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Zusammenfassung

Drahtlose Ortung mit Hilfe von Funksignalen hat eine erhebliche Bedeutung in den Bereichen
von Navigation und Zielverfolgung eingenommen. Jedoch können die zurzeit existierenden
und von Satelliten abhängigen Navigationssysteme aufgrund Abschattungen und der vielfältigen
Quellen von Störungen und Interferenz in urbanen und geschlossenen Räumen (sogenannte
Indoor - Umgebungen) keine genaue Positionsschätzung bieten. Die drahtlose Ortung un-
terscheidet sich stark von traditionellen Systemen, besonders im Hinblick auf Betriebsumge-
bung, Systembedingungen und die erforderliche Anwendung einschließlich der erforderlichen
Genauigkeit. Daher werden neue Ortungssysteme gebraucht, die spezifisch für Indoor- Or-
tungsanwendungen bestimmt sind und die Fähigkeit haben, die Herausforderungen der Indoor-
Umgebung zu überwin-den. Infolgedessen stellt sich die Indoor-Ortung als ein neues wichtiges
Forschungsgebiet heraus. Sie wird in Zukunft in zahlreichen Anwendungen benutzt werden.

In dieser Arbeit wird eine effektive drahtlose Methode der Indoor-Ortung entwickelt, welche
auf vorhandenen Signalen des IEEE 802.11 Standards wie 802.11a, 802.11n und 802.11ac auf-
setzt. In aktuellen drahtlosen Netzwerken werden Technologien wie MIMO-Antennen (Multi-
ple Input Multiple Output) und OFDM (Orthogonal Frequency Division Multiplexing) genutzt,
daher wird mit Hilfe dieser Technologien ein Framework für ein drahtloses Ortungssystem
entwickelt und erforscht. Die Algorithmen sollen effizient und in Echtzeit auf einem digitalen
Signalprozessor implementiert werden. Die Grundidee der Arbeit ist die Nutzung der Präambel
von OFDM-Frames ohne Modifizierung, um den Kanalzustand für zusätzliche Zwecke neben
der Demodulation der Datenanteile zu messen. Um die höchste Genauigkeit der Kanalparam-
eter zu erzielen, wurden bestimmte Felder der Präambel ausgewählt.

Eine präzise Schätzung der Ankunfts-Zeit-Differenz (TDOA, Time Difference of Arrival)
der Signale in einem Mehrweg-Kommunikationskanal sorgt für eine hohe Auflösung der draht-
losen Ortung. Das Problem der genauen Schätzung der Zeitverzögerung und der relativen Am-
plitude der Mehrweg-Signale wurde für die drahtlose Ortung anhand TDOA bewertet. Moderne
Methoden, die auf Untervektorraum-Algorithmen (Matrix Pencil (MP), Unitary Matrix Pencil
(UMP) und Beam-space Matrix Pencil (BMP)) basieren, wurden entwickelt und in verschiede-
nen Implementierungen realisiert, um die Parameter aus dem gemessenen Kanalfrequenzgang
(CFR) mithilfe von OFDM-Systemen zu schätzen.

Da die aktuellen drahtlosen Netzwerke MIMO-OFDM-Technologie nutzen, kann die Verfü-
gbarkeit von Antennen-Arrays in Basisstationen (BS) für die Schätzung der Direction of Ar-
rival (DOA) als eine weitere Beobachtung und als eine Art räumliche Diversität für die TDOA-
Schätzung verwendet werden. Desweiteren wird die OFDM-Frequenz-Diversität genutzt. Da-
her wird das Problem der genauen Schätzung der Zeitverzögerung, der relativen DOA und der
relativen Amplitude von Mehrweg-Signalen für die drahtlose Ortung bewertet. Das Prinzip,
wie man Multi-Antennen Multi-Carrier Systeme für drahtlose Ortung benutzt, wird behan-
delt. Die aktuellen Untervektorraum-Algorithmen (2-D MP, 2-D UMP und 2-D BMP) wurden
in einer neuen Methodik angewandt, um die Parameter aus dem gemessenen Raum-Kanal-
Frequenzgang mittels Antennen-Array und Breitband-OFDM-Signalen zu schätzen. Außer-
dem wird das Ausnutzen von Phänomenen wie Zeit-Diversität, Frequenz-Diversität und Raum-
Diversität untersucht, um die Ortungssystemleistung zu verbessern.

Eine geschlossene analytische Lösung vom Schätzungsproblem für die MU-Koordinaten
soll entwickelt werden. Ein nicht-iterativer gewichteter Kleinst-Quadrate-Schätzer (W-LS)
wird für die TDOA-Schätzungen basierte MU-Koordinaten präsentiert. Weiterhin wird ein
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nicht iterativer hybrider W-LS-Schätzer basierend auf TDOA und DOA präsentiert. Die oben
genannten Schätzer lösen das Problem vom Initialwert und das Problem vom Aufteilen der
vorhandenen Schätzer. Sie sind robust gegenüber Kanalfading und nicht optimalem Signal-
Rausch-Verhältnis (SNR). Um den Effekt der Fundamentalparameter des drahtlosen Ortungssys-
tems auf die Ortungsleistung zu messen, wird die Cramer-Rao-Ungleichung (CRB, Cramer-
Rao Bound) aus der Fehlervarianz der TDOA und der DOA-Schätzung abgeleitet.

Eine bekannte Herausforderung in der zeitbasierten drahtlosen Indoor-Ortung ist das Block-
ierungsproblem des direkten Weges zwischen Sender und Empfänger aufgrund der nicht op-
timalen Beschaffenheit von Indoor-Umgebungen. Das Fehlen eines direkten Weges führt zu
einem sehr großen Abstands-Messfehler. Deshalb ist die Identifizierung des Status eines un-
bekannten direkten Weges (UDP, Undetected Direct Path) eine der wichtigsten Herausforderun-
gen für die drahtlose Indoor-Ortung. Die Einbeziehung der Kanalstörung verbessert die Genaui-
gkeit des Ortungssystems. Daher werden die genaue Schätzung der Kanalprofil-Parameter und
die richtige Modellierung des erkannten direkten Weges (DDP, Detected Direct Path) und UDP
Kanalprofile auf das Problem der Identifikation UDP gerichtet und behandelt. Die Werte des
UPD-Status können dann ignoriert werden.

Um die Leistung der verschiedenen vorgeschlagenen Algorithmen zu bewerten, wurde eine
Reihe von typischen Experimenten in Indoor-Umgebungen vorgenommen.

Schlüsselwörter:1-D Matrix Pencil Algorithmen; 2-D Matrix Pencil Algorithmen; Cramer-
Rao bound; DOA Schätzung; IEEE 802.11 Standards; MIMO-OFDM; Zeitverzögerung Schätz-
ung; UDP Identifikation.
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Abstract

Wireless positioning using radio signals has received considerable attention in the field of nav-
igation and tracking. However, the existing navigation systems that are based on satellites
cannot provide accurate position estimation in urban and indoor environments due to shadow-
ing and various sources of noise and interference. In fact, wireless indoor positioning is very
different from those traditional systems in many aspects such as the operating environments,
system requirements, and the required applications including the required accuracy. Therefore,
there is a need for new positioning systems that are specifically designed for indoor applica-
tions and can overcome the challenges of indoor environments. As a result, the wireless indoor
positioning is emerging as a new important research area, its services will be widely used in
the future through a number of applications.

In this work, an effective wireless indoor positioning has been developed based on the
opportune signals of IEEE 802.11 standards such as 802.11a, 802.11n, and the emerging
802.11ac. The recent wireless networks are equipped with multiple input multiple output
(MIMO) and orthogonal frequency-division multiplexing (OFDM) technologies. A framework
for wireless indoor positioning using recent wireless networks needs to be developed and inves-
tigated. The developed algorithms should use a very efficient computational methodology for
real time implementation on a digital signal processor (DSP) chip. The key element of our work
is to use the preamble of the OFDM frames without any modification to measure the channel
state for additional purposes to the demodulation of the data portion. The appropriate training
fields have been selected to achieve the highest range of estimated channel profile parameters.

For high-resolution wireless positioning, the time difference of arrival (TDOA) associated
with signals in a multipath communication channel should be estimated. The problem of highly
resolving the propagation time delays and the relative amplitudes of multipath signals has been
addressed for wireless positioning based on the TDOA observations. The recent subspace-
based algorithms, represented by one-dimensional Matrix Pencil (1-D MP), 1-D Unitary Ma-
trix Pencil (1-D UMP), and 1-D Beam-space Matrix Pencil (1-D BMP) algorithms, have been
enhanced and implemented in different realizations to estimate those parameters from the mea-
sured channel frequency response (CFR) using OFDM signals.

Since the most-recent wireless networks use the MIMO-OFDM technology, the availability
of antenna arrays in base stations (BSs) can be used to estimate the direction of arrival (DOA)
as another observation and as a kind of spatial diversity for TDOA estimation besides the fre-
quency diversity coming from OFDM. Therefore, the problem of highly resolving the propaga-
tion time delays, the relative DOAs, and the relative amplitudes of multipath signals has been
addressed for a high-resolution wireless positioning system. The principle of how to use multi-
antenna multi-carrier systems for wireless positioning is revealed. The recent subspace-based
algorithms, represented by 2-D MP, 2-D UMP, and 2-D BMP algorithms, are applied in a new
way to estimate these parameters simultaneously from the measured space channel frequency
response (S-CFR) using multiple antennas and wideband orthogonal multi-carrier signals. In
addition, the principle of using diversity techniques such as time diversity, frequency diversity,
and space diversity has been investigated to improve the performance of the positioning system.

A closed-form solution to the estimation problem of mobile unit (MU) coordinates should
be developed. A non-iterative weighted least square (W-LS) estimator is presented to estimate
the MU coordinates based on the TDOA estimates. Furthermore, a non-iterative hybrid W-LS
estimator has been presented based on the TDOA and DOA estimates. The proposed estimators
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solve the problem of the initial guess and that of partitioning of the other estimators. They are
also robust against channel fading and low signal to noise ratio (SNR). To measure the effect of
the fundamental parameters of a wireless positioning system on the positioning performance,
the Cramer-Rao bound (CRB) of TDOA and DOA estimation error variances has been derived.

A well-known challenge in time-based wireless indoor positioning is the problem of ob-
struction of the direct path between the transmitter and the receiver due to the harsh nature of
indoor environments. The absence of direct path leads to a very large distance measurement
error (DME). Therefore, one of the major challenges for wireless indoor positioning is the
identification of undetected direct path (UDP) channel profiles. Adding the channel obstruction
knowledge improves the accuracy of the positioning system. Therefore, the accurate estimation
of channel profile parameters and the proper modeling of detected direct path (DDP) and UDP
channel profiles have been treated and addressed to the problem of UDP identification. The
results of UDP condition can then be mitigated.

To evaluate the performance of various proposed algorithms, a number of experiments have
been made in typical indoor environments.

Index Terms—1-D matrix pencil algorithms; 2-D matrix pencil algorithms; Cramer-Rao bound; DOA
estimation; IEEE 802.11 standards; MIMO-OFDM; time delay estimation; UDP Identification.

—————— �——————–
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CHAPTER 1

Introduction to Wireless Indoor
Positioning

Wireless indoor positioning can be defined as the estimation of the mobile unit (MU) coordi-
nates in the required area. This can be obtained by periodically transmitting properly designed
signals from the MU and receiving them at a number of fixed base stations (BSs) with known
position coordinates to the system. The MU coordinates are then estimated by processing the
received signals. The characteristics of the received signals are used to localize the MU based
on the interaction between the transmitted signals and the wireless channel. The BSs could be
called access points (APs) or reference points (RPs).

Wireless positioning using radio signals has received considerable attention in the field of
navigation and tracking. The best example of this difficult problem is the Global Positioning
System (GPS) [2]. It is designed to find the position of GPS receiver in the open environments,
where the GPS receiver and at least four GPS satellites are in line of sight (LOS). However, the
existing GPS cannot provide accurate position estimation in urban and indoor environments due
to shadowing and various sources of noise and interference. The Global Navigation Satellite
System (GNSS) is another example for navigation based on satellites. A classical example of a
terrestrial radio navigation system is Loran-C (LOng RAnge Navigation) [3]. The basic Loran-
C system consists from a number of land-based transmitting stations, each separated by several
hundred miles. One station from Loran stations is designed as a master station, and the other
transmitters as secondary stations. In practice, the receiver simply observes the time differences
between the received signals of three Loran stations or more, and then converts the measured
time differences to more commonly-used coordinates, such as a latitude and longitude, using
special charts [3]. In fact, wireless indoor positioning is very different from those traditional
systems in many aspects such as the operating environments, system requirements, and the
required applications including the required accuracy [4]. Therefore, there is a need for new
positioning systems that are specifically designed for indoor applications and can overcome the
challenges of indoor environments. As a result, the wireless indoor positioning is emerging as
a new important research area.

1.1 Basic Observations
This work is mainly focused on the wireless positioning using the characteristics of radio sig-
nals. Therefore, the position estimation of MU will be derived from the measured radio signals.
There are three basic properties that can be used for MU position estimation from analysis of
specific physical characteristics of received radio signals, which are related to the relative po-
sition of the MU with respect to the fixed BSs. Those properties can be used in different ways;
however, they can be classified into three categories. The first category is based on assigning
each point of space a unique set of signal strengths received from the properly distributed BSs.
The received signal strength (RSS) technique is the simplest as regarding signal processing
complexity. The second category uses the propagation time of the signals as an estimate for
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the distance between a BS and the MU. The time-based techniques can be grouped in time
of arrival (TOA) and time difference of arrival (TDOA) techniques. In TOA techniques, the
MU and BSs should be synchronized while in TDOA techniques clock synchronization is only
required among the fixed BSs. Usually, they are connected to a wired backbone, which simpli-
fies the synchronization between them. The third category is based on the directional property
of antenna arrays for detecting a direction of arrival (DOA). The related signal processing is
similar to that used in digital beam forming. In fact, the characteristics of radio signals, namely
RSS, DOA, TOA, and TDOA can be used alone or in combinations.

The wireless indoor positioning systems based on radio signals can be actually grouped into
two categories: distance-based techniques and direction-based techniques [5]. The distance-
based techniques depend on the estimation of distances between the MU and a number of fixed
BSs. The required observation could be the RSS, the phase of the carrier signal, or the TOA of
the received signal. The DOA is the common observation used in the direction-based systems.

Wireless indoor positioning systems can also be grouped into two categories: multilateral
or network-based architecture and unilateral or mobile-based architecture [6], [5]. For both
cases, a number of BSs with known coordinates are used to estimate the position of MU based
on the above characteristics of radio signals as follows:

• Unilateral system: In a unilateral system, the MU receives transmissions from a number
of BSs, extracts the required observations from the received radio signals, calculates its
position coordinates, and then displays the position on its screen. As a consequence, the
MU is a complex device. GPS is a unilateral system. The multiple transmitting satellites
send their clock reading at the instant of epoch transmission and their accurate position
information; GPS requires one-way communication between satellites and GPS receiver.
A classical example of TDOA unilateral system is Loran-C [3].

• Multilateral system: In a multilateral system, a number of BSs receive the transmitted
signal from the MU, and then extract the required observations. After that, the BSs
report the estimated observations to a central unit to calculate the MU coordinates using
the MU positioning algorithms. The MU coordinates can be forwarded to the MU from
the central unit. Hence, the MU can be implemented much simpler than in a unilateral
system. Cellular positioning is a multilateral system, where several BSs report the time
of reception from the MU to the central unit to estimate the MU position.

From the above, the normal characteristics of radio signals are used to estimate the MU
position. In addition, there are three principles that are different from the above principles:

• Fingerprinting: The basic principle is to compare the measured observations such as
the RSS with the database, which has been already created in an advance in the initial
training phase for the required area as in [7], [8].

• Ray Tracing: The basic principle is to represent the electromagnetic waves as rays and to
produce deterministic channel models that operate by processing user-defined environ-
ments as in [9], [10], [11].

• Proximity: The basic principle is to detect the MU in the range of a fixed BS, so the MU
is known to be within area around a known position as in [12].

Although the RSS can be obtained directly from the Network Interface Cards (NIC) that are
available in most wireless devices, and it can be applied using wireless sniffer software tools,
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the accuracy of RSS techniques decreases with greater distances due to the fact that the free
space attenuation increases with the logarithm of the distance. The RSS may change by 10 dB
and more due to multipath effects and the orientation of wireless devices [13]. It is sensitive
to the changes in the indoor environments. In addition, the pathloss is significantly affected
by the materials of walls and floors, layout of each floor, number of floors, and the location of
obstructing objects. As a result, it is difficult to find a general model for all environments. The
time-based techniques (TOA and TDOA) are not suffered from these problems. However, they
are affected by the multipath effects, the signal-to-noise ratio (SNR), and the system bandwidth.
In addition, they require a synchronized network. The major drawback of wireless positioning
based on TOA is that the MU and the BS should be synchronized with high accuracy. It means
that the MU requires highly stable oscillator and robust hardware for time stamping [13]. Our
goal is that the MU should be a very simple device, where the complexity could be added only
to the network side. Therefore, the TDOA based techniques are preferred for a high-resolution
wireless positioning. In Chapter 2, the introduced characteristics of received radio signals with
their advantages and disadvantages will be presented in more details.

1.2 Wireless Indoor Positioning Applications
Wireless indoor positioning is a popular research topic, its services will be widely used in the
future through a number of applications. The wireless positioning applications are often re-
ferred to the Location-Based Services (LBS). The applications of wireless indoor positioning
systems are vast, and can be broadly grouped into some categories such as health care, com-
mercial, public safety, and military applications as shown in Fig. 1.1 [14].

In the health care applications, the residential and nursing homes have an increasing demand
for indoor positioning systems to track people with special needs, the elderly, and children who
are away from visual supervision, to guide the blind, to locate instruments and other equipments
inside hospitals, and to locate surgical equipments in an operating room [15].

The commercial applications include an inventory tracking in a warehouse, supply-chain
management or workflow optimization, an interactive tour guide for museums, location-sensitive
web-browsing, and so on [16]. Recently, the pedestrian foot traffic in shopping malls can be
tracked by determining the positions of shoppers using the control channel transmissions of
cell phones [17].

In the public safety and military applications, precise indoor positioning systems are needed
to assist policeman, fire fighters, and soldiers to complete their missions inside buildings [18].
Accurate indoor positioning is also an important part of various mobile robotics applications [19].
This will be a great help to the automation field such as a mobile robot self-locating and navi-
gation, and intelligent building [20].

More recently, wireless positioning has found applications in location-based handoff in
wireless networks, location-based ad-hoc network routing, and location-based authentication
and security [21]. Positioning and tracking offer also an effective solution for context-aware
applications that not only respond, but anticipate user needs [22]. Wide range of applications
can be developed using sensor networks and radio-frequency identification (RFID) technolo-
gies such as locating unwanted chemical, biological, or radioactive material using sensor net-
works, and tracking specific items using RFID tags [15]. Using Wireless Local Area Network
(WLAN) is increasing in industrial environments, which opens other possibilities besides the
communication such as the positioning of people, end-devices, machine parts, and so on [23].

From the applications listed above, clearly the required accuracy of wireless indoor posi-
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tioning depends on the application. It varies from a few millimeters in surgical navigation,
tumor detection, or sensitive nuclear material tracking to a few meters for Tractor inventory
tracking in a warehouse [18].

1.3 The Main Challenges of Wireless Indoor Radio Propa-
gation Channel

In a wireless communication channel, the transmitted signal may suffer many reflections and
dispersion due to obstacles when it propagates. Such obstacles may be stationary or moving
with time. Hence, multipath reception is a characteristic of the wireless channel. At the receiver
side, several versions of the same signal are received with different amplitudes, phases, angle
of arrivals, and time delays due to different paths.

If we look to Fig. 1.2 for a while, the wireless indoor radio propagation channel properties
can be extracted. The wireless indoor channel can be characterized as a site-specific channel,
where every environment has its own characteristics, and it is impossible to find a general model
for the indoor environments from the point of positioning. It is a sever multipath channel as a
result of harsh environments. Therefore, a wireless indoor channel is always unpredictable. The
probability of LOS between a transmitter and a receiver is rare, where the transmitter is almost
of the time in non-line of sight (NLOS), or maybe in a blockage of the direct path, caused by
the presence of walls, humans, and other rigid objects. In addition, indoor environments have
been built from different media, which means that there are different propagation time delays.
Last but not the least is bandwidth limitations. System bandwidth (BW) is the core of wireless
indoor positioning systems that are based on time observations; it is a very important parameter
that effects on the performance. Using large bandwidths involves high resolution of paths
distinction. From the above challenges, including also the system complexity, and security,
we can say that accurate indoor tracking is very challenging for the scientific community. The
block diagram of Fig. 1.3 summarizes the properties of wireless indoor propagation channel.

1.4 Brief Literature Overview
Many of the studies have been proposed to estimate the TOA based on the statistical princi-
ples such as Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT)
[24], Multiple Signal Classification (MUSIC) [4], [25], [26], and Root MUSIC [20], which
are unattractive for online estimation. The number of collected channel estimates should be at
least as the number of multipaths. The channel estimates should be taken during a time inter-
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val larger than the coherence time of the channel to satisfy the full rank condition [27]. The
principle of ESPRIT has also been used to estimate the DOA such as in [28], [29], the same
in [30] for Root MUSIC. The problem of joint estimation of angles and relative time delays
of multipath signals has been addressed for narrowband signals using ESPRIT in [27], [31].
The problem of joint estimation of time delays and relative two-dimensional (2-D) DOA of
multipath signals has been addressed for narrowband signals using ESPRIT in [32]. The prob-
lem of hybrid TDOA and DOA has been investigated in [33] for Code division multiple access
(CDMA) cellular systems.

Recently, a non-statistical algorithm called the matrix pencil (MP) has been used to esti-
mate the DOA of narrowband signals using the uniform linear array (ULA) as in [34], [35].
The principle of the conventional MP algorithm was enhanced in [36] to estimate 2-D frequen-
cies using the uniform rectangular array (URA). It was also enhanced to estimate the azimuth
and elevation angles using the URA as in [37], [38]. The MP algorithm has been used for ultra-
wide band (UWB) wireless sensor networks in [39], and for impulse radio UWB (IR-UWB)
in [40]. A comparison between the conventional MP algorithm, and the statistical super res-
olution algorithms (ESPRIT and Root MUSIC) has been presented in [41]. The principle of
MP algorithm is superior compared to that of ESPRIT, MUSIC, and Root MUSIC, as it will
be presented in Section 3.4. Therefore, in this work, the principle of MP algorithm will be
enhanced to estimate the required channel profile parameters.

The TDOA and DOA estimates are used to estimate the MU position. To do that using
TDOA estimates, the intersection of hyperbolic curves defined by TDOA observations should
be determined by solving a set of nonlinear equations. There are many algorithms to solve non-
linear equations, most of them are time-consuming and inconvenient for implementation. The
iterative least square (ILS) estimator is presented in the literature using Taylor series expansion
to linearize those nonlinear equations [42]. It starts with an initial guess for the MU position,
and then calculates the position deviation for each iteration. The drawback of ILS estimator is
that it is a computationally intensive method if the starting point is not close enough. Moreover,
it has a convergence problem [43]. Divide-and-Conquer (DAC) method presented in [44] can
achieve a good performance at high SNR. The principle of DAC method is to split the obser-
vations to small sets each having a size equal to the number of unknowns. The drawback of
this method is that those sets should have a large Fisher information [45]. Chan proposed an
estimator in [43] that assumes initially the MU coordinates and the reference distance to the
reference BS are independent, and the MU has identical distances to all BSs, in another way,
the MU is located in the far field from the system. The drawbacks of Chan estimator are that
additional steps are necessary to compensate those assumptions to get the final position esti-
mate, and the performance is very weak at low system conditions; it is based on the assumption
that the noises in the TDOA measurements are small. For DOA estimates, the MU position is
found by triangulation. The principle of DAC method based on the TDOA observations can be
used based on the DOA observations [46]. To solve the problem of partitioning, a non-iterative
closed form has been proposed based on the DOA measurements in [47], which is called a
Stansfield estimator.

