29 research outputs found

    Wireless indoor positioning based on TDOA and DOA estimation techniques using IEEE 802.11 standards

    Get PDF
    Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2015von Abdo Nasser Ali Gabe

    Enabling smart city resilience: Post-disaster response and structural health monitoring

    Get PDF
    The concept of Smart Cities has been introduced to categorize a vast area of activities to enhance the quality of life of citizens. A central feature of these activities is the pervasive use of Information and Communication Technologies (ICT), helping cities to make better use of limited resources. Indeed, the ASCE Vision for Civil Engineering in 2025 (ASCE 2007) portends a future in which engineers will rely on and leverage real-time access to a living database, sensors, diagnostic tools, and other advanced technologies to ensure that informed decisions are made. However, these advances in technology take place against a backdrop of the deterioration of infrastructure, in addition to natural and human-made disasters. Moreover, recent events constantly remind us of the tremendous devastation that natural and human-made disasters can wreak on society. As such, emergency response procedures and resilience are among the crucial dimensions of any Smart City plan. The U.S. Department of Homeland Security (DHS) has recently launched plans to invest $50 million to develop cutting-edge emergency response technologies for Smart Cities. Furthermore, after significant disasters have taken place, it is imperative that emergency facilities and evacuation routes, including bridges and highways, be assessed for safety. The objective of this research is to provide a new framework that uses commercial off-the-shelf (COTS) devices such as smartphones, digital cameras, and unmanned aerial vehicles to enhance the functionality of Smart Cities, especially with respect to emergency response and civil infrastructure monitoring/assessment. To achieve this objective, this research focuses on post-disaster victim localization and assessment, first responder tracking and event localization, and vision-based structural monitoring/assessment, including the use of unmanned aerial vehicles (UAVs). This research constitutes a significant step toward the realization of Smart City Resilience.National Science Foundation Grant No. 1030454Association of American RailroadsOpe

    Enabling smart city resilience: post-disaster response and structural health monitoring

    Get PDF
    The concept of Smart Cities has been introduced to categorize a vast area of activities to enhance the quality of life of citizens. A central feature of these activities is the pervasive use of Information and Communication Technologies (ICT), helping cities to make better use of limited resources. Indeed, the ASCE Vision for Civil Engineering in 2025 (ASCE 2007) portends a future in which engineers will rely on and leverage real-time access to a living database, sensors, diagnostic tools, and other advanced technologies to ensure that informed decisions are made. However, these advances in technology take place against a backdrop of the deterioration of infrastructure, in addition to natural and human-made disasters. Moreover, recent events constantly remind us of the tremendous devastation that natural and human-made disasters can wreak on society. As such, emergency response procedures and resilience are among the crucial dimensions of any Smart City plan. The U.S. Department of Homeland Security (DHS) has recently launched plans to invest $50 million to develop cutting-edge emergency response technologies for Smart Cities. Furthermore, after significant disasters have taken place, it is imperative that emergency facilities and evacuation routes, including bridges and highways, be assessed for safety. The objective of this research is to provide a new framework that uses commercial off-the-shelf (COTS) devices such as smartphones, digital cameras, and unmanned aerial vehicles to enhance the functionality of Smart Cities, especially with respect to emergency response and civil infrastructure monitoring/assessment. To achieve this objective, this research focuses on post-disaster victim localization and assessment, first responder tracking and event localization, and vision-based structural monitoring/assessment, including the use of unmanned aerial vehicles (UAVs). This research constitutes a significant step toward the realization of Smart City Resilience

