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Abstract 

With recent advances in wireless sensor networks and embedded computing technologies, on-body 

wearable devices such as smartphones and smart watches have become increasingly popular and 

play significant roles in our daily lives. The prevalence of smart wearable devices has sparked a 

new set of mobile computing applications that leverage the abundant information from sensors. In 

this thesis, I address three problems for wearable devices. These three problems correspond to three 

different recognition tasks: to help the user recognize a subject (face recognition), to assist the 

device to authenticate the identity of another device (device pairing) and to authenticate user (user 

authentication). The first problem is to implement a robust and efficient face recognition system on 

smart glass. The main challenge is the tension between the high computation requirements of 

accurate face recognition algorithms and the resource constraints of smart glasses. To address this 

challenge, I propose a robust and efficient sensor-assisted face recognition system on smart glasses 

by exploring the power of multimodal sensors including the camera and Inertial Measurement Unit 

(IMU) sensors. Extensive evaluation results show the proposed system improves recognition 

accuracy by up to 15% while achieving the same level of system overhead compared to the existing 

face recognition system (OpenCV algorithms) on smart glasses. The second problem is to generate 

a cryptographic key for legitimate devices so that devices on the same user’s body can be paired 

together. I propose an automatic key generation system for wearable devices based on the user’s 

unique gait. The intuition of the proposed key generation approach is that the devices on the same 

body experience similar motion signals that are produced by the unique walking pattern of the user. 

Therefore, the unique gait signal can be exploited as shared information to generate secret keys for 

all on-body devices. The evaluation results show that the proposed system can generate a common 

128-bit key for two legitimate devices with 98.3% probability. The third problem is to develop a 

gait-based user authentication system by using Kinetic Energy Harvesting (KEH). The main feature 

of the proposed system is it utilizes the output voltage signal of the energy harvester to achieve gait 

recognition rather than the accelerometer. Compared with traditional accelerometer-based gait 

recognition system, the proposed system can reduce energy consumption by 78% while achieving 

comparable recognition accuracy. 
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Chapter 1

Introduction

Recent years have witnessed a remarkable growth in the number of smart wearable devices

such as Apple Watch and Google Glass. It is estimated that there will be 20 billion Internet of

Things (IoT) devices by the year 2020, and the majority of these will be wearable devices [99].

Much like the embedded systems they originate from, on-body IoT devices are equipped with

a number of sensors which offer means to collect, store and distribute information. Therefore,

smart wearable devices start to accumulate a great deal of sensitive data about their users, such

as health data, emails, and locations. More importantly, the ubiquity of wearable devices has

sparked a new set of mobile computing applications that significantly improve user experience

such as object recognition [31], localization [147], and health monitoring [68].

Among these applications, one fundamental task is identity recognition. Identity recognition

not only refers to helping users recognize a subject, but also it refers to assisting a device to

recognize the identity of another device (i.e., device pairing) or user (i.e., user authentication).

Although a large number of novel systems have been proposed on wearable devices [95, 145,

112, 149], the problem of robust and efficient recognition system has not been well studied for

two main reasons. Firstly, smart mobile devices such as smartphone and smart watch, limited by

their computational capacities (e.g., CPU, memory) and power supply, do not always meet the

requirements of complex pattern recognition algorithms. For example, the battery life of smart

glasses is limited by its size. It is reported that the fully charged battery on the Vuzix Smart

Glass can last for one hour; however our practical experience shows that the battery would be

completely drained within half an hour with display on, camera open and high CPU loading.

Besides, constantly charging batteries is inconvenient and may introduce extra costs. Thus to

improve energy efficiency and reduce computational cost is a crucial task for authentication
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systems on resource-constrained mobile devices. Secondly, the majority of existing studies

on recognition systems have used a very restrictive experimental setup where the performance

evaluation was conducted on a dataset collected from a controlled laboratory environment. The

performance of the system decreases rapidly when used in a real-world environment. With the

pervasiveness of wearable devices in the wild, these is a need for robust authentication system

in a realistic environment.

In this thesis, I will show how I address these challenges on wearable devices in three

different systems. These three systems correspond to three different recognition tasks: to help

the user recognize a subject (face recognition), to assist the device to authenticate the identity of

another device (device pairing) and to authenticate the user (user authentication). Specifically,

the three problems addressed in this thesis are:

• Robust and efficient face recognition system on smart glasses.

• Motion-assisted automatic device pairing system for wearable devices.

• Gait-based user authentication system using kinetic energy harvesting.

Each of these problems will be addressed in a chapter of this thesis. An overview of these three

problems will now be presented.

1.1 Robust and Efficient Face Recognition System on Smart

Glasses

Face recognition is a popular biometric-based authentication technique with applications rang-

ing from surveillance to device unlocking to the organization of personal image collections.

Face recognition has been extensively studied in the traditional computer vision community.

However, as discussed in [124], most of the advanced face recognition methods fail on smart

wearable devices because of the tension between high computation requirements and resource

constraints. Recognition performance and energy consumption are two important factors that

impede the prevalence of face recognition on smart glasses. Users expect real-time feedback

with high accuracy in unconstrained real-world scenarios. Although cloud-based architectures

can reduce the burden on smart glasses, the usability of the cloud-based recognition systems

relies on the wireless connectivity. Besides, the qualities of the wireless connections will also
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affect the cost of transmission significantly. According to the results reported in [28], the power

consumption of wireless transmission on a smartphone (about 720mW) is approximately 12

times higher than that of CPU (about 60mW). Therefore, the in-situ approaches are preferable

considering the cost of wireless transmission and the inconvenience of using wireless connec-

tions. This leads to the following research question:

Research Question 1: How the computational cost of face recognition system on smart

glasses can be reduced, and how can face recognition performance on smart glasses be

improved with Inertial Measurement Unit (IMU) sensor data?

In this thesis, I propose and implement a novel sensor-assisted face recognition system

which runs locally on smart glasses by exploiting the information from both the camera and

sensors on smart glasses to improve the recognition accuracy and reduce the energy consump-

tion. The contributions of this study are threefold:

• I propose a novel face recognition algorithm called Multi-view Sparse Representation

based Classification (MVSRC). It exploits the high agreement among the sparse repre-

sentations of the face images from different view angles and applies a novel weighted

Sparse Representation-based Classification (SRC) model to improve the Signal to Noise

Ratio (SNR). The evaluation on several datasets show that MVSRC outperforms several

state-of-the-arts multi-view face recognition algorithms.

• I propose a Support Vector Regression (SVR)-based estimation model to relate the recog-

nition accuracy to the angle information obtained by IMU sensors. Then I design two

sampling optimization approaches: Maximum Accuracy Sampling Optimization (MASO)

and Minimum Energy Sampling Optimization (MESO) based on the estimation model

to improve the efficiency of MVSRC while preserving its high recognition accuracy.

MVSRC after sampling optimization is referred to fast-MVSRC.

• I implement a face recognition system based on the proposed methods on smart glasses

and demonstrate that it significantly outperforms the existing in-situ face recognition al-

gorithms on smart glasses. I also discuss the offloading approach and experimentally

show that the cost of our system is in the same order of offloading to a nearby server

(cloudlet).

This work will be described in detail in Chapter 3.
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1.2 Motion-assisted Automatic Device Pairing System for Wear-

able Devices

With recent advances in wireless sensor networks and embedded computing technologies, wear-

able and implantable devices such as smartphones, smartwatches and pacemakers have become

increasingly popular and play significant roles in our daily lives. For users, it is of potentially

great value to associate a personal device with another device in a spontaneous manner. Pairing

devices can be for the purpose of short-lived interactions, for example, file transfer and synchro-

nization, or aimed at longer lived pairing, for example, pairing a smartphone with accessories.

In current mobile systems, this is achieved by key exchange methods, which are either manual

(e.g. typing in the key in a keypad) or exploit key-exchange algorithms. For the first case,

a common mechanism for peer device authentication is Personal Identification Number (PIN)

code entry by the user into the involved devices. However, a primary requirement for human-

involved authentication is ease-of-use. Therefore, the human-involved authentication method is

undesirable when users seek to engage in fast and short-lived authentications frequently. For the

key-exchange algorithms, a common key exchange method is the Diffie-Hellman (DH) protocol

which is used to distribute a symmetric key between two parties [41]. However, the premise of

DH protocol is that two devices to be paired together are legitimate devices. It cannot be used

to distinguish adversary devices from legitimate devices. This leads to the following research

question:

Research Question 2: How can two legitimate devices belonging to the same user es-

tablish a secure communication channel in a user friendly manner?

In this work, I propose and implement a motion-assisted key generation technique to se-

cure on-body device communication. The intuition of the proposed key generation approach

is that the devices on the same body experience similar motion signals that are produced by

the unique walking pattern of the user. Therefore, the unique gait signal can be exploited as

shared information to generate secret keys for all on-body devices. The proposed approach en-

ables unobtrusive establishment of secure communications between on-body devices. The main

contributions of this study are threefold:

• Source separation for body motion signal: By using Blind Source Separation to sepa-

rate motion signals generated from different body movements, e.g., gait and arm swing
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motions, the proposed key generation approach achieves robust performance in generat-

ing keys for devices located at different body locations.

• Shared key generation scheme: I will present a novel, light-weight key generation

scheme for on-body IoT devices based on body motion signals. I experimentally demon-

strate that a common 128-bit key can be successfully generated by two independent wear-

able devices on the same body in 98.3% of the case, while the scheme also provides ade-

quate security guarantees against impersonation attacks. By walking for 4.6s (≈9 steps),

the proposed key generation approach is able to generate a 128-bit key with entropy vary-

ing from 0.94 to 1 which demonstrates the high randomness of the keys.

• System implementation: I will illustrate the practicability of the proposed key genera-

tion approach by implementing the system in Bluetooth Low Energy (BLE) peripheral

mode. I will investigate the system computation overhead and power consumption, and

demonstrate the feasibility of the proposed scheme for contemporary on-body IoT de-

vices.

This work will be described in detail in Chapter 4.

1.3 Gait-based User Authentication System Using Kinetic En-

ergy Harvesting

With rapid advancements in embedded technology, wearable devices and Implantable Medical

Devices (IMDs) have become an integral part of our everyday life. It is predicted that by

2025, the market for personal wearable devices will reach 70 billion dollars [5]. The major

deployments of those devices are expected to be in health monitoring and medical assistance

domains [11, 81]. Some popular wearable devices, such as Fitbit and Apple Watch, are already

monitoring and storing a mass of sensitive health data about the user.

However, such wearable systems are vulnerable to impersonation attacks in which an ad-

versary can easily distribute his device to other users so that data collected from these users can

be claimed to be his own. In this way, the attacker can claim potential healthcare profits that

are allocated to people with certain illnesses even though he may not have any illnesses [115].

To mitigate the risk of malicious attacks, most wearable devices rely on explicit manual entry

of a secret PIN number. However, due to the small screens of wearable devices and frequent
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unlocking requests, it is inconvenient for users to enter the keys manually. Furthermore, this

method is not applicable when an adversary colludes with other users to spoof the healthcare

company.

Gait recognition using wearable sensors, such as accelerometers, has emerged as one of the

most promising solutions for user authentication. It offers several advantages over other bio-

metrics especially when applied in wearable devices. Extensive previous studies have already

demonstrated its feasibility in user authentication [49, 148], but they have also shown that con-

tinuous accelerometer sampling drains the battery quickly. A vision for wearable devices is to

be battery-free (self-powered). A current trend in battery-free devices is to investigate kinetic

energy harvesting (KEH) solutions to power the wearable devices [54, 135, 142, 101]. For ex-

ample, AMPY [2] has released the world’s first wearable motion-charger which can transform

the kinetic energy from user’s motion into battery power.

Motivated by this prospect, I propose gait recognition by simply observing the output volt-

ages of KEH. The feasibility of the proposed idea is based on the observation that if humans

have unique walking patterns, then the corresponding patterns of harvested power from KEH

should be unique too. The proposed system offers several advantages. The major advantage

of KEH-based gait recognition is the potential for significant power savings arising from not

sampling an accelerometer at all. On the other hand, the output voltage can be used to charge

the battery, thus further extending battery life. Finally, as energy harvesters will be integrated

in wearable devices in the near future, the output voltage can be naturally utilized for authen-

tication purposes without introducing extra sensors. This makes it a promising solution for

light-weight authentication for wearable devices. To the best of our knowledge, this is the first

work that proposes and experimentally validates the feasibility of gait recognition using KEH.

This leads to the following research question:

Research Question 3: How does gait recognition using a Kinetic Energy Harvester

compare to more conventional gait recognition using accelerometers in terms of accuracy,

energy-efficiency and robustness to attack?

The main contributions of this work are as follows:

• I propose a novel gait-based user authentication system for mobile healthcare system,

called KEH-Gait, which uses only KEH voltage as the source signal to achieve user au-

thentication.

• I build two different KEH prototypes, one based on piezoelectric energy harvester (PEH)
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and the other on electromagnetic energy harvester (EEH). Using these KEH devices, I

evaluate gait recognition accuracy of KEH-Gait over 20 subjects. The evaluation results

show that, with conventional classification techniques, which operate over single step,

KEH-Gait achieves approximately 6% lower accuracy compared to accelerometer-based

gait recognition.

• I demonstrate that authentication accuracy of KEH-Gait can be increased to that of accelerometer-

based gait detection by employing a novel classification method, called Multi-Step Sparse

Representation Classification (MSSRC), which efficiently fuses information from multi-

ple steps.

• Finally, using measurements, I demonstrate that currently available microprocessors can

read KEH voltage within 33 µs, which is two orders of magnitude faster than the time it

takes to wakeup, interrogate and read acceleration values from typical 3-axis accelerome-

ters. This means that with microprocessor duty cycling, KEH-Gait promises major energy

savings over conventional accelerometer-based gait detection.

This work will be described in detail in Chapter 5.

1.4 Organization of The Thesis

The rest of this thesis starts with a literature review in Chapter 2, where I discuss Sparse

Representation-based Classification and the state-of-the-arts of the three topics discussed in

Sections 1.1 to 1.3. In Chapter 3 I provide the details of our face recognition system on smart

glasses. Then in Chapter 4, I propose and implement an automatic device pairing system that

can pair two legitimate devices on the same body automatically. Chapter 5 presents a gait-based

user authentication system using KEH. Finally, I conclude the thesis in Chapter 6.

7



Chapter 2

Literature Review

This thesis addresses three challenges on smart wearable devices: robust and efficient face

recognition system on smart glasses, motion-assisted automatic device pairing system for wear-

able devices, and gait-based user authentication system using kinetic energy harvesting. In this

chapter, I first present the background of the Sparse Representation-based Classification (SRC)

method, which is used in face recognition system on smart glass and user authentication sys-

tem. After that, I will review the literature related to each of the three problems in Section 2.2 -

Section 2.4, where each section addresses one problem.

2.1 Sparse Representation-based Classsification

2.1.1 Background on SRC

This section introduces the rand-SRC face recognition algorithm [138] and opti-SRC [124].

In [138], face recognition is cast as a sparse representation problem and is solved by a Sparse

Representation Classifier. SRC is applied to solve the traditional linear equation: y = Ax, where

y ∈ Rp is the test image vector which comes from concatenating the pixel values by rows or

columns; A ∈ Rp×(N·K) is the dictionary consisting of K classes and each class contains N p-

dimensional image vectors. With the knowledge of A and y, `1 optimization can be applied to

solve the linear equation with the sparse assumption:

x̂ = argmin
x
‖x‖1 subject to ‖y−Ax‖2 < ε (2.1)

where ε is used to account for noise and the sparse assumption holds when the test image vector
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can be represented by one of the classes in A. Due to the large dimensionality of the image

vectors, solving Eq. (2.1) can be computationally intensive. Inspired by the recent information

theory technique of Compressive Sensing (CS) [14, 26, 42], a random projection matrix R ∈

Rm×p (m� p) can be applied to improve the efficiency of the `1 optimization. In particular, the

projection matrices are randomly generated from Bernoulli or Gaussian distributions because

of their information preserving properties:

x̂ = argmin
x
‖x‖1 subject to ‖Ry−RAx‖2 < ε (2.2)

After obtaining the sparse representation vector x̂ ∈ RN·K , the class results can be determined

by checking the residuals based on the Euclidean distance. The definition of the residual for

class i is:

ri(y) = ‖y−Aδi(x̂)‖2 (2.3)

where δi(x̂) ∈ RN·K contains the coefficients related to class i only (the coefficients related to

other classes are set to be zeros). Then the final result of the classification will be:

î = argmin
i=1,...,K

ri(y) (2.4)

i.e., the right class produces the minimal residual.

To further improve the performance of SRC, [124] proposes a heuristic algorithm to find the

optimal projection matrix instead of the random one. The classification accuracy is improved

by up to 12% with the optimized projection matrix. They also improve the efficiency of SRC

by casting the residual calculation to a significantly lower dimensionality by introducing the

compressed residual:

ri(y) = ‖Ropty−RoptAδi(x̂)‖2 (2.5)

where Ropt ∈ Rm×p is the optimized projection matrix. The classification accuracy will be

preserved at the significantly lower dimensionality as described in [124].

To conclude, the steps of the opti-SRC can be summarized as:

• Opti-SRC starts from building a dictionary A consisting of face images from different

subjects. Then the optimized projection matrix is learned from dictionary A using the

approach introduced in [124].
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• Given a test image vector y, the coefficients vector is obtained by solving Eq. (2.2).

• The final classification result is determined by solving Eq. (2.4) which searches the min-

imum compressed residual obtained from Eq. (2.5).

2.1.2 Applications of SRC

SRC is an emerging classification method and has been successfully used in a variety of appli-

cations ranging from gait recognition [148], emotion recognition [36, 32], and image denois-

ing [45]. Moreover, SRC has also been applied in sensor areas to solve a range of recognition

tasks because it is known to be robust to noise. For example, Wei et al. [137] developed an

acoustic classification system on wireless sensor networks by applying SRC to improve the

recognition accuracy. Shen et al. [124] proposed opti-SRC by optimizing the random matrix

used in SRC to increase the performance of face recognition system in smartphones. Several

papers have exploited the sparsity of multiple measurements to improve the system perfor-

mance. Misra et al. [100] used CS to compress GPS signals and exploits the information of

various propagation paths to improve the SNR of GPS signals. In a recent work [136], the re-

searchers improved activity classification accuracy by fusing several channel state information

(CSI) vectors. In my study, I use CS to reduce the feature dimension of face images as will be

described in Section 3.2.1.

2.2 Face Recognition on Mobile Devices

2.2.1 Face Recognition

Face recognition has been well researched in the computer vision community. It invokes new

research challenges when used on smart devices. With the availability of OpenCV [8], many

apps such as friends tagging have appeared on the app markets. There are three face recognition

algorithms in OpenCV: EigenFaces [130], FisherFace [16] and LBPFace [10]. Although these

methods can be used in real-time on smartphones, the recognition accuracies are unsatisfac-

tory [124]. SRC [138] outperforms these three methods; however, it cannot provide consistent

high recognition accuracy and is computationally intensive. To overcome its limitations, Shen et

al. [124] proposed opti-SRC by optimizing the projection matrix to provide consistently better

accuracy while solving the computation efficiency issue. Many efforts have also been made on
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multi-view based face recognition to further improve recognition accuracy [144, 62, 109]. The

advent of smart glasses makes face recognition easier to perform and more interactive for the

user because of the first-person camera. In a recent study [56], a cloud-based system Gabriel

was developed on Google Glass to provide cognitive assistance services, such as face recog-

nition, object recognition and optical character recognition (OCR). Another face recognition

application on Google Glass is NameTag [7], which allows users to capture face images and

search the identities on social media sites, including more than 450,000 registered sex offend-

ers. However, both Gabriel and NameTag cannot work without connecting to servers.

There have been several papers which propose sensor-assisted biometric authentication sys-

tem. Biggio et al. [19] developed a multimodal system against spoofing attacks by fusing the

information from the camera and fingerprint sensor. Chen et al. [30] proposed a face authentica-

tion system to prevent 2D media attacks and virtual camera attacks by utilizing motion sensors.

Yang et al. [141] used motion sensors to compensate for the tilt of the smartphone for better

face detection.

2.2.2 Applications on Smart Glasses

Smart glasses, e.g., Google Glass and Vuzix Smart Glasses, have attracted significant attention

both from researchers and industrial communities since their introduction in 2013. Applications

on smart glasses have advantages over other smart devices as smart glasses are equipped with a

first-person camera which can be naturally used as a ‘third eye’ to deliver a significantly better

user experience. For example, Yongtuo et al. [147] proposed an indoor localization system

on smart glasses to help people navigate. Mayberry et al. [95] proposed iShadow to track the

state of the eye through two cameras mounted on the eyeglass. Zhang et al. [145] presented a

visual attention driven networking system based on smart glasses: iGaze, through which users

can connect to a target by gazes. In the ThirdEye system [112], the smart glasses are used

to track shoppers and infer the product layout by fusing video, WiFi, and inertial sensor data.

Kiryong et al. [56] implemented a cloud-based cognitive assistance system on smart glasses

to help people with cognitive impairment. Glimpse designed by Chen et al. [31] can provide

continuous, real-time object recognition by using a cache scheme.
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2.2.3 Summary of the Problem

The SRC face recognition algorithm has been shown to outperform some of state-of-the-art face

recognition methods. However, SRC is a single image based face recognition method. It cannot

be directly used in when the smart glasses capture a face image sequence. Besides, SRC is com-

putationally intensive for resource-constrained mobile devices. Therefore, the computational

efficiency of SRC for a face recognition system on smart glasses should be improved. Existing

face recognition systems rely on clould-based architectures to reduce the computational bur-

den for smart glasses. However, as discussed in Section 1.1, the usability of the cloud-based

recognition systems relies on the wireless connectivity. Therefore, I aim to propose a robust and

efficient in-situ face recognition system on smart glass. The solutions of these problems will be

presented in Chapter 3.

2.3 Device Pairing System

2.3.1 Device Pairing System for Wearable Devices

Many techniques exist that could be used to generate a shared secret key between two parties by

exploiting the wireless channel information. Some of the examples are physical layer charac-

teristics based security mechanisms, e.g., Received Signal Strength Indicator (RSSI) have been

proposed by researchers [117, 66, 125]. However, these schemes are suitable for wearable de-

vices which are frequently exchanging wireless packets. The potential of using acceleration to

generate a shared key has not been well explored in the literature. Bichler et al. [18] developed

a method to generate a shared key based on acceleration data of shaking devices together.