However, some of those studies employ narrowband signals; others are complex and based
on statistical principles, or restricted to far-field assumptions. In addition, the multipath indoor
radio channels are complex and cannot be analyzed with computer simulations with simple the-
oretical channel models. In fact, the performance should by analyzed based on the experimental
measurements to get much more realistic results. Many related references in the literature will
be surveyed in details and referred in later chapters where it is appropriate.
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1.5 Objectives of the Dissertation
To design a wireless positioning system, there are basically two approaches [18], [15]. The first
approach is to develop a new signaling system and a network infrastructure for the required
positioning application. The system parameters and as a result the expected performance can
be controlled by the designer. The size of MU can be designed to be a very small device. The
reference BSs can also be distributed based on the required accuracy. The second approach is
to use an existing wireless network infrastructure. Using this approach avoids the deployment
of a new infrastructure. However, intelligent algorithms should be used to compensate the lack
in system parameters.

In this work, the main objective is to develop a wireless indoor positioning system based
on the existing wireless network infrastructure. The opportune signals of IEEE 802.11 stan-
dards can be used for an effective wireless indoor positioning. To build an accurate indoor
positioning system, the time-based techniques should be used to estimate the MU position. In
these techniques, system bandwidth is an important parameter that effects on the performance
of the indoor positioning system. The bandwidths of the order of 10 MHz used in GPS are
not sufficient for wireless indoor positioning. In fact, bandwidths of the order of several hun-
dred megahertz should be used to provide a reasonable protection against extensive multipath
environments in indoor areas [4].

IEEE 802.11ac is an emerging WLAN standard for the 5 GHz band in which multiple input
multiple output (MIMO) and wider channel bandwidths are enhanced compared to 802.11n.
To support wider channel bandwidths, 802.11ac defines its channelization for 20, 40, 80, and
160 MHz channels [48]. The largest channel bandwidth of 802.11a is 20 MHz, and of 802.11n
is 40 MHz. Hence, due to the bandwidth limitation of IEEE 802.11 standards, super resolu-
tion algorithms are used for post processing to reduce bandwidth requirements. The emerging
802.11ac standard provides as a maximum 8 × 8 MIMO antenna configuration. It has been
enhanced compared to 802.11n, which is 4×4 [49], and to 802.11a, which is 1×1 [50]. While
the main advantage of MIMO is to enhance data throughput, it can also be used to estimate the
DOA. In addition, it can be used as a kind of spatial diversity for TDOA estimation besides
the frequency diversity coming from the orthogonal frequency-division multiplexing (OFDM).
Therefore, a framework for wireless indoor positioning using recent wireless networks with
MIMO-OFDM technology needs to be developed and investigated. The developed algorithms
should use a very efficient computational methodology for real time implementation on a digital
signal processor (DSP) chip.

The main objectives of this work could be broken down into the following majors:

• The problem of highly resolving the propagation time delays of multipath signals will be
addressed for 2-D wireless indoor positioning. In this work, the problem of estimating the
TDOA associated with signals in multipath communication channels will be investigated
using a single transmitter and a number of receiving BSs. In wireless communication
systems, the training sequences are used to estimate synchronization and channel param-
eters. Hence, the key element of our work is to use the preamble of the OFDM frame to
measure the channel state for additional purposes to the demodulation of the data portion
of the physical layer convergence procedure (PLCP) protocol data unit (PPDU), which
contains the training fields [48], [49], [50]. It means that the frame format will be used
without any modification.

• The diversity techniques such as time diversity, frequency diversity, and space diversity
are widely utilized in wireless communication systems to improve the performance of
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the communication link [51]. In this work, the principle of using diversity techniques
will be investigated to improve the performance of the positioning system; using diver-
sity techniques leads to get the advantage of the random nature of the radio propagation
channel by finding and combining uncorrelated paths [4].

• The problem of highly resolving the propagation time delays and the relative DOAs of
multipath signals will be investigated using a single transmitter and a number of receiving
BSs for 2-D wireless indoor positioning system based on the hybrid TDOA and DOA
measurements.

• A closed-form solution to the estimation problem of MU coordinates should be devel-
oped. A non-iterative estimator should be developed to estimate the MU coordinates
based on the TDOA observations. Furthermore, a non-iterative hybrid estimator should
be developed based on the TDOA and DOA observations. The proposed estimators
should solve the problem of the initial guess and that of partitioning of the other esti-
mators.

• Estimating an accurate position in indoor areas involves many difficulties. One of those
difficulties is the high probability of NLOS signal propagation. It causes undetected di-
rect path (UDP) conditions, which represent a serious challenge to the design of an accu-
rate wireless indoor positioning system. As an example for the critical locations in NLOS
scenarios is that the MU is located behind a metallic chamber or an elevator, or there are
many rigid walls between the MU and the BS. Therefore, one of the major challenges
for wireless indoor positioning is the identification of UDP channel profiles. Adding the
channel obstruction knowledge improves the accuracy of the positioning system. The
results can be discarded or rectified if there is a limited connectivity.

1.6 The Dissertation Outline and Contributions
The outline of the dissertation and the author’s contributions are presented in the following.
The main contributions of each chapter will be presented under its outline, although all mea-
surements have been collected in Chapters 6 and 7.

Chapter 2: Fundamentals of Position Estimation Techniques
The fundamentals of position estimation techniques have been investigated. The advantages
and disadvantages of using various radio signal characteristics are presented, which have been
introduced in [52].

Chapter 3: System Model and Time Delay Estimation using 1-D Matrix
Pencil Algorithms
The capability of using OFDM systems in wireless indoor positioning is investigated. The
power of carrier frequency is zero in OFDM systems, hence, there is a discontinuity in the
OFDM spectrum. The discontinuity of the estimated channel frequency response (CFR) at dc
should be removed; consequence, the time delay estimation problem of OFDM signals in a
multipath channel is fully equivalent to the DOA problem in antenna array processing. The
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preamble of the OFDM frame has some training fields; the best field has been selected to
estimate the CFR, published in [53].

The main requirements of many applications using recent wireless networks are the high
accuracy and low complexity. For high-resolution wireless positioning, the TDOA associated
with signals in a multipath communication channel should be estimated. Recently, variants
of MP algorithms have been presented to estimate the DOA of coherent or non-coherent nar-
rowband signals using the ULA. These include the Unitary Matrix Pencil (UMP), the Single
Invariance, and the Multiple Invariance Beam-space Matrix Pencil (BMP) algorithms, which
are non-statistical algorithms and based on the real computations. In this chapter, the various
one-dimensional (1-D) MP algorithms have been enhanced and implemented in different real-
izations to estimate the propagation time delays and the relative amplitudes from the estimated
CFR using OFDM systems.

The accuracy, stability, and complexity of various 1-D MP algorithms are investigated us-
ing 802.11a and 802.11n system parameters, where one OFDM training symbol and 20 MHz
bandwidth are used, published in [53]. The performance of various MP algorithms is also
investigated using the emerging 802.11ac standard, and compared to the corresponding perfor-
mance of 802.11n and 802.11a. The performance of using multiple OFDM training symbols
as a kind of temporal diversity and wider channel bandwidths of 802.11ac are emphasized,
published in [54]. The performance of using wideband orthogonal multi-carrier signals with
spectral diversity is presented. The complexity of using the high BWs of 802.11ac has been
treated and reduced based on the frequency diversity, published in [55].

The various MP algorithms can also be enhanced and applied in a new way to estimate
the propagation time delays from the space channel frequency response (S-CFR) using multi-
antenna multi-carrier systems (MIMO-OFDM systems) for high-resolution wireless position-
ing. Considerable improvement using the spatial diversity has been presented especially at low
SNR and narrow BWs; it represents a robust technique versus multipath channel fading. In
fact, the problem of arrays imperfection and orientation occurred in DOA can be mitigated,
published in [56].

Chapter 4: Joint Time Delay and DOA Estimation using 2-D Matrix Pencil
Algorithms

In this chapter, the problem of highly resolving the propagation time delays, the relative DOAs,
and the relative amplitudes associated with signals in multipath communication channels for a
high-resolution wireless positioning system has been addressed. The principle of how to use
multi-antenna multi-carrier systems for wireless positioning is revealed. The recent subspace-
based algorithms, represented by 2-D MP, 2-D UMP, and 2-D BMP algorithms, are applied in a
new way to estimate these parameters simultaneously from the measured S-CFR using multiple
antennas and wideband orthogonal multi-carrier signals.

To reduce the complexity of joint time delay and DOA estimation problem, the priori infor-
mation of wireless positioning (our concern is to estimate the time delay and the relative DOA
of the first path) is used, which mitigates the problem of repeated poles and hence reduces the
complexity of calculating extra eigenvalue decomposition problems, published in [57]. The
computational complexity of various 2-D MP algorithms has been derived precisely. The com-
plexity of data matrix transformation, the singular value decomposition, the eigenvalues com-
putation using QR and QZ algorithms, and the other necessary steps has been derived precisely.
Results have been presented in [58]. It is known that to increase the DOA accuracy, the number
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of antennas in the antenna array should be increased, which increases the complexity of BS.
However, the necessary number of antennas for accurate DOA estimation can be reduced to re-
duce the complexity by increasing the number of subcarriers (the bandwidth). In another way, a
compensation for the lack in the system BW or in the array order has been presented to get ac-
curate estimation for time delays and relative DOAs. It has been found that using multi-antenna
multi-carrier principles can successfully enhance the dimensionality of the signal subspace for
joint time delay and DOA estimation; it represents a robust technique versus multipath channel
fading, published in [57].

From the previous, it is worth mentioning that in addition to spectral diversity coming from
OFDM, two principles are presented to use the spatial diversity in the enhanced 1-D and 2-D
MP algorithms in Chapters 3 and 4, respectively. After estimating the required observations,
the next step is to estimate the MU coordinates using TDOA observations, or hybrid TDOA
and DOA observations. The cost function which takes into account the accuracy of TDOA
and DOA during the combination between the estimated coordinates of both of them should be
investigated to take into account the amount of accuracy of each observation.

Chapter 5: Mobile Unit Position Estimation Based on TDOA and DOA
Measurements

First, the principle of some useful studies in the literature will be presented to show later the
performance of the proposed estimators. Then, a non-iterative weighted least square (W-LS)
estimator is presented to estimate the MU coordinates based on the TDOA estimates, published
in [56]. Furthermore, a non-iterative hybrid W-LS estimator has been presented based on the
TDOA and DOA estimates. Results have been presented in [58]. The proposed estimators
should solve the problem of the initial guess and that of partitioning of the other estimators.
They should also be robust against channel fading and low SNR.

The positioning accuracy is limited by the fundamental parameters of a wireless positioning
system such as the number of antenna elements in the array, number of subcarriers including
subcarrier spacing, SNR, the estimated DOAs with respect to the array, and many others. To
measure the effect of those parameters on the positioning performance (the positioning error
variance), the Cramer-Rao bounds (CRBs) of TDOA and DOA estimation error variances have
been derived. To combine TDOA and DOA, the accuracy of each type is different due to the
different nature of each principle. Both observations should be combined in an optimal way,
therefore, the TDOA and DOA observations should be given appropriate weights.

Chapter 6: Performance Evaluation Based on Channel Measurements

In the first part, equipments description that were used in this work is presented. Then, the
expected performance of using RSS techniques for wireless positioning has been confirmed.
In the remaining part, the performance of the proposed algorithms in the previous chapters
using 802.11a, 802.11n, and 802.11ac system parameters is presented through a number of
experiments starting from TDOA estimation using a number of cables between the transmitter
and receiver to 2-D wireless indoor positioning with NLOS condition using a single transmitter
and a number of BSs equipped with antenna arrays.
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Chapter 7: UDP Identification for High-Resolution Wireless Indoor Posi-
tioning
The MU is often in a NLOS state, and the direct path could be completely blocked due to the
harsh nature of indoor environments. Therefore, the estimated time delay of the first path should
be identified either as a very weak detected direct path (DDP) or even as an UDP. Consequently,
precise estimation of the channel profile parameters is not enough for high-resolution wireless
indoor positioning system. However, it stays representing a key element to identify the UDP
condition. Therefore, the accurate estimation of channel profile parameters and the proper
modeling of DDP and UDP channel profiles have been treated and addressed to the problem of
UDP identification.

Using the new parameters of 802.11ac and the previous robust algorithms improves the
ability of channel profile parameters estimation of each detected path. Improving the accuracy
of channel profile parameters estimation represents our key to identify and then mitigate the
state of UDP. Results have been published in [59].

Chapter 8: Conclusions and Future Work
This chapter concludes the dissertation, lists out the introduced contributions, and highlights
possible future work.





CHAPTER 2

Fundamentals of Position Estimation
Techniques

2.1 Wireless Positioning System Architecture
The main task of the wireless indoor positioning system is to estimate the MU coordinates in
a reference map using the characteristics of radio signals transmitted between the MU and a
number of BSs. The characteristics of radio signals that can be measured by a positioning sys-
tem are the RSS, the DOA, the TOA, and the TDOA. The nature and the expected performance
of using these measurements will be discussed in this chapter. By using these techniques, the
distances between the MU and every BS, or the direction of the MU with respect to each BS can
be estimated. Each BS then reports its observation to the MU positioning algorithm, where the
MU position in the reference map can be estimated. The performance can also be improved,
because nowadays the map of the building is normally available in an electronic format [5].
Hence, the large error estimates, which lead to walls crossing or jumping through the floors,
can be easily identified and eliminated based on the electronic map of the building.

The wireless indoor positioning systems have different features compared with the tradi-
tional positioning systems including harsh indoor environments, special system requirements,
and probably different applications with different performance requirements. The indoor radio
propagation channel characteristics are totally different from that in the traditional positioning
systems such as GPS or radar. In addition, the wireless indoor channel should be modeled in
a different way compared with the wireless indoor channel models that are used for telecom-
munications [18]. The quality of received radio signals can be improved using the diversity
techniques including temporal, spatial, or spectral diversity techniques. In this work, the di-
versity techniques and how to implement them based on some key elements of the existing
wireless infrastructure will be investigated. Increasing the number of BSs, which report the
position measurements, improves the performance of positioning.

The general block diagram of a typical wireless positioning system is shown in Fig. 2.1.
From Fig. 2.1, it can be observed that the performance of MU position estimation is a function
in the quality of the received radio signals, type of observation and the performance of its
estimation algorithm, the performance of MU coordinates estimation algorithm, the ability of
UDP condition identification, and the ability of final estimation correction using the electronic
floor plan. The estimated-position improvement using the floor plan will be outside the scope
of this work.

In this chapter, the wireless indoor channel model will be presented. The principle of the
positioning observations with their advantages and disadvantages will be presented as well as
the principle of MU coordinates estimation. More details and the proposed algorithms will be
presented in Chapter 5. The summary of the fundamentals of position estimation techniques
presented in this chapter has been introduced in [52]. By the end of this chapter, we will
understand the fundamentals of wireless indoor positioning, which form a basis of this work
presented in the following chapters.

13
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Figure 2.1: The general block diagram of a wireless positioning system based on the radio
signal characteristics.

2.2 Indoor Radio Propagation Channel Model
As an initial step for wireless indoor positioning system, let us start by presenting the prop-
agation time delays and the relative DOAs of multipath propagation signals using a single
transmitter and a single antenna array represented by the ULA as shown in Fig. 2.2, where
the transmitter is located in the far field. To model a radio channel, only a finite number of
paths are considered to approximate the real environment as illustrated in Fig. 1.2. In the sub-
sequent analysis, we will assume a multipath channel impulse response (CIR) h(t), which is
given by [27]

h(t) =
∑L

l=1
αla(θl)δ(t− τl) (2.1)

where L is the number of distinct propagation paths, αl = |αl| ejφl and τl represent the complex
gain and the propagation time delay of the lth path, respectively. a(θl) is the array response
vector to the lth path from direction θl. The array response of the mth antenna to the lth path
can be represented as:

am(θl) = e−j2πfτm(θl) (2.2)

where τm(θl) = mρ sin θl/c represents the different propagation time that the plane wave im-
pinging from direction θl needs to span the different distance between the antenna m and the
reference antenna in the antenna array as shown in Fig. 2.2. The parameter ρ is the distance
between adjacent antenna elements, which is equal to the half wavelength, and c is the speed of
light, since the radio waves travel at the speed of light in free space or air [18]. From (2.1), the
channel profile of a multipath wireless channel can be represented by a tapped delay module
as shown in Fig. 2.3, where x(t) and r(t) are the transmitted and the received signals. In a
mobile communication, arrival angles and time delays are relatively stationary, where the am-
plitude and the relative phase of each path are highly non-stationary and subject to Rayleigh
fading [27]. From (2.1), the CFR representation is given by

H(jω) =
∑L

l=1
αla(θl)e

−jωcτl (2.3)

where ωc is the phase velocity of the carrier frequency. For positioning purposes, our concern is
to estimate the time delay and the relative angle of the first path, which represents a key element
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in this work to reduce the complexity and to mitigate the pairing problem in case two or more
paths have equal DOAs or time delays, as it will be explained in the following chapters.

2.2.1 The CFR and CIR of Multipath Wireless Channel Understanding
To understand the principle of multipath wireless channel clearly, let us record a single snap-
shot from a real channel and then plot its CIR and CFR. The network analyzer, Agilent ENA
E5071C, was used. It was used to measure the indoor CFR at a carrier frequency of 5.25 GHz
and bandwidth of 320 MHz. The measurement system is shown in Fig. 2.4. Omnidirectional
antennas were used, which have 3 dBi gain and 0.668 ns time delay, measured using the wide-
band time-domain transmission (TDT), Agilent 86100A. The description of system equipments
will be provided later in Section 6.1, while it is interesting here to show the CIR and CFR of a
NLOS wireless multipath channel. As shown in Fig. 2.4, the transmitter antenna at the location
point in the corridor was connected to port 1 of ENA through cable 1 of length 12.3 m and time
delay 46.807 ns, measured using the TDT. At the receiver side in the lab, the receiver antenna
was connected to port 2 through cable 2 of length 1 m and time delay 4.79 ns. The antenna
height in both Tx and Rx was 152 cm. The transmitted power of ENA was 10 dBm.

The complex CFR can be obtained by sweeping the channel at uniformly spaced frequen-
cies. The frequency spacing was configured to be like the subcarrier spacing of OFDM WLAN
systems, which is equal to ∆f =312.5 kHz. The real and imaginary parts of the forward trans-
mission coefficient S21 were measured and stored for further processing. The measurement
system has harsh NLOS environment, where the direct path has been corrupted by a circular
concrete column with a diameter of 46 cm as shown in Fig. 2.4. The CIR can then be obtained
using the inverse fast Fourier transform (IFFT). If the number of CFR samples is NFFT , the
fundamental period is given by NFFT × T , where T is the sampling interval. The resolution
time T of IFFT is equal to the inverse of the system bandwidth T = 1/(NFFT × ∆f). The
transmitted signal is received through multiple number of paths as it is obvious from the CIR
plot in Fig. 2.5. These paths are caused by different objects located between antenna pairs
through a number of reflections, diffractions, and scattering. From Fig. 2.5, the first detected
path (FDP), which has been colored by green, has a very low amplitude compared with the
other peaks of the other paths. The vertical dashed line in Fig. 2.5 denotes the actual TOA,
which has been colored by red. Each path has different amplitude and phase leading to con-
structive and destructive interference. The multipath interference allows the wireless channel to
have frequency-selective fading as it is clear from the recorded CFR in Fig. 2.6, where the CFR
gain is not flat. It has some deep fades in the received spectrum due to destructive interference.

As a conclusion, if a high data stream is transmitted over a narrow bandwidth, and the
transmission frequency is subjected to the frequency selectivity, the received signal could be
lost. As a consequence, data detection is difficult due to the interference of multiple data
symbols. On the other hand, using a wide bandwidth leads to a small loss in the signal power
rather than a complete loss if the frequency selectivity is occurred. Examples for that are
CDMA and OFDM systems.

2.2.2 Time Delay Estimation using Channel Delay Profile
In wireless positioning systems based on time delay estimation, the TOA of the direct path
indicates the distance between the transmitter and the receiver. However, the TOA of the FDP
of the channel profile, colored by green in Fig. 2.5, is used as an estimated time delay of the
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represents the actual time delay, and the smallest peak colored by green is the first detected
path.
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direct path denoted by τ̂1. The estimated distance between antenna pair of BS and MU is equal
to the time of flight (the propagation time of the transmitted signal) multiplied by the speed of
propagation (the speed of light c) as

d̂ = c× τ̂1. (2.4)

Based on the resulting CIR in Fig. 2.5, the estimated time delay of the FDP is τ̂1 = 18.87ns
after calibration (removing the time delay of cables and antennas). The estimated distance
between antenna pair is then d̂ = 5.66m. If the XYZ coordinates of Tx antenna is (x1, y1, z1)
and of Rx antenna is (x2, y2, z2), the distance between them is then calculated:

d =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2. (2.5)

In our demo in Fig. 2.4, it is d = 5.44m. The estimation error is calculated:

ξd = |d̂− d|. (2.6)

This estimation error is known as the distance measurement error (DME). The DME of the
previous experiment is ξd = 22cm, where 320 MHz bandwidth is used. If the system bandwidth
is 160 MHz, the CIR obtained using IFFT is shown in Fig. 2.7. The DME ξd is 117 cm.
However, most of multipaths in the CIR occur close together, which means the accuracy of
using IFFT is poor, and it is limited to the sampling interval. Although IFFT method with
padding zeros can improve sampling range resolution, the cost and complexity of calculation
are too high [60]. Our goal is to be able to expand the region of interest, which represents the
first a few tens of nanoseconds rather than sweeping around the whole unit circle.

An alternative method to the IFFT method with padding zeros is to use the inverse chirp
Z transform (ICZT) [61]. It allows to expand the region of interest by specifying the starting
time, the time resolution, and the number of time steps. If the time resolution increased by 2,
the resulting CIR is presented in Fig. 2.8. The DME has been improved to 23.26 cm. How-
ever, if the time resolution increased by 4, the same DME is obtained without any additional
improvement. Based on the previous experiment, we can say that the estimated distance based
on the time delay measurement is usually larger than the real distance between the transmitter
and the receiver.
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Figure 2.7: The CIR obtained using IFFT with 160 MHz BW, where the vertical dashed line
represents the actual time delay, and the peak colored by green is the FDP.
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While the time delay estimation of the FDP is the most important for wireless positioning,
the average time delay of the channel profile is the most important for telecommunications. It is
described by the root mean square (RMS) delay spread, which is defined as the second central
moment of the channel power delay profile. It is defined as [62], [63]

τ 2
RMS =

∑L
l=1(τ̂l − τMED)2 |αl|2∑L

l=1 |αl|
2

(2.7)

where τMED is the mean excess delay defined as

τMED =

∑L
l=1 τ̂l |αl|

2∑L
l=1 |αl|

2
(2.8)

where |αl|2 is the power of lth path, and L is the number of effective paths.

2.3 Transmitter Position Categories
In telecommunication applications, it is interested in modeling the behavior of multipath chan-
nel in terms of propagation path loss, shadow fading, Doppler spread, time dispersion, delay
spread and the other parameters. On the other hand in time-based wireless indoor positioning,
it is interested in studying the behavior of the direct path between the transmitter and receiver
antennas, where the phase of the direct path is a function of distance between antenna pairs.
The MU could be in a LOS or in a NLOS with respect to the fixed BSs. In case of a LOS, the
direct path is available and can be detected easily. But, in case of a NLOS, the direct path could
be detected or undetected. The channel profiles can be categorized based on the availability of
the direct path as [15], [14]:

1. Dominant Direct Path: The direct path is the strongest path in the channel profile.

2. Non-Dominant Direct Path: The direct path is not detected as the strongest path by the
receiver, but it can be detected by an advance signal processing.

3. Undetected Direct Path: The direct path cannot be detected while the other paths can be
detected. The FDP is assumed to be a direct path by the receiver which causes a huge
DME.

4. No Coverage: The MU could be in a position where is no coverage, or the necessary
number of BSs for positioning, which can receive a power more than the detection level,
is not enough.

