing the same signal using the IPI of each cardiac signal without applying any synchronization algorithm; authors typically only measure the entropy of the LSB to determine whether the generated cryptographic values are random or not; authors usually pick the four LSBs assuming they are the best ones to create the best cryptographic tokens; the datasets used in these works are rather small and, therefore, possibly not significant enough, or; in general it is impossible to reproduce the experiments carried out by other researchers because the source code of such experiments is not usually available. In this Thesis, we overcome these weaknesses trying to systematically address most of the open research questions. That is why, in all the experiments carried out during this research we used a public database called PhysioNet which is available on Internet and stores a huge heart database named PhysioBank. This repository is constantly being up dated by medical researchers who share the sensitive information about patients and it also offers an open source software named PhysioToolkit which can be used to read and display these signals. All datasets we used contain ECG records obtained from a variety of real subjects with different heart-related pathologies as well as healthy people. The first chapter of this dissertation (Chapter 1) is entirely dedicated to present the research questions, introduce the main concepts used all along this document as well as settle down some medical and cryptographic definitions. Finally, the objectives that this dissertation tackles down are described together with the main motivations for this Thesis. In Chapter 2 we report the results of a large-scale statistical study to determine if heart signal is a good source of entropy. For this, we analyze 19 public datasets of heart signals from the Physionet repository, spanning electrocardiograms from multiple subjects sampled at different frequencies and lengths. We then apply both ENT and NIST STS standard battery of randomness tests to the extracted IPIs. The results we obtain through the analysis, clearly show that a short burst of bits derived from an ECG record may seem random, but large files derived from long ECG records should not be used for security purposes. In Chapter3, we carry out an análisis to check whether it is reasonable or not the assumption that two different sensors can generate the same cryptographic token. We systematically check if two sensors can agree on the same token without sharing any type of information. Similarly to other proposals, we include ECC algorithms like BCH to the token generation. We conclude that a fuzzy extractor (or another error correction technique) is not enough to correct the synchronization errors between the IPI values derived from two ECG signals captured via two sensors placed on different positions. We demonstrate that a pre-processing of the heart signal must be performed before the fuzzy extractor is applied. Going one step forward and, in order to generate the same token on different sensors, we propose a synchronization algorithm. To do so, we include a runtimemonitoralgorithm. Afterapplyingourproposedsolution,werun again the experiments with 19 public databases from the PhysioNet repository. The only constraint to pick those databases was that they need at least two measurements of heart signals (ECG1 and ECG2). As a conclusion, running the experiments, the same token can be dexix rived on different sensors in most of the tested databases if and only if a pre-processing of the heart signal is performed before extracting the tokens. In Chapter 4, we analyze the entropy of the tokens extracted from a heart signal according to the NISTSTS recommendation (i.e.,SP80090B Recommendation for the Entropy Sources Used for Random Bit Generation). We downloaded 19 databases from the Physionet public repository and analyze, in terms of min-entropy, more than 160,000 files. Finally, we propose other combinations for extracting tokens by taking 2, 3, 4 and 5 bits different than the usual four LSBs. Also, we demonstrate that the four LSB are not the best bits to be used in cryptographic applications. We offer other alternative combinations for two (e.g., 87), three (e.g., 638), four (e.g., 2638) and five (e.g., 23758) bits which are, in general, much better than taking the four LSBs from the entropy point of view. Finally, the last Chapter of this dissertation (Chapter 5) summarizes the main conclusions arisen from this PhD Thesis and introduces some open questions.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: Arturo Ribagorda Garnacho.- Secretario: Jorge Blasco Alis.- Vocal: Jesús García López de la Call

    Sensor-based smart recognition system for wearable devices

    Get PDF

    Integrating passive ubiquitous surfaces into human-computer interaction

    Get PDF
    Mobile technologies enable people to interact with computers ubiquitously. This dissertation investigates how ordinary, ubiquitous surfaces can be integrated into human-computer interaction to extend the interaction space beyond the edge of the display. It turns out that acoustic and tactile features generated during an interaction can be combined to identify input events, the user, and the surface. In addition, it is shown that a heterogeneous distribution of different surfaces is particularly suitable for realizing versatile interaction modalities. However, privacy concerns must be considered when selecting sensors, and context can be crucial in determining whether and what interaction to perform.Mobile Technologien ermöglichen den Menschen eine allgegenwärtige Interaktion mit Computern. Diese Dissertation untersucht, wie gewöhnliche, allgegenwärtige Oberflächen in die Mensch-Computer-Interaktion integriert werden können, um den Interaktionsraum über den Rand des Displays hinaus zu erweitern. Es stellt sich heraus, dass akustische und taktile Merkmale, die während einer Interaktion erzeugt werden, kombiniert werden können, um Eingabeereignisse, den Benutzer und die Oberfläche zu identifizieren. Darüber hinaus wird gezeigt, dass eine heterogene Verteilung verschiedener Oberflächen besonders geeignet ist, um vielfältige Interaktionsmodalitäten zu realisieren. Bei der Auswahl der Sensoren müssen jedoch Datenschutzaspekte berücksichtigt werden, und der Kontext kann entscheidend dafür sein, ob und welche Interaktion durchgeführt werden soll
    corecore