There have been several previous works using accelerometers to determine whether the de-

vices are worn on the same body. Cornelius and Kotz proposed to use coherence to analyze the

similarity of acceleration signals from different devices, and then decide whether two devices

are carried on the same body [35]. The idea of shaking two devices together to pair them was

first proposed by Holmquist et al. [61]. Mayrhofer and Gellersen used the same technique but

extended it to include secure authentication [96]. Hinckley developed a similar method to pair

devices that uses bumping rather than shaking together [59]. These methods require the user to

participate and shake/move the devices together, which is not suitable for many on-body devices

such as a pacemaker.
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2.3.2 Biometric-based Authentication System

Biometric recognition is the science of establishing the identity of a person using his/her anatom-

ical and behavioral traits [65]. It has emerged as the most promising technique for recognizing

individuals as it offers a number of advantages over traditional authentication methods such

as passwords, plastic cards, and keys. Biometric recognition techniques include identification

based on physiological characteristics (such as face, fingerprints, and voice) and behavioral

traits (such as gait, signature and keystroke dynamics). Extensive research efforts have been

devoted to this area. With the prevalence of smart devices, researchers now focus on how to

authenticate the user of smart devices. Many biometric-based authentication systems have been

proposed for smart devices, such as face recognition systems in smartphones [124, 30], gait

recognition systems in smartphones [115, 107], user authentication based on keystroke analy-

sis [22, 21], and gesture-based authentication systems for smart glasses [29].

Different from biometric recognition, biometric cryptosystems (BCS) were developed for

the purpose of either securing a cryptographic key using biometric features or directly gener-

ating a cryptographic key from biometric features. BCS can be classified into two categories:

key-binding schemes and key-generation schemes [113]. For key-binding schemes, helper data

are obtained by binding a secret key to a biometric template. In key-generation schemes, keys

are directly derived from a biometric template. Soutar et al. [127] proposed the first finger-

print based key-binding system Mytec2. After that, Juels and Wattenberg [70] proposed a fuzzy

commitment scheme by combing error-correcting codes (ECC) and cryptography algorithms

together. They later proposed one of the most popular BCSs called the fuzzy vault scheme [69].

A further study was conducted by Tong et al. [129], in which they proposed a fuzzy extractor

to extract keys from biometric templates directly. State-of-the-art BCSs which were proposed

previously mostly utilize physiological modalities such as iris [92] and fingerprint [83]. There

are also some studies that use behavioral biometrics such as signature [90] and voice [27]. In

a recent work [60], the researchers used gait to encrypt a cryptographic key through a fuzzy

commitment scheme [70].

2.3.3 Blind Source Separation

Blind signal separation (BSS) refers to the separation of a set of source signals from a set of

mixed signals, without any prior information (or with very little information) about the source

signals or the mixing process. Independent Component Analysis (ICA) is one of the most
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popular BSS techniques, and it aims to decompose a multivariate signal into independent non-

Gaussian signals. ICA has been successfully applied in numerous areas such as biomedical

signal processing [128] and speech separation [79]. De Moor et al. proposed to use ICA to

decompose maternal and fetal Electrocardiogram (ECG) recorded simultaneously from cuta-

neous electrodes placed on the mother’s abdomen and chest [37]. Other researchers have also

applied ICA to remove artefacts from the Electroencephalogram (EEG) signals [128, 38]. Other

examples in the biomedical area are the studies by Calhoun et al. and McKeown et al., in which

ICA were applied to functional magnetic resonance imaging (fMRI) data to separate different

active components [25, 97]. In the speech separation area, ICA is used for extracting the speech

signals of interest from mixed signals [85]. The application of ICA on body sensor networks

(BSN) is an emerging field. Lo et al. applied ICA on body sensor signals to separate different

sources of movement due to running and respiration [87]. Atallah et al. used the ICA technique

to detect walking gait impairment with an ear-worn sensor [13]. In a recent work [110], ICA

was applied on an accelerometer sensor attached on the heel to distinguish the toe walking gait

from normal gait in Idiopathic Toe Walker (ITW) children.

2.3.4 Summary of the Problem

Existing methods are not suitable for wearable devices because they either require the user to

participate and shake/move the devices together, or they depend on a public key distribution

architecture. Therefore, providing secure as well as efficient and user-friendly device pairing

is a challenging task. Gait has not been well explored in BCS, therefore I propose a system to

generate keys from gait signals. A significant challenge is the complex human motions involved

in walking, and I address this problem by using BSS techniques. The proposed scheme can pair

two devices on the same body automatically when the user is walking, thus improving the user

experience significantly. The details of this work will be presented in Chapter 4.
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2.4 Gait-based Authentication System Using Kinetic Energy

Harvesting

2.4.1 Gait Recognition

Gait recognition has been well studied in the literature. From the way that gait data is col-

lected, gait recognition can be categorized into three groups: vision based, floor sensor based,

and wearable sensor based. In vision based gait recognition system, gait is captured from a

remote distance using a video-camera. Then, video/image processing techniques are employed

to extract gait features for further recognition. A large portion in the literature belong to this

category [76, 71, 86, 57]. In floor sensor based gait recognition, sensors (e.g., force plates),

which are usually installed under the floor, are used for capturing gait features, such as ground

reaction force (GRF) [108] or heel-to-toe ratio [98].

Compared with vision-based and other non-accelerometer based gait measurements, accel-

eration can reflect the dynamics of gait more directly and faithfully. For instance, accelerometer-

based gait recognition does not suffer from the existing problems with vision-based methods,

like occlusions, clutter, and viewpoint changes. Existing studies of wearable sensor-based gait

recognition are mainly based on the use of body-worn accelerometers. Accelerometer-based

gait recognition was first proposed by J.Mantyjarvi et al. [91] around 2005 and further devel-

oped by Gafurov et al. [48]. In the initial stages, dedicated accelerometers were used and worn

on different body parts, such as lower leg [48], waist [91], hip [51], hip pocket, chest pocket

and hand [133]. With the popularity of smartphones, researchers have proposed several methods

to authenticate users by utilizing the built-in accelerometer [115, 40, 107, 39, 106, 75]. With

the prevalence of wearable devices such as fitness trackers, researchers have proposed several

gait-based authentication systems by utilizing the built-in accelerometer [89, 115, 107].

2.4.2 Kinetic Energy Harvesting (KEH)

Kinetic energy harvesting refers to the process by which energy is derived from kinetic energy,

captured, and stored for wearable devices and wireless sensor networks. KEH has received

growing attention over the last decade. The research motivation in this field is due to the re-

duced power requirement of small electronic components, such as the wireless sensor networks
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used in passive and active monitoring applications. The three basic vibration-to-electric en-

ergy conversion mechanisms are the piezoelectric [88, 15], electromagnetic [44, 74, 116] and

electrostatic [47, 33].

I built two energy harvesting devices based on piezoelectric and electromagnetic respec-

tively. Therefore, I briefly describe PEH and EEH here to make the thesis self-contained. The

piezoelectric effect converts mechanical strain into electric current or voltage. This strain can

come from many different sources, such as human motions and low-frequency seismic vibra-

tions. Figure 2.1(a) shows a basic design of PEH. Piezoelectric vibrational energy harvesters

are usually inertial mass based devices, where a cantilever with a piezoelectric outer layer is

excited into resonance by a vibration source at the root of the cantilever. The inertial mass is

located on a vibrating host structure and the dynamic strain induced in the piezoelectric layer

results in an alternating voltage output. Unlike piezoelectric harvesters, the basic principle of

electromagnetic generators are based on Faraday’s law of electromagnetic induction. As shown

in Figure 2.1(b), the voltage, or electromotive force is generated when an electric conductor is

moved through a magnetic field.

(a) (b)

Figure 2.1: Examples of two KEH devices: (a) PEH, and (b) EEH.

There have been extensive studies on wearable sensors. However, wearable sensors con-

sume power and most existing wearable products are powered by batteries. Therefore, frequent

recharging and replacement of the batteries are required, which is a major obstacle for achiev-

ing continuous gait recognition. To overcome this problem, researchers are investigating the

use of the output signal from KEH to achieve a wide range of applications in activity track-

ing [72, 73] and health monitoring [77]. In [72, 73], the authors proposed the idea of using the

energy harvesting power signal for human activities recognition. Their proposed system can

achieve 83% accuracy for activity recognition. In [77], the authors conducted the first experi-

mental study of using the output voltage signal from the PEH to estimate calorie expenditure of

human activities. They have shown promising results from replacing accelerometers by KEH
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for calorie expenditure. Following this trend, my proposed KEH-Gait utilizes the voltage signal

generated by the kinetic energy harvester from walking to perform gait recognition. By doing

so, KEH-Gait can reduce the power consumption of the gait recognition in the wearable device

by not using the accelerometer.

2.4.3 Summary of the Problem

Most existing studies use accelerometers to record and analyze gait signals. The main problem

is that continuous accelerometer sampling drains the battery quickly. High power consumption

of accelerometer sampling, which is typically in the order of a few milliwatts, also makes it

challenging to adopt gait-based user authentication in resource-constrained wearables. To over-

come this problem, we explore the feasibility of of gait recognition using KEH. Compared to

conventional accelerometer-based gait detection, KEH-Gait can reduce energy consumption by

78% while achieving comparable recognition accuracy. To the best of my knowledge, this is

the first work that experimentally validates the feasibility of gait recognition using KEH, and

the evaluation results show that the output voltage signal of energy harvester is a promising in-

formative signal for wearable authentication system. The details of this work will be presented

in Chapter 5.
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Chapter 3

Sensor-assisted Face Recognition System

on Smart Glasses

Chapter Summary: Face recognition is a hot research topic with a variety of application pos-

sibilities, including video surveillance and mobile payment. It has been well researched in the

traditional computer vision community. However, new research issues arise when it comes to

resource constrained devices, such as smart glasses, due to the high computation and energy re-

quirements of the traditional accurate face recognition methods. This chapter describes a robust

and efficient sensor-assisted face recognition system on smart glasses by exploring the power

of multimodal sensors including the camera and Inertial Measurement Unit (IMU) sensors. The

system is based on a novel face recognition algorithm, namely Multi-view Sparse Represen-

tation Classification (MVSRC), by exploiting the prolific information among multi-view face

images. To improve the efficiency of MVSRC on smart glasses, we propose two novel sampling

optimization strategies using less expensive inertial sensors. Our evaluations on public and pri-

vate datasets show that the proposed method is up to 10% more accurate than the state-of-the-art

multi-view face recognition methods while its computation cost is the same order as an efficient

benchmark method (e.g., Eigenfaces). Finally, extensive real-world experiments show that our

proposed system improves recognition accuracy by up to 15% while achieving the same level of

system overhead to the existing face recognition system (OpenCV algorithms) on smart glasses.

18



3.1 Introduction

Face recognition has emerged as an active research area with numerous applications over the

past decades. One of the typical applications of face recognition is to assist people in recog-

nizing identities. The possibility of using wearable devices for deep cognitive assistance (e.g.,

offering hints for social interaction via real-time scene analysis) was first suggested nearly a

decade ago [122, 123] and is becoming the focus of research with the advent of smart glasses

such as Google Glass and Vuzix Smart Glass. Smart glasses have advantages over other smart

devices as they are equipped with a first-person camera which can be naturally used as a ‘third

eye’ to deliver a significantly better user experience for face recognition.

In this chapter, we aim to develop a robust and efficient face recognition system on smart

glasses. Face recognition has been well researched in the computer vision community, yet

there still remain many challenges on mobile devices. As discussed in [124], most of the ad-

vanced face recognition methods fail on portable smart devices because of the tension between

high computation requirements and resource constraints. For instance, the battery life of smart

glasses is limited by the battery size. It is reported that the fully charged battery on the Vuzix

Smart Glass can last for one hour; however our practical experience shows that the battery

would be completely drained within half an hour with display on, camera open and high CPU

loading. Moreover, on smart devices, most of the applications involving face recognition are

still using the inaccurate but efficient methods in the Open Source Computer Vision (OpenCV)

library, e.g, Eigenfaces [130] proposed in 1991. Recently, Shen et al. [124] proposed a new face

recognition system: opti-SRC, which is specifically designed for smart phones based on the

sparse representation classification (SRC) algorithm [138]. However, as opti-SRC only applies

to a single face image, it ignores the rich information enabled by the sensors (accelerometer,

gyroscope, magnetometer, etc.) and video camera when used on smart glasses. This additional

information may improve the performance of the recognition system and user experience signif-

icantly. There have been some recent face recognition systems implemented on smart glasses,

e.g., Gabriel [56]. Gabriel shifts the computation burden to a cloudlet (local server) or cloud

from the smart glasses while the smart glasses are only used for image capture and display of

results. Gabriel provides assistance services to the users such as face recognition and object

recognition. However, the usability of the cloud-based recognition systems relies on the wire-

less connectivity. The energy cost of wireless transmission depends greatly on the quality of
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the wireless connection. Furthermore, according to the results reported in [28], the power con-

sumption of wireless transmission on a smartphone(about 720mW) is approximately 12 times

higher than that of CPU (about 60mW). Therefore, the in-situ approaches are preferable con-

sidering the relatively high cost of wireless transmission and the inconvenience of relying on

wireless connections.

To overcome the challenges and exploit the useful information provided by smart glasses,

we propose and implement a novel sensor-assisted face recognition system which runs locally

on smart glasses. This exploits the information from both the camera and sensors on smart

glasses to improve the recognition accuracy and reduce the energy consumption. The system

recognizes the identities based on face image sequences collected from different view angles

and utilizes the IMU sensors to improve its efficiency. To the best of our knowledge, our work

is the first to consider in-situ face recognition on smart glasses by fusing IMU sensors. The

proposed system presents a humble step forward for in-situ face recognition on smart glasses.

The contributions of this chapter are threefold:

• We propose a novel face recognition algorithm called Multi-view Sparse Representation

based Classification (MVSRC). It exploits the high agreement among the sparse represen-

tations of the face images from different view angles and applies a novel weighted SRC

model to improve the Signal to Noise Ratio (SNR). Our evaluation on several datasets

shows that MVSRC outperforms several state-of-the-art multi-view face recognition al-

gorithms.

• We propose a Support Vector Regression (SVR)-based estimation model to relate the

recognition accuracy to the angle information obtained by IMU sensors. Then we de-

sign two sampling optimization approaches: Maximum Accuracy Sampling Optimization

(MASO) and Minimum Energy Sampling Optimization (MESO) based on the estimation

model to improve the efficiency of MVSRC while preserving its high recognition accu-

racy. We refer to MVSRC after sampling optimization as fast-MVSRC.

• We implement a face recognition system based on the proposed methods on smart glasses

and demonstrate that it significantly outperforms the existing in-situ face recognition al-

gorithms on smart glasses. We also discuss the offloading approach and experimentally

show that the cost of our system is in the same order of offloading to a nearby server

(cloudlet).
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The organization of this chapter as follows. We describe the system architecture in Sec-

tion 3.2. In Section 3.3, we evaluate the performance of the proposed system on several datasets.

We then implement the system on smart glasses and conduct real-world experiments to evaluate

the system in Section 3.4. Finally, we discuss the feasibility of the system in Section 3.5 and

summarize this chapter in Section 3.6.

3.2 System Architecture

MVSRC (Sec 3.2.1)MVSRC (Sec 3.2.1)

Sampling Optimization (Sec 3.2.2)

Multi-view Face Images Capture 

(Sec 3.2.3)
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Figure 3.1: The processing pipeline of face recognition system

In this section, we will introduce the proposed system by walking through an example sce-

nario and then describe the system architecture in detail.

Example Scenario. One day at a party, Tom wants to know the name of the man standing

near him. Tom moves a few steps around the man and the smart glass pops up the name of Bob

on the display. Then Tom says hi to Bob and they have a nice conversation.

System Overview. As shown in Figure 3.1, the face recognition system starts with acquiring

face images when the user starts to move (i.e., walks a few steps around the subject). The angle

information of the face images are estimated by the IMU sensors embedded on the smart glasses.

Then the images and the associated angle labels are recorded and stored for further processing.

After the user stops recording face images, the sampling optimization algorithm, which will be

discussed in Section 3.2.2, will output a subset of face images based on user behavior. Finally,

the MVSRC is applied on the samples (i.e. fast-MVSRC) to obtain the classification result and

the smart glasses prompt the name on the display.
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3.2.1 MVSRC

Multi-view Sparse Representation based Classification (we call it MVSRC for short) is built on

single image approaches [138, 124]. The key assumption behind MVSRC is that face images

obtained from different view angles tend to have a high agreement between the sparse represen-

tations because each of the face images from the same person should be linearly represented by

the same class in the dictionary. Suppose we have acquired a set of M feasible face images from

the camera. Following the single image approach described in Section 2.1.1, we can obtain a

set of estimated coefficients vectors X̂ = {x̂1, x̂2, ..., x̂M} by solving the `1 optimization problem

for each of the face images. Theoretically, a precise sparse representation will only contain

the non-zero entries at the locations related to the specific class. However, noise exists in the

empirical estimations. Therefore, the estimated coefficients vector of the test image m can be

expressed as:

x̂m = x+ εm (3.1)

where x is the theoretical sparse representation of the face image vector and εm is used to account

for noise. The image vector could be misclassified due to low Signal to Noise Ratio (SNR). To

enhance the SNR of the classification system, we propose a new sparse representation model by

exploiting information from the multi-view face images. The new sparse representation model

can be expressed as:

x̂sum =
M

∑
m=1

αmx̂m (3.2)

where αm is the weight assigned to x̂m based on the Sparsity Concentration Index (SCI) defined

in [138]:

SCI(x̂m) =
K ·max j‖δ j(x̂m)‖1/‖x̂m‖1−1

K−1
∈ [0,1] (3.3)

SCI measures how concentrated the coefficients are in the dictionary. SCI(x̂m) = 1, if the test

image can be strictly represented by a linear combination of images from only one class; and

SCI(x̂m) = 0, if the coefficients are spread evenly over all classes. The weight of x̂m is obtained

by normalizing the SCIs among the multi-view face images:

αm = SCI(x̂m)/
M

∑
n=1

SCI(x̂n) (3.4)

In the new face recognition model, the SNR is improved in two aspects.
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• As shown in Eq. (3.1), the estimated coefficients vector can be divided into the theoretical

part (signal part) and noise part. The theoretical parts among the sparse representations

of the multi-view face images from the same identity have a high agreement. However,

due to the random nature of the noise, the agreement among the noise signals is low. It is

straightforward to prove that the SNR of the face recognition system tends to be improved

by summing up the coefficients vectors obtained from conducting sparse representation

on different face images.

• Normalized weights assigned to each of the coefficients vectors are derived from their

SCIs. SCI is designed to approximate the sparsity of the coefficient vectors. A higher SCI

represents a more accurate approximation achieved by solving `1 optimization. There-

fore, the coefficients vector with higher SNR will be assigned a relatively larger weight.

Meanwhile a coefficients vector with a high noise level will be depressed by being as-

signed a smaller weight.

With the knowledge of x̂sum, the compressed residual of each class is computed as:

ri(ysum) = ‖Roptysum−RoptAδi(x̂sum)‖2 (3.5)

where ysum =
M
∑

m=1
αmym is the weighted summation of all the feasible face image vectors ob-

tained by the glasses. Following the same approach in [138, 124], the final classification result

is obtained by finding the minimal residual.

To recognize individuals that are not in the system, we adopt the same principle used in [124]

by using confidence level defined as:

con f idence =

(
1
K

K

∑
i=1

ri− min
i=1,...,K

ri

)
/

1
K

K

∑
i=1

ri (3.6)

The confidence level is in the range of [0,1] and should be close to 1 if a subject is known by the

recognition system; otherwise it will be close to 0. An appropriate threshold (0.2 in our system)

can be chosen by a data-driven approach to make the recognition system robust to intruders.

As a recognition system, our system will always provide a recognition result to the user. The

confidence level is just used to indicate the credibility of the final result.
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3.2.2 Optimized Sampling Strategy

Problem Statement

Considering the computation and energy consumption issues of the smart glasses, applying

MVSRC straightforwardly on all of the M face images is not a desirable choice because it

requires operating `1 optimizations M times. Evaluation in [124] shows that only a single

`1 optimization takes almost 2/3 of the total computation time. Moreover, a large amount of

redundant information exists among the adjacent frames as the face images with similar view

angles contain large overlaps. This makes a downsampling strategy possible to improve the

efficiency of MVSRC while preserving its accuracy.

To find the best sampling strategy, we propose two approaches to optimize the downsam-

pling on the face images set with a predefined energy budget or an accuracy target respectively:

the Energy First approach and Accuracy First approach.

Energy First. In this case, the energy consumption is considered as the first priority. The

energy budget Eb is preset and we aim to find the optimal subset Ωs of the face images set I to

achieve the highest recognition accuracy Ac by solving the optimization problem below:

Ωs = argmax
Ω

Ac s.t. Etotal ≤ Eb,Ω⊆ I (3.7)

where Ω is one of the arbitrary subsets of I and Etotal is the total energy consumption for face

recognition.

Accuracy First. In this case, the accuracy target At is regarded as the first priority. The total

energy consumption Etotal is minimized by solving the optimization problem while achieving

the accuracy target:

Ωs = argmin
Ω

Etotal s.t. Ac ≥ At ,Ω⊆ I (3.8)

To solve the above optimization problems, we start with analyzing the parameters affecting

the face recognition accuracy. According to the processes of face recognition with smart glasses,

we define a potential parameters list X and aim to relate this list to recognition accuracy by

machine learning techniques. The parameters included in X in our system must satisfy two

conditions: 1) it can be quantified and 2) it can be estimated by sensors on smart glasses.

Using these two conditions, we build the list X = (θ1,θt ,θs1,θsi,ns) consisting of the following

parameter variables:
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• θ1: the view angle of the first recorded face image which is estimated by image processing

method.

• θt : the total rotation angle displacement between the leftmost (rightmost) and rightmost

(leftmost) face images in the yaw direction and is estimated by the IMU sensors.

• θs1: the view angle of the first face image in the chosen subset and is estimated by com-

bining the result of θ1 and analysis on IMU sensor readings.

• θsi: the view angle interval among the face images in the chosen subset and is estimated

by IMU sensors.

• ns: the number of face images in the chosen subset.

The illustrative explanation of the parameter variables is shown in Figure 3.2 (θ is obtained

by gaze estimation in Section 3.2.3). As the evaluation in Section 3.3.2, the feasible range of

the view angle is between 30◦ to the left and 30◦ to the right of the frontal face respectively. The

results are also consistent to the symmetric property of the human face. Therefore the original

angle (0◦) can be either the 30◦ view angle to the right (as shown in Figure 3.2(a)) or the 30◦

view angle to the left (as shown in Figure 3.2(b)). We choose the origin at the same side as the

view angle of the first recorded face image.
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Figure 3.2: Angle coordinate system settings: θ is the relative view angle of the first face image
to the frontal face, θ1 is the view angle of the first face image to the origin (θ1 = 30◦−θ ), θt is
the rotation angle displacement between the first and last face images.