The UDP multipath condition can also be categorized into two types [15], [64]:

1. Shadowed UDP (SUDP): SUDP multipath condition occurs when the direct path between
the transmitter and receiver is blocked by a large object such as an elevator or a metallic
chamber.

2. Natural UDP (NUDP): NUDP multipath condition occurs in some environments when
the received power of the direct path is very low and cannot be detected due to the large
distance between the transmitter and receiver, but there are still other paths arriving with
powers that can be detected.
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The summary of the above MU position categories is shown in Fig. 2.9 [14]. In the practice, the
MU state changes between those states during the MU movement. In general, the MU position
can be estimated if the direct path is still detected. But if the direct path is shadowed, then none
of the traditional techniques are still effective for precise indoor positioning, especially those
which are based on the time delay or DOA estimation [15]. It is worth mentioning that if the
MU is in a UDP state, the estimation of MU position has a very large DME. However, it can be
mitigated by the assistance of the previous position of MU, and the direction of MU movement
with the electronic map of the floor plan.

2.4 Bandwidth Consideration
System bandwidth is an important parameter that affects on the performance of the time-based
wireless indoor positioning system. As it has been explained, the time-based systems measure
the distance between a transmitter and a receiver based on the estimated propagation time
delay. The TOA can be measured by either measuring the phase of a received narrowband
carrier signal or directly by measuring the arrival time of a wideband narrow pulse [18]. The
wireless positioning techniques based on the time delay estimation can be grouped based on
the system bandwidth into three categories as [18]: narrowband signal positioning techniques,
wideband signal positioning techniques also known as super-resolution techniques, and UWB
signal positioning techniques.

In the narrowband positioning techniques, the distance is measured by the phase difference
between received and transmitted carrier signals. The TOA of the signal, τ , and the phase
of the received carrier signal, φ, are related by, τ = φ/ωc. However, using a narrowband
carrier signal in indoor positioning is not like the differential GPS, where the direct path of a
transmitted signal is available most of the time. In indoor environments, there are a number
of effective paths each has different amplitude and phase. Therefore, the distance cannot be
estimated accurately using a narrowband carrier signal in a heavy multipath environment [18].

In wideband signals, a known pseudo noise (PN) sequence for example is used by a trans-
mitter such as the direct sequence spread spectrum (DSSS) wideband signal. The same PN
sequence is generated also in the receiver, which is correlated with the received signal. The
arrival time of the first correlation peak is used to find the distance between a transmitter and
a receiver. However, the accuracy of this method is limited due to the complexity of multipath
indoor propagation channel. Usually, the first correlation peak does not represent the actual
peak, and the resolution of TOA estimation is based on the base width of the PN correlation
function. Therefore, a number of researchers have studied frequency-domain super-resolution
algorithms, which can be used to estimate the time delay with high resolution from the CFR.

In UWB, signal bandwidths that exceed one GHz are used in the unlicensed ranges such
as 2 to 3 GHz or 57 to 66 GHz. Using those large bandwidths means extremely short duration
pulses. The UWB signal is not much affected by the multipath fading. Therefore, the high time
resolution of the UWB signal makes positioning based on the TOA is very accurate. Recently,
there are a number of proposed techniques which utilize the UWB signal for indoor positioning
applications such as in [40], [65], [66].

In indoor environments, there are many objects in the surrounding area, hence, there are
many paths close to the direct path. Therefore, the peak of the channel profile is shifted from
the actual TOA, resulting in a TOA estimation error, and then DME [15]. By increasing the
system bandwidth, the channel profile can be split to a number of effective paths, in another
way, the pulses arriving from different paths become narrower, and then the estimated TOA
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Figure 2.9: The MU position categories based on the availability of the direct path [14].

of the FDP is closer to the actual TOA of the direct path. To provide a reasonable protection
against extensive multipath environments in indoor areas, there are two techniques employed
for indoor positioning as follows [15]:

1. Bandwidths on the order of several hundred megahertz should be used. The sufficient
bandwidth for accurate indoor positioning based on the TOA technique is larger than 200
MHz [4] for the receiver to be able to resolve the multipath components.

2. Using super-resolution algorithms for post processing can reduce the bandwidth require-
ments.

Based on the previous discussion, the accuracy of channel profile parameters estimation
depends strongly on the system bandwidth. However, in practice the channel bandwidth is
limited. Hence, the principle of super-resolution algorithms represents the interested option
in this work and it will be presented in the following chapters. It is worth mentioning that
increasing system bandwidth can decrease the DME if the direct path is still detected, but if the
direct path is totally blocked, DME is not necessary reduced [67].

2.5 Main Sources of Error in Time-based Wireless Indoor
Positioning Systems

In time-based wireless indoor positioning, the time delay of the FDP is used as an estimated
time delay of the direct path denoted by τ̂1. To investigate τ̂1 features, let us assume the MU
and the BS are synchronized, although using TDOA observations represents our concern. The
estimated distance between the MU and the BS is then given by (2.4) as, d̂ = c× τ̂1. The DME
is then given by (2.6) as, ξd = |d̂− d|, where d is the actual distance. The main sources of the
DME in time-based wireless indoor positioning have been reported in [14]. The first source is
the presence of rich multipath channel, which produces an extra time delay in the FDP estimate
compared to the actual direct path. The second source is the blockage of the direct path by
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a large object such as a chamber or an elevator, or due to the large distance between the MU
and the BS. The absence of the direct path leads to a very large DME. The third source is the
induced propagation time delay, where the speed of the radio waves varies in different media.
Therefore, the estimated time delay of the FDP including the three types of time error is

τ̂1 = τ1 + τm + τUDP + τpd (2.9)

where τ1 is the propagation time delay of the direct path, τm, τUDP , and τpd are the time errors
due to the rich multipath channel, the blockage of the direct path, and the induced propagation
time delay, respectively. In this work, the principle of subspace algorithms is used, which can
provide a reasonable protection against sever multipath environments, and the parameter τpd can
be assumed as an insignificant parameter. The largest DME is coming from the blockage of the
direct path. Therefore, the problem of UDP condition identification should also be investigated
to mitigate the estimated parameters of the UDP channel profile. The main sources of the DME
investigation with UDP identification have been presented in [59], as it will be described in
Chapter 7.

2.6 Radio Signal Characteristics
The three basic properties that enable distance or direction measurement for MU position esti-
mation by analysis the received radio signals are the RSS, the DOA, the TOA, and the TDOA.
The principle of these positioning techniques with their advantages and disadvantages will be
presented in the remaining of this chapter.

2.6.1 Received Signal Strength (RSS) based Techniques

The power density of an electromagnetic wave is proportional to the transmitted power and
inversely proportional to the square of the distance to the transmitter [6]. As a result, the RSS
at the receiver is related to the distance between the transmitter and the receiver. This relation
as well as the combination between waves that reach a receiver over different paths are the basis
for distance estimation. The RSS can be obtained and reported from the NIC that is available
in most wireless devices. For example in IEEE 802.11 standards, the MAC layer provides
the RSS for all active access points in a quasi-periodic beacon signal [7]. Wireless sniffer
tools provide an access to MAC address and RSS values of WLAN access points. Therefore,
a positioning system can be implemented on top of existing WLAN infrastructures without
the need for any additional hardware [7]. Using RSS for positioning is known as the RSS-
based ranging technique. In general, RSS techniques for positioning can use the principle of
path loss model [68], [23], finger printing [8], compressive sensing [69], [70], and propagation
modeling [9], [10], [11]. The principle of each method will be presented in the following.

2.6.1.1 Path loss Model based Techniques

In free space, the parameters that directly affect the relationship between received power Pr
and distance d at wavelength λ are included in the Friis equation [71]

Pr =
PtGtGrλ

2

(4πd)2 (2.10)
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where Gt and Gr are transmitter and receiver antenna gains. If the radiated power (PtGt) of the
transmitter is known at the receiver, the distance between the transmitter and the receiver can
be calculated. However, in indoor environments there are many objects in the vicinity of the
transmission path, which can change the relationship between received power and distance. The
received signal is a combination between a number of paths, each path has its own interaction
with the nearby objects in the signal path. As a result, the relationship between the RSS and the
distance between the transmitter and the receiver is presented mathematically in a form called
the path loss model [68]. The mean path loss increases exponentially with the distance [68],
hence, the mean path loss is a function of distance to the n power. The mean path loss model
derived from the log-normal shadowing model is [68]

PL(d)[dB] = PL(d0) + 10n× log10(d/d0) + χσ [dB] (2.11)

where PL(d) is the mean path loss, n is the mean path loss exponent which indicates how
fast path loss increases with distance, d0 is a reference distance, d is the distance between the
transmitter and receiver, and χσ is a zero mean log-normally distributed random variable with
standard deviation σ in decibels. The PL(d0) is due to free space propagation to the reference
distance, for example, d0 = 1m. The mean path loss exponent n and standard deviation σ
(in decibels) are viewed as parameters that are a function of building type and building layout,
which are between the transmitter and receiver. This model predicts path loss as a function of
distance accurately when the model parameters n and σ are determined as a function of the
general surroundings precisely, which is impossible.

By measuring the RSS at the receiver, where the path loss model and the reference power
are known a priori, the distance between antenna pairs can be estimated. To estimate the MU
position, a number of fixed BSs should be used, a minimum of three, as shown in Fig. 2.10.
From Fig. 2.10, each distance measurement determines a circle geometrically, which is cen-
tered at the reference BS. It should be noted that the radii of the solid-line circles represent the
estimated distances between the MU and BSs, where the radii of the dashed-line circles repre-
sent the real distances between the MU and BSs. The estimation of distances based on the RSS
measurements are not accurate, hence, the intersection of those three circles makes a region
of the possible MU position as shown in Fig. 2.10. It is called the region of uncertainty [6].
Furthermore, it should be noted that the estimated distances could be smaller or larger than the
actual distances as shown in Fig. 2.10. Therefore, more than three BSs are needed to improve
the accuracy of positioning. The principle of MU coordinates estimation based on the path loss
model will be presented in Section 2.6.3.2.

To measure the ability of a distance estimation using the path loss model, some experiments
have been presented in Section 6.2.1. In indoor environments, the materials of walls and floors,
number of floors, layout of floors including the size of rooms, and the position of obstructing
objects have a significant effect on the path loss. As a result, it is difficult to find a model
applicable to all environments [7]. In addition, the value of RSS is instantaneous and it varies
over the time, even at a fixed position as it is obvious from the experiments of Section 6.2.1; this
is due to shadow fading and multipath fading as well as the NLOS caused by humans, walls,
and many objects inside the building [7]. Hence, an immediate conclusion is that using RSS
technique based on the path loss model is not the proper option for accurate indoor positioning
system. Therefore, it will be ignored in our future work. However, it can be used in indoor
positioning systems, which require low accuracy.
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Figure 2.10: Wireless positioning system based on distance estimation using RSS technique.

2.6.1.2 Fingerprinting based Techniques

As an alternative method based on measuring RSS is the fingerprinting or sometimes called a
pattern recognition. The basic principle of fingerprinting is to give each position in a building a
unique set of signal strengths received from the properly distributed BSs. The position signature
is a vector Rk, which is the average measured RSS from I BSs at position k in the area of
interest; i.e. Rk = {r1, r2, .., rI}, where ri is the average measured RSS from BS number i at
position k. The database of these position signatures with their coordinates is known as a radio
map. The generation of the radio map is done in offline mode, which is called the initial training
phase. In online mode, a comparison between the RSS observations to radio map signatures is
done and return a position estimate. The position estimate can be obtained using for example
the Euclidean distance, which finds the most closely signature to the observation, where the
estimated position is assumed that it has the coordinates of the best matched signature in the
radio map. To get the principle and the required effort of fingerprinting more clearly, a simple
experiment has been made in Section 6.2.2.

From the mentioned experiment, it can easily find the following challenges to create the
radio map. The number of points with their locations, which are strongly depended on the
required accuracy, and the number of time samples per each point should be determined. The
expected accuracy depends on the resolution of radio map creation process; the minimum dis-
tance between points of radio map as shown clearly in Section 6.2.2. In addition, if the area of
interest is large, the necessary number of BSs increases, and then the required effort of radio
map creation and the size of the database increase dramatically. Therefore, searching for the
best match inside this large database requires a huge computational burden. Furthermore, it is
difficult sometimes to distinguish between the positions with the same signature [5].

To reduce the complexity of positioning based on fingerprinting, some preprocessing can
be made before making the actual processing. The radio map can be clustered to some zones
to reduce the computational burden and to improve the performance of the positioning system
as proposed in [72]. Some efforts have also been made in the literature to reduce the effects of
RSS variations due to channel impediments by using a compressive sensing (CS) principle [73].
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It is called also the compressive sampling, which offers accurate recovery of sparse signals
from a small number of measurements. The principle of using CS is that position estimation
is a sparse problem. According to the CS theory, the accuracy of position estimation can be
improved using only a small number of noisy measurements as presented in [69], [70].

The major drawback of fingerprinting techniques is that for any major change in the indoor
environment, measurements of the radio map should be repeated. Furthermore, the RSS obser-
vations in the offline mode could be different from those in the online mode. For example, the
user body spreads the range of RSS values by a significant amount in the range of 3 dBm, and
the orientation of user leads to the attenuation by amount of 9.3 dB due to the obstruction from
the body as reported in [8].

It can be noted from the previous that the fingerprinting method is a tedious process. There-
fore, some methods have been suggested in the literature to reduce the effort and cost of the in-
door positioning system such as RT (ray tracing) for predicting the CIR. Ray tracing represents
the electromagnetic waves as rays and produces deterministic channel models that operate by
processing user-defined environments. Due to the site-specific nature of indoor environments,
RT process is implemented by considering the position, the orientation, and the electrical prop-
erties (including: permittivity, conductivity and thickness) of individual walls and objects that
are possible in a given area. More details on the RT principle can be found in these references
[9], [10], [11], [74].

The summary of improvements to use RSS principle for indoor positioning is presented in
Fig. 2.11. The conclusion of the above section is that using RSS based ranging techniques are
not the proper option for accurate indoor positioning system. However, the RSS can be applied
for indoor positioning systems that require low accuracy. Therefore, using RSS techniques will
be ignored in our future work.

2.6.2 Direction of Arrival (DOA) based Techniques
The DOA or the angle of arrival (AOA) technique is probably the oldest technique for wire-
less positioning [6]. It is based on using the directional property of directional antennas and
recently using antenna arrays. The direction of a radio wave can be estimated by observing the
RSS changes while varying a known spatial radiation pattern of the receiving or transmitting
antenna. The DOA may be determined to be the point in the pattern rotation where the RSS
is maximum, or where a null in RSS occurs, depending on the reference point [6]. However,
for antenna arrays, there is a relationship between the direction of a signal and the associated
received steering vector as shown in Fig. 2.2 and equation (2.2). There is a difference in the
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Figure 2.11: The summary of RSS measurement techniques.
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received phase at each element in the antenna array, which comes from the different distance
between each antenna element and the reference antenna. Therefore, it is possible to estimate
the direction of a signal from the received signals at antenna elements.

The MIMO technology in recent standards of 802.11 could be used for DOA estimation.
The antenna array could be ULA, URA, or circular array. In this work, only the ULA is
used as shown in Fig. 2.2. The antenna array is typically installed at the BS, because it is
difficult to employ it inside the MU. Therefore, the DOA technique is normally employed in
wireless indoor positioning systems that are based on the multilateral system (network-based
architecture), which represents the interesting option in this work. The MU device should
be very simple. Using antenna arrays will be employed in this work for two aspects: DOA
estimation and spatial diversity to improve the quality of received radio signals.

The DOA technique uses simple triangulation to estimate the position of MU, where two
BSs are enough to do that as shown in Fig. 2.12. The DOAs at two BSs are θ1 and θ2. The
coordinates of MU (x, y) can be found easily from the trigonometry as

x =
x2 · tan(θ2)− y2

tan(θ2)− tan(θ1)
, y = x · tan(θ1). (2.12)

In practice, the DOA cannot be measured exactly as shown in Fig. 2.12. There are some
uncertainties in the measurements of θ1 and θ2 as,±∆θ1 and±∆θ2, respectively. The estimated
position of MU are then located in the overlapping region of the two beams. The accuracy
of DOA estimation depends strongly on the size of the region of uncertainty. Hence, if the
number of antenna elements increases and a robust algorithm has been used, the accuracy of
MU coordinates estimation increases. From Fig. 2.12, we can also observe that the accuracy
of MU position estimation degrades if the distance between the MU and BS increases. In
addition, the position of MU relative to fixed BSs is very important in determining the accuracy
of estimated position. The highest accuracy could be achieved if the positions of MU and BSs
form an acute triangle (all angles are less than 90◦) [6]. Therefore, more BSs should be used to
improve the accuracy of estimation.

There are many techniques in the literature for DOA estimation of narrowband signals us-
ing antenna arrays including maximum likelihood (ML) estimator [75], and super-resolution
subspace techniques such as Root MUSIC [30], ESPRIT [28], and MP [34]. The DOA tech-
nique can be combined with RSS such as in [76] or with TOA such as in [31] for narrowband
signals and in [40] for IR-UWB systems, or with TDOA such as in [33] for cellular systems.
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Figure 2.12: Triangulation illustration using DOA technique in 2-D scenario.
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The DOA can also be estimated by measuring the phase difference between antenna elements
in case of using UWB systems such as in [65], [66]. More details and comparisons to this work
will be presented in the following chapters.

Finally, the advantages of using DOA are summarized in the following:

1. It does not require synchronization between BSs such as in time-based techniques. The
knowledge of the transmitted power and the reference power are not required such as in
RSS.

2. The loci are lines. Hence, the MU position can be calculated easily by triangulation.

3. Antenna array should be installed in the BS, which is provided by modern wireless sys-
tems such as IEEE 802.16, IEEE 802.11n, and IEEE 802.11ac, where the MIMO tech-
nology is employed.

4. Knowledge of DOA can provide other features for telecommunications besides position-
ing such as interference cancellation, and space-division multiplexing [77].

The disadvantages of using DOA are summarized in the following:

1. It increases the complexity of the positioning system, where an antenna array should be
installed at each BS.

2. The accuracy of MU position estimation degrades if the distance between the MU and
BS increases.

2.6.3 Signal Propagation Time Delay based Techniques
The time-based wireless positioning systems use the propagation time of the signals as an
estimate for the distance between the transmitter and receiver antennas as shown in Section
2.2.2. The time-based techniques are not like RSS-based techniques, which are affected by
large distances, orientation of the wireless device, and the value of RSS, but they are affected
by system bandwidth, multipath effects, and SNR. The principle of time-based techniques is
somehow like in case of GPS, but the received signals from satellites are affected only by
SNR. However, in wireless indoor positioning, the wireless indoor environments have harsh
and challenging propagation situations.

The time-based wireless positioning techniques can be categorized into the following:

1. TOA techniques: In which the MU position can be determined from the TOA observa-
tions at a number of fixed positions, where the transmission time is known. Hence, clock
synchronization is required on both sides of the communication link, the MU should be
synchronized to the network by somehow method, which represents the major disadvan-
tage of the TOA techniques.

2. TDOA techniques: In which the MU position can be determined from the differences of
reception time at a number of fixed positions. Hence, clock synchronization is required
only on one side of the communication link, the side of the fixed BSs.

3. Phase of Arrival (POA) techniques: In which the phase of the received signal is related
to time and distance through the signal wavelength and speed of light as, φ = ωcd/c [18].
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2.6.3.1 Indoor Positioning Techniques based on TOA

A variety of signal processing techniques are available for time delay estimation in the litera-
ture. In [4], a frequency-domain TOA estimation has been proposed using MUSIC algorithm.
It is used to transform the measured CFR to time-domain pseudospectrum. The TOA can be
obtained by detecting the first peak of the pseudospectrum in the delay axis using a peak detec-
tion algorithm. Similarly in [20], the TOA has been estimated using Root-MUSIC algorithm
based on the measured CFR using IEEE 802.11a/g system parameters. A comparison between
MUSIC and ESPRIT for time delay estimation using the estimated CFR has been investigated
in [25] using IEEE 802.11b standard parameters; the ESPRIT algorithms can achieve a better
accuracy level than MUSIC algorithms. In [78], the position of first arrival path in wireless
OFDM systems is estimated from the estimated CIR. The characteristics of the information
theoretic criteria are exploited to estimate the TOA of the first path. However, the accuracy of
the first arrival path estimation depends on the sampling interval.

The TOA can be used with the other techniques. For example in [31], the joint estimation
of time delays and DOAs of narrowband signals has been proposed using the estimated CIR,
where the transmitted pulse shape function is known. The 2-D ESPRIT is used to separate and
estimate the phase shifts due to the delay and direction of incidence. Similarly in [66], the
joint estimation of TOA and DOA for UWB systems has been proposed. The estimation of
TOA is performed in the frequency-domain based on the power delay spectrum computation
by means of a fast Fourier transform (FFT) calculation. The DOA estimation is obtained from
independent TOA measurements at each antenna element by means of a linear estimator.

Other studies proposed algorithms to estimate the TOA based on the time delay of suc-
cessful transmission such as in [79]. Similarly in [80], the joint TOA and RSS is proposed for
WLAN positioning system, where the TOA has been estimated from the time delay of success-
ful transmission, and the path loss model has been used to calculate the distance between the
MU and the BS. Although the time delay estimation based on successful transmission does not
require any hardware modification in the existing network, the accuracy of positioning based
on this principle is very low in the range of 3.96 meters. In order to get an accurate TOA-based
indoor positioning system, the occurrence of direct path blockage should be identified and mit-
igated. To identify the UDP condition, some algorithms have been presented in [15], [81], [82];
more details to the problem of UDP identification will be given in Chapter 7.

2.6.3.2 2-D Wireless Positioning based on TOA

The principle of MU coordinates estimation based on the distance estimation using TOA is
like that of using the path loss model as shown in Fig. 2.10. In both cases, the distances d1,
d2, and d3 are estimated by measuring the signal propagation time delay or the RSS at each
BS. However, the estimated time delay is usually larger than the actual time delay, but the
measured RSS variates around the actual RSS; it could be smaller or larger than the actual
RSS. Geometrically, each estimated distance determines a circle, centered at the BS.

Fig. 2.13 shows the geometric of 2-D wireless positioning system with one MU and three
BSs, all of them are located in the same plane. The equations of the three circles in Fig. 2.13
are

d1
2 = x2 + y2

d2
2 = (x− x2)2 + y2

d3
2 = (x− x3)2 + (y − y3)2

(2.13)
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Figure 2.13: 2-D TOA positioning system using three receivers.

The solution of those three nonlinear equations represents the estimated MU coordinates as

x =
x2

2 + d2
1 − d2

2

2x2

, (2.14)

y =
x2

3 + y2
3 + d2

1 − d2
3 − 2 · x · x3

2y3

. (2.15)

From Fig. 2.13, it is clear that the minimum number of BSs to estimate the MU position without
ambiguity is at least three fixed BSs. By using the intersection of the three circles, the estimated
position is unique and has no ambiguity. However, if the estimated distance is smaller than the
real distance, three BSs (three circles) may not be able to get the region of uncertainty, which
includes the MU position [5]. Therefore, more than three BSs should be used to improve the
positioning accuracy. From the system setup view, the accuracy of positioning depends on the
synchronization between system elements, the geometry of BSs, and the number of BSs in the
positioning area.

A 2-D layout of four BSs with known coordinates is shown in Fig. 2.14. The circles
have been formed where the fixed BSs are at their centers, and the radii equal to the estimated
distances between the BSs and the MU, d̂i = c × τ̂i. If we assume that the true distances
{di; i = 1, . . . , 4} are estimated perfectly, the MU coordinates are then the point of intersection
of the circles as shown in Fig. 2.13. However, in practice, the circles do not cross at one point,
because the estimated distances {d̂i; i = 1, . . . , 4} are not exact. Therefore, it is necessary to
define a criterion to estimate the MU position coordinates. The equations of the four circles
defined by the coordinates of the fixed BSs are

d̂2
i = (xi − x̂)2 + (yi − ŷ)2 ; i = 1, . . . , 4. (2.16)
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Figure 2.14: 2-D TOA positioning system using four receivers.