    Joint Communication and Positioning based on Channel Estimation

    Get PDF
    Mobile wireless communication systems have rapidly and globally become an integral part of everyday life and have brought forth the internet of things. With the evolution of mobile wireless communication systems, joint communication and positioning becomes increasingly important and enables a growing range of new applications. Humanity has already grown used to having access to multimedia data everywhere at every time and thereby employing all sorts of location-based services. Global navigation satellite systems can provide highly accurate positioning results whenever a line-of-sight path is available. Unfortunately, harsh physical environments are known to degrade the performance of existing systems. Therefore, ground-based systems can assist the existing position estimation gained by satellite systems. Determining positioning-relevant information from a unified signal structure designed for a ground-based joint communication and positioning system can either complement existing systems or substitute them. Such a system framework promises to enhance the existing systems by enabling a highly accurate and reliable positioning performance and increased coverage. Furthermore, the unified signal structure yields synergetic effects. In this thesis, I propose a channel estimation-based joint communication and positioning system that employs a virtual training matrix. This matrix consists of a relatively small training percentage, plus the detected communication data itself. Via a core semi- blind estimation approach, this iteratively includes the already detected data to accurately determine the positioning-relevant parameter, by mutually exchanging information between the communication part and the positioning part of the receiver. Synergy is created. I propose a generalized system framework, suitable to be used in conjunction with various communication system techniques. The most critical positioning-relevant parameter, the time-of-arrival, is part of a physical multipath parameter vector. Estimating the time-of-arrival, therefore, means solving a global, non-linear, multi-dimensional optimization problem. More precisely, it means solving the so-called inverse problem. I thoroughly assess various problem formulations and variations thereof, including several different measurements and estimation algorithms. A significant challenge, when it comes to solving the inverse problem to determine the positioning-relevant path parameters, is imposed by realistic multipath channels. Most parameter estimation algorithms have proven to perform well in moderate multipath environments. It is mathematically straightforward to optimize this performance in the sense that the number of observations has to exceed the number of parameters to be estimated. The typical parameter estimation problem, on the other hand, is based on channel estimates, and it assumes that so-called snapshot measurements are available. In the case of realistic channel models, however, the number of observations does not necessarily exceed the number of unknowns. In this thesis, I overcome this problem, proposing a method to reduce the problem dimensionality via joint model order selection and parameter estimation. Employing the approximated and estimated parameter covariance matrix inherently constrains the estimation problem’s model order selection to result in optimal parameter estimation performance and hence optimal positioning performance. To compare these results with the optimally achievable solution, I introduce a focused order-related lower bound in this thesis. Additionally, I use soft information as a weighting matrix to enhance the positioning algorithm positioning performance. For demonstrating the feasibility and the interplay of the proposed system components, I utilize a prototype system, based on multi-layer interleave division multiple access. This proposed system framework and the investigated techniques can be employed for multiple existing systems or build the basis for future joint communication and positioning systems. The assessed estimation algorithms are transferrable to all kinds of joint communication and positioning system designs. This thesis demonstrates their capability to, in principle, successfully cope with challenging estimation problems stemming from harsh physical environments

    Activity Report: Automatic Control 2012

    Get PDF

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Mobile and Wireless Communications

    Get PDF
    Mobile and Wireless Communications have been one of the major revolutions of the late twentieth century. We are witnessing a very fast growth in these technologies where mobile and wireless communications have become so ubiquitous in our society and indispensable for our daily lives. The relentless demand for higher data rates with better quality of services to comply with state-of-the art applications has revolutionized the wireless communication field and led to the emergence of new technologies such as Bluetooth, WiFi, Wimax, Ultra wideband, OFDMA. Moreover, the market tendency confirms that this revolution is not ready to stop in the foreseen future. Mobile and wireless communications applications cover diverse areas including entertainment, industrialist, biomedical, medicine, safety and security, and others, which definitely are improving our daily life. Wireless communication network is a multidisciplinary field addressing different aspects raging from theoretical analysis, system architecture design, and hardware and software implementations. While different new applications are requiring higher data rates and better quality of service and prolonging the mobile battery life, new development and advanced research studies and systems and circuits designs are necessary to keep pace with the market requirements. This book covers the most advanced research and development topics in mobile and wireless communication networks. It is divided into two parts with a total of thirty-four stand-alone chapters covering various areas of wireless communications of special topics including: physical layer and network layer, access methods and scheduling, techniques and technologies, antenna and amplifier design, integrated circuit design, applications and systems. These chapters present advanced novel and cutting-edge results and development related to wireless communication offering the readers the opportunity to enrich their knowledge in specific topics as well as to explore the whole field of rapidly emerging mobile and wireless networks. We hope that this book will be useful for students, researchers and practitioners in their research studies

    Journal of Telecommunications and Information Technology, 2005, nr 3

    Get PDF
    corecore