As the exact recognition accuracy cannot be computed without the knowledge of the groundtruth

in a real world application, to estimate recognition accuracy, we model the correlation between

the parameter variables and the recognition accuracy based on a novel Support Vector Regres-

sion (SVR)-based approach [126] to find the optimal observation of the parameters. The estima-

tion model is learned offline and then used for in-situ accuracy estimation. We use our private
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dataset (see Section 3.3 for the details of private dataset) which consists of 10 subjects to learn

the estimation model. Each of the subject contributes 9 image sequences and each of the image

sequences contains 61 face images from different view angles. In the following parts, we will

describe how to build the estimation model.

SVR-based Estimation Model

We define the set of all the possible observations of X as {χ1,χ2,χ3, ...,χN} and the correspond-

ing accuracies as {z1,z2,z3, ...,zN}. Each of the observations is related to a certain subset of the

face images which is determined by the values of the parameters in X . With the information

of the observations and the corresponding accuracies, we aim to find the function f (·) which

best approximates the relation inherited between the input features X and it can be used later

on to infer the accuracy z for a new input feature X . Specifically, the goal of regression is to

find the function f (·) which relates the parameters list X to the recognition accuracy z with the

deviation of at most ε:

Dev(z, f (X))≤ ε (3.9)

where Dev(·, ·) represents the deviation computation. We apply SVR [126] by using all the

possible observations in the private dataset to find the function f (X) and we use the Radial

Basis Function (RBF) Kernel which is defined as:

k(xi,x) = e−γ‖xi−x‖2
(3.10)

where γ is a kernel parameter (0.01 in our experiment). For more details of SVR, readers are

encouraged to refer to [126] for the step-by-step instructions.

To evaluate the estimation function, we divide the set of pairs of observations and the corre-

sponding value of z into a training dataset {(χD,1, zD,1), (χD,2, zD,2)..., (χD,L, zD,L)}, and a test

dataset {(χT,1, zT,1), (χT,2, zT,2),..., (χT,F , zT,F)}, where N = L+F . The estimation function

f (X) is learned from applying SVR on the training dataset. Then we use the test dataset to eval-

uate the estimation performance. We compute the Mean Square Error (MSE) of f (X) against

the ground truth z via a 10-fold cross validation. Specifically, the dataset is equally divided

into 10 sets. Then each of the 10 sets is selected as the test dataset (the remaining 9 sets act as

training dataset) and the corresponding MSE is calculated. The final MSE over the 10 sets is

only 0.0034 which indicates the function f (X) learned from applying SVR-based approach on
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Algorithm 1 Maximum Accuracy Sampling Optimization
1: Input: Estimation model f , total energy consumption Etotal , energy budget Eb, angle of

the first view θ1, total rotation angle displacement θt , angle of the first sampled image θs1,
interval between sampled images θsi, number of sampled images ns, maximum number of
sampled images Nmax = [(min(θ1 +θt ,60)−θs1)/θsi].

2: Initialization: allocate one empty list: Y , m = 0.
3: for ns = 1 : Nmax do
4: for θsi = 0 : θt do
5: for θs1 = θ1 : min(θ1 +θt ,60) do
6: if (Etotal ≤ Eb) then
7: Ym = f (θ1,θt ,θs1,θsi,ns)
8: m++
9: end if

10: end for
11: end for
12: end for
13: (θs1,θsi,ns) = argmax

θs1,θsi,ns

Y

14: Output: (θs1,θsi,ns)

the training dataset can provide accurate estimation with the knowledge of the observations of

the parameters list.

Sampling Optimization

With the knowledge of the estimation function, we propose two computationally efficient ap-

proaches to solve the optimization problems Eq. (3.7) and Eq. (3.8) respectively, i.e., Maxi-

mum Accuracy Sampling Optimization (MASO) and Minimum Energy Sampling Optimization

(MESO). In the real application, θ1 and θt are user-specific and determined before the sampling

optimization stage. The optimization approaches are actually searching for the optimal obser-

vation of (θs1,θsi,ns) under the predefined conditions (energy budget or accuracy target). The

estimation function is used to efficiently approximate the recognition accuracy with the knowl-

edge of the angle information (Line 7 in algorithm 1 and Line 6 in Algorithm 2).

MASO To solve the optimization problem Eq. (3.7), MASO finds the optimal observation

of (θs1,θsi,ns) (i.e., the sampling strategy) to achieve the highest recognition accuracy under

the predefined energy budget as shown in Algorithm 1.

MESO MESO solves the optimization problem Eq. (3.8) by finding the optimal observation

of (θs1,θsi,ns) to minimize the energy consumption under the predefined accuracy target as

shown in Algorithm 2.
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Algorithm 2 Minimum Energy Sampling Optimization
1: Input: Estimation model f , total energy consumption Etotal , accuracy target At , angle of

the first view θ1, total rotation angle displacement θt , angle of the first sampled image θs1,
interval between sampled images θsi, number of sampled images ns, maximum number of
sampled images Nmax = [(min(θ1 +θt ,60)−θs1)/θsi].

2: Initialization: allocate one empty list: E, m = 0.
3: for ns = 1 : Nmax do
4: for θsi = 0 : θt do
5: for θs1 = θ1 : min(θ1 +θt ,60) do
6: if ( f (θ1,θt ,θs1,θsi,ns)≥ At) then
7: Em = Etotal
8: m++
9: end if

10: end for
11: end for
12: end for
13: (θs1,θsi,ns) = argmin

θs1,θsi,ns

E

14: Output: (θs1,θsi,ns)

In Algorithm 1 and 2, the total energy consumption of the system can be expressed as:

Etotal = T ∗ (Pbase +Pdis +Pimu +Pcam)+Ecpu (3.11)

where T is the total operating time for classification; Pbase denotes the baseline power con-

sumption of the smart glass; Pdis, Pimu and Pcam are the power consumed by the display, IMU

sensors, and camera respectively; Ecpu is the total energy consumption of CPU for classification

which accounts for face detection, gaze estimation, `1 optimization, residual calculations and

sampling optimization. Ecpu can be further split into a repeatable part and a one-time part. The

one-time part consists of the energy consumption of gaze estimation, residual calculation and

sampling optimization which are operated once only during classification, while the repeatable

part includes face detection and `1 optimization which are operated on every sampled face im-

age. Assuming m face images are sampled for classification, the total energy consumption can

be further expressed as:

Etotal = T ∗ (Pbase +Pdis +Pimu +Pcam)+m∗Eu +E1 (3.12)

where Eu is unit energy consumption of the repeatable part on each image, E1 is the energy

consumption of the one-time part.
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The optimization strategy and corresponding parameter (i.e., Eb in MASO and At in MESO)

is customized by the user before recognition, and the optimization process is called online after

the multi-view face images are obtained. As the results shown in Section 3.3.4, the sampling

optimization component only takes less than 2.7% of the total computation time which suggests

that our optimization method is computationally efficient and we also noticed that Eu (including

face detection and `1 optimization) is the most energy-consuming component (238mJ), and the

aim of the sampling optimization is to reduce the number of images (m in Eq 3.12) which is

the proportional coefficient of Eu. Therefore, the proposed sampling strategies can reduce the

computational cost of MVSRC significantly. In order to differentiate from MVSRC, we call

MVSRC after sampling optimization as fast-MVSRC.

3.2.3 Sensors-assisted System

As described above, the sampling optimization process requires the angle information. The

angle information is obtained by gaze estimation of the first face image and angle displacement

estimation with IMU sensor readings.
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Figure 3.3: (a) Head model of the user [12] (b) Gaze of the subject (c) Bird view of the recog-
nition process.

Gaze Estimation

Gaze estimation is used to find the initial angle information θ1 of the first image by the image

processing technique proposed in [52]. The method uses the locations of the following five

facial features: left and right eye far corners, left and right mouth corners and nose tip which

are marked as red crosses in Figure 3.3(b). The angle θ between the view point of the first face

image recorded and the frontal view is calculated by analyzing the relative positions of the five

facial points. Then θ1 in the view angle coordinate system can be obtained with the knowledge

of θ (θ1 = 30◦−θ in our system). After obtaining the initial angle information, the view angles
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of the face images recorded later can be calculated by accumulating the angle displacements

along with θ1 as reference.

Angle Displacement Estimation

From Figure 3.3(a) and Figure 3.3(c), we notice that the rotation angle is actually the angle

change along yaw direction of the smart glass when the user moves around the subject. In

practice, substantial pitch and roll rotations rarely occur. Moreover, the slight pitch rotation

caused by the height difference between the subject and user is within the tolerance of the

face recognition algorithms. One can estimate rotation angle by simply integrating gyroscope

readings. However, the measurements from IMU sensors suffer from bias, noise and systematic

errors (e.g., misalignment between the sensor axes and non-unit scale parameters) which lead

to inaccurate orientation estimations [82]. To address this issue, we implement a sensor fusion

algorithm to compensate for the weakness of each sensor by utilizing other sensors’ information.

Here we use quaternion-based Extended Kalman Filter (EKF) proposed in [121] to estimate

the orientation of the smart glass. The EKF incorporates an in-line calibration procedure for

modeling time-varying biases which may affect sensors like accelerometers and magnetometers,

and a mechanism for adapting their measurement noise covariance matrix in the presence of

motion and magnetic disturbances. Assume the output of EKF is quaternion q = [w,x,y,z]T ,

we could compute the three Euler angles of head model in Figure 3.3(a) using the following

equations: 
ϕ

ψ

θ

=


atan2

(
2(wz+ xy) ,1−2

(
x2 + z2))

asin(2(wx− yz))

atan2
(
2(wy+ xz) ,1−2

(
x2 + y2))

 (3.13)

where ϕ stands for roll, ψ represents pitch and θ represents yaw rotations respectively.

To improve user experience, the IMU sensor readings are used to automatically determine

the start and end of the recognition process. From our observation, the gyroscope data along the

yaw direction (perpendicular to the motion) exhibits large variations when the user moves dur-

ing the recognition process. We first apply a low pass filter to filter out the small vibrations, then

our system will start to record face images at θstart when the gyroscope sensor reading along

the yaw direction is larger than a threshold (0.15 rad/s in our system) and end the recording at

θ f inal when it is lower than the threshold in the sense that the user stops moving. The rotation

angle can be simply obtained by θt =
∣∣θ f inal−θstart

∣∣ as shown in Figure 3.3(c).
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Another challenge is that the timestamps of sensors and video frames are usually not well

synchronized [67]. Therefore, we apply the online calibration and synchronization method

proposed in [67] to obtain the delay td between IMU sensors and camera, then td is in return

used to synchronize the timestamps of sensor readings and images. For a full description of the

EKF-based orientation estimation and synchronization, the reader is referred to [121] and [67]

respectively.

After the user stops moving, θ1, θt and face images associated with corresponding angle

displacement are used in MASO or MESO which depends on user choice.

3.3 Evaluation

3.3.1 Goals, Metrics and Methodology

In this section, we will evaluate the performance of the proposed system via simulation. The

goals of the simulation are fourfold: 1) to determine the choice of the key parameters including

feasible range of views in the yaw direction and the number of projections used in MVSRC;

2) whether MVSRC outperforms the state-of-the-art face recognition methods in accuracy; 3)

whether the proposed sampling strategies improve the efficiency of MVSRC while retaining

high accuracy; and 4) to evaluate the angle estimation accuracy of IMU-based method and its

impact on face recognition accuracy.

The evaluations are based on two datasets: Honda/UCSD video dataset (Honda/USCD) [78]

and the private dataset we have collected with the smart glasses1. Honda/USCD video dataset is

widely used for the evaluation of multi-view face recognition methods. It consists of 59 image

sequences from 20 subjects recorded in different environments and each subject contributes at

least two sequences. The number of frames of the sequences vary from 12 to 645. The angle

information is not available in Honda/UCSD dataset, therefore we built our private dataset by

obtaining both multi-view face images and their associated view angles. Our private dataset

consists of 10 subjects (2 females and 8 males) aged from 24 to 43 with different skin tones.

The face images are taken under 9 different categories by combining the different expressions

(neutral, happy and sad) and locations (corridor, office and outdoor). The user wearing the

smart glass records the video clips of the candidate to be recognized (suppose the candidate is

1Ethical approval for carrying out this experiment has been granted by the corresponding organization (Ap-
proval Number 2014000589)

31



just facing to the user) by moving around the subject from left to right (in yaw direction) with

wide range. The flow of orientation information is obtained and synchronized with the video

clips. Face regions are detected by a Viola-Jones face detector [134] and cropped to 48× 48

gray-scale images. We then apply the method introduced in Section 3.2.3 to find the frame

containing the face in frontal view angle. Finally we sub-sample the video clips by every 1◦

according to the associated angle displacement information until we reach 60◦ to both left and

right direction. Therefore, for each video clip, we obtain a symmetric sequence of 121 face

images with view angles from −60◦ (left) to +60◦ (right). A sequence of sample images is

shown in Figure 3.4.

Figure 3.4: Examples of face images from private dataset.

As the proposed system is a multi-classification system, we focus on evaluating recognition

accuracy rather than positive/false negative which are commonly used metrics in an authentica-

tion system. We determine the parameters (feasible angle range and number of projections) by

gradually changing the parameters and the choices are made according to the evaluation results

on the real datasets. In the evaluation of this section, the training set is derived from random

selection as in [124]. We show the results of the average value and 95% confidence level of the

performance metrics (accuracy, energy consumption and computation time) over 30 indepen-

dent trails. The computation time and energy consumption are measured by running the system

on Vuzix M100 Smart Glass.

3.3.2 Parameters Choice

In this section, we will determine the choice of the parameters including the feasible angle range

and the number of projections applied in the system by evaluations on the real datasets.

Impact of View Angles

The view angles have substantial impact on the recognition accuracy. In this experiment, we

evaluate the influence of different view angles on the recognition accuracy on the private dataset.

As described previously, we obtain a symmetric sequence of 121 face images with view

angles from −60◦ (left) to +60◦ (right) for each video clip. We group the face images by the
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view angles uniformly into 12 bins by every 10◦ and the frontal faces are picked up to form

the 13th bin. Each bin represents an evaluation point. We calculate the recognition accuracy

of each bin by using three single-image based face recognition methods: opti-SRC, rand-SRC

and Eignfaces. We display the evaluation points at the medium degree of each bin (x-axis)

in Figure 3.5(a). From the results, we observe that the recognition accuracy decreases when

the view angles of the face images deviate from the frontal view angle and the recognition

accuracy has dropped significantly when the view angle is over 30◦ apart from the frontal view.

Therefore, we determine the feasible range of the view angles in our system as [−30◦,30◦] (the

origin of the view angle is the frontal face). In addition, the work in [146, 132] also studies

the effects of different poses on face recognition and their findings support our results. With

this observation, we remove the images in our private dataset whose view angles are not in the

feasible range. Therefore, the number of image in each sequence becomes to 61.
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Figure 3.5: Experimental results of parameters choice.
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Impact of Number of Projections

It is known that the recognition accuracy can be improved by increasing the number of projec-

tions or features. However, this also increases the computation cost significantly. To investigate

the recognition accuracy on the number of projections, we evaluate the performance of MVSRC

with different settings by varying the number of projections from 50 to 300. As MVSRC uses

multiple face images to perform recognition, we calculate the accuracy of MVSRC with dif-

ferent number of views (the number of face images from different view angles for each clas-

sification) nview = 1,2,3,4. We group the face images of each image sequence in the test set

into small subsets of nview images and report the recognition accuracy of MVSRC on the small

subsets of different sizes in Figure 3.5(b). We also evaluate the computation time of MVSRC

with different number of projections. As the computation time of MVSRC is proportional to

nview, without loss of generality, we present the computation time of MVSRC when nview = 1.

From the results shown in Figure 3.5(b) and Figure 3.5(c), we find the growth of the recogni-

tion accuracy diminishes when the number of projections is above 200 while computation time

keeps increasing substantially. Therefore, we choose the number of projections as 200.

3.3.3 Dataset Evaluation of MVSRC

In this section, we compare MVSRC with several competing face recognition methods in the

literature. Note that we do not consider angle displacement information in this section.

Comparison with State-of-the-Art

We compare MVSRC with three state-of-the-art multi-view face recognition methods, namely,

JDSRC [144], SANP [62] and MSSRC [109]. We compute the recognition accuracy of different

methods under different number of views (k) as well as different number of projections/features

(d) on the private dataset and Honda/UCSD dataset respectively. For each dataset, we randomly

choose 30 images from each subject to form the training set and the rest are used as the test set.

We first evaluate the accuracy with different numbers of views from 1 to 5 by setting d = 200.

We then evalulate the accuracy of different methods against the number of projections/features

from 50 to 200 with k = 3. Figure 3.6(a) and Figure 3.6(b) plot the results of the private

dataset. The results on Honda/UCSD dataset are shown in Figure 3.6(c) and Figure 3.6(d).

Note that SANP is not a feature-based method, so the accuracy of SANP in Figure 3.6(b) and
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Figure 3.6: Evaluation results

Figure 3.6(d) is shown by a straight line.

From the results, we can see that MVSRC consistently achieves the best recognition accu-

racy and is up to 7% and 10% more accurate compared to the second best recognition method

on the two datasets respectively. MVSRC, JDSRC and MSSRC are based on original SRC;

however, we notice that MVSRC performs better than JDSRC and SANP when k=1. This is

due to the fact that single-image MVSRC becomes opti-SRC and opti-SRC performs better than
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SRC. We observed that the recognition accuracy of MSSRC is much lower than that reported

in [109], because in [109], images are first eye-aligned using eye locations and normalized,

then histogram equalization is performed, finally Local Binary Patterns (LBP) and Histogram

of Oriented Gradients (HOG) descriptors are extracted. However, these operations introduce

extra system cost on smart glasses. In our evaluation, the face images are directly used for

face recognition and no further pre-processing such as alignment or background removal is

performed.

Computation Time Evaluation

The computation time is a crucial factor for face recognition systems because the users expect

a real-time response. Eigenfaces is known to be efficient and is the most popular method used

on resource-constrained devices. We use our private dataset to evaluate the computation time

for MVSRC and Eigenfaces (with majority voting) on smart glasses with various sizes of image

sequence from 1 to 60. The cost of the two methods is represented by the computation time used

for one classification operation. The results in Figure 3.6(e) demonstrate that MVSRC requires

significantly more computation time than Eigenfaces and the gap increases with the growth of

the number of images used for recognition. However, we will show in the following section that

the computation time of MVSRC can be reduced significantly while preserving high accuracy

with the proposed sampling optimization method.

3.3.4 Dataset Evaluation of Optimization Strategies

To address the computation issue of MVSRC, we propose fast-MVSRC by combining MVSRC

with the optimized sampling strategies described in Section 3.2.2. In this section, we start

with some preliminary experiments to find the computation and energy cost information of our

system. Then we evaluate the performance of fast-MVSRC using the proposed optimization

algorithms and compare it with other common sampling strategies. Finally, we compare the

recognition accuracy of fast-MVSRC with Eigenfaces under various computation cost on smart

glass.

Preliminary Experiments

As the optimization methods proposed in Section 3.2.2 require the energy consumption infor-

mation, we conduct preliminary experiments on the Vuzix Smart Glass to obtain the energy
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consumption and computation time information. It is worth mentioning that the proposed sys-

tem is not platform specific and is compatible with Google Glass as well.

In the preliminary experiments, we first evaluate the impact of image resolution and Frame

Per Second (FPS) on system cost. Table 3.1 shows that the cost of face detection improves

significantly with the increase of image resolution. Image downsampling reduces the system

cost, however, it also leads to low recognition accuracy. Note that the recognition accuracy

shown in Table 3.1 are the mean results of single-image MVSRC on private dataset without

sampling optimization. The original image resolution of Vuzix Smart Glass is 432× 240. As

shown in Table 3.1, we found that the recognition accuracy drops significantly when the image

is downsampled to 108x60 (4 times downsampling in both dimensions). Thus the raw image is

downsampled to 216×120 (1/2 downsample) in the prototype. Table 3.2 illustrates the display

power, camera power and mean angle estimation error under different FPS. To balance the

system cost and the accuracy of angle estimation, we set FPS to 24 in the prototype system.

Table 3.1: System cost of face detection operation under different image resolution.

Resolution Time(ms) Energy(mJ) Accuracy(%)
432*240 175 107 88.1
216*120 85 56 86.8
108*60 63 34 78.4

Table 3.2: Display power and camera power under different FPS

FPS Pdis(mW) Pcam(mW) Angle Estimation error
27 265 177 1.9◦

24 220 122 1.9◦

20 204 112 2.9◦

15 187 105 3.8◦

10 162 92 5.7◦

Table 3.3: Resource consumption on Vuzix Smart Glass

Operations Time(ms) Operations Power(mW)
Face Detection 85 Baseline 35

Gaze Estimation 87 Display 220
`1 350 Camera 122

Residual 33
Energy(mJ) Sampling rate NORMAL UI GAME FASTEST

Eu 238 Frequency(Hz) 5 15 50 205
E1 62 IMU power 11 29 61 295

After image resolution and FPS are determined, we evaluate the resource consumption of
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each component in the system. Table 3.3 shows the related specifications and resource con-

sumptions on Vuzix Smart Glass. The computation time is obtained from the console of the

Eclipse development environment and the energy consumption of each component is estimated

by PowerTutor App (it was also used in [124]). The sampling rate of the IMU sensors can be set

via Android API and is in four levels from low to high: NORMAL, UI, GAME and FASTEST.

Considering both the energy consumption and the accuracy of the synchronization, we choose

the sampling rate of the IMU sensors as GAME.

With the resource consumption information above, we evaluate the performance of fast-

MVSRC with the two sampling optimization methods in the following sections.

Dataset Evaluation of MASO

In this section, we compare the recognition accuracy of fast-MVSRC (MASO version) with dif-

ferent sampling strategies under different energy consumption budgets. The sampling strategies

include the proposed algorithm MASO, random sampling strategy, uniform sampling strategy

and oracle sampling strategy. For the random sampling strategy, we randomly choose a subset

of the image sequences. The energy consumption of MVSRC with this subset should satisfy the

budget. For the uniform sampling strategy, we divide the image sequence into uniform groups

and select the face image in the middle of the group as the representative. We vary the energy

budget from 530mJ to 3230mJ for each classification. We consider an offline oracle optimal

strategy that provides an upper bound on recognition accuracy for a given energy budget. In

terms of oracle sampling strategy, we calculate the recognition accuracy of MVSRC with all

possible subsets to find the most accurate one. However it is not applicable for real-world ap-

plications as the recognition system cannot compute the recognition accuracy for each of the

possible subsets without the knowledge of the groundtruth (the identity of each face image ob-

tained manually). From the results in Figure 3.7(a), we can see that fast-MVSRC with MASO is

comparable to the oracle sampling strategy, and achieves higher accuracy than the random and

uniform approaches with the same energy budget. We also notice that our approach performs

much better compared to random sampling strategy and uniform sampling strategy when the

energy budget is limited which is often the case on smart glasses.
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Figure 3.7: Evaluation results of optimization strategies.