The position of MU can be estimated using the LS error criterion. The estimated coordinates
of MU (x̂, ŷ) should minimize the following function [6]

F =
∑4

i=1
(
√

(xi − x̂)2 + (yi − ŷ)2 − d̂i)2. (2.17)

There are many algorithms to solve the nonlinear expression of (2.17), some of them are time
consuming and inconvenient for implementation. However, a closed form solution to the esti-
mation problem can be used as in [6]. The first step is to expand the factors on the right side of
(2.16), and then subtract the equations of d̂2 to d̂4 from that of d̂1 to get

(x1 − xi)x̂+ (y1 − yi)ŷ =
1

2
(x2

1 − x2
i + y2

1 − y2
i + d̂2

i − d̂2
1) (2.18)

where i = 2, . . . , 4. The above set of equations is an overdetermined set of linear equations in
(x̂, ŷ). It can be expressed in matrix form as

A.z = b (2.19)

where

A =

 x1 − x2 y1 − y2

x1 − x3 y1 − y3

x1 − x4 y1 − y4

 , (2.20)

b =
1

2

 x2
1 − x2

2 + y2
1 − y2

2 + d̂2
2 − d̂2

1

x2
1 − x2

3 + y2
1 − y2

3 + d̂2
3 − d̂2

1

x2
1 − x2

4 + y2
1 − y2

4 + d̂2
4 − d̂2

1

 , (2.21)

and

z =

[
x̂
ŷ

]
. (2.22)
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The closed form LS solution to (2.19) is [83], [84]

z =

[
x̂
ŷ

]
= (AT ·A)−1 ·AT · b. (2.23)

The previous algorithm can be extended to a larger number of BSs. It can also be extended to
3-D problem if the number of BSs is enough.

A major drawback of the wireless positioning based on TOA is that all system elements
should be synchronized with an acceptable accuracy in the range for example of one nanosec-
ond in order to achieve a positioning accuracy less than one meter. Such accuracy is impossible
to achieve with the commercial of the shelf (COTS) WLAN devices [85], [86], because it re-
quires highly stable oscillators and robust hardware for time stamping, which is not acceptable
to include inside the MU [13]. Furthermore, the hardware and software of both BSs and MU
should be modified, where our goal is to design an accurate positioning system based on the
existing WLAN networks with lowest modification probably in the side of fixed BSs. The MU
should be a very simple wireless device.

2.6.3.3 Indoor Positioning Techniques based on TDOA

Instead of measuring the time delay of a transmission between the MU and the BS as in TOA
techniques, the difference in the time delays between the MU and a pair of fixed BSs is mea-
sured in TDOA techniques. Clock synchronization is required only on the side of the fixed
BSs. Therefore, at least one additional fixed BS is required for TDOA per dimension compared
with the number in case of TOA, in another way, the number of TDOA measurements should
be equal to or more than the number of unknowns (order of system coordinates). Hence, for a
2-D positioning scenario, a TDOA system needs at least three fixed BSs and to estimate 3-D
coordinates of the MU, it needs at least four fixed BSs [43].

Such as in TOA-based positioning system, the propagation time delay differences can be
estimated based on cross-correlation, time stamps, or super-resolution algorithms. Using cross-
correlation to estimate TDOA is the simplest method. The transmitted signal from the MU is
received simultaneously at a number of BSs. Then, a sliding correlator is used to do cross-
correlations between the received signals. The time delays between BSs can be obtained from
the instants of output peaks of a sliding correlator. The major disadvantages of this method are
the dependency between the resolution of the cross-correlation peaks and the sampling rate,
sensitive to low SNR and multipath effects, and leading to a significant network load. In addi-
tion, finding the correlation peak in presence of carrier frequency offset results a computational
task [13].

Wireless indoor positioning using WLAN can be done also using accurate time stamps such
as in [13], [87]. However, the time stamp itself does not represent the arrival time of the known
preamble at the antenna, but it represents the time of the preamble or any reference symbol
detection. It means that the detection time includes the analog signal processing time delay
due to analog amplification, mixers, and filters, and the digital signal processing time delay
due to the process between the output of analog to digital converter and time of detection. The
calibration of those time delays especially that coming from the analog signal processing is
a challenge of using time stamps for wireless positioning. In addition, using the time stamp
is highly affected by multipath fading. The mean peak power of the composite signal (the
direct and the reflected signals) could be shifted; consequently, the detection time or the time
stamp is shifted according to that. An investigation of the time stamp accuracy of a COTS
WLAN chipset can be found in [85], [86]. The clock synchronization was performed using



2.6. Radio Signal Characteristics 33

the IEEE 1588 protocol over IEEE 802.11b. The conclusion was that the physical layer of the
wireless network can be used for a synchronization system with an accuracy of several hundred
nanoseconds [86]. Obviously, it can be used in many control and instrumentation applications,
but it is not designed to perform time stamping for wireless positioning.

In fact, using TDOA principle for wireless positioning can operate with system elements
using their normal communication protocol, which gives it more applications than TOA. For
TDOA measurements, a special message for the purpose of positioning such as time stamp is
not necessary to be known, for example by including it in the transmission frame. However, a
transmission frame should have a training sequence that can be recognized by the receivers. As
a result, we preferred to use TDOA techniques rather than TOA techniques for wireless indoor
positioning using IEEE 802.11 standards, where the preamble of the OFDM frames will be
used for that, as it will be explained in Chapter 3.

As it has been described in Section 2.6.3.1, the principle of super resolution algorithms,
which represents the preferred option in this work, is used to estimate the time delays of mul-
tipath channel. The robust super-resolution algorithm for TDOA and DOA estimation will be
identified and explained in the following chapters. Similar to the DOA estimation problem,
the multilateral system (network-based architecture) is preferred to use in this work for TDOA
estimation problem, where the MU should be a very simple device.

The geometric model for estimating the position coordinates of MU using TDOA is the
intersection of hyperbolas in 2-D and the intersection of hyperboloid in 3-D [6], [43]. The
hyperbola is characterized by the fact that the difference in distance, d12 = d1 − d2, between
any point on it and the two foci is constant as shown in Fig. 2.15. The difference value is
positive if the point is located on the right branch of the hyperbola and negative if it is located
on the left branch. If a BS is located at one focus of the hyperbola and another BS at the other
focus, then the MU position is on the hyperbola [6], [88]. Based on Fig. 2.15, the distances are
expressed as follows

d1 =

√
y2 + (x+

D

2
)
2

(2.24)

d2 =

√
y2 + (

D

2
− x)

2

(2.25)

where (x, y) are the coordinates of the MU, and D is the distance between the two BSs, which
are located on the x axis and they have the same distance from the origin of the x axis. The
equation of the first hyperbola that defines the locus of the MU is then

d12 = d1 − d2 =

√
y2 + (x+

D

2
)
2

−
√
y2 + (

D

2
− x)

2

(2.26)

where d12 represents the TDOA times the speed of light as, d12 = c × ∆t12. The general
equation of the hyperbola is

x2

a2
− y2

b2
= 1 (2.27)

where a and b could be expressed in terms of the known quantities as, a2 = (d12/2)2, and
b2 = (D/2)2 − a2.

The intersection of two or more hyperbolas that are defined from TDOA measurements
represents the MU position. Although the number of independent TDOA values obtainable
from I BSs is I − 1, we can use in a noisy environment additional pairs of measurements that
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Figure 2.15: The geometric relationship between a MU and three fixed BSs in a TDOA system.

are not independent, since the noise that is not correlated between those pairs gives them a
degree of independence [89]. The total number of TDOA observations, Q, obtainable from I
BSs is [6]

Q =
I!

2(I − 2)!
=
I(I − 1)

2
(2.28)

where ! is the factorial operator.
Finally, the advantages of using TDOA are summarized in the following:

1. It is preferred over using RSS and DOA, when high-accuracy positioning is required.

2. Clock synchronization is only required among the BSs, which are usually connected to a
wired backbone. As a result, the synchronization between the BSs is easy to set up.

3. The time-based techniques (TOA or TDOA) are not like RSS-based techniques, which
are affected by large distances, orientation of the wireless device, and the value of RSS.

The disadvantages of using TDOA are summarized in the following

1. Accurate clock synchronization between BSs is required.

2. If the direct path is totally blocked (the UDP condition), the exact time measurement will
be not possible, as it has been explained in Section 2.3, where the FDP is assumed to be
a direct path by the receiver which causes a large DME. Therefore, the problem of UDP
identification will be investigated in Chapter 7 to mitigate its effects.

3. The time-based techniques (TOA or TDOA) are sensitive to the system bandwidth. There-
fore, super-resolution algorithms will be used in this work to compensate the bandwidth
limitations of IEEE 802.11 standards.

From the above, using TDOA techniques requires synchronization between BSs, which can
be achieved by using a hardware support. However, this is the only way to achieve a wireless
positioning system with high accuracy in harsh environments.



CHAPTER 3

System Model and Time Delay Estimation
using 1-D Matrix Pencil Algorithms

In this chapter, we present some techniques for estimating the TDOA associated with signals in
a multipath communication channel for wireless indoor positioning. Recently, the UMP and the
BMP algorithms have been presented to estimate the DOA of coherent or non-coherent signals
using the ULA. We have applied these algorithms in a new way to estimate the propagation
time delay from the estimated CFR using OFDM systems. The complexity of various MP
algorithms is investigated using the 802.11ac standard, and compared to the corresponding
complexity of using 802.11n and 802.11a. The principle of using wideband orthogonal multi-
carrier signals and diversity techniques such as the spatial diversity, spectral diversity, and the
temporal diversity are presented.

The 1-D MP algorithm was presented in [34] for estimating frequencies and damping fac-
tors of exponentially damped and / or undamped sinusoids in noise using the ULA. The 1-D
UMP algorithm was developed in [90] and [91] to estimate the DOA of the narrowband signals
as an extension of the Unitary ESPRIT for ULA [29]. The 1-D BMP algorithm was developed
in [92] and [93] to estimate the DOA of the narrowband signals as an extension of DFT (Dis-
crete Fourier Transform) beam-space ESPRIT for ULA [29]. Both of Single Invariance BMP
(SBMP) and Multiple Invariance BMP (MBMP) algorithms were also investigated in [92]. In
all MP algorithms, the most computationally intensive step is to estimate the signal subspace,
which requires a Singular Value Decomposition (SVD) of a data matrix [90], [29]. By using
the unitary matrix transformation (UMT) [94] in UMP algorithms and the DFT matrix trans-
formation in BMP algorithms, the computational cost is reduced due to the conversion of the
complex data matrix into real one, which is very efficient in real time implementations.

In this chapter, different realizations of the 1-D MP algorithms to estimate the TDOA are
implemented based on the physical OFDM system parameters. The performance of these al-
gorithms will be investigated and compared in the measurement chapter; the best will be used
for wireless indoor positioning. The key element of our work is to use the preamble of the
OFDM frame to measure the channel state for additional purposes to the demodulation of the
data portion of the PPDU, which contains the training fields [50], [49], [48]. The complexity of
using 20, 40, 80, and 160 MHz BWs of 802.11ac are investigated. The accuracy and stability
of various MP algorithms with various 802.11ac BWs will be presented in the measurement
chapter. A number of repeated training sequences are available in the OFDM frame, and the
BSs within the service could be equipped with a number of antennas. Hence, the principle
of using diversity techniques such as frequency diversity, time diversity, and space diversity is
presented by using BWs partitioning, multiple OFDM training symbols, and a number of an-
tennas, respectively. The various MP algorithms can use a single or multiple snapshots of the
CFRs to estimate time delays, and then TDOA in the presence of multipath coherent signals.
The results will be presented in Chapter 6.

The outline of this chapter is as follows: system model and OFDM system sensors princi-
ple are discussed in Section 3.1 to 3.3. A comparison between MP and other super-resolution
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algorithms is presented in Section 3.4. The enhanced 1-D MP, 1-D UMP, and 1-D BMP algo-
rithms are presented in Sections 3.5, 3.6, and 3.7, respectively. The derivations of matrix pencil
equations of these algorithms can be obtained from the relevant text of each algorithm. We will
focus here on the main steps and our modifications to estimate the TDOA observations. The
various 1-D MP algorithms will be enhanced to include the principle of diversity techniques in
Section 3.8. In Section 3.9, computational complexity is presented to show the complexity of
various 1-D MP algorithms.

3.1 OFDM Signal Model
Consider an OFDM system which consists of NFFT subcarriers, where a number of useful
subcarriers at the central spectrum Nu+1 are used for transmission and the other subcarriers at
both edges form the guard bands. The guard bands enable us to choose an appropriate analog
transmission filter to limit the periodic spectrum of the discrete time signal at the output of the
IFFT [95], [96]. Each transmission subcarrier is modulated by a pilot, data, or a null symbol
Xi,k, where i represents the OFDM symbol number and k represents the subcarrier number.
The IFFT of order NFFT is usually used for modulation in OFDM transmitters, where NFFT

is a power of 2. A guard interval is also added as a cyclic prefix (CP) for every OFDM symbol
to avoid intersymbol interference (ISI) caused by multipath fading channels. As long as the
guard interval is larger than the maximum delay spread of the wireless channel, the ISI can be
eliminated. As a result, the output baseband signal of the OFDM transmitter is represented:

x(t) =
∑∞

i=−∞

∑Nu/2

k=−Nu/2
Xi,ke

jωk(t−Tg−iTs) ; iTs ≤ t < (i+ 1)Ts (3.1)

where ωk = 2πk/Tu, 1/Tu = ∆f is the OFDM subcarrier spacing, Tg is the guard interval
length, Ts is the duration of a whole OFDM symbol including the guard interval (Ts = Tu+Tg),
and the sampling rate is 1/T = NFFT ×∆f .

At the receiver side, let us assume that the guard interval duration is longer than the channel
maximum excess delay, the channel is quasi-stationary (i.e., the channel does not change within
one OFDM symbol duration but varies from symbol to symbol), and the synchronization is
done using the training sequence. From (2.1), the input signal at the receiver is

r(t) =
∑L

l=1
αl · x(t− τl)ej(ωc+ω

D
l )(t−τl) + n(t) (3.2)

where ωc and ωDl are the phase velocity of carrier and Doppler shift of the lth path, and n(t)
is the additive white Gaussian noise (AWGN) with mean zero and variance σ2. From (3.1) and
(3.2), we get

ri(t) =
∑L

l=1

∑Nu/2

k=−Nu/2
Xi,ke

jωk(t−τl−Tg−iTs).αi,l.e
j(ωc+ωDl )(t−τl) + n(t) (3.3)

where iTs ≤ t < (i + 1)Ts. The RF component exp(jωct) is down converted at the receiver,
then the multipath OFDM signal in the baseband channel is remained as

ri(t) =
∑L

l=1

∑Nu/2

k=−Nu/2
Xi,ke

jωk(t−τl−Tg−iTs).αi,l.e
−j(ωc+ωDl )τl+ω

D
l t + n(t). (3.4)

For packet detection and timing synchronization, the cross-correlation between the received
samples and the training sequence, spreamble, is used as [54], [97]

Λ(n) =
∣∣∣∑NFFT−1

u=0
r(u+ n) · s∗preamble(u)

∣∣∣2 (3.5)
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where {r(u)} are the received samples. For robust timing acquisition, square low detection
is used. In order also to avoid the expected variance of the incoming signal power, the cross-
correlation needs to be normalized by a moving sum of the received signal power according
to [98]

Ξ(n) = Λ(n)/Υ(n) (3.6)

where Υ(n) =
∑NFFT−1

u=0 |r(u+ n)|2. Once the FFT window has been adjusted, the kth sub-
carrier output during the ith OFDM symbol can be represented by

Ri,k = Xi,k ·
∑L

l=1
e−j2πk∆fτl .Ai,l + wi,k ; −Nu/2 ≤ k ≤ Nu/2 (3.7)

where wi,k is the AWGN at the kth subcarrier, andAi,l is the channel gain of the lth path during
the ith OFDM symbol as, Ai,l = αi,l.e

−j(ωc+ωDl )τl . It has been assumed that the Doppler shifts
fDl = fcvl/c are much smaller than the subcarrier spacing (fDl << ∆f ⇒ ωDl /2π∆f ≈ 0)
and time delays are smaller than the guard interval (τl ≤ Tg) for all paths.

3.2 The symmetry of OFDM Time Delay and DOA Estima-
tion Problems

To show the symmetry between the OFDM time delay and the DOA estimation problems, let
us consider a ULA of M sensors as shown in Fig. 2.2 in Chapter 2. The distance between array
elements is ρ. If L narrowband signals with carrier frequency fc arrive at the input of this array,
the measured data at the feeding point of the omni-directional antenna m is expressed [1]

ym(n) =
∑L

i=1
αie
−j2πfcτm(θi)Si(n) + nm(n) (3.8)

where αi and θi are the complex gain and the DOA of the ith incoming signal, Si(n) is the ith
signal at time instant n, τm(θi) = mρ sin θi/c, and nm(n) is the AWGN at the mth sensor. The
indexes of subsequent OFDM symbols in (3.7) are equivalent to the discrete time snapshots
in (3.8). It can also be noted that the subcarrier spacing ∆f between pilot symbols in OFDM
symbol is proportional to the carrier frequency fc, and the time delay τl of the lth path in a
multipath channel is equivalent to the time delay that the plane wave impinging from direction
θl needs to span the different distance between antenna m and the reference antenna in the
antenna array [1]. Fig. 3.1 presents the OFDM signal in a multipath channel using a single
antenna and the DOA problem using the ULA [1]. As a result, the problem of OFDM time
delay estimation in a multipath channel is equivalent to the problem of DOA estimation using
the ULA. Consequently, the known super-resolution algorithms for DOA estimation can be
used for OFDM time delay estimation. Those algorithms can be classified as

• Statistical algorithms such as MUSIC, ROOT-MUSIC, and ESPRIT algorithms.

• Non-statistical algorithms such as MP algorithms.

3.3 OFDM System Sensors
In wireless communication systems, the training sequences are used for synchronization and
estimating channel parameters. Np pilot subcarriers per OFDM symbol are assumed. Pilot
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Figure 3.1: The symmetry of OFDM time delay and DOA estimation problems [1].

positions are Xi,k = Si,m, where m = 0, . . . , NP − 1; the mth pilot is assigned to the kth
subcarrier in an OFDM symbol. The least square estimate of the CFR can be obtained from
(3.7) as

Hi,k = Ri,k/Si,m =
∑L

l=1
zkl .Ai,l + wi,k/Si,m (3.9)

where zl = e−j2π∆fτl . Therefore, the multipath channel poles (to be estimated) are

zl = e−jνl ; l = 1, . . . , L (3.10)

where νl = 2π∆fτl. From (3.9), the estimated CFR can be modeled as the summation of the
complex sinusoidal signals plus the complex white noise. Hence, if the time-domain variable
τl is seen as a frequency-domain variable with L components, (3.9) can be seen as a harmonic
signal model. Therefore, any spectral estimation method that is used for the harmonic signal
model can be enhanced to use the CFR of the multipath radio channel to estimate the propaga-
tion time delays. In the following, the interested parts of the IEEE frame formats that are based
on the OFDM technology are presented.

3.3.1 IEEE 802.11a Frame Format
The PLCP frame format includes the following fields: OFDM PLCP preamble, OFDM PLCP
header, PLCP service data unit (PSDU), tail bits, and pad bits [50]. The PLCP preamble field
is used for synchronization. It consists of 10 short symbols and two long symbols as shown in
Fig. 3.2, where t1 to t10 denote the short training symbols (STS), and T1 and T2 denote the long
training symbols (LTS) [50]. The total length of the preamble is 16 µs. The PLCP preamble



3.3. OFDM System Sensors 39

is followed by the signal field and data field. It should be noted that the STS field composes
from 10 repetitions that are used for automatic gain control (AGC), diversity selection, timing
acquisition, and coarse frequency acquisition in the receiver. The LTS field composes from two
repetitions that are used for channel estimation and fine frequency acquisition in the receiver.
It should also be noted that there are two LTS OFDM symbols that are transmitted to improve
the channel estimation accuracy. The guard interval of LTS field is 1.6 µs, it is the half LTS
sequence. The analysis bandwidth of IEEE 802.11a is 20 MHz.

The short OFDM training symbol consists of 12 subcarriers, only every fourth subcarrier
is occupied and the others are zeros to generate four repetitions in the time-domain. It is given
by [50]

STS-26, 26 =
√

13/6 ∗ {0, 0, 1 + 1i, 0, 0, 0,−1− 1i, 0, 0, 0, 1 + 1i, 0, 0, 0,−1− 1i,

0, 0, 0,−1− 1i, 0, 0, 0, 1 + 1i, 0, 0, 0, 0, 0, 0, 0,−1− 1i, 0, 0, 0,−1− 1i,

0, 0, 0, 1 + 1i, 0, 0, 0, 1 + 1i, 0, 0, 0, 1 + 1i, 0, 0, 0, 1 + 1i, 0, 0}.
(3.11)

To normalize the average power of the resulting OFDM symbol in (3.11), which utilizes 12
out of 52 subcarriers, it is multiplied by a factor of

√
13/6. The long OFDM training symbol

consists of 53 subcarriers including a zero value at dc. It is given by [50]

LTS−26,26 ={1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0
, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}.

(3.12)

It is worth mentioning that all subcarriers in (3.12) are occupied while the subcarrier falling
at dc (0th subcarrier) is not used to avoid difficulties in digital to analog converter (D/A) and
analog to digital converter (A/D) offsets and carrier feed through in the RF system [50]. Fig.
3.3 shows the spectrum of STS and LTS. Fig. 3.4 shows the transmitted preamble in the time-
domain.

3.3.2 IEEE 802.11n and IEEE 802.11ac Frame Formats
Fig. 3.5 shows the high-throughput mixed (HT-mixed) and very high-throughput (VHT) PPDU
formats used in our analysis for 802.11n [49] and 802.11ac [48], respectively. For synchroniza-
tion, the low-throughput short training field (L-STF) and low-throughput Long Training Field
(L-LTF) are used. In general, the physical parameters of 20 and 40 MHz BWs of both 802.11n
and 802.11ac are equal. It should be noted that the L-STF, L-LTF, VHT-STF, and VHT-LTF
portions of the preamble for 160 MHz VHT transmissions are constructed by repeating the 80
MHz counterparts twice in the frequency. As an example, the VHT-LTF is [48]

V HTLTF−250,250 = {V HTLTF−122,122, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,V HTLTF−122,122}.
(3.13)

1t 2t 3t 4t 5t 6t 7t 8t 9t 10t GI2 1T 2T GI Signal GI Data 1

10 0.8 8 s   2 0.8 2 3.2 8 s     0.8 3.2 4 s   0.8 3.2 4 s  

Figure 3.2: OFDM training structure [50].
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Figure 3.3: The spectrum of STS and LTS training sequences of 802.11a.
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Figure 3.4: The transmitted preamble in the time-domain of 802.11a.
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Equation (3.9) indicates that the OFDM time delay estimation problem can be seen as the
DOA problem in antenna array-ULA [1], if the frequency distances between all pilot subcarriers
are equal. The distance between pilot subcarriers within one OFDM symbol is limited. It
needs that the change of phase between subsequent pilot symbols should not exceed 2π [26].
Therefore, we prefer using the LTS of 802.11a, the HT-LTF of 802.11n, and VHT-LTF of
802.11ac to achieve the highest range of estimated time delays, because they have the lowest
frequency separation of ∆f =312.5 KHz.

Although a number of pilots in each OFDM data symbol are available, i.e. at 20 MHz BW,
there are four pilots at k = {−21,−7, 7, 21}, they cannot be used due to the following reason.
The change of phase between subsequent pilot symbols should not exceed 2π as

∆φ = 2π∆fτla < 2π ⇒ a <
Tu
τl
. (3.14)

By taking into account that τl ≤ Tg, the separation between two neighboring pilots has to fulfill
the following condition: a ≤ Tu/Tg = 4. Consequently, the maximum separation distance
between pilots in one OFDM symbol is a = 4. Therefor, the previous condition can be satisfied
by using the long sequences of 802.11 OFDM frames.

The OFDM symbol structure of LTF has Np symbols or sensors, and Ndc zero values at dc
in the middle of LTF. Table 3.1 shows the LTF parameters of each bandwidth. The number of
occupied subcarriers at 20 MHz BW of 802.11a and 802.11n is 52 and 56, respectively. These
zero values at dc in the middle of LTF lead to an array discontinuity of the estimated CFR.
Hence, an interpolation is used to mitigate the array discontinuity as we have proposed in [53]
and [54]. The useful number of pilots is consequently, N = Np + Ndc. The number of LTS
per frame is 2 and the number of HT-LTFs per frame could be 1, 2, or 4, and the number of
VHT-LTFs per frame could be 1, 2, 4, 6, or 8 that are necessary for the demodulation of the
PPDU data or for channel estimation during a null data packet (NDP) [48], [49].

3.4 Super-Resolution Algorithms for Wireless Indoor Posi-
tioning

An effective wireless indoor positioning can be implemented using the opportune signals of
IEEE 802.11 standards. The largest channel bandwidths of 802.11a and 802.11n are 20 and
40 MHz, respectively, while it is 160 MHz in 802.11ac. Therefore, super-resolution algo-
rithms should be used for post processing to reduce bandwidth requirements as it has been
explained in Section 2.4. They can provide a high resolution DOA estimation based on the
eigen-decomposition of the covariance matrix such as MUSIC [99], ROOT-MUSIC [20], and
ESPRIT [28], or the eigen-decomposition of the data matrix directly such as MP algorithm [34].

Table 3.1: The lengths of LTS and LTF regarding the 20 MHz BW of 802.11a and all BWs of
802.11ac.

Bandwidth (MHz) 20 (a) 20 40 80 160
FFT/IFFT order 64 64 128 256 512

Np 52 56 114 242 484
Ndc 1 1 3 3 3+11+3
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                         Data HT-LTFs    Extension HT-LTFs 

    8 s      8 s      4 s      8 s      4 s    4 s per LTF       4 s per LTF 

 
 

 

                                                             HT-Mixed Format 
 

    8 s      8 s      4 s      8 s      4 s  4 s per VHT-LTF 4 s     

 

 
 

                           VHT Format 
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Figure 3.5: PPDU formats of 802.11n and 802.11ac.

Based on the symmetry of the DOA and OFDM time delay estimation problems presented
in Section 3.2, all subspace-based algorithms can be used to estimate the time delays of a
multipath channel based on the estimated CFR using the preamble of the OFDM frame. In
case of covariance matrix based techniques, a minimum of L independent CFR estimates of
the same channel are required to estimate the time delays of L paths. The estimated CFRs
must be obtained repeatedly, which is a time-consuming and wasteful process. In addition,
the channel should not vary over L or more estimates [100], where the wireless channel can
vary rapidly. Furthermore, additional spatial-smoothing methods should be applied to modify
the covariance matrix to distinguish between correlated channel components to solve the rank
condition problem of the covariance matrix [91], [100].

On the other hand, the MP algorithm works with the data directly without forming a covari-
ance matrix. The snapshot-by-snapshot analysis is used, hence, non-stationary environments
can be handled easily. MP algorithm can find the DOA in the presence of multipath coher-
ent signals without performing additional processing like spatial smoothing as required in the
conventional covariance matrix based techniques [90]. Table 3.2 summarizes the comparison
between the MP algorithm and the covariance matrix based algorithms. Therefore, the principle
of MP algorithm is superior compared with other super-resolution algorithms such as ESPRIT
and Root MUSIC. As a result, the principle of MP algorithms represents our concern in this
work to develop for wireless indoor positioning.

3.5 1-D Matrix Pencil Algorithm
The MP algorithm was originally developed in order to estimate the poles of a system [34], [35],
[101]. It is more efficient in computation, less restrictive about signal poles, and less sensitive
to noise of signals with unknown damping factors than the polynomial method [34]. In the
literature, the 1-D MP algorithm has been presented based on the uniform space between array
elements using the ULA to estimate multiple frequencies or angle of arrivals of narrowband
signals. In this work, the 1-D MP algorithms are used to estimate the time delays using the
OFDM pilots, which are distributed equally in the frequency dimension. It has been published
in [53] and [54].

The objective is to find the set {zl} presented in (3.10), which corresponds to the time
delays. The rank of the estimated CFR vector HN×1 defined in (3.9) is one. To enhance the
rank condition (the dimensionality of the signal subspace), a partition and stacking process
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Table 3.2: The comparison between the principle of MP algorithm and that of the covariance
matrix based algorithms.

Description Matrix Pencil MUSIC and ESPRIT
First step Works with the measured data

directly.
Statistical methods by finding
the covariance matrix.

To estimate L paths Only a single channel estimate is
used.

More than L independent chan-
nel estimates are used.

Channel Status Channel must remain constant
over a single estimate. Non-
stationary environments can be
handled easily.

Channel must remain constant
over several estimates. Non-
stationary environments cannot
be handled easily.

In relatively rapidly
varying channels

It can be applied. They cannot be applied.

For channel corre-
lated components

It can distinguish between them. A preprocessing, called spatial
smoothing, is necessary to dis-
tinguish between them.

In coherent multi-
path scenarios

It can be applied. They failed to produce a success-
ful recovery.

Time and Complex-
ity

Time saving and less complex. It
can be applied for real time ap-
plications

Time consuming and wasteful
process.

should be used. By using the principle of the conventional MP [34], the Hankel matrix Y can
be created by windowing the estimated CFR vector H as follows

Y =


H0 H1 · · · HP

H1 H2 · · · HP+1
...

... . . . ...
HN−P−1 HN−P · · · HN−1


(N−P )×(P+1)

(3.15)

where P is the pencil parameter which plays an important role in reducing noise sensitivity.
From (3.15), the value of pencil parameter P should be determined to generate the Hankel
matrix. In fact, P can be selected as, L ≤ P ≤ N − L, for noiseless data. For noisy data,
the value of P should be selected to provide a balance between resolution, complexity, and
stability of the algorithm. Different values of P have been used in the literature for algorithms
that use only single snapshot. If the number of antennas is N , the value of P has been selected
in [102], [103], [104] as N/2, 3N/4, 3N/5, respectively. However, it has been found in [34]
that for efficient noise filtering in the conventional MP algorithm, the parameter P should be
selected between N/3 and 2N/3. We will investigate that for time delay estimation problem
using OFDM systems in the measurement chapter.

For noiseless data, the two submatrices Y1 and Y2 of the matrix pencil can be defined in
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terms of Y by deleting the last and the first row, respectively, as

Y1 =


H0 H1 · · · HP

H1 H2 · · · HP+1
...

... . . . ...
HN−P−2 HN−P−1 · · · HN−2


(N−P−1)×(P+1)

, (3.16)

Y2 =


H1 H2 · · · HP+1

H2 H3 · · · HP+2
...

... . . . ...
HN−P−1 HN−P · · · HN−1


(N−P−1)×(P+1)

. (3.17)

From (3.9), in case of noiseless data, the matrices of (3.16) and (3.17) can be written as [35]

Y1 = Z1AZ2 (3.18)

Y2 = Z1AZdZ2 (3.19)

where

Z1 =


1 1 . . . 1
z1 z2 . . . zL
...

... . . . ...
zN−P−2
1

zN−P−2
2 · · · zN−P−2

L


(N−P−1)×L

, (3.20)

Z2 =


1 z1 . . . zP1
1 z2 . . . zP2
...

... . . . ...
1 zL · · · zPL


L×(P+1)

, (3.21)

Zd = diag [z1, z2, . . . , zL] , (3.22)

A = diag[α1e
−jωcτ1 , . . . , αLe

−jωcτL ]. (3.23)

Then, the matrix pencil equation is

Y2 − ηY1 = Z1A[Zd − ηI]Z2 (3.24)

where I is the identity matrix. The rank of Y2 − ηY1 is the number of effective paths L while
the pencil value is L ≤ P ≤ N − L [35], [101]. However, if η = zl; l = 1, ..., L, the rank of
the pencil matrix reduces by one. Therefore, the estimates of multipath channel poles {zl} are
the generalized eigenvalues of the matrix pair {Y2,Y1}, which can be computed as

Y2 − ηY1 ⇒ Y†1Y2 − ηY†1Y1 ⇒ Y†1Y2 − ηI (3.25)

where the superscript † denotes the Moore-Penrose pseudo-inverse. It is defined for Y1 as

Y†1 =
(
YH

1 Y1

)−1
YH

1 (3.26)

where the superscript H denotes the conjugate transpose.
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Summary: The enhanced 1-D MP algorithm for channel profile parameters estimation and
then TDOA estimation will be summarized in the following:
Step1: From the estimated CFR, find the Hankel matrix Y as in (3.15). To increase the number
of snapshots inherently, an extended matrix Yex could be defined in forward and backward:

Yex = [Y : Π
N−P

Y∗ Π
P+1

] (3.27)

where : means matrix partitioning, and Π is the exchange matrix that reverses the ordering of
the rows; it has been defined in (A.3) of appendix A. The extended matrix can also be generated:

Yex = [Y : Π
N−P

Y∗]. (3.28)

If we have a vector of 9 samples, Table 3.3 shows the samples order using (3.27) and (3.28).
Both of them give the same results. In this work, the form of (3.27) will be used.
Step2: The SVD is used for noisy data to reduce part of the noise effect and to get the signal
subspace. The matrix Y of (3.15) (or Yex of (3.27)) can then be decomposed as follows [83]

Y = UΣVH (3.29)

where U = {u1, · · · ,uN−P} is (N −P ×N −P ) unitary matrix composed of eigenvectors of
YYH , V = {v1, · · · ,vP+1} is (P + 1 × P + 1) unitary matrix composed of eigenvectors of
YHY, and Σ =

√
eig(YHY) is a diagonal matrix with the singular values (SVs) of Y being,

η1 ≥ η2 ≥ · · · ≥ ηB, where B = min(N − P, P + 1). The B-dimensional subspace of the
signal vector can be split into two orthogonal subspaces: the signal subspace and the noise sub-
space. Hence, the matrix Σ can be split into two submatrices Σs and Σn. Σs is L×L diagonal
matrix with the L largest SVs which characterize the signal subspace as, ηk = ηsk + σ2

k, where
k = 1, . . . , L. Σn is (B−L)× (B−L) diagonal matrix with the (B−L) smallest SVs which
characterize the additive noise as, ηk = σ2

k, where k = L + 1, ..., B. If the forward-backward
matrix Yex of (3.27) is used in (3.29), B = min(N − P, 2(P + 1)); it will be called the 1-D
MP-Ex algorithm.
Step3: Based on the Information Theoretic Criteria (ITC), the Minimum Descriptive Length
(MDL) is used to estimate the signal subspace dimension L̂ by eliminating the noise compo-
nents [105]. The log-likelihood function of [105] and the modified penalty function of [106]

Table 3.3: The distribution of samples inside both possible generations of the extended matrix
using the exchange matrix.

Yex = [Y : Π Y∗Π ]

1 2 3 4 5 6 9 8 7 6 5 4
2 3 4 5 6 7 8 7 6 5 4 3
3 4 5 6 7 8 7 6 5 4 3 2
4 5 6 7 8 9 6 5 4 3 2 1

Yex = [Y : Π Y∗]

1 2 3 4 5 6 4 5 6 7 8 9
2 3 4 5 6 7 3 4 5 6 7 8
3 4 5 6 7 8 2 3 4 5 6 7
4 5 6 7 8 9 1 2 3 4 5 6
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are used, in order to bias the model over estimation, according to

MDL(k) = −(B − k)P · log


B∏

i=k+1

η
1/(B−k)
i

1
B−k

B∑
i=k+1

ηi

+
1

4
k(2B − k) log(P ) + k (3.30)

where ηi, 0 ≤ i ≤ B−1, are the SVs in a descending order. It is worth mentioning that the mod-
ified MDL does not require any subjective threshold such as the conventional hypothesis [105].
The estimated number of arrived signals L̂ is determined as the value of k ∈ {0, 1, . . . , B − 1}
for which the modified MDL is minimized. From (3.30), the term in the brackets is the ratio of
the geometric mean to the arithmetic mean of the smallest B− k SVs. To simplify (3.30), both
terms can be divided by P .

The principle of MDL criterion of detecting the number of arrival signals by using the SVs
is that the SVs corresponding to noise subspace are equal to the noise power and those noise
SVs have roots in Gaussian distribution. The cost function has been assumed based on Gaussian
distribution using information theory. This cost function estimates the threshold which divides
the set of SVs into that of signal and that of noise.
Step4: The SVD of Y in (3.15) or Yex in (3.27) can then be decomposed as

Y = UΣVH = Ys + Yn = UsΣsVs
H + UnΣnVn

H (3.31)

where Us and Vs are the submatrices of U and V corresponding to the largest L̂ singular values
of Σs and span the signal subspace while Un and Vn are corresponding to the singular values
of Σn and span the noise subspace. From (3.31), if the number of columns in Un increases,
which represents the dimension of the noise subspace, more noise components can be absorbed
into the noise subspace, where a larger noise subspace implies high estimation accuracy [36].
Therefore, the term N −P should be large enough to include the signal subspace and the noise
subspace dimensions. However, N − P should be smaller than P + 1 to reduce the overall
computational complexity, as it will be explained in Section 3.9.
Step5: The filtered matrices Ys1 and Ys2 can be obtained from Ys instead of Y in the con-
ventional 1-D MP algorithm, or Yex in the 1-D MP-Ex algorithm. Ys1 and Ys2 can be defined
as, Ys1 = Us1ΣsV

H
s , Ys2 = Us2ΣsV

H
s , where Us1 and Us2 are obtained from Us by deleting

the last and the first row, respectively. The desired zl′s can be obtained as the eigenvalues of
U†s1Us2, which represents a generalized eigenvalue problem of dimension L̂ × L̂. In case of
using (3.15), the two submatrices Ys1 and Ys2 can also be defined in terms of Ys by deleting
the last and the first column, respectively. The generalized eigenvalue problem is then that of
Vs2

H [Vs1
H ]
†
, where Vs1 and Vs2 are obtained from Vs by deleting the last and the first row,

respectively [35].
Step6: The lth time delay can then be calculated as

zl = e−j2π∆fτ̂l ⇒ τ̂l =
arg(zl

∗)

2π∆f
; l = 1, ..., L̂ (3.32)

where arg(zl
∗) denotes the phase of zl∗, and the superscript ∗ denotes the complex conjugate.

Once the L̂ effective poles z = [z1, . . . , zL̂]T are estimated, the channel gains A0 =
[α1e

−jωcτ1 , . . . , αL̂e
−jωcτL̂ ]T can be obtained by solving a least square problem, where the su-

perscript T denotes the transpose. To make notations simpler, we rewrite (3.9) in a matrix form:

H = ZA0 (3.33)
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where

Z =



z
−(N−1)

2
1 z

−(N−1)
2

2 . . . z
−(N−1)

2
L̂...

... . . . ...
1 1 1 1
...

... . . . ...

z
(N−1)

2
1 z

(N−1)
2

2 . . . z
(N−1)

2
L̂


N×L̂

(3.34)

The channel complex gains can then be calculated:

A0 = Z†H (3.35)

3.6 1-D Unitary Matrix Pencil Algorithm
The UMT was applied successfully in [90] for 1-D UMP algorithm, in which the complexity
of the computation is reduced by using real computations. In this section, we will develop the
principle of the computationally efficient 1-D UMP algorithm for wireless positioning using the
wideband orthogonal multi-carrier signals represented by OFDM to estimate the time delays of
a wireless multipath channel. The results have been published in [53] and [54], as we will see
in the measurement chapter. To do that, three theorems of the UMT are required presented in
appendix A, where their proofs can be found in [90].

By using the centro-symmetry of the OFDM (corresponding to that in the antenna arrays) or
any complex matrix could be written in a centro-hermitian matrix form, the centro-Hermitian
matrices Y and Yex defined in (3.15) and (3.27) can be converted to a real matrix YRe using
theorem 3 in appendix A as

YRe = QH
K1

YQK2 or YRe = QH
K1

YexQK2 (3.36)

where QK1 and QK2 are unitary matrices whose columns are conjugate symmetric and have
the sparse structure as

Qa(even) =
1√
2

[
I jI
Π −jΠ

]
, (3.37)

Qb(odd) =
1√
2

 I 0T jI

0
√

2 0
Π 0T −jΠ

 . (3.38)

For Qa, the identity matrix I and the exchange matrix Π have the dimension of a/2, for Qb, I
and Π have the dimension of (b− 1)/2, and 0 is a (b− 1)/2 zero row vector.

After that some selection matrices are used to get the matrix pencil equation. The selection
matrices J1 and J2 are used to select the rows of the real matrix YRe in order to write the matrix
pencil equation. They are given by

J1 = [IN−P−1 : 0(N−P−1)×1], (3.39)

J2 = [0(N−P−1)×1 : IN−P−1]. (3.40)

In order to estimate the set of poles {zl}, the matrix pencil equation can be written as

J2Y = zJ1Y or J2Yex = zJ1Yex. (3.41)
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Equation (3.41) can be written in terms of Yex as

QHJ2QQHYexQ = zQHJ1QQHYexQ (3.42)

where the unitary matrices Q have proper dimensions. From (3.36), (3.42) becomes

QHJ2QYRe = zQHJ1QYRe. (3.43)

By using the next properties ΠΠ = I, ΠQ = Q∗, QHΠ = QT , and ΠJ2Π = J1, where the
sizes of the corresponding matrices Π and Q are appropriate, it has been proved in [90] that

QHJ2Q = (QHJ1Q)
∗
. (3.44)

Therefore, (3.43) can be written as

(QHJ1Q)
∗
YRe = zQHJ1QYRe. (3.45)

As it is described in the previous, z = {zl; l = 1, ..., L̂} are the rank reducing numbers of the
matrix pencil equation, hence, (3.45) can be written as

(QHJ1Q)
∗
YRe = e−jνlQHJ1QYRe (3.46)

where νl = 2π∆f τ̂l defined in (3.10). By using the definition of the tangent function with some
mathematical manipulations, it can be shown that

tan(νl/2)KReYRe = KImYRe (3.47)

where
KRe = Re(QH

K1
J1QK2) KIm = Im(QH

K1
J1QK2). (3.48)

By using the same principle of 1-D MP, the matrix YRe can be replaced by its signal subspace
Us in order to reduce the effect of noise. Therefore, the matrix pencil equation is

KReUsΨν = KImUs. (3.49)

The generalized eigenvalues of pencil pair (KImUs,KReUs) can be calculated as the eigenval-
ues of

Ψν = [KReUs]
†KImUs (3.50)

to get Zd = diag{Λl = tan(νl/2); l = 1, . . . , L̂}. Then, calculate the time delays according to
τ̂l = 1/π∆f × tan−1(Λl), where l = 1, . . . , L̂.

Summary: The enhanced 1-D UMP algorithm for channel profile parameters estimation
and then TDOA estimation will be summarized in the following:
Step1: The rank of the CFR vector HN×1 defined in (3.9) is one. To enhance the rank condi-
tion, a partition and stacking process should be used. Therefore, the Hankel matrix Y is defined
as in (3.15) or the extended matrix Yex as in (3.27).
Step2: Calculate the real data matrix YRe, using the centro-symmetry of the OFDM, which
could be written in a centro-hermitian matrix form, by either using Y of (3.15) (will be called
UMP algorithm) or by using Yex of (3.27) (will be called UMP-Ex algorithm) as, YRe =
QH
K1

YexQK2 , where QK1 and QK2 are unitary matrices given in (3.37) and (3.38).
Step3: Perform the SVD on YRe as in (3.31) to get the signal subspace, where YRe can be
decomposed as, YRe = UΣVH = UsΣsVs

H + UnΣnVn
H . Then, estimate the number of
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effective paths L̂ using the modified MDL criterion as in (3.30).
Step4: Determine Us as the left singular vectors of U, which span the signal subspace and
correspond to the largest L̂ singular values of YRe.
Step5: Calculate the selection matrices KRe and KIm to extract the L̂ poles {zl} just once and
store them as constant matrices according to KRe = Re(QH

K1
J1QK2) and KIm = Im(QH

K1
J1QK2),

where J1 is a selection matrix constructed from an identity matrix and a zero vector according
to J1 = [IN−P−1 : 0(N−P−1)×1].
Step6: Finally, the desired zl′s can be obtained by computing the generalized eigenvalue prob-
lem of [KReUs]

†KImUs to get {Λl = tan(νl/2); l = 1, . . . , L̂}. The required time delays can
then be calculated according to τ̂l = 1/π∆f × tan−1(Λl), where l = 1, . . . , L̂.

Such as in 1-D MP, once the L̂ effective poles z = [z1, . . . , zL̂]T are estimated, the channel
gains A0 = [α1e

−jωcτ1 , . . . , αL̂e
−jωcτL̂ ]T can be obtained by solving a least square problem as

in (3.35).

3.7 1-D Beam-space Matrix Pencil Algorithm
The DFT was applied successfully in [92] for 1-D BMP algorithm to estimate the DOA of the
narrowband signals, in which the complexity of the computation is reduced by using real valued
computations. In this section, the principle of 1-D BMP has also been developed for wireless
positioning systems to estimate time delays of a wireless multipath channel. The results have
been published in [53] and [54], as we will see in the measurement chapter.

Let us assume that FC is the DFT matrix of dimensions C × C, where C = N − P to
simplify the notations. The conjugate centro-symmetrized version of the mth row of FC can
be written as

fHm = ej
C−1
2
m 2π

C × [1, e−jm
2π
C , e−j2m

2π
C , . . . , e−j(C−1)m 2π

C ] (3.51)

where the row vector fHm represents the DFT beam steered at spatial frequency, ν = m×2π/C.
To get the matrix pencil equation of BMP, let us re-describe the necessary derivation of [93]

and [29] for wireless positioning. The noiseless Hankel matrix of (3.15) can be represented as

Y = Z1AZ2 ⇒ Y = Z
′

1Zd

C−1
2 AZ2 (3.52)

where Z2, Zd, and A are defined in (3.21), (3.22), and (3.23), respectively, Z1 is similar to
(3.20) without deleting the last row, and

Z1
′ =



z
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2
1 z
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2 . . . z
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2
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2
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(C−3)

2
L

z
(C−1)

2
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(C−1)
2

2 · · · z
(C−1)

2
L


C×L

. (3.53)

Let us assume νl = −2π∆fτl, hence, the multipath channel poles to be estimated are {zl =
ejνl}. Then, multiply (3.52) by the conjugate centro-symmetrized DFT matrix FH

C whose rows
given by (3.51) as follows

YF = FH
CZ

′

1Zd

C−1
2 AZ2 = BZd

C−1
2 AZ2 (3.54)



50 Chapter 3. System Model and Time Delay Estimation using 1-D Matrix Pencil Algorithms

where B = FH
CZ

′
1 is a real valued beam-space manifold of size C × L. The mth element

(0 ≤ m ≤ C − 1) and the lth element (1 ≤ l ≤ L) of the DFT beam-space manifold B is [29]

bm(νl) =
sin[C

2
(νl −m2π

C
)]

sin[1
2
(νl −m2π

C
)]
. (3.55)

By comparing two successive beams bm(νl) and bm+1(νl) =
sin[C

2
(νl−(m+1) 2π

C
)]

sin[ 1
2

(νl−(m+1) 2π
C

)]
, it can be shown

that they are related as

sin[
1

2
(νl −m

2π

C
)]bm(νl) + sin[

1

2
(νl − (m+ 1)

2π

C
)]bm+1(νl) = 0. (3.56)

After some trigonometric manipulations, (3.56) can be written as

tan(νl/2){cos(m
π

C
)bm(νl) + cos((m+ 1)

π

C
)bm+1(νl)} =

sin(m
π

C
)bm(νl) + sin((m+ 1)

π

C
)bm+1(νl).