Dataset Evaluation of MESO

Different from MASO, MESO aims to find the subset of face images to minimize the energy

consumption on the premise of an accuracy target. We again compare fast-MVSRC (MESO

version) with the random sampling, uniform sampling and oracle sampling strategy. The recog-

nition accuracy target At varies from 91% to 98%. However, for random sampling strategy and

uniform sampling strategy, we are not able to control the accuracy target because the accuracy

estimation model is not applicable for these two strategies. We compute recognition accuracy of

the random and uniform sampling strategies with different energy consumptions and the results

are shown in Figure 3.7(b). We also consider an oracle optimal strategy that provides an lower

bound on energy consumption to achieve a certain accuracy target. For a certain accuracy, the

energy consumption of oracle sampling strategy is calculated offline by performing MVSRC on

all possible subsets and choosing the one that consumes minimum energy. The accuracy target

At of our method is labeled in the figure for reference, and we find that all the accuracy targets
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are achieved by fast-MVSRC with MESO. Figure 3.7(b) shows that performance of our ap-

proach is significantly closer to the oracle sampling strategy and saves up to 500mJ and 1200mJ

per classification compared to the uniform and random sampling strategies respectively. We

also notice that the energy consumption keeps almost the same as the accuracy target increases

at some evaluation points. This is because the subsets with the same number of face images

may produce different accuracy due to different view angle settings. The step behavior shown

in Figure 3.7(b) may be due to insufficient dataset being used. We will study the step behavior

in our future work.

Fast-MVSRC v.s. Eigenfaces

To demonstrate the effectiveness of fast-MVSRC, we compare the Efficiency-Accuracy perfor-

mance of fast-MVSRC (MASO version), MVSRC and Eigenfaces. We define the Efficiency-

Accuracy performance as the recognition accuracy with respect to the computation time. We

calculate the accuracy of fast-MVSRC and Eigenfaces with majority voting data fusion for

multiple images under different computation time. The computation time is varied by using

different number of face images for classification. From the results in Figure 3.7(c), we can

see the recognition accuracy of fast-MVSRC is up to 9% better than Eigenfaces under the same

computation time. Fast-MVSRC performs better than MVSRC under the same computation

time (i.e., the same number of images) because MASO chooses the optimal face images from

the image sequence. Another important observation is that the growth of the recognition accu-

racy of fast-MVSRC diminishes when the computation time is around 1.4s–1.8s which indicates

fast-MVSRC enables quick response. The results in Figure 3.6(e) and Figure 3.7(c) show that

fast-MVSRC improves the efficiency of MVSRC significantly while preserving high recogni-

tion accuracy.

3.3.5 Evaluation of IMU-based Gaze Estimation

In this section, we evaluate the performance of IMU-based gaze estimation method and the

impact of estimation error on the face recognition accuracy. We also evaluate the impact of

total angle displacement on face recognition accuracy.
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Figure 3.8: Comparison with Image-based Gaze Estimation.

Comparison with Image-based Gaze Estimation

In this part, we compare the estimation accuracy and resource consumption of IMU-based gaze

estimation used in our system and image-based gaze estimation proposed in [52]. The results

in [52] show that the image-based method can achieve a mean angle estimation error of 2.5◦

and a maximum estimation error of 6◦ in 1000 samples of noisy face images. We randomly

select 30 face images from each subject to form the comparison image set and use the angle

information obtained in Section 3.3.2 as the corresponding estimated value of the IMU-based

method. For image-based gaze estimation, we perform facial features detection first and use

the method in [52] to estimate the gaze. Facial features are detected by a state-of-the-art facial

landmark detector flandmark [131]. The ground truth are obtained by annotating facial features

manually and then performing the method in [52]. From Figure 3.8(a) and Figure 3.8(b), we

can see that our method reduces computation time by 65% and energy consumption by 78%

respectively, while achieving comparable accuracy to the image-based gaze estimation method.

Impact of Angle Estimation Error

As shown in Figure 3.8(a), the estimation errors for most of the face images (over 95%) are

within 3◦. Therefore, it is important to know the impact of the estimation errors on the recogni-

tion accuracy.

We first evaluate the impact of estimation error on MASO. As described in Section 3.3.1,

each subject in the private dataset has 9 image sequences collected in different categorizes. We

randomly select 5 image sequences from each subject to form a training dataset and use the
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Figure 3.9: Evaluation results: (a) Impact of estimation error on MASO. (b) Impact of estima-
tion error on MESO. (c) Impact of different total angle displacement.

rest sequences as testing data. We apply MASO on each testing sequence and obtain the angles

of the sampled images. Then we select corresponding images in the test sequence according

to their angle information. The angles of the testing images are obtained from two methods,

i.e., IMU-based method and image-based method. We vary the energy budget from 530mJ to

3230mJ and calculate the corresponding recognition accuracy of IMU-based method and image-

based method respectively. Then we conduct the same experiment procedures to evaluate the

impact of estimation error on recognition accuracy by applying MESO. From Figure 3.9(a)

and Figure 3.9(b), we can see that IMU-based method achieves comparable accuracy to image-

based method. Therefore, we conclude that the minor errors introduced by the IMU based angle

estimation will not have noticeable influence on the recognition accuracy (less than 1.3%).
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Impact of Total Angle Displacement

As the total angle displacement between the starting view angle and the ending view angle varies

in the practical use, we evaluate the impact of the total angle displacement on the recognition

accuracy. In this experiment, we set Eb = 2330mJ for MASO as from Figure 3.7(a) we notice

that the accuracy levels off after Eb ≥ 2330mJ. For MESO, we set At = 95% to correspond to

the settings in Section 4.7. We gradually increase the total angle displacement from 0◦ to 60◦

by every 5◦ and the recognition accuracy is calculated. Figure 3.9(c) shows that the recognition

accuracy increases with the growth of rotation angle displacement which suggests user can get

higher accuracy if their motion covers larger view range. We also find that the total angle

displacement for high recognition accuracy (95%) can be as small as 5◦ which enables a very

short image collection phase (200ms in our user study).

3.4 Real-world Experiments

3.4.1 System Implementation

The prototype of our proposed face recognition system is implemented on Vuzix M100 smart

glass2. The CPU is an OMAP4460 at 1.2GHz and the operating system is Android 4.0.4.

It is equipped with a 5-megapixel camera and the images captured in our system are 216×

120@24fps. We use the hardware face detection of OMAP for efficient operation and facial

features (i.e. nose tip, eye outer corners and mouth corners) are detected by flandmark [131].

The efficient implement of `1 optimization algorithm `1-Homotopy [43] is used as [124], and

its complexity is O(k3 + kmn), where k is the sparsity of the solution (k� n), m is the number

of equations, and n is the number of unknowns, i.e., the number of columns in the training

dictionary.

3.4.2 Experimental Description

We recruited 15 volunteers: 5 users and 10 subjects in the training set. The 10 subjects are

the same as our private dataset which was collected under different environments. We select

30 face images from each subject to form the training set. Therefore, the training dictionary

is a matrix of size 2304× 300 (face image is resized to 48× 48 = 2304). The experiments

2A video demonstration of the system can be found at the following
URL:https://www.youtube.com/watch?v=lVRS4e3Glho
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are conducted in two different locations, in an indoor office environment and outdoors. The

lighting conditions are quite different for indoor (200-400 lux) and outdoor (over 1,000 lux)

environments. Different lighting conditions are applied for indoor experiment (front-lighting,

back-lighting and uniform lighting) and outdoor experiment (front-lighting and backlighting).

Thus, the experiments are divided into 5 categories. For each category, users conducted two

recognition attempts for each of the subjects. Therefore, we obtain 500 independent recognition

results. The energy budget (Eb in MASO) is set as 550mJ (the actual energy consumption of

our system was around 520mJ), and the accuracy target (At in MESO) is set as 95%.

We also implement the OpenCV face recognition algorithms (OpenCV-2.4.9) on Vuzix

M100 smart glass as a benchmark. OpenCV provides three face recognition methods, namely

EigenFaces [130], FisherFace [16] and LBPFace [10] in its library. In the experiments, we found

that these three methods achieve comparable performance in terms of recognition accuracy and

computational cost.

3.4.3 Experimental Results
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Figure 3.10: Recognition accuracy

The recognition accuracy of our system and Eigenfaces in different experimental categories

are shown in Figure 3.10. The proposed system is very stable under different lighting con-

ditions. When MASO is employed, our system outperforms Eigenfaces significantly in every

experimental category and is up to 15% more accurate than Eigenfaces under outdoor front-

lighting condition. When MESO is employed, the actual recognition accuracy of our system

achieves the preset accuracy target in all lighting conditions. We also evaluate and compare the
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system overhead of our system with Eigenfaces. From the results in Table 3.4, we can see that

the cost of the proposed system (MASO) is in the same order of that of Eigenfaces. The re-

source consumption of the system when using MESO is higher than that of Eigenfaces because

we set a high accuracy target.

Table 3.4: System overhead

Statistic MASO MESO Eigenfaces
Computation

Time 516-582ms 1470-1622ms 247-331ms

Energy
Consumption 506-535mJ 1400-1466mJ 316-410mJ

Expected
Battery Life ≈0.28hr ≈0.1hr ≈0.37hr

Memory Usage 55-64 MB 38-40 MB

3.5 Discussion

Feasibility The implementation of the system takes advantage of the following assumption: the

subject to be recognized remains still and the user needs to move subtly to the left (right) of

the target to capture multi-view images. Such assumption may cause inconvenience in practical

scenarios. However, as the evaluation results in Section 3.3.5, a total angle displacement of 5◦

is sufficient to obtain a reliable recognition result (over 95%) and it only takes approximately

200ms for image collection. We believe it only requires small efforts of the user and subjects

for normal cases. If the user remains static, single-image MVSRC will be adopted. However, if

the user is willing to make extra small efforts with sacrificing user experience on one hand, the

significant higher recognition accuracy will significantly improve user experience on the other

hand. The proposed system provides such options to users. In practice, face recognition may be

applied in a more complex scenario, such as when the user or subject is sitting. We defer face

recognition in these scenarios to our future work.

Offload vs. In-situ Offloading computationally intensive operations from mobile devices

to powerful infrastructure is a common strategy to reduce computation burden on resource con-

strained devices. In terms of offloading approaches, the smart glasses are used to capture images

and perform sampling optimization, then the sampled images are transmitted to the server via a

wireless network. Results obtained by running MVSRC on the server are sent back to the smart
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Table 3.5: Server hardware specifications

Offload Strategy CPU RAM
Cloudlet Intel Core 2.7Ghz 2cores 8GB
Cloud Intel Xeon 2.5Ghz 1VCPU 1GB

glasses. We evaluated the response time and energy consumption of smart glasses by trans-

mitting raw sampled images under two different offloading approaches: cloudlet and remote

cloud. Hardware specifications of different offloading strategies are shown in Table 3.5. The

cloudlet is implemented inside a Virtual Machine (VM) managed by Vmware Workstation on a

Windows 7 host. We use Amazon EC2 VM instances located in Sydney as a remote cloud. The

wireless network is based on a campus WiFi.
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Figure 3.11: Comparison of different offloading approaches.

Figure 3.11 presents the response time and energy consumption of the smart glasses using

different approaches. We can see a significant drop in both latency and energy consumption

when switching from cloud to cloudlet. The performance of offloading to a remote cloud de-

pends greatly on the network conditions. We also find that the cost of our proposed system

(in-situ) is comparable to the offloading approach with cloudlet and is significantly lower than

that with the remote cloud. It is worth mentioning that the energy consumption of the proposed

system largely depends on the user-specified parameter settings of optimization strategy, i.e., Eb

in MASO and At in MESO. Meanwhile, we also note that more advanced recognition methods

such as 3D techniques can be achieved on a powerful server. However, offloading approaches

require extra infrastructure and system cost. Furthermore, the proposed system has advantages

over offloading strategies when the network is unavailable or in poor quality.
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3.6 Summary of This Chapter

In this chapter, we explored the capability of smart glasses and proposed a novel face recog-

nition system which utilizes the power of multimodal sensors. The proposed system improves

recognition accuracy by combining multi-view face images and exploits prolific information

from IMU sensors to reduce energy consumption. Specifically, we proposed a face recogni-

tion algorithm MVSRC which exploits prolific information from multi-view face images and

weighted SRC to improve the recognition accuracy. Then we built a novel estimation model

based on SVR, which utilizes the information from IMU sensors to improve the efficiency

of MVSRC while preserving its high recognition accuracy. Extensive dataset based evaluations

and real-world experiments demonstrate that our system is both accurate and efficient compared

to the state-of-the-art.
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Chapter 4

Motion-assisted Automatic Device Pairing

System For Wearable Devices

Chapter Summary: Recent years have witnessed a remarkable growth in the number of smart

wearable devices. For many of these devices, an important security issue is to establish an au-

thenticated communication channel between legitimate devices to protect the subsequent com-

munications. Due to the wireless nature of the communication and the extreme resource con-

straints of sensor devices, providing secure as well as efficient and user-friendly device pairing

is a challenging task. Traditional solutions for device pairing mostly depend on key predistribu-

tion, which is unsuitable for wearable devices in many ways. In this chapter, we design Walkie-

Talkie, a shared secret key generation scheme that allows two legitimate devices to establish a

common cryptographic key by exploiting users’ walking characteristics (gait). The intuition is

that the sensors on different locations on the same body experience similar accelerometer signals

when the user is walking. However, one main challenge is that the accelerometer also captures

motion signals produced by other body parts (e.g., swinging arms). We address this issue by

using a Blind Source Separation (BSS) technique to extract the informative signal produced

by the unique gait patterns. Our experimental results show that Walkie-Talkie can generate a

common 128-bit key for two legitimate devices with 98.3% probability. To demonstrate the

feasibility, the proposed key generation scheme is implemented on modern smartphones. The

evaluation results show that the proposed scheme can run in real-time on modern mobile devices

and incurs low system overhead.
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4.1 Introduction

During the past decade, the number of Internet of Things (IoT) devices introduced in the market

has increased considerably. It is estimated that there will be 20 billion connected devices by the

year 2020, and the majority of which are IoT and wearable devices [99]. With this trend, the

number of connected devices per person rises dramatically. Much like the embedded systems

they originate from, on-body IoT devices are equipped with a number of sensors which offer

means to collect significant personal information and transmit the collected data to other per-

sonal devices. As such, secure data exchange among them becomes a significant problem. For

example, smartphones need to frequently push notifications to devices such as smart watches,

and read health-related sensor data from wearables or Implantable Medical Devices (IMDs).

Since these devices usually contain sensitive private information, data sharing needs to be kept

strictly among devices that belong to the same user (on the same body).

The wireless nature of the communication between these devices gives rise to security prob-

lems. A malicious external device can listen to the wireless communication between legitimate

on-body devices and eavesdrop on private information about the user. To address this problem,

conventional mechanisms rely on cryptographic keys to support the integrity and confidential-

ity of data communication. Specifically, two devices need to agree on a common secret key

before communication, and then the established key can be used to encrypt/decrypt subsequent

communications between these two parties. In dynamic mobile environments, devices need to

perform peer-to-peer associations on-the-fly. However, a trusted authority for key management

is not always available, making it difficult to distribute keys between legitimate devices.

In this chapter, we propose and implement a motion-assisted key generation technique for

secure on-body device communication. The intuition of the proposed key generation approach

is that the devices on the same body experience similar motion signals that are produced by

the unique walking pattern of the user. Therefore, the unique gait signal can be exploited as

shared information to generate secret keys for all on-body devices. This observation holds true

for sensors on the main body trunk (i.e. waist, chest and head); however, for devices worn the

wrist, the signals measured by on-broad sensors may be produced by other body motions (e.g.,

arm swing motion) primarily. Therefore, wearable sensor signals on the wrist is an aggregation

of gait and arm swing signal. As a result, the most informative signals (e.g., caused by gait)

for key generation may be overwhelmed by less informative signals (e.g., caused by arm swing

motion). To address this issue, we use Blind Source Separation (BSS) technique to extract the
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most informative signals from mixed signals recorded by the on-body devices. Since walking

is a common daily activity, human gait can be automatically detected and measured in daily

life without requiring the users to perform key generation explicitly. The proposed approach

enables unobtrusive establishment of secure communications between on-body devices.

4.1.1 Motivation

This section discusses the benefits offered and applications enabled by the motion-assisted key

generation technique proposed in this chapter.

• On-body Authentication. By allowing secure communication establishment only be-

tween legitimate on-body devices using the unique body motion signals, Walkie-Talkie

enables on-body device authentication without any intrusive manual assistance. Unlike

state-of-the-art biometric authentication methods that use face and fingerprints, Walkie-

Talkie reduces expensive computation as well as the manual user input required by con-

ventional authentication approaches. This makes it a promising technique for light-weight

continuous authentication for on-body IoT devices. This feature is desirable especially

for wearable and implantable devices, which are usually small, sensor-equipped, produce

sensitive private data, and require frequent authentication.

• Automatic Secure Pairing. In mobile systems, device pairing is required to agree on

common encryption schemes and encryption keys before communicating data. Currently,

device pairing is achieved either through explicit input (e.g., entering the key manually

on the device’s screen) or sophisticated peer-to-peer key-exchange algorithms.

For explicit input, some common mechanisms are a Personal Identification Number (PIN)

code entry or pushing buttons on the devices to be paired. However, these manual ap-

proaches suffer from several limitations. First, the form factor of wearable devices are

usually small, making it hard for users to enter the keys manually. Second, the number

of pairings required is expected to grow considerably as IoT devices become increasingly

pervasive. Consequently, explicit pairing places a large burden on device users and au-

tomatic pairing improves the user experience significantly. Another approach is through

a peer-to-peer key-exchange algorithm. A popular key exchange algorithm is the Diffie-

Hellman (DH) protocol [41], which is used to distribute symmetric keys between two

parties. However, the DH protocol requires computationally intensive operations and a

public key infrastructure, and is infeasible for resource-constrained wearable devices.
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Figure 4.1: Acceleration signal in the gravity direction captured by devices located at different
body locations when a user is walking.

• Spontaneous Key Generation. To reduce manual input, a user can choose to store the

static keys on the device locally, e.g., user can pair two devices on their first use together

and use the same key afterwards. However, a critical component of key management is

key revocation which is used to revoke and update the secret key. Storing static keys

locally poses significant security risks, especially when devices are only authorized to

communicate temporarily for short-lived data exchange. So it is crucial that the keys are

generated on-the-fly only when they are authorized to communicate.

4.1.2 Challenges and Contributions

Gait refers to an individual’s unique walking pattern [105]. The gait signal produced when a user

is walking serves as a valuable signal for key-generation for on-body devices, since the sensors

on different body locations sense the same signal. The key idea of the proposed key-generation

approach is based on this observation. However, due to the complexity of body movements,

devices placed on different body locations will capture different acceleration signals due to

the movement of other body parts (such as arms), and this becomes the key challenge when

exploiting the common gait signal for key-generation.

Figure 4.1 plots the acceleration signal in the gravity direction captured by devices placed at

different body locations when the user is walking. The acceleration readings on the body trunk

(waist and chest) originate primarily from the walking action, and generate similar patterns.

However, the sensors on the wrist capture the aggregated acceleration signal produced by both

gait and arm swing. Thus the common motion signals (caused by gait) for key generation

is overwhelmed by noise (caused by the arm swing motion). This makes it infeasible to use
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the raw motion signals captured by the sensors to generate a common secret key directly. To

address this challenge, Walkie-Talkie uses the Blind Source Separation technique described in

Section 4.4 to separate the signals produced from gait and arm swing, and use the common gait

signal to generate keys for secure communication for all on-body devices.

The second challenge is that the on-body devices are limited by their computational capacity

and power supply. As described in [118], Implantable Medical Devices (IMDs) are long-lived

devices and battery replacement requires surgical intervention. Therefore, the pairing protocol

should be lightweight and energy-inexpensive. The proposed key generation scheme requires

only lightweight signal processing techniques, Advanced Encryption Standard (AES) invoca-

tions and hash computations by the on-body devices.

To the best of our knowledge, this is the first work that exploits gait signals to achieve

efficient key generation and secure communication establishment for devices placed at different

body locations. Our main contributions are threefold:

• Source separation for body motion signal: By using Blind Source Separation to sepa-

rate motion signals generated from different body movements, e.g., gait and arm swing

motions, the proposed key generation approach achieves robust performance in generat-

ing keys for devices located at different body locations.

• Shared key generation scheme: We present a novel, light-weight key generation scheme

for on-body IoT devices based on body motion signals. We experimentally demonstrate

that a common 128-bit key can be successfully generated by two independent wearable

devices on the same body in 98.3% of the cases, while the scheme also provides adequate

security guarantees against impersonation attacks. By walking for 4.6s (≈9 steps), the

proposed key generation approach is able to generate a 128-bit key with entropy varying

from 0.94 to 1 which demonstrates the high randomness of the keys.

• System implementation: We illustrate the practicability of the proposed key generation

approach by implementing the system in Bluetooth Low Energy (BLE) peripheral mode.

We report the system computation overhead and power consumption, and demonstrate

the feasibility of the proposed scheme for contemporary on-body IoT devices.

The organization of this chapter is as follows. We introduce the user model and the adversary

model in Section 4.2. We specify the design overview in Section 4.3, signal processing in

Section 4.4, and key generation in Section 4.5 respectively. We then evaluate the performance
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Figure 4.2: System overview: 1) Pacemaker and smart watch measure the similar gait signals
simultaneously. 2) They use the gait signals to generate a shared secret key. 3) The key is then
used to ensure the security of communication between two parties.

of the proposed scheme and analyze security issues in Section 4.6, and present the system

implementation in Section 4.7. Finally Section 4.8 summarizes this chapter.

4.2 Model

Before discussing the framework of Walkie-Talkie, we first introduce the user model and the

adversarial model.

4.2.1 User Model

We envision the use of Walkie-Talkie primarily for pairing wearable and implantable devices.

Figure 4.2 illustrates a typical user model for on-body device communication in Walkie-Talkie.

One morning, a user wants to pair his smart watch (Alice) with pacemaker (Bob) to read health

information. The user launches Walkie-Talkie on the smart watch and walks several steps,

and then both Alice and Bob generate a secret symmetric key by exploiting the measured gait

signals during this period. The key is then used to encrypt/decrypt the messages between Alice

and Bob.

4.2.2 Adversarial Model

To achieve secure communication, a common attack that needs to be addressed is the imperson-

ation attack, in which an adversary (Eve) tries to impersonate a legitimate device to steal private

information. We assume the presence of two types of impersonation attack during a key gen-

eration session: a passive eavesdropping adversary and an active spoofing attack. The passive

53



adversary knows the key generation mechanism and can eavesdrop on the messages exchanged

between Alice and Bob during the key generation process. The active spoofing attacker tries to

mimic the walking style of the genuine user to pair with one or both of the legitimate devices.