(3.57)

It is worth mentioning that (3.57) can be found from any two beams, not necessary to be suc-
cessive, where the ith invariance could be 1 ≤ i ≤ C−1. Consequently, two selection matrices
Γ1 and Γ2 of size (C × C) should be calculated to get the matrix pencil equation. For the ith
invariance (1 ≤ i ≤ C − 1), the ath row of Γ1,i (1 ≤ a ≤ C) has all its elements equal to zero
except the ath and the bth elements that are given by [29], [92]

xa = cos((a− 1)π/C) (3.58a)

xb =

{
(−1)i+1 cos((a+ i− 1)π/C) ; 1 ≤ a ≤ C − i, b = a+ i

(−1)C+i cos((a+ i− 1)π/C) ; a > C − i, b = a+ i− C
(3.58b)

The ath row of Γ2,i is expressed in the same way as for Γ1,i by replacing cosine functions by
sine functions. For the SBMP algorithm, a single invariance is used to generate Γ1 and Γ2. For
the MBMP algorithm, all or a number of invariances are used to generate Γ1 and Γ2, where
Γ1 and Γ2 are formed by vertically staking Γ1,i and Γ2,i for 1 ≤ i ≤ C − 1, respectively. By
combining all C equations of (3.57) in vector form 0 ≤ m ≤ C − 1, it can be written as

tan(νl/2)Γ1bC(νl) = Γ2bC(νl) (3.59)

where bC(νl) = {b0(νl), b1(νl), · · · , bC−1(νl)}T . Now, if the number of effective paths is L,
the beam-space matrix of channel profile time delays is

B = [bC(ν1),bC(ν2), · · · ,bC(νL)]C×L. (3.60)

Hence, the beam-space manifold relation of (3.59) including all time delays of the effective
paths is

Γ1BΩ = Γ2B (3.61)

where Ω = diag{tan(ν1
2

), tan(ν2
2

), · · · , tan(νL
2

)}. From the definitions of A and Z2, it is
clear that they are full rank matrices. Therefore, B and YF matrices share the same column
space [29].

The real data matrix can be obtained by applying the conjugate centro-symmetrized version
of the DFT matrix as

YF = FHY ⇒ YRe = [Re(YF ), Im(YF )]. (3.62)
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For noisy data, the largest L̂ singular left vectors of the real valued matrix YRe will span the
column space of B, where L̂ is estimated by using the modified MDL. Hence, by defining Us

as the left singular vectors, we have
Us = BT (3.63)

where T is a nonsingular L̂ × L̂ matrix. From (3.61) and (3.63), the required matrix pencil
equation of BMP is

Γ1UsΨν = Γ2Us (3.64)

where Ψν = T−1ΩT.
Summary: The summary of the enhanced 1-D BMP for channel profile parameters estima-

tion is described in the following:
Step1: Find the Hankel matrix Y from the CFR as in (3.15).
Step2: Apply the conjugate centro-symmetrized version of the DFT matrix YF = FHY as in
(3.62) to get the real data matrix YRe = [Re(YF ), Im(YF )].
Step3: Perform the SVD on YRe as in (3.29) to get the signal subspace, and estimate the num-
ber of effective paths L̂ using the modified MDL criterion as in (3.30).
Step4: Determine Us as the left singular vectors of U, which span the signal subspace and
correspond to the largest L̂ singular values of YRe.
Step5: Calculate the selection matrices Γ1 and Γ2 as in (3.58) just once and store them as
constant matrices.
Step6: Compute the generalized eigenvalue problem. The matrix pencil equation is

Γ1UsΨν = Γ2Us ⇒ Ψν = (Γ1Us)
†Γ2Us = (UH

s G1Us)
−1UH

s G2Us, (3.65)

and the pencil pair is (Γ2Us,Γ1Us), where G1 = ΓH
1 Γ1 and G2 = ΓH

1 Γ2. G1 and G2 are
C×C matrices that can be calculated just once and stored as constant matrices. The eigenvalues
of Ψν = WZdW

−1 are computed to get Zd = diag{Λl = tan(νl/2); l = 1, . . . , L̂}, where
νl = −2π∆f τ̂l. The time delays can then be calculated as, τ̂l = −1/π∆f × tan−1(Λl), where
l = 1, . . . , L̂. From (3.65), the computational complexity of SBMP and MBMP algorithms are
the same in real time. Such as in 1-D MP, the channel gains A0 = [α1e

−jωcτ1 , . . . , αL̂e
−jωcτL̂ ]T

can be obtained by solving a least square problem as in (3.35).

3.8 Diversity Techniques using 1-D Matrix Pencil Algorithms
If a number of LTFs are available in the OFDM frame or if a number of antennas are used per
each BS, a number of CFRs can be obtained. The Hankel matrix similar to (3.15) is constructed
for each snapshot separately. Then, for spatial or temporal diversity, we propose the following
enhanced matrix

YE =
[
Y0 Y1 . . . Yq−1

]
N−P×q(P+1)

(3.66)

where q is the number of estimated CFRs per each BS either by using a number of antennas
for a space diversity or by using a number of LTSs per OFDM frame for a time diversity.
From (3.66), the required Hankel matrices are generated first separately and then combined
horizontally. The horizontal stacking has been preferred to reduce the complexity of the SVD.
The size of the multiple snapshot matrix YE is (N −P )× q(P + 1); the number of columns is
multiplied by q. Similar to the single snapshot MP, the matrices YE1 and YE2 can be formed
by deleting the last and the first row of (3.66), respectively. An extended matrix Yex,q can also
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be defined from (3.66) as

Yex,q = [YE : Π
N−P

Y∗E Π
q(P+1)

](N−P )×2q(P+1). (3.67)

The multiple snapshot forward-backward matrix Yex,q can also be defined by finding the ex-
tended matrix for each snapshot as in (3.27) and then combined horizontally as in (3.66). The
same procedure of various 1-D MP algorithms is then applied. However, the computational
complexity in SVD calculation increases if the number of snapshots in YE increases.

For large bandwidths of 802.11ac, the number of required operations is high, therefore,
large bandwidths can be treated as small bandwidths by partitioning as a kind of frequency
diversity. The Hankel matrix or the extended matrix is generated for each partition such as the
previous, and then they are combined horizontally. For example, in case of 160 MHz BW, it can
be processed as two 80 MHz bandwidths. Two Hankel or extended matrices are generated, one
for the negative 80 MHz, Yneg, and one for the positive 80 MHz, Ypos. By using the multiple
snapshot principle in (3.66), they are combined as

YE = [Yneg,Ypos]. (3.68)

Using the principle of frequency diversity presented in (3.68) is a robust idea, where the whole
information (the measured CFR samples) can be used with a huge reduction in the complexity
as we will see in the next section and a negligible reduction in the performance as we will see in
the measurement chapter. The principle of temporal and spectral diversity has been presented
in [54] and [55] and the principle of spatial diversity has been presented in [56].

Fig. 3.6 shows a block diagram of the proposed TDOA estimation algorithms.

3.9 Computational Complexity
In all 1-D MP algorithms, the most computationally intensive step is to estimate the signal
subspace using the SVD. In 1-D UMP algorithms, the Hankel matrix Y of size C × (P + 1)
or the extended matrix Yex of size C × 2(P + 1) is transformed by UMT into a real matrix
of the same size with negligible computational effort. In 1-D BMP algorithms, the FH

C matrix
is multiplied by the Hankel matrix Y to get a real matrix of size C × 2(P + 1). However,
the utility of DFT beam-space MP over unitary MP is associated with DOA scenarios, where
one employs a subset of the rows of FH

C to transform from element space to beam-space, when
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Figure 3.6: Operational flow of the proposed TDOA estimation using 1-D MP algorithms.
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some priori information is available. From (3.66) and (3.67), the number of columns of the
above matrices increases by a factor of q if a number of q snapshots are used.

The computational complexity of these algorithms for estimating the singular values and
left singular vectors is shown in Table 3.4 [83]. From Table 3.4, the SVD computational com-
plexity of UMP and BMP algorithms decreases by a factor of 4. The pencil parameter was
selected to be 2N/3, where N = Np + Ndc, to reduce the complexity and to stay in the ap-
propriate range. Table 3.5 shows the value of N and P of each BW, where N at 20 MHz BW
is equal to 53 and 57 in case of using 802.11a and 802.11n, respectively. To reduce the com-
plexity of 160 MHz BW, it can be treated as two snapshots of 80 MHz BW, 80+80 MHz, as
a kind of frequency diversity. Fig. 3.7 shows a comparison of the computational complexity
of the initial transformation and SVD of these MP algorithms regarding 802.11a, 802.11n, and
802.11ac BWs based on Table 3.4 and Table 3.5.
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Figure 3.7: Comparison of computational complexity of the initial transformation and SVD of
various 1-D MP algorithms.

Table 3.4: Computational Complexity of the Initial Transformation and SVD.

Description Data matrix transformation SVD

MP
Y 17C3/3 + C2P ′q
no Complex multiplications

MP-Ex
Yex 17C3/3 + 2C2P ′q
no Complex multiplications

UMP
Y → YRe 17C3/3 + C2P ′q

Negligible Computations Real Multiplications

UMP-Ex
Yex → YRe 17C3/3 + 2C2P ′q

Negligible Computations Real Multiplications

SBMP
Y → YF → YRe 17C3/3 + 2C2P ′q

C2P ′q Complex multiplications Real Multiplications

MBMP
Y → YF → YRe 17C3/3 + 2C2P ′q

C2P ′q Complex multiplications Real Multiplications
C = N − P, P ′ = P + 1

Table 3.5: CFR vector length and pencil parameter value regarding the 20 MHz BW of 802.11a
and all BWs of 802.11ac.

Bandwidth (MHz) 20 (a) 20 40 80 160
FFT/IFFT order 64 64 128 256 512

N 53 57 117 245 501
P 35 38 78 163 334

P ′ = P + 1 36 39 79 164 335
C = N − P 17 19 39 82 167



CHAPTER 4

Joint Time Delay and DOA Estimation
using 2-D Matrix Pencil Algorithms

Using multiple antennas at both the transmitter and receiver known by MIMO technology has
attracted attention in modern wireless communications, because it offers a significant increases
in data throughput and it improves the link reliability without additional bandwidth or increased
transmit power. For example, the emerging IEEE 802.11ac provides as a maximum 8×8 MIMO
antenna configuration [48]. While the main advantage of MIMO is to enhance data throughput,
it can also be used to estimate the DOA and as a kind of spatial diversity for TDOA estimation
besides the frequency diversity coming from the OFDM.

The problem of joint estimation of angles and relative time delays of multipath signals
has been addressed for narrowband signals in [27]. The ESPRIT technique was used. It was
assumed that the number of paths is small and discrete. The ESPRIT algorithm was also used
in [107] to estimate the DOA for OFDM systems. The principle of 1-D MP was enhanced
in [36] for estimating 2-D frequencies for narrowband signals using the URA. Recently, the 2-D
UMP was presented in [37] to find the DOAs of the narrowband signals (azimuth and elevation
angles), in which the complexity of the computations can be reduced by doing real valued
computations using the UMT [94]. Furthermore, the 2-D BMP is presented in [38] to find the
DOAs of the narrowband signals (azimuth and elevation angles), in which the complex data
matrix can be transformed into a real data using the DFT matrix transformation; the dimension
of the data matrix can also be reduced using selected rows of the DFT matrix.

In this chapter, the problem of jointly estimating the propagation time delays and relative
DOAs of multipath signals has been investigated using a single transmitter and a number of
receiving BSs for 2-D wireless indoor positioning system based on the hybrid TDOA and DOA
measurements. Different realizations of the recent subspace-based algorithms, represented by
2-D MP algorithms, to estimate these parameters simultaneously are implemented based on the
physical MIMO-OFDM system parameters. The key element of our work is to use the preamble
of the OFDM frame to measure the channel state for additional purposes to the demodulation
of the data portion. The ULA is used, which consists of M identical and omni-directional an-
tennas. Hence, we have a number of M antennas distributed equally in the space dimension,
and a number of N pilots distributed equally in the frequency dimension. In fact, using the
ULAs and the multi-carrier signals for joint estimation of these parameters can resolve a larger
number of paths in case two or more paths have equal time delays or DOAs. In addition, a
high accuracy can be obtained without using high-order antenna arrays or a very wide band-
width. Some results have been introduced in [57], and the others have been presented in [58].
The performance of using multiple antennas and wideband orthogonal multi-carrier signals are
presented.

The rest of the chapter is organized as follows: first, the principle of the URA and S-CFR
are investigated in Sections 4.1 and 4.2, respectively. After that, the enhanced 2-D MP, 2-D
UMP, and 2-D BMP algorithms are presented in Sections 4.3, 4.4, and 4.5, respectively. The
derivations of matrix pencil equations of these algorithms can be obtained from the relevant
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text of each algorithm. We will focus here on the main steps with our modifications to estimate
time delays and relative DOAs of wireless multipath channel. The diversity techniques using
2-D MP algorithms are presented in Section 4.6. The computational complexity of various 2-D
MP algorithms is investigated precisely in Section 4.7, and it will be compared with that of 1-D
MP algorithms in Section 4.8.

4.1 2-D Uniform Rectangular Array Problem Formulation

The 2-D MP algorithms were used in the literature to estimate the azimuth and elevation angles
or two frequencies. In this work, they will be used to estimate the time delays and the relative
DOAs of multipath propagation signals based on the estimated S-CFR. The symmetry of the
S-CFR and the URA represents our key to propose that. To show that let us consider a URA
of M × N sensors lying in the XY plane as shown in Fig. 4.1. The distances between array
elements are ∆x and ∆y along the x and y directions, respectively. If L narrowband signals
with wavelength λ arrive at the input of this array, the noiseless data r(m,n) measured at the
feeding point of the omni-directional antenna located at (m,n) can be expressed as [37], [38]

r(m,n) =
∑L

l=1
αlx

m
l y

n
l (4.1)

where αl represents the complex gain of the lth signal or the lth path, and the poles xl and yl
are given by

xl = e−j2π∆x cosφl sin θl/λ (4.2)

yl = e−j2π∆y sinφl sin θl/λ (4.3)

where φl and θl are the azimuth and the elevation angles, respectively, as shown in Fig. 4.1.
The system poles which should be estimated are

xl = e−jµl yl = e−jυl (4.4)

where µl = 2π∆x cosφl sin θl/λ and υl = 2π∆y sinφl sin θl/λ.

4.2 MIMO-OFDM System Model

We consider the ULA, which contains M identical and omni-directional antennas as shown in
Fig. 4.2. From chapter 2, the multipath CIR h(t) is given in (2.1) as,

h(t) =
∑L

l=1
αla(θl)δ(t− τl).

For ULA, θl is defined as the angle between the direction orthogonal to the array axis and the
impinging wave. The array response of the mth antenna to the lth path can be represented as
in (2.2), am(θl) = e−j2πfτm(θl), where τm(θl) = mρ sin θl/c represents the different propaga-
tion time that the plane wave impinging from direction θl needs to span the different distance
between antenna m and the reference antenna in the antenna array as shown in Fig. 4.2. ρ is
the distance between adjacent antenna elements which should satisfy ρ ≤ λ/2 to avoid spatial
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Figure 4.1: Signal modeling at the input of the URA.
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aliasing [108], where λ is the wavelength. The vector collecting all phases of the received sig-
nals at the array elements is known as steering vector or array manyfold and is given by [65]

a(θl) = [1, e−j2πfρ sin(θl)/c, . . . , e−j2πf(M−1)ρ sin(θl)/c]. (4.5)

From the above, the multipath propagation model represents a combination between a number
of rays, each described by an arrival angle, a time delay, and a fading parameter. As it has been
stated in Chapter 2, the estimation of time delay and relative angle of the first path represents
our concern for positioning purposes. It represents a key element in this work to reduce the
complexity and to mitigate the pairing problem in case two or more paths have equal DOAs or
time delays, as it will be investigated in this chapter.

At the receiver side, once the FFT window has been adjusted, the kth subcarrier output at
the reference antenna can be represented as

R0,k = Xk ·
∑L

l=1
α0,k,le

−j(ωc+ωk)τl + w0,k ;−Nu/2 ≤ k ≤ Nu/2 (4.6)

where Xk is the transmitted symbol (could be a pilot, data, or a null symbol) of the kth subcar-
rier, ωc = 2πfc is the carrier angular frequency, w0,k is the AWGN at the reference antenna and
the kth subcarrier, and Nu+1 is the number of useful subcarriers at the central spectrum. It has
been assumed that the Doppler shifts are much smaller than the subcarrier spacing. From Fig.
4.2, the signals captured by the array elements differ from each other by a phase offset due to
the different propagation path. Hence, the received signal by an antenna m in the antenna array
is

Rm,k = Xk ·
∑L

l=1
αm,k,le

−j(ωc+ωk)τle−j(ωc+ωk)τm(θl) + wm,k. (4.7)

For synchronization and channel parameters estimation, Np pilot subcarriers per OFDM
symbol are assumed {Sk : k = 0, ..., NP − 1}. In another way, Np represents the number of
occupied subcarriers. It should be larger than the number of array elements M and multipath
signals L to generate a generation set of the signal space [107]. The OFDM symbol structure
of the training sequence has Np symbols, and Ndc zero values at dc in the middle of the training
sequence as it has been presented in Table 3.1 [48], [54]. For simplicity, let us mention to the
minimum frequency among subcarriers by f0 and fk = f0 + k∆f , where k = 0, ..., N − 1, and
N = Np + Ndc. The least square estimate of the CFR can be obtained from (4.7) for the mth
antenna as

Hm,k =
∑L

l=1
Am,k,l.e

−j2πk∆fτle−j2πfkmρ sin θl/c + wm,k/Sk (4.8)

where Am,k,l = αm,k,l.e
−j2πf0τl . To show the phase differences across the frequency dimension

and the space dimension, which represent the key element to use the 2-D MP algorithms, let us
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write the noiseless S-CFR in a matrix from as

H =



L∑
l=1

A0,0,l

L∑
l=1

A0,1,le
−j2π∆fτl

L∑
l=1

A1,0,le
−j2πf0ρ sin θl/c

L∑
l=1

A1,1,le
−j2π∆fτle−j2πf1ρ sin θl/c

...
...

L∑
l=1

AM−1,0,le
−j2πf0(M−1)ρ sin θl/c

L∑
l=1

AM−1,1,le
−j2π∆fτle−j2πf1(M−1)ρ sin θl/c

· · ·
L∑
l=1

A0,N−1,le
−j2π∆f(N−1)τl

· · ·
L∑
l=1

A1,N−1,le
−j2π∆f(N−1)τle−j2πfN−1ρ sin θl/c

. . . ...

· · ·
L∑
l=1

AM−1,N−1,le
−j2π∆f(N−1)τle−j2πfN−1(M−1)ρ sin θl/c


M×N

.

(4.9)

The noiseless Hm,k sample in terms of fc is

Hm,k =
∑L

l=1
βm,k,l.e

−j2πk∆f(τl+mρ sin θl/c)e−j2πfcmρ sin θl/c (4.10)

where −(N − 1)/2 ≤ k ≤ (N − 1)/2 , and βm,k,l = αm,k,l.e
−j2πfcτl . From (4.10), the effect of

time delay coming from the antenna array is negligible compared with τl and it can be reduced
by set the coordinates of each BS to its antenna array center, which will be considered in Section
4.2.1. Therefore, the multipath channel poles (to be estimated) can be approximated as

xl = e−jµl zl = e−jυl (4.11)

where
µl = 2πfcρ sin θl/c υl = 2π∆fτl. (4.12)

The objective is to find the (xl, zl) pairs presented in (4.11), which correspond to the angle
of arrivals and the relative time delays. It should be noted that from (4.10), for time delay
estimation only, the estimated CFRs across a number of antennas can be used as a number of
spatial snapshots as in Section 3.8. It represents a spatial diversity to solve the loss of rank
against multipath fading. Furthermore, for DOA estimation only, the estimated CFRs across a
number of subcarriers can be used as a number of spectral snapshots to solve the loss of rank
against frequency-selective fading. In both cases, the principle of 1-D MP algorithms presented
in the previous chapter can be used.

4.2.1 Uniform Linear Antenna Array Design
To design a ULA, let us discuss the following. The OFDM spectrum covers the frequency
range of fc − Nu

2
∆f ≤ fc ≤ fc + Nu

2
∆f . In this work, the carrier frequency fc is used to

design the antenna array. The distance between array elements is ρ = λ/2 = c/2fc. Let us
select the carrier frequency fc to be 5.25 GHz from the frequency spectrum of IEEE 802.11
standards. The wave length will be 5.71 cm, consequence, the distance between array elements
is 2.857 cm. Fig. 4.3 shows the designed ULA using 8 omni-directional antennas. It has been
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Figure 4.3: The designed ULA composing 8 elements.

assumed that the time delay coming from the antenna array elements is negligible compared
with the time delay coming from the wireless channel. Therefore, to show the validity of our
assumption, let us discuss the following example. Assume the distance between the transmitter
and the reference antenna in the antenna array is 6 meters. The time delay of the shortest
path to the reference antenna in the antenna array (m = 0 as shown in Fig. 4.2) is τ0 = 20ns
while the time delay between the transmitter antenna and antenna number m = M − 1 in the
antenna array is τM−1 = τ0 + (M − 1)ρ sin(θ1)/c. The largest difference in the time delay
between those two antennas m = 0 and m = M − 1 occurs when the DOA of the shortest
path θ1 is 90o. The time delay of antenna number M − 1 is then τM−1 = τ0 + (M − 1)ρ/c,
hence, in case of using 8 antennas, it will be τM−1 = 20 + 0.667ns. Then, the phase of the
first pole is 2π∆f(20 + 0.667ns). Clearly, the time delay coming from the wireless channel
to the reference antenna is larger than the time delay between array elements by more than ten
times, which is valid as an engineering approximation. The effect of time delays coming from
antenna elements could also be reduced by setting the coordinates of each BS to its antenna
array center.

To show how the actual DOA and TOA values can be changed with respect to the reference
coordinates of the antenna array. Fig. 4.4 shows the actual DOA and TOA if the coordinates
of BS are the coordinates of the reference antenna, the antenna array center, or the last antenna
in the antenna array. The distance between antenna array elements is 2.857 cm. It is clear
from Fig. 4.4 that in case of using DOA in the indoor positioning, the distance between the
transmitter and the receiver is not very large to let us assume that the transmitter is in the far
field and then the DOA is almost constant per each antenna. Therefore, the best option is to use
the coordinates of the antenna array center of each BS.

4.3 2-D Matrix Pencil Algorithm

In the literature, the 2-D MP algorithms have been presented based on the uniform space be-
tween array elements using the URA to estimate multiple frequencies or azimuth and elevation
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Figure 4.4: The affect of ULA coordinates selection on the values of DOA and TOA.

angles. In this work, the 2-D MP algorithms are used to estimate the time delays and the relative
DOAs using the OFDM and the ULA, where the first dimension is the OFDM pilots, distributed
equally in the frequency dimension, and the second dimension is the array elements, distributed
equally in the space dimension, which has been published in [57]. Basically, the 2-D problem
of 2-D MP algorithm could be divided into two 1-D problems to estimate the poles of each
dimension individually. After that the estimated poles of multipath channel should be paired to
get the time delay and the relative DOA of each effective path. The single snapshot of S-CFR
defined in (4.9) can be written as

H =


H0,0 H0,1 · · · H0,N−1

H1,0 H1,1 · · · H1,N−1
...

... . . . ...
HM−1,0 HM−1,1 · · · HM−1,N−1


M×N

. (4.13)

The above equation can be decomposed as

H = AsXAZAf (4.14)

where As, A, and Af are diagonal matrices with sizes of M × M , L × L, and N × N ,
respectively. They represent the complex channel gains coming from space diversity, wireless
channel, and frequency diversity, respectively. To demonstrate the principle of 2-D MP, let us
include the effect of frequency and space diversity channel gains of lth path to the wireless
channel gains for mathematical simplification only. Hence, the S-CFR in (4.14) becomes

H = XAZ (4.15)

where

X =


1 1 . . . 1
x1 x2 . . . xL
...

... . . . ...
xM−1

1 xM−1
2 · · · xM−1

L


M×L

, (4.16)
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Z =


1 z1 . . . zN−1

1

1 z2 . . . zN−1
2

...
... . . . ...

1 zL . . . zN−1
L


L×N

. (4.17)

From (4.15), the rank of H doesn’t exceed than L; i.e., rank(H) ≤ L. Therefore, zl and xl
cannot be both obtained from the principle left or right singular vectors of H. Furthermore,
the principle singular vectors of H do not contain sufficient information to perform the pairing
between xl and zl [36]. To enhance the rank condition of a matrix, or in another way, to
restore the dimensionality of the signal subspace, a partition and stacking process should be
used besides the frequency-space smoothing. Doing that represents a core of matrix pencil
algorithms rather than using a number of temporal snapshots. By using the principle of 1-D
MP algorithm presented in the previous chapter, the Hankel matrix Ym can be created for each
antenna by windowing each row in (4.13) individually

Ym =


Hm,0 Hm,1 · · · Hm,N−P
Hm,1 Hm,2 · · · Hm,N−P+1

...
... . . . ...

Hm,P−1 Hm,P · · · Hm,N−1


P×(N−P+1)

(4.18)

where P is the pencil parameter used to obtain the Hankel matrix. For 2-D MP algorithm, an
enhanced matrix can be written in a Hankel block matrix:

Ye =


Y0 Y1 . . . YM−K
Y1 Y2 . . . YM−K+1
...

... . . . ...
YK−1 YK · · · YM−1


KP×(M−K+1)(N−P+1)

(4.19)

where K is the pencil parameter used to obtain the Hankel block matrix. P and K are like
two tuning parameters, which can be adjusted to increase the estimation accuracy. To select the
pencil parameters P and K, some necessary conditions investigated in [36] should be satisfied
as

(K − 1)P ≥ L
K(P − 1) ≥ L
(M −K + 1)(N − P + 1) ≥ L

(4.20)

which can be understood easily from the principle of the SVD (split the received signal space
into signal subspace and noise subspace) and the principle of matrix pencil equation generation
(delete the first rows and the last rows), as it will be shown in this chapter. In general, the
sufficient conditions to select those pencil parameters are

M − L+ 1 > K ≥ L+ 1
N − L+ 1 > P ≥ L+ 1.

(4.21)

The matrix Ym of (4.18) can be written as [34]

Ym = ZLAXm
d ZR (4.22)
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where

ZL =


1 1 . . . 1
z1 z2 . . . zL
...

... . . . ...
zP−1
1

zP−1
2 · · · zP−1

L


P×L

, (4.23)

Xd = diag [x1, x2, . . . , xL] , (4.24)

ZR =


1 z1 . . . zN−P1

1 z2 . . . zN−P2
...

... . . . ...
1 zL · · · zN−PL


L×(N−P+1)

. (4.25)

By using (4.22) in (4.19), the enhanced matrix Ye becomes

Ye = ELAER (4.26)

where

EL =


ZL

ZLXd
...

ZLXK−1
d

 , (4.27)

ER =
[
ZR XdZR · · · XM−K

d ZR

]
. (4.28)

The rows of EL can be shuffled by left multiplying using the shuffling matrix P. The shuffling
matrix P is defined in [36] as

P = [s(1), s(1 + P ), · · · , s(1 + (K − 1)P ), s(2), s(2 + P ), · · ·
s(2 + (K − 1)P ), · · · , s(P ), s(P + P ), · · · , s(P + (K − 1)P )]T

(4.29)

where s(i) is a column vector of size KP with one at the ith position and zero everywhere else.
The shuffled matrix ELP will be [36]

ELP = PEL =


XL

XLZd
...

XLZK−1
d

 (4.30)

where Zd has been defined in (3.22), and

XL =


1 1 . . . 1
x1 x2 . . . xL
...

... . . . ...
xK−1

1
xK−1

2 · · · xK−1
L


K×L

. (4.31)

Summary: The enhanced 2-D MP algorithm for joint time delays and DOAs estimation
can be summarized in the following:
Step1: From the estimated CFR of antenna m, find the Hankel matrix Ym as in (4.18). Then,
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the enhanced matrix Ye is defined in the Hankel block matrix as in (4.19). To increase the
number of snapshots inherently, an extended matrix Yex can also be defined in forward and
backward fashion:

Yex = [Ye : Π
KP

Ye
∗

Π
(M−K+1)(N−P+1)

] (4.32)

where Π is the exchange matrix that reverses the ordering of the rows. It provides also some
protection against loss of rank in case of equal time delays as it has been investigated in [31]
using ESPRIT algorithm for narrowband signals. It should be noted that Ye has a special struc-
ture due to the centro-symmetry of the ULA-OFDM such as in the URA, therefore, its column
space remains unchanged during the above transformation [109]. Based on theorem 2 in ap-
pendix A, Yex of (4.32) is a centro-Hermitian matrix.

Step2: The SVD is used for noisy data to reduce part of the noise effect. The matrix Ye

of (4.19) can then be decomposed as in (3.29), Ye = UΣVH , where U and V are unitary
matrices, and Σ is a diagonal matrix with the SVs of Ye as, η1 ≥ η2 ≥ · · · ≥ ηB, where
B = min(KP, (M − K + 1)(N − P + 1)), which is the smaller dimension of Ye. The ma-
trix Σ can be split into two submatrices Σs and Σn. Σs is L × L diagonal matrix with the
L largest SVs which characterize the signal subspace as, ηk = ηsk + σ2

k, where k = 1, . . . , L.
Σn is (B − L)(B − L) diagonal matrix with the (B − L) smallest SVs which characterize the
additive noise as ηk = σ2

k, where k = L + 1, . . . , B. If the forward-backward matrix Yex of
(4.32) is used in (3.29), B = min(KP, 2(M −K + 1)(N − P + 1)); it will be called the 2-D
MP-Ex algorithm.

Step3: Based on the ITC, the modified MDL criterion is used to estimate the signal subspace
dimension L̂ by eliminating the noise components as it has been presented in (3.30).

Step4: The SVD of Ye in (4.19), or Yex in (4.32), can then be decomposed as in (3.31),
Y = Ys + Yn = UsΣsVs

H + UnΣnVn
H , where Us and Vs are the submatrices of U and

V corresponding to the SVs of Σs and span the signal subspace, and Un and Vn are corre-
sponding to the SVs of Σn and span the noise subspace. Such as in 1-D MP, if the number of
columns in Un increases (the dimension of the noise subspace), more noise components can
be absorbed into the noise subspace, where a larger noise subspace implies high-estimation
accuracy [36]. Therefore, the selection parameters K and P should be large enough to include
the signal subspace and the noise subspace dimensions. However, KP should be smaller than
(M−K+1)(N−P+1) to reduce the overall computational complexity, as it will be explained
in Section 4.7.

Step5: Extracting xl: If the condition of (4.20) is satisfied, it has been approved in [36] that
range(Ye) = range(Us) = range(EL), where both Us and EL have L̂ independent columns,
and hence

Us = ELT (4.33)

where T is a unique L̂×L̂ nonsingular matrix. The principle of matrix pencil is to construct two
matrices in such a way the desired poles are the generalized eigenvalues of the corresponding
matrix pencil. Therefore, the matrix pencil equation can be written along the space dimension:

Us2 − ηUs1 = E1XdT− ηE1T = E1(Xd − ηI)T (4.34)

where Us1 and Us2 are obtained from Us by deleting the last and the first P rows, respectively,
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and E1 is obtained from EL by deleting also the last P rows. I is an identity matrix with
a proper dimension. From (4.34), the set of L̂ spatial poles {x1, x2, . . . , xL̂} of the diagonal
matrix Xd are the rank reducing numbers of the matrix pencil Us2− ηUs1. In another way, the
rank of the matrix pencil decreases by one if and only if xl = η. Therefore, the desired set of L̂
spatial poles {xl} are the eigenvalues of pencil pair (Us2,Us1). They can be calculated as the
eigenvalues of Ψµ = U†s1Us2, which represents a generalized eigenvalue problem of dimension
L̂× L̂. The lth DOA can then be calculated from xl = e−j2πρ sin θ̂l/λ, where l = 1, . . . , L̂, as

θ̂l = sin−1(arg(xl
∗).λ/2πρ) (4.35)

Step6: Extracting zl: In order to estimate {zl; l = 1, ..., L̂}, the structure of ELP = PEL in
(4.30) is used. Hence, the shuffling matrix defined in (4.29) is used to introduce the permutation
in (4.33) as

Usp = PUs ⇒ Usp = PELT = ELPT. (4.36)

The matrix pencil equation can be written along the frequency dimension as

Usp2 − ηUsp1 = E1pZdT− ηE1pT = E1p(Zd − ηI)T (4.37)

where Usp1 and Usp2 are obtained from Usp by deleting the last and the first K rows, respec-
tively, and E1p is obtained from ELP by deleting also the last K rows. The desired set of L̂
spectral poles {zl} can be obtained as the generalized eigenvalues of pencil pair (Usp2,Usp1).
They can be calculated as the eigenvalues of Ψv = U†sp1Usp2, which represents a general-
ized eigenvalue problem of dimension L̂ × L̂. The lth time delay can then be calculated from
zl = e−j2π∆fτ̂l , where l = 1, ..., L̂, as

τ̂l = arg(zl
∗)/2π∆f. (4.38)

The order of poles in each set, namely z = {zl; l = 1, . . . , L̂} and x = {xl; l = 1, . . . , L̂}, is
still unknown. Since, the eigenvalue decomposition (EVD) provides the values of the eigenval-
ues only, and it does not provide any order for the eigenvalues [36]. In addition, if the number
of effective poles has been overestimated, some of the resulting eigenvalues will be repeated.
Several efforts have been made to pair the unknown parameters in 2-D scenarios, which could
be multiple frequencies or azimuth and elevation angles in the literature [29], [110], [111],
[112], [113], [114], [115]. In the following, two algorithms will be presented. The proposed
algorithm for wireless indoor positioning will be presented, which has been published in [57].

4.3.1 Correlation Maximization Pairing Method
The order of poles in the estimated sets z = {zl; l = 1, ..., L̂} and x = {xl; l = 1, ..., L̂}
is still unknown. Therefore, the two sets of estimated poles should be paired to find the cor-
responding time delay and the relative DOA of each path. Based on the orthogonal property
between the signal subspace and the noise subspace, the pairs can be correctly paired together
by maximizing the criterion below [36]

Js(i, j) =
∑L̂

l=1

∥∥uHl eij(xi, zj)
∥∥2

; i, j = 1, · · · , L̂ (4.39)

eij = xi ⊗ zj (4.40)
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where ⊗ is the Kronecker product defined in appendix B, xi = [1, xi, . . . , x
K−1
i ]

T
, zj =

[1, zj, . . . , z
P−1
j ]T , and {ul; l = 1, ..., L̂} are the principal eigenvectors. From (4.39), it can

be noted that, the pairing procedure does not deal with the poles {xl; l = 1, ..., L̂} equally, i.e.,
xl is considered before xl+1. In our joint time delay and DOA estimation problem, we have
a priori information about zl, where the shortest path represents our concern. Therefore, we
order zl poles according to their priority (in an ascending order), and then the pairing proce-
dure is applied. For example, we set j = 1 and search over {xi; i = 1, ..., L̂} for the best
matched pole to z1. However, besides the computational complexity, this pairing method with
our modification does not always provide the correct pairing results, when there are repeated
poles, because it is a correlation maximization method based on the orthogonal property be-
tween noise and signal subspaces [109], [115]. In certain scenarios, when the eigen vectors of
both sets are close enough, the correlation maximization grouping method may fail especially
at low SNR [109], [115].

4.3.2 Proposed Pairing Method
In this work, the principle of both the wireless indoor positioning and the proposed method
in [115] are used to propose the following method. A pairing method has been presented
in [115] for 2-D frequencies estimation, which provides more accurate pairing results compared
with the others in the literature and requires less computational complexity. It can be realized in
our case as, the multipath channel poles of the frequency and space dimensions have the same
generalized eigenvectors when they are decomposed using the generalized EVD. The EVD
problem of both sets can then be written as

U†s1Us2 = Ψµ = WXdW
−1 ⇒ Xd = W−1ΨµW, (4.41)

U†sp1Usp2 = Ψv = WZdW
−1 ⇒ Zd = W−1ΨvW. (4.42)

It is clear from the above equations that the same eigenvectors are used to estimate both Xd and
Zd. This property can be utilized to estimate the required parameters in a grouped form without
the need to solve an eigenvalue problem for each dimension and then use computationally
expensive pairing methods. Hence, the proposed method guarantees that the estimated poles
are paired up correctly.

In case of wireless positioning, our concern is to estimate the time delay of the first path
and the corresponding DOA. Therefore, the eigenvalue problem of Ψv is computed first to
find the eigenvalues of the diagonal matrix Zd and the eigenvectors W as in (4.42). Then,
the estimated propagation time delays of the multipath channel are rearranged in an ascending
order. After that, the eigenvectors of W are rearranged in accordance with the previous order
to get W′. The corresponding column of the shortest path is put as the first column in W′ since
our concern is the DOA of the shortest path. Finally, compute Xd by premultiplying Ψµ with
the inverse W′−1, and then postmultiplying with W′. From the above, the proposed method
has some advantages can be summarized in the following:

• A single EVD is used instead of two to estimate both sets z = {zl; l = 1, ..., L̂} and
x = {xl; l = 1, ..., L̂}.

• It does not need to use a pairing method to pair the estimated poles. They are extracted
simultaneously, and the ordering of their eigenvalues is corresponding.
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• Since the DOA of the shortest path is our concern; the problem of repeated poles has
been mitigated for wireless positioning and telecommunication applications.

Such as in 1-D MP algorithms, the channel gains can be obtained by solving a least square
problem. Once both sets z = {zl; l = 1, ..., L̂} and x = {xl; l = 1, ..., L̂} are estimated, the
channel gains can be obtained from (4.15) as

A = X†HZ†. (4.43)

From the above, the time delays of the effective paths have been estimated, which can be
used in telecommunication equalizer, and the DOA of the shortest path has also been estimated,
which can be used in beam forming to improve signal quality and then to increase capacity.
However, if there are a number of repeated poles and we need to estimate all DOAs of all
paths in the channel profile, the EVD problem should be solved a number of times as described
in [115].

4.4 2-D Unitary Matrix Pencil Algorithm
The principle of real valued computations in 1-D UMP was also extended to 2-D UMP in [37] to
estimate the azimuth and elevation angles of narrowband signals using the URA. In the previous
chapter, the developed 1-D UMP has been applied successfully for wireless positioning using
OFDM systems, which has been published in [54], [56], and [55] for different enhancements
in different scenarios. In this section, the principle of the computationally efficient 2-D UMP
algorithm will be developed for wireless positioning using the wideband orthogonal multi-
carrier signals represented by OFDM and the ULA to estimate the time delays and the relative
DOAs of a wireless multipath channel simultaneously. Results have been published in [57], as
we will see in the measurement chapter. To do that, three theorems of the UMT are required,
presented in appendix A, where their proofs can be found in [37].

By using the centro-symmetry of the ULA-OFDM or any complex matrix could be written
in a centro-hermitian matrix form, the centro-Hermitian matrix Yex defined in (4.32) can be
converted to a real matrix YRe using theorem 3 in appendix A:

YRe = QH
K1

YexQK2 (4.44)

where QK1 and QK2 are unitary matrices defined in (3.37) and (3.38).
After that some selection matrices such as in 1-D UMP are used to write the matrix pencil

equations of the space and frequency dimensions. The selection matrices Ju1 and Ju2 are used
to select the rows of the real matrix YRe in order to write the matrix pencil equation along the
space dimension for {xl} poles estimation, which are given by

Ju1 = [IKP−P : 0(KP−P )×P ], (4.45)

Ju2 = [0(KP−P )×P : IKP−P ]. (4.46)

The same for the frequency dimension, the selection matrices Jv1 and Jv2 are used to select
the rows of the real matrix YRe in order to write the matrix pencil equation for {zl} poles
estimation, which are given by

Jv1 = [IKP−K : 0(KP−K)×K ], (4.47)
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Jv2 = [0(KP−K)×K : IKP−K ]. (4.48)

In order to estimate {xl} poles, the matrix pencil equation can be written as

Ju2Yex = xJu1Yex. (4.49)

By using the UMT principle, presented in (3.42) to (3.46), it can be found that

QHJu2Q = (QHJu1Q)
∗

(4.50)

where the unitary matrices Q have proper dimensions. As it is described in the previous,
x = {xl; l = 1, ..., L̂} are the rank reducing numbers of the matrix pencil equation, hence,
substituting (4.44) and (4.50) into (4.49) gives

(QHJu1Q)
∗
YRe = e−jµlQHJu1QYRe (4.51)

where µl = 2πfcρ sin θl/c defined in (4.12). By using the definition of the tangent function
with some mathematical manipulations, it can be shown that

tan(µl/2)KRe 1YRe = KIm 1YRe (4.52)

where
KRe 1 = Re(QH

K1
Ju1QK2) KIm 1 = Im(QH

K1
Ju1QK2). (4.53)

By using the same principle of 1-D MP, the matrix YRe can be replaced by its signal subspace
Us in order to reduce the effect of noise. Therefore, the matrix pencil equation of the space
dimension is

KRe 1UsΨµ = KIm 1Us. (4.54)

The generalized eigenvalues of pencil pair (KIm 1Us,KRe 1Us) can be calculated as the eigen-
values of

Ψµ = [KRe 1Us]
†KIm 1Us = WXdW

−1 (4.55)

to get Xd = diag{Ωl = tan(µl/2); l = 1, . . . , L̂}.
By the same way of extracting {xl} poles, the matrix pencil equation for {zl} poles estima-

tion can be written as
Jv2PYex = zJv1PYex (4.56)

which can be written as

QHJv2QQHPQQHYexQ = zQHJv1QQHPQQHYexQ. (4.57)

Substituting (4.44) into (4.57) gives

QHJv2QP
′
YRe = zQHJv1QP

′
YRe (4.58)

where the modified shuffling matrix is

P′ = QH
K1

PQK2 (4.59)

due to using the UMT. It has been illustrated in [37] and [109] that P remains unchanged if its
rows and columns are reversed. Since P is a real matrix, it means that

P = ΠPΠ = ΠP∗Π. (4.60)
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From (4.60), P is a centro-Hermitian matrix. Therefore, based on theorem 3 in appendix A, the
UMT of matrix P in (4.59), P′, is always a real matrix. Similarly to (4.54), the matrix pencil
equation of the frequency dimension is

KRe 2UspΨv = KIm 2Usp (4.61)

where KRe 2 and KIm 2 are

KRe 2 = Re(QH
K1

Jv1QK2) KIm 2 = Im(QH
K1

Jv1QK2). (4.62)

Like in 2-D MP, Usp is shuffled by the shuffling matrix as, Usp = P′Us, where P′ is defined
in (4.59) due to using the UMT. The EVD of pencil pair (KIm 2Usp,KRe 2Usp) is computed as

Ψv = [KRe 2Usp]
†KIm 2Usp = WZdW

−1 (4.63)

to get Zd = diag{Λl = tan(vl/2); l = 1, . . . , L̂}.
Summary: The enhanced 2-D UMP algorithm for time delays and relative DOAs estima-

tion can be summarized in the following:
Step1: Such as the first step of 2-D MP algorithm, define the centro-Hermitian matrix Yex as
in (4.32).

Step2: Calculate the real data matrix YRe, using the centro-symmetry of the ULA-OFDM
or any complex matrix could be written in a centro-hermitian matrix form as in (4.44), YRe =
QH
K1

YexQK2 .

Step3: Perform the SVD on YRe as in (3.29) to get the signal subspace, and estimate the
number of effective paths L̂ using the modified MDL criterion presented in (3.30).

Step4: Determine Us as the left singular vectors of U, which span the signal subspace and
correspond to the largest L̂ singular values of YRe.

Next, we calculate the selection matrices KRe 2 and KIm 2 to extract a set of L̂ spectral poles
{zl} just once and store them as constant matrices according to KRe 2 = Re(QH

K1
Jv1QK2) and

KIm 2 = Im(QH
K1

Jv1QK2), where Jv1 is a selection matrix constructed from an identity matrix
and a zero matrix as, Jv1 = [IKP−K : 0(KP−K)×K ]. In addition, we calculate the selection
matrices KRe 1 and KIm 1 to extract another set of L̂ spatial poles {xl} just once and store them
as constant matrices according to KRe 1 = Re(QH

K1
Ju1QK2) and KIm 1 = Im(QH

K1
Ju1QK2),

where Ju1 is a selection matrix constructed from an identity matrix and a zero matrix as,
Ju1 = [IKP−P : 0(KP−P )×P ].

Step5: Extracting zl: Compute the EVD of Ψv = [KRe 2Usp]
†KIm 2Usp as, Ψv = WZdW

−1,
to get Zd = diag{Λl = tan(vl/2); l = 1, · · · , L̂}, where vl = 2π∆f τ̂l. Like in 2-D MP, Usp is
shuffled by the shuffling matrix as, Usp = P′Us, where P′ is QH

K1
PQK2 due to using the UMT.

Then, calculate the time delays according to τ̂l = 1/π∆f × tan−1(Λl), where l = 1, · · · , L̂.

Step6: Extracting xl: By using the proposed method in 2-D MP in Section 4.3.2, compute
Xd by premultiplying Ψµ = [KRe 1Us]

†KIm 1Us with the inverse W′−1, and then postmulti-
plying with W′ to get Xd = diag{Ωl = tan(µl/2); l = 1, · · · , L̂}, where µl=2πρ sin θ̂l/λ.
After that, calculate the DOAs according to sin θ̂l = c/πfcρ× tan−1(Ωl), where l = 1, · · · , L̂.
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It is worth mentioning that after the initial transformation using the UMT, the whole pro-
cessing is real valued computation.

An automatic pairing method has been presented in [29] for unitary 2-D ESPRIT to estimate
the azimuth and elevation angles for narrowband signals using the URA. Its principle can be
enhanced to this work. The quantities Ψµ and Ψv are real valued matrices, hence, they can be
decomposed as

Ψµ + jΨv = WηdW
−1 = W(Xd + jZd)W

−1 (4.64)

to find the complex eigenvalues ηd = diag{ηl; l = 1, · · · , L̂}. After that the required poles of
both sets can be computed as follows

µl = 2tan−1(Re(ηl)); l = 1, · · · , L̂, (4.65)

vl = 2tan−1(Im(ηl)); l = 1, · · · , L̂. (4.66)

However, there are some disadvantages of the automatic pairing method. The first problem
is that in some critical cases, it does not guarantee that W is a real matrix. It might happen
that W becomes complex, for example, the decomposition of Ψµ = WXdW

−1 is complex.
Hence, both estimates may corrupt each other [31]. However, it can work well in normal
cases, and a single complex EVD is used. In our case of wireless positioning, the URA can be
used, and hence the various 2-D MP algorithms can be extended to 3-D MP algorithms to do
joint estimation of time delays and both azimuth and elevation angles, which is a future work.
Therefore, the second problem in case of using the automatic pairing method is that it cannot
be extended to more than two dimensions. Therefore, the proposed pairing method in Section
4.3.2 is outperformed with respect to the complexity, the accuracy, and the future work. The
required poles are always estimated and grouped simultaneously using the same eigenvector
matrix.

4.5 2-D Beam-space Matrix Pencil Algorithm

The DFT was applied successfully in [92] for 1-D BMP algorithm, in which the complexity
of the computation is reduced by using real computations. In [53], and [54], the performance
of the enhanced 1-D BMP algorithm for wireless indoor positioning using OFDM signals has
been investigated, as it will be seen in the measurement chapter. The same principle of real
computations in 1-D BMP was also extended to 2-D BMP in [38] to estimate the azimuth and
elevation angles of the narrowband signals using the URA. In this work, the principle of 2-D
BMP has also been developed for wireless positioning systems to estimate time delays and
relative angle of arrivals. The derivation of 2-D BMP will be omitted here; interested readers
can see the derivation in the relevant text [38]. Results have been presented in [58].