As discussed in [96], although the attacker can monitor messages exchanged between the

legitimate devices, we assume that they can neither control the acceleration recorded locally

by these devices nor perfectly estimate it, otherwise the protection of legitimate devices is im-

possible. We also assume that all the devices on the user’s body are legitimate devices, i.e.,

an adversary cannot insert a device on the user to get the acceleration data. Another potential

attack is replay attack, whereby a user may wear a wearable (provided by attacker) that records

the movement pattern and the attacker later replays the signals to generate keys. Walkie-Talkie

can address this type of attack because the keys are generated by the real-time gait signals, and

the signals recorded a period of time ago are different from the current signal. Further potential

threats include deriving the acceleration by studying a video of the target’s gait through com-

puter vision techniques. We believe this is a potential vulnerability of unknown severity and

leave it as future work.

4.3 Design Overview

Figure 4.3: Flowchart of the key generation scheme.

Figure 4.3 shows the work-flow of Walkie-Talkie. Suppose Alice (e.g., smart watch) wants

to read data from Bob (e.g., pacemaker). Alice first broadcasts a REQ request to Bob. After

receiving the REQ, Bob replies with a RSP response. Then both Alice and Bob start to collect

local motion sensor data and follow the steps shown in Figure 4.3 to generate a shared secret

key. Finally, the key is used to encrypt/decrypt data to ensure secure communication between
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Alice and Bob.

The key component of Walkie-Talkie consists of the following two steps:

• Signal Processing Signal processing consists of two steps: source separation and sig-

nal alignment. Source separation is performed on the acceleration data collected from

the on-body devices to extract the signals produced by gait. As Alice and Bob sample

acceleration data independently, we apply signal alignment to synchronize acceleration

samples at Alice and Bob and transform the acceleration to the same body coordinate

system to facilitate key generation.

• Key Generation The key generation component consists of three basic steps: quanti-

zation, reconciliation and privacy amplification. In quantization, the legitimate devices,

Alice and Bob, convert acceleration samples into bits if they are both on the same body. In

the reconciliation stage, Alice and Bob exchange error-correcting messages over a public

channel that allows them to agree on an identical string of bits. However, the publicly

exchanged messages reveal a certain amount of information about the bit strings to Eve.

To address this issue, Alice and Bob diminish the partial information revealed to Eve by

privacy amplification.

In the following sections, we will describe design details of each component. Table 4.1

summarizes the notation used in this chapter.

4.4 Signal Processing

4.4.1 ICA-based Source Separation

When an individual is walking, accelerometer recordings from one body location are typically a

mixture of accelerations produced from multiple body locations (e.g., leg, waist, and arm). For

wearable and implantable devices, most common locations are waist, chest, head and wrist. As

described in Section 4.1.2, the sensors on the body trunk measure the motion signals produced

by gait primarily. Therefore, the devices on the body trunk can exploit the acceleration readings

directly to generate a key. However, sensors worn on the wrists capture signals from a combi-

nation of gait and arm swing motions. In order to exploit the useful signal (gait) to generate a

key, we need to separate signals produced from leg motions (walking) and arm swing motions.

In this section, we apply the Independent Component Analysis (ICA) technique to separate

signals from different body sources [64]. ICA is one of the most popular blind source separation
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Table 4.1: A summary of the main symbol notations.

Symbol Meaning
Acc(t) raw linear acceleration data
A mixing matrix
S(t) independent components
W unmixing matrix
S̃(t) estimated independent components
Acc

′
(t) reconstructed acceleration

q+,q− quantization boundaries (upper and lower)
LAlice,LBob index list of generated bits
L̃ common index list between LAlice and LBob
MAC(·) message authentication code algorithm
KAlice,KBob generated key after quantization
K
′
Alice,K

′
Bob generated key after reconciliation

K
′′
Alice,K

′′
Bob final key after privacy amplification

(BSS) methods, which aims to separate the mixed signals into a set of independent sources given

very little information (or no prior information) about the source signals. Before applying ICA,

we first justify that on-body accelerometer satisfies the conditions for ICA. 1) The acceleration

from the different sources is mixed linearly at each sensor location, as we record the linear

acceleration along 3 channels of the accelerometer sensor for each location. 2) The acceleration

of arm swing is independent from that originating from heel strike. As stated in [105], the

movement patterns of various parts of the body are independent, and gait is the total pattern of

movement when they are integrated together. 3) Time delays in signal transmission through the

body are negligible. 4) There are fewer sources than mixtures. For each location, we attach a

3-channel accelerometer sensor, thus we have an observation of 3 channels and the signals are

mainly from two sources: arm swing and walking. 5) Statistical distributions of the acceleration

values produced by body movement are not Gaussian [63].

Suppose a smart watch is worn on one wrist of the user, and the measured linear accel-

erations by the built-in three channel accelerometer are Acc(t). As the accelerometer signals

recorded on the wrist are a mixture of the signal from leg and arm swing respectively, the ICA

model of our problem can be written as:

Acc(t) = A ·S(t) (4.1)

where A is the mixing matrix and S(t) represents independent sources. Our aim is to find an

unmixing matrix W (W = A−1), so that we can calculate the estimated source signal S̃(t) by:

S̃(t) =W ·Acc(t) =W ·A ·S(t) (4.2)
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Figure 4.4: Frequency of different activities.

In the proposed system, we use FastICA (A fast fixed-point algorithm of independent com-

ponent analysis) to solve the ICA model in Eq. 4.1, i.e., to estimate W . FastICA has been found

to be 10-100 times faster than conventional gradient descent methods for ICA [63]. Therefore,

FastICA is well suited for the resource-constrained on-body devices in this work.

After obtaining W , we obtain the estimated sources S̃(t) by Eq. 4.2. In our problem, the

rows of Acc(t) are the linear acceleration values along three axes of the accelerometer. The

acceleration signal without arm swing motion can be derived from Acc
′
(t) = WS̄, where S̄ is

the matrix of derived independent components with the row representing the arm swing set to

zero. Assume the second ICA component represents the signal from arm swing. S̄ can then be

written as:

S̄ =


S̃11 S̃12 · · · S̃1N

0 0 · · · 0

S̃31 S̃32 · · · S̃3N

 (4.3)

where S̃i j(i, j = 1, . . . ,N) are the elements of matrix S̃(t) and N is the number of acceleration

samples. In the following section, we describe how we identify different motion components.

4.4.2 Identifying Motion Component

From the ICA model in Eq. 4.1, it can be seen that one cannot determine the order of the inde-

pendent components, as a permutation matrix P and its inverse P−1 can be added in the model

to yield Acc(t) = AP−1PS(t). The elements of PS(t) are the original independent variables, but

in a different order. The matrix AP−1 is therefore a new unknown mixing matrix, to be solved

by the ICA algorithm. Furthermore, the order of components may also vary from one data seg-

ment to the next. Consequently, one has to depend on visual inspection of the ICA components
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for further processing, a method which is not desirable for on-body sensors.

In practice, the separated components tend to have more distinctive properties than the orig-

inal signals both in time and frequency domains. Figure 4.4 shows the frequency of walking

while swinging an arm, walking without swinging an arm, and swinging an arm only. We no-

tice that the dominant frequency of the signal from walking only is two times of that of arm

swing signal. This is easy to understand because a gait cycle is composed of two steps and one

arm swing cycle. Therefore, each step (left or right) registers as a strong repetitive acceleration

signal and the signal is transmitted through the foot to the whole body. Due to the symmetry of

the body, the signal produced by left and right step can be deemed to be same. However, the

arm swing signal only repeats every two steps as the smart watch is worn on one wrist of the

user. We use this observation to identify the signal from arm swing and foot. Specifically, after

obtaining S̃(t) by Eq. 4.2, we perform a Fast Fourier Transform (FFT) on the three independent

components (ICs) in S̃(t) (i.e., three rows of S̃(t)). Figure 4.5(d) illustrates the magnitude of the

acceleration signals in three directions before ICA and after ICA. We can see that the original

acceleration data contains signals from two frequencies primarily. The three separated inde-

pendent components (ICs) present different frequency distributions. The frequencies of IC-2

are concentrated on the fundamental frequencies. As discussed above, the reconstructed signal

without arm swing motion can be obtained by setting the second row of the matrix S̄ to zero

(see Eq. 4.3).

Figure 4.6 presents the acceleration in the gravity direction before and after source sepa-

ration. We can see that the acceleration produced by walking is overwhelmed by arm swing

in the raw acceleration signals. The acceleration after source separation is very similar to the

readings on the chest, just the magnitude of the signal is reduced, because the signal produced

from leg motion is attenuated through the body to the wrist. Note that one cannot simply apply a

low-pass filter to filter out the signal produced by arm swing motion because the walking signal

also contains a fundamental frequency component as shown in Figure 4.4.

4.4.3 Signal Alignment

The raw acceleration data cannot be used to generate the key directly as the accelerometer values

are sensitive to sensor orientation and location. Additionally, different devices are usually not

well time-synchronized which leads to the problem of signal synchronization. We address these

two issues by temporal alignment and spatial alignment.
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Figure 4.5: ICA results: (a) Raw acceleration Acc(t). (b) Estimated independent components
S̃(t). (c) Frequency of raw acceleration. (d) Frequency of estimated independent components.
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Figure 4.6: Comparison of raw signal and extracted signal.

Temporal Alignment

As devices sample acceleration values independently, temporal synchronization is required for

key generation. In the system, we use an event-based approach in which devices detect the

time point of a heel-strike event, and use this event as an anchor point. The intuition is that

the acceleration values along gravity direction reach the peak simultaneously when the foot

touches the ground, and time delays in signal transmission through the body are negligible. To

detect heel-strike, we first apply a low-pass filter on acceleration along the gravity direction to
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reduce noise. The cutoff frequency is chosen as 3Hz as the normal step frequency lies between

1.6-2.8 Hz [105]. Then the local maxima are detected to identify heel-strike events as shown in

Figure 4.7.

Heel-strike events can be detected locally at each device without communication which

eliminates the need for explicit synchronization between devices. When Alice receives a RSP

from Bob, both of them reach to agreement to record acceleration from the next nstart-th heel-

strike event and end recording at the subsequent nend-th heel-strike event. The acceleration

samples are then transformed to the body coordinate system as described in the following sec-

tion.
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Figure 4.7: The peak of acceleration along the gravity direction indicates a heel-strike on the
ground.

Spatial Alignment

Walking is inherently a three-dimensional movement. 3D acceleration data independently

recorded at different locations lack spatial alignment and cannot be directly used to generate

a shared secret key. We address this by transforming acceleration values of different devices

to a common body reference coordinate system independent of orientation and location. Fig-

ure 4.8 illustrates the definition of the world coordinate system, the body reference coordinate

system and the coordinate system of different devices. The world coordinate system is defined

by North, East and the Down or gravity direction (−G). We refer to the device’s local coordi-

nate system as (X, Y, Z). The user plane of motion is defined as the Forward-Sideways plane

which is perpendicular to gravity. Sideways points toward the right side of the user’s forward

direction.

Taking a smartphone as an example, assume the linear acceleration signals along three or-

thogonal directions of smartphone are Accx, Accy, and Accz respectively, the linear acceleration
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Figure 4.9: Acceleration of two legitimate devices and an adversary device.

in the body reference system can be computed as:
AccG

AccF

AccS

= Rw
b ·R

d
w ·


Accx

Accy

Accz

 (4.4)

where AccG, AccF , and AccS are linear accelerations along gravity direction, forward direc-

tion and sideways direction in the body reference system, Rw
b is the rotation matrix from the

world coordinate system to the body coordinate system and can be computed by the method

in [102]. Rd
w is the rotation matrix from the device coordinate system to the world coordinate

system and can be obtained by the Android API. Note that the absolute walking direction of

the user cannot be obtained accurately using a smartphone compass [119]. In Walkie-Talkie we

don’t have this problem because we consider the acceleration values only instead of walking

direction. After obtaining the acceleration in the body coordinate system, we use AccG, AccF

and AccS for key generation.
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4.5 Key Generation

After source separation and signal alignment, we obtain acceleration values caused by gait

along three directions: AccG, AccF and AccS. Figure 4.9 plots the acceleration of two legitimate

devices and one adversary device in three directions. We can see that the devices on the same

body follow the same pattern, however, the acceleration signal recorded by an adversary device

significantly differs. This result is promising since our goal is to generate symmetric keys only

for devices on the same body. The following key generation method is applied on two legitimate

devices separately.

4.5.1 Multi-level Quantization

We perform filtering, and quantization for the acceleration values along the three directions

separately. We first apply a low-pass filter for noise reduction. The cutoff frequency is cho-

sen as 10Hz as the useful frequency of human motion lies below 10 Hz [80]. Note that the

cutoff frequency of this low-pass filter is different from that used for heel-strike mentioned in

Section 4.4.3. After filtering, the acceleration values are normalized to have zero-mean and

unit length to alleviate the influence of different body locations. Then we extract multiple bits

from the accelerometer signal samples by employing multi-level quantization technique [143].

More specifically, we segment the acceleration values with a moving window with no overlap

(window size W ). Thereafter, for each window, we generate bits by the following steps.

Determining the Upper Bound on the Number of Bits

The first step is to determine the maximum number of bits that can be assigned per sample. For

a given window, we calculate the approximate entropy of samples by using the equation:

E =−∑a p(a) log2 p(a), (4.5)

where p(a) is the probability of occurrence of acceleration sample a in a selected window. The

upper bound of the quantization level mMAX is calculated as mMAX ≤ 2E .
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Determining the Quantization Intervals

In the next step, we calculate the size of each level in the quantization. In a multi-bit (i.e., m-ary)

quantization, guard bands (gi) are inserted between two consecutive levels (i.e., qi−1 and qi) to

increase the bit agreement ratio. The guard band samples are excluded during quantization and

the remaining samples are encoded to bits according to their levels. The notation α represents

the ratio of guard band to data, i.e., the excluded acceleration values in all the guard bands over

the total number of samples. Each level in an m-ary quantization, with m being the number

of levels, is represented by a number, i.e., level-0 to level-(m-1). The individual quantization

intervals are calculated by the following equations:

I0 = (q0,q1−g1], I1 = (q1,q2−g2], . . . , Im−1 = (qm−1,qm], (4.6)

where q0 is the minimum and qm is the maximum value of acceleration samples in the window.

For each level, we calculate the size of the quantization interval and guard band by the equations:

∫ qi−gi

qi−1

fada =
1−α

m
,
∫ qi

qi−gi

fada =
α

m−1
, (4.7)

where 1≤ i≤ m−1. Each level in the quantization is assigned an n–bit code (n = log2m). We

assign the bits to each level such that its decimal value denotes the index of the level. The secret

bits are then extracted from acceleration samples based on their level in the quantization.

Extracting the final key

Similar to the single bit quantization, we perform quantization for the acceleration values along

the three directions separately. Three separate bit streams KG,KF ,KS are extracted from AccG,

AccF and AccS respectively, and the secret key for Alice is obtained by concatenating three bit

streams together as KAlice = [KG,KF ,KS]. The same quantization process is also performed by

Bob independently to get KBob. Figure 4.10(a) plots the raw acceleration data recorded in an

experiment, and Figure 4.10(b) illustrates the process of 2-ary quantization for a window.

4.5.2 Reconciliation

After quantization, each device ends up with a secret key string independently. However, there

may be some bit mismatches due to noise and we often get KAlice ≈ KBob. The purpose of
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Figure 4.10: Illustration of quantization process for W = 25, m = 4 and α = 0.2.

reconciliation is to correct the bit mismatches between Alice and Bob. In this system, we

employ the Error Correction Code (ECC) [34] to reduce the bit mismatch rate.

Suppose the mismatching bits between Alice and Bob is ε = KAlice⊕KBob, and let C(n,k)

be an ECC that encodes k-bit message into n-bit code to resist r-bit random error. Function f (·)

and g(·) denote the corresponding encoding function and decoding function. To start the recon-

ciliation, Alice first computes the offset δAlice between KAlice and its corresponding codeword

as follows:

δAlice = KAlice⊕ f (g(KAlice)) (4.8)

Then, Alice transmits δAlice to Bob via a public channel. Upon receiving δAlice, Bob can deduce

KAlice as follows:

K
′
Alice = δAlice⊕ f (g(KBob⊕δAlice)) (4.9)

If the mismatching rate ε is lower than the error-correcting ability of C, an appropriate error cor-

rection code C can be employed to ensure K
′
Alice = KAlice. Therefore, both Alice and Bob agree

on the same key K
′
Alice = KAlice, and they use the key to encrypt/decrypt the communication

between them.

Since Alice and Bob do not share an authenticated channel, Eve can impersonate Alice

or Bob during the reconciliation process. Such an attack would allow Eve to insert her own

fake messages, thus spoofing a legitimate device and disrupting the protocol without reveal-

ing his presence. To address this issue, we employ the message authentication code (MAC)

method [94] to verify that the message has not been modified. Specifically, the MAC method

contains the following three steps:

• To ensure the message δAlice is indeed sent from Alice, Alice sends a MAC message with

δAlice, the overall message sent by Alice is LAlice = {δAlice,MAC(KAlice,δAlice)}. After

receiving LAlice, Bob computes K
′
Alice by Eq 4.9 and uses it for MAC verification. If Bob
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obtains MAC(KAlice,δAlice) 6= MAC(K
′
Alice,δAlice), he can conclude that the message was

not sent by Alice, indicating the presence of an adversary.

• If Bob does not detect the presence of an adversary, he computes δBob and transmits the

following message to Alice: LBob = {δBob,MAC(KBob,δBob)}.

• Upon receiving LBob, Alice computes K
′
Bob and uses it for MAC verification. If Alice ob-

tains MAC(K
′
Bob,δBob) = MAC(KBob,δBob), she can confirm that the message was indeed

sent by Bob. Since Eve does not know the bits in KBob generated by Bob (he can just lis-

ten to the output of the MAC(KBob,δBob)), modifying δBob will fail the MAC verification

at Alice.

Apart from verifying that the message has not been modified, the MAC verification also

verifies whether Alice and Bob generate the same key. Because if K
′
Alice 6= KAlice, Bob cannot

obtain MAC(K
′
Alice,δAlice) = MAC(KAlice,δAlice). In this case, the key generation process fails,

and Bob will either notify Alice to restart the key generation process, or consider Alice as

an unauthorized device and deny all Alice’s consequent requests, depending on application

requirements.

The reconciliation process not only reduces the mismatch rate between Alice and Bob, but

also reveals partial information to an attacker, as δAlice is transmitted over a public channel and

can be eavesdropped by an attacker. However, it can be theoretically proved that there are only

(n− k) bits of information leakage [93]. Moreover, since the secret key is derived from user’s

unique walking pattern, the attacker still cannot infer KAlice by eavesdropping δAlice. To ensure

there is no partial information leakage, we can further apply the privacy amplification technique

described in the following part.

4.5.3 Privacy Amplification

After reconciliation, Alice and Bob agree on a common secret key as K
′
Alice = KAlice. Simply

concatenating the bits generated from each time window does not necessarily produce a ran-

dom secret key, as correlation between different steps may result in high correlation between

key bits. Moreover, reconciliation leaks some information to an attacker. This issue can be

addressed by privacy amplification techniques [17]. In the system, we use a bit-wise XOR

function to combine keys generated from each direction and eliminate the correlation between

them. Specifically, we interleave the bit streams from three directions in the time sequence and

segment the concatenated keys into small windows with no overlap. Each window contains 30
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bits which is close to the bits generated in a gait cycle duration as the evaluation results show in

Section 4.6.5. Then we XOR two consecutive windows together to obtain the final key K
′′
Alice.

Another advantage of privacy amplification is that it diminishes the partial information re-

vealed to Eve as discussed in [17]. In the reconciliation stage, Alice and Bob exchange mes-

sages over a public channel and the publicly exchanged messages reveal a certain amount of

information about the bit strings to Eve. To reduce the impact of the revealed information, the

privacy amplification significantly improves the randomness of the keys generated as the evalu-

ation results in Section 4.6.5. Note that other privacy amplification methods such as a universal

hash [17] can be employed to further enhance the randomness of the concatenated key. We refer

the reader to [17] for more details.

After privacy amplification, the final key can be used by symmetric-key algorithms such

as AES to ensure secure communication between Alice and Bob. If the length of final key

is greater than 128 bits, the first 128 bits are used. If the key generation process fails, Alice

will either notify Bob to restart the key generation process, or consider Bob as an unauthorized

device and deny all Bob’s consequent requests, depending on application requirements.

4.5.4 CIA Properties of Walkie-Talkie

As a security scheme, Walkie-Talkie achieves the CIA properties (confidentiality, integrity, and

availability) by the following approaches:

• Confidentiality. Data confidentiality is the key focus and is achieved through encryption

after key generation.

• Integrity. During key generation, integrity is achieved by the MAC; After key generation,

with the key the data integrity can be easily achieved using any standard mechanisms such

as hashing or checksumming and is beyond the scope of this study.

• Availability (Anti-DoS attack). During key generation, to prevent the adversary from

modifying messages to break the reconciliation between two legitimate devices, a MAC

mechanism is used to ensure the integrity of the messages and to protect the availability

of the key generation. After key generation, unauthorized communications can lead to

Denial of Service (DoS) attacks, in which communications between legitimate devices

are prevented and batteries are needlessly depleted [120]. To prevent such DoS attacks,

Walkie-Talkie only allows authorised communications through authentication achieved

by the key generation techniques.
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Figure 4.11: Body locations for data collection.

4.6 Evaluation

4.6.1 Goals, Metrics and Methodology

In this section, we evaluate the performance of the proposed key generation scheme. The goals

of the evaluation are fourfold: 1) to determine the choice of the key parameters including the

window size (W ) and α in the quantization process as well as the sampling frequency (Fs); 2) to

evaluate the impact of different components in the work-flow including ICA, reconciliation, and

privacy amplification; 3) to evaluate the impact of different body locations on bit agreement rate

including head, chest, waist, and wrist; 4) to evaluate the security of the scheme against various

adversary attacks.

Data Collection. The dataset used to evaluate the performance of the proposed system con-

sists of 20 subjects (14 males and 6 females)1. As shown in Figure 4.11, we collect acceleration

data from the following body positions: head, chest, waist, and wrist. These positions represent

the common locations of mobile devices and medical sensors (e.g., pacemaker). The sampling

rate of all devices used in data collection is set to 100 Hz.

During the data collection phase, the participants were asked to wear mobile devices as

shown in Figure 4.11 and walk for about 5 minutes at their normal speed (0.7-1.1m/s). The data

collection was performed both indoors and outdoors to capture different terrains in practical

scenarios. Note that we do not consider data collection on different days or different walking

speeds (slow, normal and fast) as all the devices worn by the subject are measuring the same

gait signal simultaneously. This is different to the data collection requirements in the study

1Ethical approval for carrying out this experiment has been granted by the corresponding organization (Ap-
proval Number HC15304)
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of gait recognition. The detected peaks which indicate heel-strikes are used to synchronize

acceleration samples recorded on different devices and segment steps. For each device attached

on one subject, we break the continuous acceleration values into segments according to heel-

strike points, each segment contains 10 steps. The segments are used to generate keys and

evaluate the following metrics.

Metrics. For a shared key generation protocol, we focus on the following three evaluation

metrics:

• Bit agreement rate: It represents the percentage of bits matching in the secret keys

generated by two parties. This metric evaluates the potential of Alice and Bob agreeing

on the same key.

• Bit rate: It denotes the average number of bits generated from the acceleration samples

per unit time and is usually measured in bits per second (bps). This metric evaluates how

fast Alice and Bob can generate shared secret bits.

• Entropy: It is the measure of uncertainty or randomness associated with the generated

bit strings. Entropy of a binary bit string varies in the range [0,1], and larger entropy

indicates more randomness of the bit string.

We examine the impact of parameters on the generated key by a systematic exhaustive

search. We vary the respective parameters within a dedicated range, i.e. W = 5,10, . . . ,50,

α = 0,0.1, . . . ,1, and Fs = 10,20,30,50,100. The goal of the exhaustive search is to find the

optimal combinations which achieve good performance in both bit agreement rate and bit rate.

After choosing the best combination (W = 50,α = 0.9,Fs = 50), we take turns to investigate

the impact of each parameter on agreement rate and bit rate by fixing the other two parame-

ters. Results are presented for the average values and 95% confidence levels of the performance

metrics (bit agreement rate and bit rate).

4.6.2 Improvement of Multi-Level Quantization over Binary Quantiza-

tion

Since m-ary quantization can be used to generate keys with more bits, we compare its per-

formance with the binary quantization method used in Walkie-Talkie [139]. For evaluation

purposes, we vary m from 2 to 8. Figure 4.12(a) plots the CDF of bit generation rate under
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different methods. The “Binary” means the method used in Walkie-Talkie [139], and the oth-

ers indicate the method described in Section 4.5.1. Compared with the binary quantization

method, the higher level m-ary quantization can significantly increase the bit generation rate.

Figure 4.12(b) is the CDF of the bit agreement rate between legitimate devices corresponding to

the keys of Figure 4.12(a). Different to the bit generation rate, the bit agreement ratio decreases

when higher quantization levels are used. This is because noise will produce more bit mis-

matches when quantization level increases. The experimental results suggest that multi-level

quantization can significantly increase the bit rate while decreasing the bit agreement rate. We

also tried quantization levels larger than 8, which yields even lower bit agreement ratio, so we

limit our discussion to m =2, 4, and 8 in this study.
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Figure 4.12: Binary quantization vs. m-ary quantization

4.6.3 Parameter Selection

Impact of Sampling Rate

As mentioned above, the initial sampling rate is 100Hz. We evaluate the impact of different

sampling rates on bit rate and bit agreement rate by downsampling Fs from 100Hz to 50Hz,

30Hz, 20hz and 10 Hz respectively. Figure 4.13(a) and Figure 4.13(b) show the impact of Fs

on bit rate and bit agreement rate respectively. We can see that the agreement rate between

legitimate devices varies inversely with sampling rate. The reason is that a higher sampling rate

is able to record more acceleration values during the same period and thus improve bit rate;

however, it reduces bit agreement as a higher sampling rate captures acceleration variation in

more detail leading to less similarity between legitimate devices.
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Figure 4.13: Impact of Fs.
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Figure 4.14: Impact of α .

Impact of α

We evaluate the impact of α to explore the tradeoff between agreement rate and bit rate. Fig-

ure 4.14(a) shows that the bit rate decreases as α increases. This is because the parameter α in

Eq. 4.7 decides the decision band to include or discard the acceleration measurements. A larger

α means more acceleration readings are discarded. This reduces the length of generated keys

and decreases the bit rate. On the other hand, as shown in Figure 4.14(b), the bit agreement rate

increases with increasing α because more mismatches in the decision band are excluded.

Apart from sampling rate and α , we also investigated the impact of different window sizes

when generating keys. We found that the moving window size W does not have much influence

on the performance and a moving window with size of 50 is adequate for the proposed system.
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4.6.4 Impact of Reconciliation

Reconciliation is used to correct errors between Alice’s and Bob’s keys. We examine the ef-

fectiveness of different ECC codes under different quantization levels. The candidate ECC

codes are: Hamming code, Golay Code, Reed-Solomon(RS) code. Table 4.2 lists the parame-

ters and properties of ECC codes used in our evaluation (code word length n, code length k,

error-correcting ability r). Figure 4.15(a), Figure 4.15(b) and Figure 4.15(c) show the impact of

ECC codes on the agreement rate under different quantization levels respectively. We can see a

significant increase in the bit agreement rate after using the reconciliation technique. From the

figures, we also find that a RS code with n=15, k=3 achieves the highest bit agreement rate. One

drawback of the reconciliation process is that it reveals some information to attackers, this issue

is solved by the privacy amplification process. As the results above, we choose RS(15,3) in our

Table 4.2: Comparison of different ECCs

Code n k r Information Leakage
Hamming Code 15 11 1 0.27
Golay Code 23 12 3 0.48
RS(7,3) 7 3 2 0.57
RS(15,5) 15 5 5 0.67
RS(15,3) 15 3 6 0.8

system and use it for the rest of evaluation. After determining the ECC code, we examine the

bit rate and match rate of different quantization levels. From Table 4.3, we can see that a fast

key generation rate is at the expenses of bit agreement rate. Overall, 2-ary quantization is the

best choice, and it can generate a common 128-bit key for two legitimate devices with 98.3%

probability.

Table 4.3: Comparison of different quantization levels

Bit rate (bit/sec)
Time

to generate a 128-bit key
Probability

of 100% match
2-ary quantization 28 4.6s 98.3%
4-ary quantization 37 3.5s 92.4%
8-ary quantization 43 3s 72.1%
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Figure 4.15: Evaluation results.

4.6.5 Improvement of Key Randomness with Privacy Amplification

We now examine how the XOR function in privacy amplification helps to enhance the random-

ness of the final key. Figure 4.15(d) shows the entropy of the final key after privacy ampli-

fication. From the results, we can see that the distribution of entropy is closer to 1 after the

XOR operation. We also notice that the entropy of the final keys varies from 0.94 to 1 which in

turn indicates that the proposed method can extract secret keys with good entropy. Note that a

drawback of using the XOR function is that the bit rate is reduced by a factor of 2 (we XOR two

consecutive windows together). As the results in Table 4.3, the bit rate of 2-ary quantization

can still achieve 28 bit/sec after privacy amplification.

4.6.6 Improvement of Bit Agreement Rate with ICA

We examine whether the application of ICA can improve the agreement rate. As ICA is applied

on acceleration signals recorded from the smart watch only, we compute the bit agreement rate

between keys generated from smart watch and devices placed at other locations by using raw

acceleration values (without ICA) and extracted acceleration values (with ICA) respectively.
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From the results in Figure 4.16, we can see a significant improvement in agreement rate after

ICA. The maximum agreement rate of using raw acceleration values (without ICA) is near 50%

which is like a random guess between 0 and 1. The results suggest that applying ICA can

extract walking signals from arm swing signals effectively and thus improve the agreement rate

significantly.
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Figure 4.16: Impact of ICA

4.6.7 Bit Agreement Rate of Devices on Different Body Parts

We evaluate how well the proposed method performs for each body part: wrist, chest, waist,

and head. For each body part, we compare the keys generated from other locations with the

keys generated from this location. For example, in terms of wrist, we calculate the agreement

rate by comparing the keys generated from wrist with keys generated from other locations (e.g.,

waist, chest, and head) respectively. As shown in Figure 4.17, we notice that the pairs of waist-

to-chest and chest-to-head achieve the best agreement rate. This result is intuitive as sensors on

the body trunk observe acceleration more similarly than sensors on the limbs.

4.6.8 Randomness of the Final Key

Guaranteeing that the generated keys are random is crucial because they are intended for using

as a cryptographic key. In order to validate the randomness of the final key, we apply the NIST

suite of statistical tests [58] to all the keys generated from our dataset. The NIST statistical test

gives the p-values of different random test processes, and the p-values indicate the probability

that the key sequence is generated by a random process. Conventionally, if the p-value is less

than 1%, the randomness hypothesis is rejected which means the key is not random. From
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Figure 4.17: Bit agreement rate of different body parts.

Table 4.4, we can see that the p-values are all greater than 1% in the sense that the generated

keys pass the randomness tests.

4.6.9 Security Analysis

We assume the presence of a passive adversary (eavesdropper) and an active attacker during an

authentication session. The eavesdropper can listen to all the communications between Alice

and Bob and knows the bit generation algorithm. The active attacker has complete communica-

tion control, i.e. can jam, forge and modify messages. Additionally, the adversary may mimic

the walking style of the genuine user and start new protocol instances by injecting appropriate

authentication request messages with multiple legitimate devices in parallel. We evaluate the

robustness of the proposed system against the eavesdropper and active attacker by conducting

the following two imposter attempt experiments.

• A passive impostor attempt is an attempt when an attacker tries to pair his device to a

legitimate device by submitting his own walking signals.

• An active impostor attempt mimics the gait of the genuine user with the aim to pair with

the devices of the genuine user.
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Table 4.4: P-values of NIST Statistical Test.

NIST Test p-value
Frequency 0.712248
FFT Test 0.557416
Longest Run 0.022491
Linear Complexity 0.380014
Block Frequency 0.978452
Cumulative Sums 0.986105
Approximate Entropy 0.996418
Non Overlapping Template 0.332475

Table 4.5: Mutual information among different devices

Alice vs. Bob Alice vs. Active attacker
Mutual Info. (bit) 1.42 0.21

The first experiment is conducted to evaluate the robustness to a passive imposter. For

each location of one subject, we use the keys generated from the same location but from other

subjects as passive imposter attempts. We then repeat this experiment by testing all the locations

of the 20 subjects in the dataset. To evaluate the robustness against the second imposter attack

scenario, we group the 20 subjects into 10 pairs. Each subject was told to mimic his/her partner’s

walking style and try to imitate him or her. Firstly, one participant of the pair acted as an

attacker, the other one as a target, and then the roles were exchanged. The genders of the

attacker and the target were the same. They observed the walking style of the target visually,

which can be easily done in a real-life situation as gait cannot be hidden. Every attacker made 5

active impostor attempts by walking side-by-side the user. Figure 4.18 plots the bit agreement

rate of passive imposter and active imposter, we find that the agreement rate of an active attacker

is slightly higher than that of a passive attacker, but there is no regular pattern for agreement rate

when α varies from 0 to 1. This phenomenon can be explained by two facts: first, the unique

walking pattern of the genuine user is difficult to mimic, even an active attacker cannot produce

similar walking patterns to the user. Even if an active attacker who can obtain approximately

50% agreement rate conducts brute-force attack, he still cannot guess the same key. Because

the active attacker has no information about which bits are correct. Even a normal guesser can

obtain 50% agreement rate as a cryptographic key contains 0 and 1 only. Therefore, he still

needs 2128 attempts to guess the same 128-bit key which is infeasible in real-world scenarios.

Moreover, the Reed-Solomon code may introduce more mismatching bits if the number of

mismatching bits exceeds the correcting ability due to its nonlinear nature.
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Figure 4.18: Agreement rate of impostors.

To further quantify the amount of information that can be inferred from mimicking the gait,

we calculate pairwise mutual information among different devices in Table 4.5. We find that the

legitimate devices on the same body can obtain 1.42 bits of information about the secret key.

However, the active attacker, can only get 0.21 bits of information. This result suggests that the

legitimate devices obtain 6 times more information about each other than the attacker.

The individual nature of walking gait provides our scheme security against passive eaves-

droppers. Even if an active imposter can observe and try to mimic the walking style of the

target, the results in Figure 4.18 show that he still cannot obtain a common secret key. How-

ever, an active attacker can impersonate Alice or Bob in the reconciliation stage and insert false

values. Walkie-Talkie prevents such attack by the MAC method described in Section 4.5.2.

A further concern to all key-agreement protocols is the man-in-the-middle attack (MITM). A

MITM attack against our scheme rarely occurs as Alice and Bob exchange the offset (δAlice and

δBob) only instead of shared key during the reconciliation stage. Therefore, the shared key will

not be compromised by MITM.

4.7 System Implementation

To validate the feasibility of the proposed key generation approach on wearable devices, we

implemented the whole system using an Android OS application2. The system is implemented

in Java and the implementation of FastICA is based on the Fastica Java library. The MAC

algorithm described in Section 4.5.2 is implemented by keyed-hash message authentication

code (HMAC-MD5). The sampling rate of the accelerometer is set as 50Hz and Bluetooth Low

2A video demonstration of the system can be found at the following URL:
https://www.youtube.com/watch?v=YBFBJrNZy48
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Energy (BLE) functionality is employed for wireless communication.

BLE is designed to provide significantly lower power consumption for devices with low

power requirements. It introduces a new feature called peripheral mode, in which the data

source can advertise and publish data without requiring to pair with the data requestor before-

hand. BLE peripheral mode is designed for devices with resource constraints and which need to

publish new data frequently. Therefore, we run the system in peripheral mode and advertise the

data using broadcast packets. Bob organizes his data using Generic Attribute Profile (GATT)

and encrypts the data to publish by AES. All the devices nearby including adversaries can re-

ceive the broadcast advertisements and read the public-available data from Bob. However, only

Alice on the same body can generate the same key for data decryption. In this way, the private

data is protected from reading by unauthorized devices.

Table 4.6 presents the system overhead (computation and energy consumption) of our sys-

tem on a Moto E2 smartphone, which supports BLE peripheral mode. The computation time

and energy consumption of each component are measured by averaging the results from run-

ning independent components separately and continuously for five minutes. Note that we do

not consider the time for data collection (i.e., walking duration). The major components in

Walkie-Talkie: the source separation (including ICA and component identification) and key

generation take an average time of 108.3ms and 310.5ms respectively. When the scheme is

fully employed, the computation time and energy consumption are 419.2ms and 198.5mJ re-

spectively. The battery capacity of the Moto E2 smartphone is 2390 mAh (30.1 kJ), therefore,

the energy cost of Walkie-Talkie amounts to 0.005% of the total capacity. We assume the smart-

phone with a targeted lifespan of one day which results in an energy budget of 1.25KJ per hour.

To put this into perspective, with 5% of the budget per hour (62.5 J), Walkie-Talkie is capable

of running approximately 317 times per hour, i.e., Walkie-Talkie can continuously run every

12 seconds. These results demonstrate that the proposed key generation approach has a low

system overhead and can run in real-time on modern mobile devices. In addition, we also im-

plement Diffie-Hellman (DH) protocol on the same smartphone and we find that Walkie-Talkie

consumes approximately two times more energy than DH protocol.
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Table 4.6: System overhead measured on Moto E2.

Computation time (ms) Energy consumption (mJ)
ICA 105.7 71.2

Component Identification 2.6 1.5
Key Generation 310.5 125.6
AES Encryption 0.2 0.1
AES Decryption 0.2 0.1

Total 419.2 198.5

4.8 Summary of This Chapter

In this chapter, we proposed and implemented a key generation approach that exploits the ac-

celeration signals produced by gait to establish a common cryptographic key between two le-

gitimate devices. By exploiting BSS and incorporating a multi-level quantization mechanism,

Walkie-Talkie demonstrates superior effectiveness in performance. For example, when 2-ary

quantization is employed, Walkie-Talkie can generate a common 128-bit key for two legitimate

devices in 4.6s with 98.3% probability. Increasing quantization levels can improve the bit gen-

eration rate, but will decrease bit agreement rate. We also analyzed the security against various

attackers. The proposed method obtains a security advantage from the fact that different people

have distinctive walking styles. Finally, we prototyped the proposed scheme on a Motorola E2

smartphone to demonstrate the feasibility on contemporary mobile devices.

Although the evaluation results demonstrate the robustness and effectiveness of Walkie-

Talkie, the current approach still has several limitations. First, Walkie-Talkie only addresses the

problem of automatic pairing for devices located on the upper body of the user. For example, the

acceleration sensors worn on the lower body of the user (e.g., leg) record half of gait cycle only,

which makes key pairing significantly more challenging. Furthermore, we limit the positions

of devices on the central body trunk in this study. There are more challenging scenarios in

the real world, for example, the user may put his/her smartphone in the pocket or handbag.

Some implantable devices such as pacemaker will be embedded inside user’s body. The signals

recorded in such positions will differ from those analysed in this study. In addition, Walkie-

Talkie works for a pair of devices only because different pairs of devices will produce different

mismatches. In many practical scenarios, it is essential to establish a common cryptographic

key, known as a group secret key, among multiple smart devices belonging to a subject. These

limitations are interesting research directions and we plan to study them in our future work.
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Chapter 5

Gait-based User Authentication System

Using Kinetic Energy Harvesting

Chapter Summary: Accelerometer-based gait recognition for mobile healthcare systems has

became an attractive research topic in recent years. However, a major bottleneck of such a sys-

tem is that it requires continuous sampling of the accelerometer, which reduces the battery life of

wearable sensors. In this chapter, we present KEH-Gait, which advocates use of the output volt-

age signal from a kinetic energy harvester (KEH) as the source for gait recognition. KEH-Gait

is motivated by the prospect of significant power saving by not having to sample the accelerom-

eter at all. Indeed, our measurements show that, compared to conventional accelerometer-based

gait detection, KEH-Gait can reduce energy consumption by 78.15%. The feasibility of KEH-

Gait is based on the fact that human gait has distinctive movement patterns for different indi-

viduals, which is expected to leave distinctive patterns for KEH voltage as well. We evaluate

the performance of KEH-Gait using two different types of KEH hardware on a data set of 20

subjects. Our experiments demonstrate that, although KEH-Gait yields slightly lower accuracy

than accelerometer-based gait detection when a single step is used, the accuracy problem can

be overcome by the proposed Multi-Step Sparse Representation Classification (MSSRC).
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5.1 Introduction

Gait recognition using wearable sensors, such as accelerometers, has emerged as one of the most

promising solutions for user authentication. Extensive previous studies have already demon-

strated its feasibility in user authentication [49, 91, 148], but they have also shown that continu-

ous accelerometer sampling drains the battery quickly. High power consumption of accelerom-

eter sampling, which is typically in the order of a few milliwatts, also makes it challenging to

adopt gait-based user authentication in resource-constrained wearables. Although power con-

sumption may be not a big issue for wearables with large batteries such as smartphones, other

wearables like IMDs suffer from short battery life because IMDs are long-lived devices and

battery replacement requires surgical intervention [118].

A vision for wearable devices is to be battery-free (self-powered). A current trend in battery-

free devices is to investigate kinetic energy harvesting (KEH) solutions to power the wearable

devices [54, 135, 142, 101]. However, one fundamental problem in KEH is that the amount of

power that can be practically harvested from human motion is insufficient to meet the power

requirement of accelerometers for accurate activity recognition [72]. As reported in [54], the

amount of power that can be harvested from human motion is only in the order of tens to hun-

dreds of microwatts. This 2-3 orders of magnitude gap between power consumption and power

harvesting is the biggest obstacle for realizing gait-based authentication in battery-less wear-

ables. Although the power consumption of sensors has been reduced in recent years thanks to

Ultra-Low-Power electronics, we believe in the near future energy harvesting will be used to

augment or substitute batteries. For example, AMPY [2] has released the world’s first wearable

motion-charger which can transform the kinetic energy from user’s motion into battery power.

SOLEPOWER [9] produces smart boots that use user’s steps to power embedded lights, sen-

sors, and GPS. KINERGIZER has developed a small piezoelectric generator with the ability to

harvest energy at low frequencies to produce as much as 200µW of power [6].

Motivated by this prospect, we propose gait recognition by simply observing the output

voltages of KEH. The feasibility of the proposed idea is based on the observation that if hu-

mans have unique walking patterns, then the corresponding patterns of harvested power from

KEH should be unique too. The proposed system offers several advantages. The major advan-

tage of KEH-based gait recognition is the potential for significant power savings arising from

not sampling an accelerometer at all. On the other hand, the output voltage can be used to

charge the battery, thus further extending battery life. Finally, as the energy harvester will be

80



integrated in wearable devices in the near future, the output voltage can be naturally utilized for

authentication purposes without introducing extra sensors. This makes it a promising solution

for light-weight authentication for wearable devices. To the best of our knowledge, this is the

first work that proposes and experimentally validates the feasibility of gait recognition using

KEH.

The main contributions of this study are as follows:

• We propose a novel method of gait recognition, called KEH-Gait, which uses only KEH

voltage as the source signal to achieve user authentication.

• We build two different KEH wearables, one based on a piezoelectric energy harvester

(PEH) and the other on an electromagnetic energy harvester (EEH). Using these KEH

devices, we evaluate gait recognition accuracy of KEH-Gait over 20 subjects. Our results

show that, with conventional classification techniques, which operate over single step,

KEH-Gait achieves approximately 6% lower accuracy compared to accelerometer-based

gait recognition.

• We demonstrate that authentication accuracy of KEH-Gait can be increased to that of

accelerometer-based gait detection by applying a novel classification method, called Multi-

Step Sparse Representation Classification (MSSRC), which efficiently fuses information

from multiple steps.

• Finally, using measurements, we demonstrate that microprocessors can read KEH voltage

within 33 µs, which is two orders of magnitude faster than the time it takes to wakeup,

interrogate and read acceleration values from typical 3-axis accelerometers. This means

that with microprocessor duty cycling, KEH-Gait promises major energy savings over

conventional accelerometer-based gait detection.

The rest of the chapter is structured as follows. Section 5.2 introduces trust models and

attacker models of gait-based authentication system. Section 5.3 presents the system archi-

tecture of KEH-Gait. Prototyping of KEH wearables and gait data collection are described in

Section 5.4. We present evaluation results in Section 5.5, and analyze power consumption in

Section 5.6. We have a discussion of our work in Section 5.7 before concluding the chapter in

Section 5.8.
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5.2 Trust and Attack Models

Authentication

Upload
gait data

Data centerUser Wearable 
device

Genuine user

Spoof attacker

fail

pass

Figure 5.1: The overview of a typical healthcare monitoring system.

We envision the use of KEH-Gait primarily in resource-constrained healthcare monitoring

wearable devices to authenticate the identity of the user to prevent spoofing attacks. KEH-Gait

addresses the issue of short battery life by using an energy harvester to replace an accelerom-

eter. In the near future, energy harvesters can even be integrated in the hardware system to

achieve battery-free wearable devices. Figure 5.1 illustrates the work-flow of a typical health-

care monitoring system. In such a system, each user is given a unique user ID and a monitoring

application which runs on a wearable device that can collect private sensor data and transmit

them to the data center of a healthcare company. Before transmission, the device first collects

gait data and transmits them to the sever. The server will then perform authentication to verify

the user’s identity by using the gait data. If the user passes authentication, the further private

data like blood pressure or heart rate are then transmitted to the server. While if the user verifi-

cation fails, i.e., the user spoofing attack is detected, the sensor data collected from this user’s

device will not be reported to the server. In the server, sensor data will be analyzed and pro-

cessed by the healthcare company to derive user’s physical and mental conditions. For instance,

the measurements of heart-rate and blood pressure can be used to predict user’s psychological

conditions. A wide range of applications can also be enabled by such mobile healthcare systems

and some examples are:

• Users’ physical behaviors are often a reflection of physical and mental health and can be

used by healthcare companies to facilitate early prediction of future health problems like

depression [111].

• Health food companies can make advertisement by cooperating with healthcare related
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applications such as “IDOMOVE”1, e.g., providing discount coupons for users who walk

more than 1hr a day.

For some applications, continuous authentication may be unnecessary. However, one-time

validation of the user’s identity is becoming insufficient for modern devices and applications

that process sensitive data. A simple example is the mobile phone will lock the screen and de-

mand users to enter their PIN every few minutes. Such situations might benefit from a seamless

authentication approach that incorporates continuous verification of the user’s identity. KEH-

Gait leverages gait which is a common daily activity to provide unobtrusive and continuous au-

thentication without user intervention. There are also many commercial products that provide

biometrics-based continuous authentication systems such as BehavioSec [3] and Eyefluence [4].

It is worth mentioning that gait-based continuous authentication is not a general solution for all

scenarios as people only walk 0.5-1 hour per day [1].

5.2.1 Trust Model

In this work, we assume the data collected by sensors built in the wearable devices are trust-

worthy. Also, our system trusts the communication channel between the wearable device and

the healthcare company’s server. We discuss the feasibility of our assumption as follows.

Tamper-resistant Sensor. An attack can physically accesses to the sensor or chipset and

manipulate the recorded data. To make sure the device has not been modified, a healthcare

company can apply tamper-resistant techniques [114]. As mentioned in [55], ARM TrustZone

extension can also be used to ensure the integrity of the sensors [84].

Trusted Transmission. A man-in-the-middle(MITM) attack may occur when the device

is communicating with the server. Therefore, the device and server should establish a secure

communication channel. To address this attack, the healthcare company can install a digital

certificate in the wearable device and the device will perform SSL authentication when commu-

nicating with the server.

5.2.2 Attack Model

The aforementioned mobile healthcare system is vulnerable to user spoofing attacks. For in-

stance, an adversary can distribute his device to another person, and upload the data of that

1IDOMOVE: https://www.idomove.com/

83



person aiming to obtain healthcare benefits. Besides, multiple users may collude to launch user

spoofing attacks to fool the mobile healthcare system. Therefore, the adversary model con-

sidered in this work focuses on impersonation attacks. We assume the presence of two types

of impersonation attacks: a passive adversary and an active adversary. The passive adversary

tries to spoof the healthcare system by using his own walking patterns. The active spoofing

attacker knows the authentication scheme and will try his best to imitate the walking pattern of

the genuine user to spoof the healthcare system.

The main goal of our system is to detect spoofing attacks. In fact, there are many other

possible attacks to such healthcare system. We discuss these possible attacks and corresponding

solutions. The first type of attacks we consider is replay attacks. In replay attacks, an adversary

first records a measurement trace from another person. Then he replays the data trace to the

monitoring device to fool the healthcare monitoring system. This attack can be easily detected

as discussed in [55]. Although a MITM attack during communication between the device and

server can be easily prevented, there is another type of MIMT in which an adversary may build

a MITM monitor which bridges the user’s skin and a wearable device. For example, once it

detects a response message indicating healthy problems such as high blood pressure, it will

manipulate the data and transmit the forged data to the server. This type of attack can be

addressed by the scheme in [55]. Further potential threats include deriving the walking patterns

by studying a video of the target’s gait through computer vision techniques. We believe this is

a potential vulnerability of unknown severity and leave it as future work.
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RadioRadio
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Figure 5.2: Gait recognition systems: (a) conventional accelerometer-based gait recognition
and (b) KEH-Gait.
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5.3 System Architecture of KEH-Gait

In this section, we discuss the proposed KEH-Gait framework in details. First, we compare

KEH-Gait with traditional accelerometer based gait recognition systems. Figure 5.2(a) shows

the pipeline of a traditional accelerometer-based gait recognition system, in which the ac-

celerometer data are used to train a classifier for gait recognition. In contrast, as shown in

Figure 5.2(b), the output voltage signal of the kinetic energy harvester will be exploited for gait

recognition directly rather than powering the accelerometer. By not using the accelerometer,

KEH-Gait can save the energy that is used to sample the accelerometer. The saved energy can

be further used to power other components in the wearable device, such as the classifier and

radio. The radio can be used to transmit the personal data to a base station or a server.

Figure 5.3 compares the output voltage signal from two types of energy harvester (EH) gen-

erated by two subjects when they are walking. These figures provide a clear visual confirmation

that the voltage signal from the energy harvester contains personalized patterns generated by

the subjects. This observation is promising as our goal is to recognize different subjects based

on the output voltage signal of the EH when they are walking.

5.3.1 System Overview

As shown in Figure 5.4, the whole procedure of KEH-Gait consists of three parts: offline dic-

tionary training, pre-processing of input signals, and classification.

During the offline dictionary training phase, gait cycles are first segmented from the time

series voltage signal and then interpolated into the same length. All detected cycles are passed

to unusual cycles deletion to remove outliers of gait cycles. The obtained gait cycles are used

to form the training dictionary A. After obtaining A, we apply the projection optimization

algorithm in [124] to obtain a optimized projection matrix Ropt . Then the reduced training

dictionary Ã = RoptA is used in the classifier as described in Section 2.1.1.

After the acquisition of the test signal, we again apply gait cycle segmentation and interpo-

lation to obtain the gait cycles from the test signal. The same optimized projection matrix (as

used for training) is used to reduce the dimension of the test signal and provide the measurement

vector ỹi = Roptyi, i = 1,2, · · · ,k, and k is the number of obtained gait cycles.

Now both the training dictionary Ã and the measurements ỹi are passed to the classifier. The

`1 classifier first finds the sparse coefficient vector xi. Then the vectors of different gait cycles
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Figure 5.3: A comparison of the output voltage signal from different devices: (a) and (b) exhibit
the acceleration signal from 3-axis accelerometer when two different subjects are walking; (c)
and (d) plot the output voltage signal from a PEH device; (e) and (f) show the output voltage
signal from an EEH device.

are fused based on a novel sparse fusion model, and the fused sparse vector is used to calculate

the residuals. Finally, the identity is obtained by finding the minimal residual.

In the following sections, we detail the design of signal pre-processing, offline dictionary

training, and classification in turn.

5.3.2 Signal Pre-processing

Gait Cycle Segmentation

In order to recognize a gait signal, it is essential that we separate the time series of walking

periods into segments, such that each segment contains a complete gait cycle. The gait cycle

can be obtained by combining two successive step cycles together as technically the gait cycle is

across a stride (two steps). As mentioned in [20], typical step frequencies are around 1-2Hz, we

apply a band-pass Butterworth filter [24] on the sampled data to eliminate out-band interference.
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The lower and upper cutoff frequency is set as 1Hz and 2Hz separately (filter order is 4). After

filtering, the step cycles are separated by finding peaks associated with the heel strike as shown

in Figure 5.5. Thereafter, the gait cycle is obtained by combining two consecutive step cycles

together. After gait cycle extraction, the output voltage data are segmented into short gait
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cycles based on the peak detection. Figure 5.6 presents the distribution of cycle duration (i.e.

time length of stride) for 20 healthy subjects walking at their normal speed. We can see that

most of the gait cycle ranges between 0.8-1.3s (80-130 samples at 100Hz sampling rate). These

results in turn can be used to omit unusual gait cycles and exclude the cycles not produced by

walking, i.e., the cycles which last less than 0.8s and exceed 1.3s are dropped.

Linear Interpolation

Detected cycles are normalized to equal length by linear interpolation because SRC requires

vectors of equal length as input. As mentioned above, normal gait duration lies between 80 and

130 samples, we apply linear interpolation on the samples to ensure that they achieve the same

length of 130 samples.

5.3.3 Offline Training

The training data are also passed to gait cycle segmentation and linear interpolation to obtain

gait cycles with same length. In addition, we delete unusual cycles and optimize projection

matrix to further improve recognition accuracy.

Deletion of Unusual Cycles

Unusual cycles caused by occasional abnormalities like temporary walking pauses or turning

contains much noise that will deteriorate the recognition accuracy. Apart from deleting unusual

cycles using cycle durations, the detected cycles are also passed to a function which further

deletes unusual cycles. This function uses Dynamic Time Warping (DTW) distance scores to

remove outliers from a set of cycles. Specifically, we first compute the DTW distance between

the detected cycle and typical cycle. Thereafter, we delete unusual cycles by a simple threshold

method, i.e., if the DTW distance of detected cycle and typical cycle is higher than a predefined

value (12 in the proposed system), the detected cycle will be dropped. The typical cycle is the

one which is assumed to represent the subject’s gait signal. This is obtained by computing the

the average of all cycles in the training data.

Projection Optimization

After unusual cycles removal, the remaining gait cycles obtained from training data are used to

form the final training dictionary A. Motivated by a recent work [124], we apply the projection
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matrix optimization method proposed in [124] to reduce the dimensionality of SRC while re-

taining the high classification accuracy. The projection matrix Ropt is learned from dictionary A

based on Tabu search [53]. We refer the reader to [53] for more details.

5.3.4 MSSRC

The MSSRC used in this study is similar to MVSRC which is mentioned in Section 3.2.1.

Therefore, we briefly describe MSSRC and encourage the reader to refer to Section 3.2.1 for

more details.

The key assumption behind MSSRC is that gait cycles obtained from consecutive gait cycles

tend to have a high agreement on the sparse representations because each of the gait cycles from

the same person should be linearly represented by the same class in the dictionary. Suppose we

have acquired a set of M gait cycles (i.e., test vectors) from the test signal. We first calculate

the Sparsity Concentration Index (SCI) of each test vector. Then we assign normalized weights

to each of the test vectors. Finally, we can obtain the classification result by calculating the

minimal residual using Eq 3.5. To identify whether the walker is the genuine user or imposter,

we adopt the same principle in Section 3.2.1.

5.4 Hardware Platform and Data Collection

5.4.1 Proof-of-concept Prototype

PEH data logger. A data logger has been built to collect PEH voltage signals. The data log-

ger includes a vibration energy harvesting product from the MIDÈ Technology called Volture,

which implements the transducer to provide AC voltage as its output. Our hardware also in-

cludes a 3-axis accelerometer to record the acceleration signals, simultaneously with the voltage

signal. An Arduino Uno has been used as a microcontroller device for sampling the data from

the Volture. A sampling rate of 100Hz has been used for data collection. The sampled data has

been saved on an 8GB microSD card which has been equipped to the Arduino using microSD

shield. A nine-volt battery has been used to power the Arduino. To control the data collection,

our data logger also includes two switches, one is an on/off switch and the other to control

the start and stop of data logging. The Arduino measures voltage between 0 and 5 volts and
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Figure 5.7: PEH data logger: (a) the external appearance and (b) the internal details.

provides 10 bits of resolution (i.e., 1024 different values). Therefore, we calculated the corre-

sponding output voltage from the measurements using the following formula V = 5∗measurement
1023 .

The hardware platform and the internal appearance of the data logger are shown in Figure 5.7.
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Electromagnetic 

energy harvester

0.8cm

4
.7

cm

Figure 5.8: EEH data logger

EEH data logger. We also built an EEH data logger to collect voltage signals generated

from an EEH device. The data logger contains a harvesting circuit, through which energy is

generated by moving a magnet through an inductor. A Tmote sky board has been used as a

microcontroller device for sampling the data from the inductor. A sampling rate of 100Hz

has been used for data collection. The sampled data has been saved in the 48K Flash of the

MSP430 microcontroller. Two AA batteries have been used to power the Tmote sky board. We

use a button to control the data collection.

90



5.4.2 Data Collection

The dataset used to evaluate the performance of the proposed system consists of 20 healthy

subjects (14 males and 6 females).During the data collection phase, the participants were asked

to hold the data logger in one hand and walk at their normal speed (0.7-1.1m/s). The data

collection is performed in several environments (indoor and outdoor) in order to capture the

influence of different terrains. An illustration of indoor environment and outdoor environment

is shown in Fig 5.9(a) and Fig 5.9(b). The terrain of the chosen outdoor environment varies

including grass paths and asphalt roads. Each volunteer participated in two data collection

sessions that was separated by one week. During each session, the participants were asked to

hold the device (see Fig 5.9(c) and Fig 5.9(d)) and walked along the specific route shown in

Figure 5.9(a) and Figure 5.9(b) for approximately 5 minutes. Based on the above description,

the gait dataset is close to a realistic environment as it includes the natural gait changes over

time and different environments (indoor and outdoor). In total, we have collected over 300

(a) Indoor experiment (b) Outdoor experiment

(c) Holding PEH device (d) Holding EEH device

Figure 5.9: The illustration of data collection.
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seconds of samples for each subject from the EH devices as well as the accelerometer. We

collect two voltage datasets by using the PEH and EEH devices, respectively, and perform gait

cycle segmentation and unusual gait cycle deletion on both of the datasets, and finally we extract

200 gait cycles from each subject for evaluation. Although we collect data from the PEH and

EEH prototype separately, the gait signals of the same subject can be deemed to be same as gait

will not change in a short time.

As we collected data on the same day, the gait data from different devices only have slight

differences because gait will not change in a short time. Note that gait signals can also be

collected from other body locations such as the torso or thigh. In this study, we collect data

from a device in the hand because the energy harvester will generate more energy, since energy

output is based on kinetic motion. If the motion is larger the device will generate more energy.

In addition, we do not separate gait signals from arm swing signals as we did in Chapter 4 when

we performed authentication. This is because arm swing is also a weak biometric characteristic

which can be used to improve authentication accuracy.

5.5 Evaluation

5.5.1 Goals, Metrics and Methodology

In this section, we evaluate the performance of the proposed system based on the collected

dataset. The goals of the evaluation are threefold: 1) investigate the relation between recognition

accuracy and sampling rate of accelerometer data; 2) compare the recognition accuracy of KEH-

Gait with that of using accelerometer data; 3) compare the proposed classification method in

KEH-Gait with several state-of-the-art classification algorithms.

In this work, we focus on the following three evaluation metrics:

• Recognition accuracy: it represents the percentage of correct classifications which is

simply the number of true classifications over the total number of tests.

• False positive rate (FPR): probability that the authentication system incorrectly accepts

the access request by an imposter.

• False negative rate (FNR): probability that the authentication system incorrectly rejects

the access requests from the genuine users.
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The recognition accuracy of KEH-Gait is obtained by using output voltage in one gait cycle

as a test vector. For fair comparison, we perform the same signal processing and classification

method on acceleration data. The only difference is the test vector is obtained by concatenating

acceleration data along three axes in one gait cycle together. In the evaluation, we compare

MSSRC with Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Naive Bayes

(NB). The intuition for using SRC is that it has shown better performance than traditional classi-

fication methods (e.g., SVM and KNN) in recognition tasks such as face recognition [124, 140]

and voice recognition [137]. SRC is known to be robust to noise because of its use of `1 opti-

mization [124]. Thus, we use SRC in KEH-Gait and improve its performance by exploring the

sparsity of testing vectors as discussed in Section 5.3.4. The parameters in SVM, KNN and NB

are well tuned to give highest accuracy. For the KNN classifier we set the number of nearest

neighbors as 10. For the SVM classifier, we choose a linear kernel function, and the soft margin

constant is set to 10. We choose a normal Gaussian distribution for NB. For each classifier, we

perform 10-fold cross-validation on the collected dataset. Specifically, we randomly split the

dataset into 10 folds with equal size. Then, each fold is retained as the validation data for testing

the classifier, and the remaining 9 folds are used as training data. The cross-validation process

is then repeated 10 times, with each of the 10 folds used exactly once as the testing data. In

the evaluation, we let k denote the number of gait cycles fused to perform classification and σ

denote the compression rate. The compression rate means the number of projections/features

over the dimension of the original feature vector. We plot the results of the average values and

95% confidence level of the recognition accuracy obtained from 10 folds cross-validation. The

evaluation results of these experiments are presented in Section 5.5.4.

5.5.2 Recognition Accuracy v.s. Sampling Rate

In the first experiment, we evaluate the impact of sampling rate on the gait recognition accuracy

of acceleration data. The goal is to investigate the relation between recognition accuracy and

the consumed power of accelerometer, as the power consumption is directly related to the sam-

pling rate. We use MSSRC as the classifier and calculate the recognition accuracy at different

sampling rates by subsampling the acceleration data from 100Hz to 1Hz. As shown in Fig-

ure 5.10(a), the recognition accuracy increases with growing sampling rate. This is intuitive as

the more measurements are sampled, the more information is available, and thus, enabling more

accurate classification. However, the improvement diminishes after the sampling rate is greater
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Figure 5.10: (a) Recognition accuracy vs sampling rate. (b) recognition accuracy under different
compression rate when k=1. (c) recognition accuracy under different number of gait cycles
when σ = 75%.

than 40Hz. The results indicate that to achieve high recognition accuracy, a sampling rate of

at least 40Hz is required. In the rest of the evaluation, we limit our discussion on sampling at

40Hz.

As we will discuss in Section 5.6.2, the power consumption of accelerometer-based sys-

tem will increase significantly with the rising sampling frequency. Based on our measurement

results, the accelerometer-based system consumes approximately 300µW at 40Hz to achieve

accurate recognition. However, this consumption requirement is far beyond the actual power

generated by the energy harvester (neither PEH, nor EEH). According to a recent theoretical

study of energy harvesting from human activity [54], assuming 100% conversion efficiency, the

power can be harvested from walking is only 155µW . Unfortunately, in practical situations,

according to our measurement results, the average power produced from walking is 19.17µW

using EEH, and approximately 1µW using PEH which is not tuned specifically for human ac-

tivity energy harvesting. In this case, due to the limited amount of power that is available to

power the system, its sampling frequency will decrease below 40Hz. As a result, the recognition

accuracy will dramatically decrease accordingly. The energy consumption of gait recognition

is far beyond the energy that can be generated by the energy harvester; therefore, we cannot
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build a gait recognition system that powered by energy harvester only. The results highlight the

necessity of using kinetic voltage signal to achieve gait recognition directly, instead of using

the accelerometer signal. In the next subsection, we will show that the recognition accuracy of

using kinetic voltage signal is comparable to that of using accelerometer data.

5.5.3 KEH-Gait v.s. Accelerometer-based System

In this section, we investigate whether KEH-Gait can achieve comparable accuracy compared to

accelerometer signals. When using accelerometer signal, we calculate the recognition accuracy

at two different sampling rates: 1) raw sampling rate (100Hz) of the data logger; and 2) the

highest achievable sampling rate of the accelerometer if it is powered by the energy harvester.

From our dataset, the energy harvester can generate 19.17 µW on average from walking. Thus,

according to the handbook of MPU9250 which is used in our prototypes, it can sample at most

8Hz if it is powered by the energy harvester.

In this experiment, we set k = 1 and calculate the recognition accuracy by varying the com-

pression rate σ from 15% to 100%, and the results are plotted in Figure 5.10(b). We can see

that the recognition accuracy of using voltage signal is significantly higher than that of using

the accelerometer at a sampling rate of 8Hz. This suggests that the harvested power cannot

support the accelerometer to sample at a high frequency which leads to low recognition ac-

curacy; instead, using the voltage signal itself is able to achieve higher recognition accuracy.

However, the recognition accuracy of using voltage signal is still approximately 6% (PEH) and

17% (EEH) below than that of using raw accelerometer signal when σ = 100%.

We now demonstrate that the recognition accuracy of using harvested power signal can

be improved significantly by the proposed MSSRC, and it reaches a comparable recognition

accuracy compared to using the raw accelerometer signal. In this experiment, we set σ = 75%

as the accuracy improvement diminishes when the number of projections/features increased to

200 as shown in Figure 5.10(b). Then we calculate the recognition accuracy of KEH-Gait using

accelerometer signal and voltage signal, while increasing k from 1 to 8. From the results in

Figure 5.10(c), we notice that the recognition accuracy is improved significantly when more

gait cycles are fused together. The result is intuitive as more information can be obtained to

identify the subject by using more gait cycles. We also find that by using voltage signal of

PEH, we can achieve a comparable accuracy compared to using raw accelerometer signal when

k = 8, and the recognition accuracy of EEH is slightly lower (3%) than using raw accelerometer

95



15% 25% 50% 75% 100%
Compression rate

20

30

40

50

60

70

80

90

100

A
cc

u
ra

cy
 (

%
)

KEH-Gait
Naive Bayes
SVM
KNN

(a) PEH dataset with different compression rate (k = 1)

1 2 3 4 5
Number of gait cycles

20

30

40

50

60

70

80

90

100

A
cc

u
ra

cy
 (

%
)

KEH-Gait
Naive Bayes
SVM
KNN

(b) PEH dataset with different k (σ = 0.75)

15% 25% 50% 75% 100%
Compression rate

20

30

40

50

60

70

80

90

100

A
cc

u
ra

cy
 (

%
)

KEH-Gait
Naive Bayes
SVM
KNN

(c) EEH dataset with different compression rate (k = 1)
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(d) EEH dataset with different k (σ = 0.75)

Figure 5.11: Comparison with other classification methods on two datasets (sample rate 40Hz).

signal. In the real applications, k can be tuned by the healthcare company to satisfy their own

needs. For example, a larger k makes the system more secure from imposters while it sacrifices

user experience because it will take more time to collect the required steps.
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5.5.4 Comparison with Other Classification Methods

We now evaluate whether MSSRC outperforms other state-of-the-art classification algorithms.

Specifically, we compare MSSRC with SVM, KNN, and NB. We perform comparison on two

datasets separately.

Performance on PEH dataset. We follow the same experimental procedure in Section 5.5.3

to evaluate the recognition accuracy of different methods under different d (number of projec-

tions/features). From Figure 5.11(a), we find that KEH-Gait improves recognition accuracy by

up to 7% compared to the second best classification method (i.e., NB). We further evaluate the

recognition accuracy of SVM, KNN and NB by combining several gait cycles together. As

KEH-Gait utilizes multiple gait cycles to find the final classification result, we apply the ma-

jority voting scheme to achieve a fair comparison. Specifically, we first obtain the identity of

each gait cycle by using SVM, KNN and NB, then we apply majority voting scheme to com-

bine the results together, the subject with the highest voting is declared to be the recognized

person. Again, we set σ = 75% and calculate the recognition accuracy of different methods by

varying k from 1 to 5 (number of gait cycles). From the results in Figure 5.11(b), we find that

KEH-Gait consistently achieves the best performance and is up to 10% more accurate than the

second best approach (i.e., NB). The improvement of MSSRC over other methods is because

MSSRC exploits the sparsity of information from multiple gait cycles.

Performance on EEH dataset. We perform the same steps as above on the EEH dataset

and plot the results in Figure 5.11(c) and Figure 5.11(d). The results show that KEH-Gait is 6%

better than NB when σ = 75%, k = 1, and 4% better than NB when σ = 75%, k = 5. We also

find that the overall performance on EEH dataset is lower than that on PEH dataset. We believe

the drop on recognition accuracy is caused by the fact that the magnet is not sensitive to slight

vibrations and motions.

The results in this section suggest that the proposed MSSRC in KEH-Gait can improve

recognition accuracy significantly by fusing several steps together and it outperforms several

state-of-the-art classification algorithms. Another straightforward method to apply SRC on

multiple steps is to first apply SRC on each step and then obtain the final results by majority

voting scheme. We found that MSSRC is approximately 3%− 7% more accurate than direct

majority voting on our dataset since it exploits the sparsity information of multiple measure-

ments.
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Figure 5.12: Evaluation results: (a)-(d) robustness to gait variations. (e)-(f) robustness against
attackers.

5.5.5 Robustness to Gait Variations

To evaluate the robustness of KEH-Gait to gait variations, we conduct the following two ex-

periments: different day evaluation and different environment evaluation. In this experiment,

same day evaluation means the training set and test set are chosen from the sessions of the same

day while different days evaluation chooses the sessions from two different days separated by

1 week. Similarly, in different environment evaluations, indoor evaluation means the training

set and test set are chosen from indoor environment while outdoor evaluation chooses training

data and test data from outdoor environment. We conduct this evaluation on PEH dataset and

EEH dataset respectively. As the results in Figure 5.12(a) and Figure 5.12(b) show, the accuracy

of different day is lower than the same day evaluation as the different days evaluation tends to

produce more changes to gait. However, KEH-Gait can still achieve the accuracy of 95% and

89% on the two dataset respectively when more than 5 steps are used. This observation holds

across the different evaluation environments. From Figure 5.12(c) and Figure 5.12(d), we can
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see that the outdoor environment achieves lower accuracy than the indoor environment because

it includes several different terrains such as grass path and asphalt road. Gait changes can be

caused many other factors such as speed and shoes etc.. We further discuss the influence of

these factors in Section 5.7.2.

5.5.6 Robustness Against Attackers

As mentioned in Section 5.2, we assume the presence of a passive adversary and an active

attacker during an authentication session. We evaluate the robustness of the proposed system

against the eavesdropper and active attacker by conducting the following two imposter attempt

experiments.

• A passive imposter attempt is an attempt when an imposter performs authentication using

his own walking pattern. This attack happens when the genuine user passes his device to

another person to spoof the healthcare system.

• An active imposter attempt means the imposter mimics the gait of the genuine user with

the aim to spoof the healthcare system. This attack happens when the several users collude

to fool the healthcare system.

The first experiment is conducted to evaluate the robustness to a passive imposter. In this

experiment, we use the raw voltage signal from other subjects as passive imposter attempts. We

then repeat this experiment by testing all the steps of the 20 subjects in the dataset. To evaluate

the robustness against the second imposter attack scenario, we group the 20 subjects into 10

pairs. Each subject was told to mimic his/her partner’s walking style and try to imitate him or

her. Firstly, one participant of the pair acted as an imposter, the other one as a genuine user, and

then the roles were exchanged. The genders of the imposter and the user were the same. They

observed the walking style of the target visually, which can be easily done in a real-life situation

as gait cannot be hidden. Every attacker made 5 active imposter attempts. The authentication

accuracy is evaluated by FPR and FNR. In general, FPR relates to the security of the system,

while FNR to the usability. An interesting point in the Decision Error Trade-off (DET) curve

is the Equal Error Rate (EER) where FPR=FNR. For instance, an EER of 5% means that out

of 100 genuine trials 5 are incorrectly rejected, and out of 100 imposter trials 5 are wrongfully

accepted. We set k = 5 and vary the confidence threshold C to plot DET curve in Figure 5.12.
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Figure 5.13: Measurement setup and results.

The results on two datasets are plotted in Figure 5.12(e) and Figure 5.12(f) respectively. The

red dash line stands for the possible points where FPR is equal to FNR. The crossover (marked

as a diamond) of the red dash line and FPR-FNR curve stands for the location of the EER.

We notice that EER of KEH-Gait is 8.4% and 14.1% on the two datasets respectively, which

means out of 100 passive imposter trials 8 are wrongfully accepted by using PEH and 14 are

wrongfully accepted by using EEH. We also find that an imposter does benefit from mimicking

the genuine user’s walking style. The EER increases to 13.3% and 17.1% on the two datasets

respectively. For the accelerometer-based system, the EER of a passive attacker and an active

attacker are 6.8% and 11.6%, respectively. The results indicate that the PEH-based system can

achieve comparable EER compared to the accelerometer-based system. The individual nature

of walking gait provides our scheme security against impersonation attackers and the evaluation

results are encouraging. The false negatives occur when the gait patterns of the imposter and

user are close. This problem could be dealt with by using two factor authentication.

5.6 Power Consumption Profile

Battery lifetime is widely regarded as the major barrier to achieving long term human-centric

sensing. Reducing system power consumption is a topic of very significant research efforts

in both academic and industrial laboratories. In this section, we will conduct an extensive

power consumption profiling of state-of-the-art wearable systems. Our study, which will be dis-

cussed in details later, shows that the proposed use of KEH power signal as the source for gait-

recognition can greatly reduce the energy consumed by state-of-the-art accelerometer-based

gait-recognition systems by 78.15%.
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The energy consumption of our system consists of three parts: sensor sampling, memory

reading/writing, and data transmission. We find that memory reading/writing consumes signif-

icantly less energy compared to the other two parts. A recent study [103] also investigates the

energy consumption of different Random Access Memory (RAM) technologies, and their find-

ings support our measurement results. According to their measurement, it only consumes 203pJ

to write to (or read from) Static Random Access Memory (SRAM) which is used in SensorTag.

That means if we collect 5s gait data at 40Hz, it only takes 5×40×203=40.6nJ to read or write

data. Compared to the energy consumption of other parts, the energy consumed by SRAM is

negligible. Therefore, we only consider the energy consumption of sensor sampling and data

transmission in our evaluation.

5.6.1 Measurement Setup

The Texas Instrument SensorTag is selected as the target device, which is embedded with the

ultra-low power ARM Cortex-M3 MCU that is widely used by today’s mainstream wearable

devices such as FitBit. The SensorTag is running with the Contiki 3.0 operating system. The

experiment setup for the power measurement is shown in Figure 5.13(a). In order to capture both

the average current and the time requirement for each sampling event, the Agilent DSO3202A

oscilloscope is used. As shown in the figure, we connect the SensorTag with a 10Ω resistor in

series and power it using a 3V coin battery. The oscilloscope probe is then connected across the

resistor to measure the current going through.

5.6.2 Energy Consumption of Sensor Sampling

Power Consumption of Sampling Accelerometer

The SensorTag includes 9-axis digital MPU9250 motion sensor combining gyroscope, digital

compass, and accelerometer. During the power measurements, we only enable the 3-axis ac-

celerometer and leave all the other sensors turned off. The acceleration signal is sampled using

the Inter-Integrated Circuit (I2C) bus with a sampling frequency of 25Hz. Note that, it is also

possible for the wearable devices to use analog accelerometers, which can be sampled through

analog-to-digital converter (ADC) instead of I2C bus. Sampling analog accelerometers could

avoid power consumption and additional time requirement due to the I2C bus, but at the expense

of some processing costs in analog to digital converting. While it is not immediately obvious
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whether analog accelerometer sampling would be less or more power consuming relative to the

digital counterpart, a detailed measurement study [23] indicates that digital accelerometer is

more power efficient than the comparable analog ones from the same manufacturers.

Table 5.1: States of accelerometer sampling, which takes 17.2ms in total and consumes 322µW.

State Description Time
(ms)

Power
(uW)

S1 MCU wakes up to boot accelerometer 0.6 768
S2 MCU sleep when accelerometer starts booting 7.2 72
S3 MCU walks up to initiate accelerometer 0.6 480
S4 MCU sleep when accelerometer starts initializing 3.2 72
S5 Accelerometer is turning on 4 480
S6 MCU walks up to sample accelerometer signal 1.6 1440

S sleep MCU in deep-sleep mode; accelerometer power-off null 6

Figure 5.13(b) shows the details of accelerometer sampling energy profile. As shown, each

accelerometer sampling event can be divided into six states. At the beginning of each event, the

MCU is woken up by the software interrupt from the power-saving deep-sleep mode (S sleep),

and it boots the accelerometer (S1) before going back to sleep. During S2, the accelerometer

starts to power up while the MCU is in sleep mode. Then, after one software clock tick (7.8 ms

in Contiki OS), the MCU wakes up again by the interrupt to initialize the accelerometer (S3)

and then goes back to sleep. The accelerometer starts initializing in S4 and turning on in S5.

Finally, MCU wakes up in S6 to sample the acceleration signal and then goes back to deep-

sleep again. The average power consumption and time requirement for each state are shown in

Table 5.1.

Power Consumption of Sampling KEH

In this subsection, we investigate the power consumption in sampling the voltage signal of the

power source. During the measurement, MCU is programmed to periodically sample the volt-

age of the lithium coin battery with 25Hz sampling rate. The MCU reads voltage signal through

ADC. Figure 5.13(c) shows the details of voltage sampling. Similar to the accelerometer, the

MCU goes back to deep-sleep mode after each sampling event. However, sampling the voltage

takes only 0.6ms, which is much shorter than the 17.2ms required by the accelerometer sam-

pling. This is because the MCU can read the voltage signal directly without having to prepare

the hardware to be powered-up, and the voltage signal to be prepared by the power source.

The details of power consumption and time duration for voltage sampling event are shown in

Table 5.2.
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Table 5.2: States of voltage sampling.

State Time
(ms)

Power
(µW)

S1 0.6 480
S sleep null 6

Energy Consumption Comparison

We now compare the energy consumption of sampling accelerometer and KEH. In general,

for the duty-cycled gait-recognition system, the average power consumption in data sampling,

Psense, can be obtained by the following equation:

Psense =


TS×n
1000 Psample +(1− TS×n

1000 )Psleep if 0≤ n≤ 1000
TS

,

Psample if 1000
TS

< n.
(5.1)

where, Psample is the average power consumption in the sampling event (either sampling ac-

celeration or KEH signal), and Psleep is the average power consumption when the MCU is in

deep-sleep mode (with all the other system components power-off). n is the sampling frequency,

and TS is the duration of time (in milliseconds) spent in a single sampling event. Based on the

measurement results given in Table 5.1 and Table 5.2, we can obtain the average power con-

sumption for the accelerometer sampling event which is 322µW with a time requirement of

17.2ms, and 480µW with a duration of 0.6ms for the KEH sampling event. Then, based on

Equation 5.1, we get the power consumption in data sampling for both accelerometer-based and

KEH-based gait-recognition systems with different sampling frequencies. The results are com-

pared in Figure 5.14. It is clear to see that the proposed KEH-Gait achieves significant power

saving in data sampling, comparing with the conventional accelerometer-based gait-recognition

system. More specifically, given the analysis shown in Figure 5.10(a), a sampling rate higher

than 40Hz is needed to achieve high recognition accuracy. With a 40Hz sampling frequency,

in case of data sampling, KEH-Gait consumes 17.38µW, while the power consumption of the

accelerometer-based system is 230.74µW.

As can be seen from Figure 5.10(c), to achieve the same recognition accuracy, it needs to

collect 3 gait cycles for the accelerometer-based system and 5 gait cycles for the KEH-based

system. If we assume one gait cycle takes 1s (the average time of one gait cycle is between 0.8s-

1.2s), this results in 86.9µJ and 692.22µJ energy consumption in data sampling for KEH-Gait

and accelerometer-based system, respectively.
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Figure 5.14: Power consumption comparison.

5.6.3 Energy Consumption of Data Transmission

Next, we evaluate the energy consumption of transmitting acceleration and KEH voltage data

via Bluetooth. We conduct power measurement of the Bluetooth Low Energy (BLE) beacon

using the embedded CC2650 wireless MCU in the SensorTag. With the 40Hz sampling rate

and 75% compression rate, KEH-Gait generates 200 voltage samples every five seconds. This

results in 300 bytes data to be transmitted in total (2 bytes for each of the 12-bits ADC voltage

reading). This consumes an average power of 2.72mW with a transmission time of 52ms, which

results in 106.08µJ of energy consumption. On the other hand, as 3-axis acceleration data is

collected for 3s, it results in 540 bytes of data and the energy consumption of transmitting those

data is 190.94µJ.

5.6.4 Total Energy Saving Analysis

After obtaining the energy consumption of sensor sampling and data transmission, we investi-

gate the potential of KEH-Gait for energy saving. Based on the measured results, the energy

consumption of KEH-Gait to complete one authentication is approximately 192.98µJ, which

has reduced the energy consumption of the accelerometer-based system (883.16µJ) by 78.15%.

A recent study [23] tested the power consumption of six most commonly available ac-

celerometers, and they found that when the sampling rate is 50 Hz, the mean power consumption

of these accelerometers is 1542µW, and the minimum power consumption is 518µW. These ac-

celerometers consume more power than the one used in our experiments. These results indicate

that KEH-Gait is still superior to most commonly used accelerometers in terms of energy sav-

ings. On the other hand, the power consumption of accelerometers can be further reduced by
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sensor batching technique. For example, ADXL345 can store 32 samples automatically with-

out waking up the CPU. However, similar optimisation technique can also be integrated in the

KEH-based system to reduce the system level energy consumption. In this way, the energy

consumption of both accelerometer-based system and KEH-based system will be reduced. We

defer the design optimization of buffer-enabled KEH-Gait to our future work.

5.7 Discussion

5.7.1 PEH v.s. EEH

In this study, we analyze the feasibility of using voltage signal generated from an energy har-

vester for gait recognition purposes. Specifically, we focus on two types of kinetic energy

harvester: PEH and EEH. Our study demonstrates the harvested power signal caused by human

gait motions can be used to identify different individuals. Table 5.3 summarizes a comparison

between the PEH and EEH devices we used in this work. The first observation we can have

is that the PEH we used achieves higher recognition accuracy and generates more energy than

EEH when the user is holding the device in the hand and walking normally. The results can be

explained by our observation that the EEH contains a heavy magnet which is not sensitive to

weak vibrations and motions (compared in Figure 5.3(c) and 5.3(e)). This results in a roughly

10% difference in the recognition accuracy.

Table 5.3: Comparison between PEH and EEH used.

Size
(cm × cm × cm)

Weight
(grams)

Accuracy
(%)

Power
(uW)

Cost
(USD)

PEH 4.6 × 3.3 × 0.1 23.5 86.1 1 157
EEH 4.7 × 0.8 × 0.8 65 75.2 19.17 37.5

In addition to the system performance, another important characteristic in designing a wear-

able device is the form factor and weight. In case of the PEH device, we built it upon the

Volture V25W PEH energy harvester with a 4.6cm × 3.3cm × 0.1cm form factor. And it can

be further reduced to 2.2cm × 0.4cm × 0.1cm by exploiting smaller harvester products such as

the PPA-1022. On the other hand, the EEH device requires large mass displacement to ensure

the free movement of magnet which makes it difficult to reduce the form factor. Moreover, in

order to generate more power from the PEH device, a 20 grams tip mass is attached to the PEH

device and results in an overall weight of 23.5 grams. Fortunately, with current advancement in
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PEH design, the overall weight of the PEH can be reduced to less than 10 grams without signif-

icantly sacrificing the output power. In comparison, the EEH device includes a heavy magnet

and results in a weight approximately 65 grams in total. Given the above facts, we believe that

PEH is more convenient to be embedded in future wearable devices that have strict constraints

in size and weight.

Finally, the price of the PEH we used in our prototype is approximately 157USD (Volture

V25W), while the cost of the EEH we used is 37.5USD. Although both of the prices can be

largely reduced with a larger quantity of purchase, the cost of building the PEH device is higher

than that of the EEH device.

5.7.2 Factors Affecting Gait Recognition

The most important factor that affects the accuracy of sensor-based gait recognition system

is the position of the sensor. Previous studies have investigated gait recognition by attaching

sensors on different positions of the body, such as lower leg [48], waist [91], hip [51] and

hand [133]. They found that the lower body (e.g., ankle, thigh) achieves higher accuracy than

upper body (e.g., arm and wrist) [148]. There are also many other factors that may impact the

accuracy of a gait-based recognition system, such as shoes, clothes, walking speed and terrain.

Previous studies have shown that the accuracy will decrease when the test and training samples

of the person’s walking are obtained using different shoe types and clothes [46]. Indeed, as

shown in Section 5.5.5, the accuracy of KEH-Gait decreases when session 1 is used for training

and session 2 is used for testing. The dataset used in the experiment is challenging as it includes

the natural gait changes over time (two sessions separated by 1 week), as well as gait variations

due to changing in clothes, terrain and shoes. However, KEH-Gait can still achieve an accuracy

of 95% and 89% on the two datasets respectively by the proposed MSSRC. This in turn demon-

strates the robustness of KEH-Gait to gait variations. The focus of our study is to demonstrate

the feasibility of gait recognition using KEH and improve its performance. In fact, there has

been several attempts to study the relationship between recognition performance and different

factors [46, 104]. For example, in terms of walking speed, Muhammad and Claudia [104] found

that normal walking has the best results and fast walking is slightly better than slow walking.

As for different types of terrains, they reported that gravel walk has better results than grass and

inclined walk. We encourage the reader to refer to [46, 50, 104] for more details.
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5.8 Summary of This Chapter

In this chapter, we presented KEH-Gait, a kinetic energy harvesting signal based gait recogni-

tion system for user authentication. By not using the accelerometer, the proposed KEH-Gait

eliminates the need for powering the accelerometer, making gait recognition practical for future

self-powered devices. We also designed and implemented hardware platforms to collect voltage

data from two types of kinetic energy harvesters (PEH and EEH). Evaluation results based on a

data set of 20 subjects show that KEH-Gait is able to achieve comparable recognition accuracy

compared to accelerometer based gait recognition system by the proposed MSSRC. Besides,

KEH-Gait improves recognition accuracy by up to 10% compared to several state-of-the-art

classification algorithms. More importantly, compared to conventional accelerometer-based

gait detection, KEH-Gait can reduce energy consumption by 78.15%. To the best of our knowl-

edge, this is the first work that experimentally validates the feasibility of gait recognition using

KEH, and our results show that the output voltage signal of energy harvester is a promising

informative signal for wearable authentication system. We also analyse and compare the two

techniques used in our evaluation, we find that PEH is more convenient to be embedded in

future wearable devices that have strict constraint in size and weight. However, compared to

EEH, the disadvantages of PEH are its high cost and limited output power.
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Chapter 6

Conclusions and Future Work

In this chapter, we first conclude the findings of this thesis. Then we finish the thesis by pointing

out the future challenges with a short discussion of the potential solutions.

6.1 Conclusions

In recent years, with the rapid development of embedded technology, wearable devices such

as smartphone and smart glass have penetrated to everyone’s life. These smart devices usually

come with a growing set of cheap powerful embedded sensors, such as accelerometer, digital

compass, gyroscope, GPS, microphone, and camera. We believe that sensor-equipped mobile

devices will revolutionize many sectors of our life, including healthcare, social networks, en-

vironmental monitoring, and transportation. Therefore, we focus on studying the recognition

systems on these mobile devices and have addressed the following three research questions in

this thesis:

1. How the computational cost of face recognition system on smart glasses can be re-

duced, and how can face recognition performance on smart glasses be improved with

Inertial Measurement Unit (IMU) sensor data?

In the first topic, we addressed the problem of assisting a user to recognize people with the

help of smart glasses. Specifically, we proposed and implemented a novel sensor-assisted

face recognition system which runs locally on smart glasses by exploiting the information

from both the camera and sensors on smart glasses to improve the recognition accuracy

and reduce the energy consumption. As shown in our evaluation, the proposed system
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improves recognition accuracy by up to 15% compared with OpenCV face recognition

methods while achieving a similar system cost.

2. How can two legitimate devices belonging to the same user establish a secure com-

munication channel in a user friendly manner?

In the second topic, we addressed the problem of pairing two wearable devices on the

same body. The intuition of the proposed key generation approach is that the devices on

the same body experience similar motion signals that are produced by the unique walking

pattern of the user. Therefore, the unique gait signal can be exploited as shared infor-

mation to generate secret keys for all on-body devices. We experimentally demonstrated

that a common 128-bit key can be successfully generated by two independent wearable

devices on the same body in 98.3% of cases, while the scheme also provides adequate

security guarantees against impersonation attacks.

3. How does gait recognition using a Kinetic Energy Harvester compare to more con-

ventional gait recognition using accelerometers in terms of accuracy, energy-efficiency

and robustness to attack?

In the last topic, we proposed a novel gait-based user authentication system by using the

output voltage signal of the kinetic energy harvester. We first designed two prototypes by

using energy harvesting techniques. Then we demonstrated the feasibility of achieving

gait recognition using kinetic energy harvester. Compared to conventional accelerometer-

based gait recognition system, the proposed system can reduce energy consumption by

78.15%.

6.2 Future Work

With the rapid development of wearable technology, wearable devices will play a significant

role in our everyday life. With this trend, the wearable devices will spark a new set of appli-

cations and become a hot research topic. Although we have addressed three challenges, many

problems still remain unexplored. Therefore, we point out several potential areas of future

work.
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6.2.1 Key Generation System for Multiple Devices

We have solved the problem of generating the same key for two wearable devices on the same

user. However, the proposed system takes approximately 5s to generate a 128-bit key. We seek

to improve the bit rate by using more complex key generation algorithms. Another problem is

that the proposed system only works for two independent devices, and it fails to generate the

same key for several devices. In the future, we also plan to study how to generate a group key

for more devices on the same body by using the Fuzzy Vault scheme [69].

6.2.2 Context-aware Gait-based Authentication System

Although gait-based recognition has been well explored in the literature, there remain several

challenges with wearable devices. Firstly, due to the high flexibility of arm motions, people

could walk in a variety of ways (e.g., walk normally or walk upstairs). The walking pattern

when the user is walking normally is clearly different from that of walking upstairs. The large

majority of existing studies on accelerometer-based gait recognition have used a very restrictive

experimental setup where the performance evaluation was conducted on a dataset collected from

a controlled laboratory environment and the participants are asked to walk normally. As the per-

vasiveness of wearable devices in the wild, these is a need for robust and efficient authentication

system in a realistic environment. One possible solution is to train different classification mod-

els for different activities. When the user is walking, the device will first detect the specific

activity of the user (e.g., walking upstairs or walking while using a mobile phone). Then the

classification is performed on the specific training model to improve classification accuracy. For

example, if the user is walking upstairs, then the classification will be performed on the model

trained from walking upstairs.
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