The enhanced matrix Ye defined in (4.19) has been decomposed in (4.26) as, Ye = ELAER,
where EL and ER can also be written as [38]

EL = XL � ZL, (4.67)

ET
R = XT

R � ZT
R, (4.68)
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where the symbol � denotes the Khatri-Rao product defined in (B.2) of appendix B [116], and
the matrices ZL, ZR, and XL are given in (4.23), (4.25), and (4.31), respectively. The matrix
XR is given by

XR =


1 x1 . . . xM−K1

1 x2 . . . xM−K2
...

... . . . ...
1 xL · · · xM−KL


L×(M−K+1)

. (4.69)

Such as the principle of 1-D BMP, the matrices XL and ZL can also be decomposed as

XL = X
′

LXo (4.70)

ZL = Z
′

LZo (4.71)

where

X
′

L =
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2
1 x
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2
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2
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1 x
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2
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x
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2
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2 · · · x
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L

x
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, (4.72)

Z
′

L =



z
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2
1 z

−P−1
2

2 · · · z
−P−1

2
L

z
−P−3
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1 z

−P−3
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, (4.73)

Xo = diag{x
K−1

2
1 , x

K−1
2

2 , . . . , x
K−1

2
L }, (4.74)

Zo = diag{z
P−1
2

1 , z
P−1
2

2 , . . . , z
P−1
2

L }. (4.75)

From (4.26) and (4.70) to (4.75), Ye becomes

Ye = (X
′

L � Z
′

L)XoZoAER. (4.76)

Assume that FK and FP are the DFT matrices of dimensionsK×K and P×P , respectively.
The mth row of FH

K and the nth row of FH
P can be written as

fHm = ej
K−1

2
m 2π
K × [1, e−jm

2π
K , e−j2m

2π
K , · · · , e−j(K−1)m 2π

K ] (4.77)

fHn = ej
P−1
2
n 2π
P × [1, e−jn

2π
P , e−j2n

2π
P , · · · , e−j(P−1)n 2π

P ] (4.78)

where the row vectors fHm and fHn represent the DFT beams steered at spatial frequencies, µ =
m× 2π/K and υ = n× 2π/P , respectively. The 2-D DFT matrix is then given by

FH = FH
K ⊗ FH

P . (4.79)
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If (4.76) is multiplied by FH from left, it will be

YF = FHYe = (FH
K ⊗ FH

P )(X
′

L � Z
′

L)XoZoAER. (4.80)

By using the property of Kronecker and Khatri-Rao products in (B.4) of appendix B, (4.80) can
be written:

YF = (FH
KX

′

L � FH
P Z

′

L)XoZoAER = BXoZoAER (4.81)

where B is a beam-space array manifold matrix. From (4.81), all the matrices to the right of B
have full row rank. It means that the complex matrix YF and the real matrix B share the same
column space. The real data matrix can be obtained as

YRe = [Re(YF ), Im(YF )]. (4.82)

To reduce the noise effect, the SVD of (3.29) is used, where the left singular vectors Us

corresponding to the largest singular values should span the column space of B. Therefore, Us

and B are related as follows [38]
Us = BT (4.83)

where T is a nonsingular L× L matrix.
Summary: The summary of the enhanced 2-D BMP for time delays and relative DOAs

estimation is described in the following:
Step1: From the estimated CFR of antenna m, find the Hankel matrix Ym as in (4.18), and
then find the enhanced matrix Ye in the Hankel block matrix as in (4.19).

Step2: Apply the conjugate centro-symmetrized version of the DFT matrix as, YF = FHYe,
to get the real data matrix as, YRe = [Re(YF ), Im(YF )].

Step3: Perform the SVD on YRe as in (3.29) to get the signal subspace, and estimate the
number of effective paths L̂ using the modified MDL criterion presented in (3.30).

Step4: Determine Us as the left singular vectors of U, which span the signal subspace and
correspond to the largest L̂ singular values of YRe.

Next, we calculate the selection matrices of the space dimension Γµ1 and Γµ2 , and of the
frequency dimension Γv1 and Γv2 just once and store them as constant matrices. The ath row
of Γ1 , 1 ≤ a ≤ K, has all its elements equal to zero except the ath and the bth elements as
follows [29], [92]

xa = cos((a− 1)π/K) (4.84)

xb =

{
cos(aπ/K) ; 1 ≤ a ≤ K − 1, b = a+ 1

(−1)K+1 cos(aπ/K) ; a = K, b = 1
(4.85)

The ath row of Γ2 is expressed in the same way as for Γ1 by replacing cosine functions by sine
functions. The selection matrices of the space dimension are

Γµ1 = Γ1 ⊗ IP (4.86)

Γµ2 = Γ2 ⊗ IP (4.87)
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where IP is the identity matrix of size P ×P . In a similar way, Γ3 and Γ4 are generated similar
to Γ1 and Γ2, respectively, where K is replaced by P . The selection matrices of the frequency
dimension are then represented

Γv1 = IK ⊗ Γ3, (4.88)

Γv2 = IK ⊗ Γ4. (4.89)

Step5: Extracting zl: The matrix pencil equation of the frequency dimension is

Γv1UsΨv = Γv2Us ⇒ Ψv = (Γv1Us)
†Γv2Us, (4.90)

and the pencil pair is (Γv2Us,Γv1Us). The eigenvalues of Ψv = WZdW
−1 are computed to

get Zd = diag{Λl = tan(vl/2); l = 1, . . . , L̂}, where vl = −2π∆f τ̂l. The time delays can
then be calculated as, τ̂l = −1/π∆f × tan−1(Λl), where l = 1, . . . , L̂.

Step6: Extracting xl: The matrix pencil equation of the space dimension is

Γµ1UsΨµ = Γµ2Us ⇒ Ψµ = (Γµ1Us)
†Γµ2Us, (4.91)

and the pencil pair is (Γµ2Us,Γµ1Us). By using the proposed pairing method in Section 4.3.2,
it is not necessary to solve an EVD problem. Therefore, compute Xd by premultiplying Ψµ

with the inverse W′−1, coming from the EVD of zl poles with the proposed modification, and
then postmultiplying with W′ to get Xd = diag{Ωl = tan(µl/2); l = 1, . . . , L̂}, where µl =
−2πfcρ sin θ̂l/c. After that, calculate the DOA according to θ̂l = sin−1(−tan−1(Ωl).c/πfcρ),
where l = 1, . . . , L̂.

Fig. 4.5 shows a block diagram of the proposed joint propagation time delay and relative
DOA estimation algorithms.

4.6 Diversity Techniques using 2-D Matrix Pencil Algorithms
Such as the previous chapter of 1-D MP algorithms, if a number of LTFs are available in
the OFDM frame, a number of CFRs can be obtained for each antenna in the antenna array.
Therefore, the enhanced matrix Ye of 2-D MP in (4.19), or the centro-hermitian matrix Yex
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Figure 4.5: Operational flow of the proposed joint propagation time delays and DOAs estima-
tion using 2-D MP algorithms.
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of 2-D MP-Ex in (4.32), or the real matrices YRe in (4.44) and (4.82) of 2-D UMP and 2-D
BMP, respectively, can be constructed for each snapshot separately. As we proposed in [54], the
multiple snapshot matrix can be formed as in (3.66), YE = [Y0,Y1, . . . ,Yq−1], where q is the
number of estimated CFRs per each antenna in the antenna array which is equal to the number
of LTFs per OFDM frame. Using this type of multiple snapshots is a kind of time diversity. The
principle of frequency diversity can also be used to reduce the complexity of high BWs such
as in (3.68). If the size of a single snapshot matrix is a × b, it will be in the multiple snapshot
matrix YE , a × qb, the number of columns is multiplied by q. The same procedure of various
2-D MP algorithms in the previous sections is then applied.

4.7 Computational Complexity
From the previous analysis, the size of the enhanced matrix Ye of 2-D MP in (4.19) is KP ×
(M − K + 1)(N − P + 1). The centro-hermitian matrix Yex of 2-D MP-Ex in (4.32), and
the real matrices YRe in (4.44) and (4.82) of 2-D UMP and 2-D BMP, respectively, have a size
of KP × 2(M − K + 1)(N − P + 1). To measure the computational complexity of various
2-D matrix pencil algorithms, let us investigate the complexity of all steps which are in the
following:

• Data matrix transformation in case of using 2-D UMP and 2-D BMP.

• The SVD computation (the singular values and the left singular vectors computation of
Ye or Yex or YRe based on the selected algorithm).

• Matrices of pencil pairs computation.

• The generalized EVD computation of the frequency dimension (the eigenvalues and the
eigenvectors of matrix pencil equations computation).

• The DOA poles calculation including the pairing between estimated poles.

Let us now investigate the complexity of each step precisely.

(a) Data Matrix Transformation

In the first step, the conventional 2-D MP and 2-D MP-Ex algorithms do not require data
transformation processing, where their whole process is based on the complex computation.
For 2-D UMP, the UMT transformation is used to get the real data matrix YRe such as in
(4.44) by premultiplying Yex with QH

K1
and then postmultiplying with QK2 . To do that it

requires only scaling and 3×KP × 2(M −K + 1)(N − P + 1) real additions due to the
sparse structure of those unitary matrices. For 2-D BMP, the DFT beams are used. The
2-D DFT matrix FH = FH

K ⊗ FH
P is calculated once and stored as a constant matrix. To

do the initial transformation, the enhanced matrix Ye is multiplied by FH to get YF as in
(4.80), which requires (KP )2 × (M −K + 1)(N − P + 1) complex multiplications.

(b) The SVD Computation

In the second step namely the singular values and the left singular vectors computation, the
conventional 2-D MP algorithm requires 17K3P 3/3 + K2P 2(M − K + 1)(N − P + 1)
complex multiplications to decompose Ye, where (M − K + 1)(N − P + 1) > KP
[83], [36]. For 2-D MP-Ex algorithm, the extended matrix Yex is used, where the number
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of columns increases by a factor of two as in (4.32), consequence, it requires 17K3P 3/3 +
2K2P 2× (M −K + 1)(N −P + 1) complex multiplications. In 2-D UMP and 2-D BMP
algorithms, the size of YRe in (4.44) and (4.82) is like that of Yex,KP×2(M−K+1)(N−
P + 1), therefore, they require the same number of multiplications for decomposition, but
it is in real. It should be noted that the SVD computational complexity of 2-D UMP and
2-D BMP algorithms decreases by a factor of 4 since one complex multiplication requires
four real multiplications. In the remaining steps, the required number of multiplications
for complex 2-D MP algorithms is also necessary for 2-D UMP and 2-D BMP, the only
difference is that it is real valued computations.

(c) Pencil Pairs Computation

In the third step namely matrices computation of matrix pencil equations using the signal
subspace and the selection matrices in case of real algorithms, the pencil pairs of com-
plex 2-D MP algorithms are (Us2, Us1) and (Usp2, Usp1) presented in (4.34) and (4.37)
for space and frequency dimensions, respectively, where Usp = PUs. For 2-D UMP al-
gorithm, they are (KIm 1Us, KRe 1Us) and (KIm 2Usp, KRe 2Usp) as in (4.54) and (4.61),
where Usp = P′Us as in (4.59). For 2-D BMP algorithm, they are (Γv2Us, Γv1Us) and
(Γµ2Us, Γµ1Us) as in (4.90) and (4.91). In case of real 2-D MP algorithms, the selection
matrices are multiplied by the signal subspace Us of space dimension and Usp of frequency
dimension. Those multiplications require negligible computations, because the whole se-
lection matrices of 2-D UMP and 2-D BMP have the sparse structure, where each row and
each column of those selection matrices has no more than two scaling values.

There are two options to compute the matrices of matrix pencil equations based on the EVD
method as described in appendix C. For QZ factorization, the matrix pencil pairs should be
computed to get the generalized eigenvalue problem equation defined in (C.1) of appendix
C. The matrix pencil pairs of 2-D MP are (UH

s1Us2, UH
s1Us1) and (UH

sp1Usp2, UH
sp1Usp1).

To compute UH
s1Us2 and UH

s1Us1, each requires L̂2P (K−1) complex multiplications. And
to compute UH

sp1Usp2 and UH
sp1Usp1, each requires L̂2K(P − 1) complex multiplications.

The total number of complex multiplications of this step is 2L̂2(2KP − K − P ). Simi-
larly, the matrix pencil pairs of 2-D UMP and 2-D BMP for QZ factorization can be cal-
culated by the same number of multiplications, but it is in real. The matrix pencil pairs
of 2-D UMP for QZ factorization are [(KRe 1Us)

HKIm 1Us, (KRe 1Us)
HKRe 1Us] and

[(KRe 2Usp)
HKIm 2Usp, (KRe 2Usp)

HKRe 2Usp]. The matrix pencil pairs of 2-D BMP for
QZ factorization are [(Γv1Us)

HΓv2Us, (Γv1Us)
HΓv1Us] and [(Γµ1Us)

HΓµ2Us, (Γµ1Us)
H

Γµ1Us].

For QR factorization, the matrix pencil pairs should be computed to get the standard
eigenvalue problem equation defined in (C.2) of appendix C. To do that the matrices
Ψµ = U†s1Us2 and Ψv = U†sp1Usp2 given in (4.41) and (4.42), respectively, of the com-
plex 2-D MP algorithms should be computed. The size of those matrices is L̂× L̂. As we
know, the superscript † denotes the Moore-Penrose pseudo-inverse, which is defined for a
complex matrix C as in (3.26), C† =

(
CHC

)−1
CH . Therefore, to calculate UH

s1Us1 and
UH
sp1Usp1, both require L̂2(2KP − K − P ) complex multiplications. And then to com-

pute (UH
s1Us1)−1 and (UH

sp1Usp1)−1, both require 2
3
L̂3 complex multiplications [109], [83].

And to calculate UH
s1Us2 and UH

sp1Usp2, both require L̂2(2KP − K − P ) complex mul-
tiplications. Finally, to construct the whole matrices U†s1Us2 and U†sp1Usp2, each requires
L̂3 complex multiplications. As a result, the total number of complex multiplications is
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8
3
L̂3 + 2L̂2(2KP −K − P ).

(d) EVD Computation of Frequency Dimension

In the fourth step namely EVD computation, the eigenvalues and the eigenvectors should
be computed only for frequency dimension based on the proposed pairing method in Sec-
tion 4.3.2. In case of using QR algorithm, the required number of multiplications to get the
Schur form is 15L̂3 [109], [83]. To get the eigenvector matrix W, an extra L̂3 multiplica-
tions are required, and to get W−1, another L̂3 multiplications are required [109], [83]. The
total number of complex multiplications for this step is 17L̂3. In case of using QZ algo-
rithm, the required number of multiplications to get the generalized eigenvalues is 5L̂3 [36],
assuming L̂� 1.

From the third and fourth steps, it is not recommended to transform the generalized eigen-
value problem into the standard eigenvalue problem. Using the QZ algorithm for EVD is
numerically more robust than using the QR algorithm.

(e) DOA Poles Calculation Including the Pairing

In the fifth step, to calculate the diagonal elements of Xd = W′−1ΨµW
′, a number of 2L̂3

complex multiplications are required.

From the above processing, clearly a single EVD is used instead of two to estimate the
required poles of both sets. In addition, the process of pairing has been mitigated. It is worth
mentioning that to pair the corresponding eigenvalues using the correlation maximization pair-
ing method in Section 4.3.1, extra multiplications are required (1/2L̂(L̂+1)−1)((K−1)(P −
1) + L̂(KP + 1)) [36], [37], which can be approximated to 1

2
L̂3KP if L̂ � 1, K � 1, and

P � 1. In addition, by using the priori information of estimated time delays, the problem of
repeated poles has been mitigated, which requires an additional EVD for each repeated pole as
proposed in [115] for azimuth and elevation angles estimation using the URA.

In this work, it is preferred to select the pencil parameter values of P and K to be N/3
and M/3, respectively, to reduce the complexity and to stay in the appropriate range. Table
4.1 shows the selected values of pencil parameter K with respect to the number of antennas
per each BS. Table 4.2 shows the selected values of pencil parameter P with respect to the
length of the interpolated CFR based on the selected bandwidth of 802.11ac. In case of using
the multiple snapshot principle for temporal diversity presented in Section 4.6 as in (3.66), the
number of columns is multiplied by the number of snapshots q. In case of using the multiple
snapshot principle for frequency diversity as in (3.68), the new pencil value P of the smaller
bandwidth from Table 4.2 is used to generate the enhanced matrices of the left and right parts
of the large bandwidth, and then they are combined such as in (3.68).

From the above, it should be noted that the most computationally intensive step is to es-
timate the signal subspace using the SVD in all 2-D matrix pencil algorithms. Therefore, to
show the comparison of the computational complexity of the initial transformation and SVD
of various 2-D matrix pencil algorithms, let us assume the number of antennas M is 6, hence,
K is 2, and the pencil parameter P is given in Table 4.2 for all 802.11ac bandwidths. The
comparison is shown in Fig. 4.6. The 2-D UMP is the best regarding the complexity. Table
4.3 shows the complexity ratio of 2-D UMP to the other 2-D matrix pencil algorithms. The
complexity ratios of 2-D UMP to 2-D MP-Ex, 2-D MP, and to 2-D BMP are 0.25, 0.368, and
0.438, respectively.
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Table 4.1: The selected values of pencil parameter K with respect to the number of antennas.

Number of antennas 2 3 4 5 6 7 8
K 2 2 2 2 2 3 3

Table 4.2: The selected values of pencil parameter P versus the CFR length.

Bandwidth (MHz) 20 40 80 160
FFT / IFFT order 64 128 256 512
N = Np +Ndc 57 117 245 501

P 19 39 82 167
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Figure 4.6: Comparison of computational complexity of the initial transformation and SVD of
various 2-D MP algorithms.

Table 4.3: The complexity ratio of 2-D UMP to the other 2-D matrix pencil algorithms.

Bandwidth 2-D UMP to 2-D UMP to 2-D UMP to
(MHz) 2-D MP-Ex 2-D MP 2-D BMP

20 0.25 0.3688 0.4370
40 0.25 0.3680 0.4381

40+40 0.25 0.4103 0.3902
80 0.25 0.3672 0.4393

80+80 0.25 0.4096 0.3909
160 0.25 0.3674 0.4390
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4.8 Computational Complexity Comparison of 1-D and 2-D
Matrix Pencil Algorithms

From the previous chapter of 1-D MP algorithms, we have proposed that if a number of an-
tennas are available in the BS, the 1-D MP algorithms can be used, where the measured CFRs
from all antennas per each BS can be treated as a number of snapshots, in another way, as a
kind of spatial diversity. In this section, we need to present the computational complexity of
1-D MP algorithms with spatial diversity to estimate only time delays compared with that of
2-D MP algorithms to estimate both time delays and relative DOAs. To show the computa-
tional complexity comparison between both principles, let us present the comparison between
1-D UMP-Ex and 2-D UMP, where they are using the extended matrix and they achieve the
lowest computational Complexity. To do that let us assume the number of antennas M = 6,
consequence, the number of snapshots for spatial diversity using 1-D UMP-Ex is q = 6. The
pencil parameter P of 1-D UMP-Ex is given in Table 3.5 for all bandwidths of 802.11ac and the
pencil parameters K and P of 2-D UMP are given in Tables 4.1 and 4.2, respectively. Fig. 4.7
shows a comparison between the computational complexity of the SVD of both 1-D UMP-Ex
and 2-D UMP algorithms regarding 802.11ac bandwidths. From Fig. 4.7, it is obvious that
the computational complexity of 1-D UMP-Ex is very low compared to that of 2-D UMP. For
2 ≤M ≤ 6, the complexity ratio of 1-D UMP-Ex to 2-D UMP is around % = 0.237 and in case
of using frequency diversity it is % = 0.261. For 7 ≤ M ≤ 8, % ≈ 0.1. The question now is
what is the performance ratio between using 1-D and 2-D matrix pencil algorithms for wireless
positioning. Furthermore, is there a mismatch between the complexity and the performance of
each of them? The answer of those questions will be given in the measurement chapter.

In Chapter 3, the time delays of a wireless multipath channel have been estimated, and
in this chapter, the time delays and the relative DOAs of a wireless multipath channel have
been estimated. After estimating the required observations, the next step is to estimate the MU
coordinates using TDOA observations, or hybrid TDOA and DOA observations. Chapter 5 will
present some useful studies and the proposed estimators for MU position estimation. The effect
of the fundamental parameters of the wireless positioning system on the performance will also
be presented.
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Figure 4.7: Comparison of computational complexity of the SVD between 1-D UMP-Ex and
2-D UMP algorithms.





CHAPTER 5

Mobile Unit Position Estimation Based on
TDOA and DOA Measurements

There are two options to combine TDOA and DOA estimates for MU position estimation.
The first option is to estimate the coordinates of MU using TDOA and DOA measurements
individually, and then combine the estimated positions to get the final position, where each
result should be given an appropriate weight due to the different variance error. The second
option is to process the TDOA and DOA measurements together to estimate the MU position.
In the following, some useful studies to estimate the MU position by using TDOA, DOA,
and hybrid TDOA and DOA measurements will be presented in Sections 5.1, 5.2, and 5.3,
respectively. The proposed TDOA, and hybrid TDOA and DOA estimators will be presented in
Section 5.4. After that the TDOA and DOA estimation error variances will be derived to show
the effect of the fundamental parameters of the wireless indoor positioning system in Section
5.5.

5.1 Estimators Based on TDOA Measurements

The geometric model for estimating the position coordinates using TDOA is the intersection
of hyperbolas in 2-D and the intersection of hyperboloid in 3-D as shown in Fig. 2.15. Fig.
5.1 shows a simple demo, where four BSs are used. The coordinates of these BSs from 1
to 4 are (x1, y1), (x2, y2), (x3, y3), and (x4, y4), respectively, which are known to the system.
The position of the MU is (x, y) (this is the parameter to be estimated). The TDOA between
receivers i and j can be computed as

∆tij = ti − tj; i, j = 1, 2, . . . , I; i 6= j (5.1)

where I is the number of fixed BSs. If BS number one is taken as a reference, the TDOA
between BS number i and the reference BS is

∆ti1 = ti − t1; i = 2, . . . , I (5.2)

The equations of the hyperbolas that define the position of the MU are

di1 = c.∆ti1 = d̂i − d̂1 =

√
(x̂− xi)2 + (ŷ − yi)2 −

√
(x̂− x1)2 + (ŷ − y1)2 (5.3)

where di1 is the TDOA between BS number i and the reference BS times the speed of light, c.
The solution of the above set of non-linear equations gives x̂, ŷ and d̂1. However, it is difficult
to solve those non-linear equations. Therefore, linearizing (5.3) is the possible way to solve it.
In the following, different positioning estimators based on the TDOA observations to estimate
MU location (x̂, ŷ) will be introduced.

81
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Figure 5.1: Deployment of BSs for wireless positioning based on TDOA and DOA.

5.1.1 Iterative Least Square Estimator
The linearized LS estimator is a ML estimator that uses Taylor series expansion to linearize
(5.3) [42]. This estimator starts with an initial guess for the MU position (x0, y0), and then
calculates the position deviation for each iteration. In case of wireless indoor positioning,
(x0, y0) can be selected the center of the interested area. In general, the iterative LS estimator
computes position deviations using Taylor series expansion as follows:

ẑ =

[
x̂
ŷ

]
=

[
x0

y0

]
+ (GTQ−1G)

−1
GTQ−1h (5.4)

where G is the designed matrix and defined by

G =


(x1 − x0)/d1 − (x2 − x0)/d2 (y1 − y0)/d1 − (y2 − y0)/d2

(x1 − x0)/d1 − (x3 − x0)/d3 (y1 − y0)/d1 − (y3 − y0)/d3
...

...
(x1 − x0)/d1 − (xI − x0)/dI (y1 − y0)/d1 − (yI − y0)/dI

 , (5.5)

h =


d21 − (d2 − d1)
d31 − (d3 − d1)

...
dI1 − (dI − d1)

 , (5.6)

where the values of di; i = 1, 2, ..., I are computed using the initial guess z0 = [x0, y0]T . The
new estimated coordinates (x̂0, ŷ0) are used as an initial estimate in (5.4) for the next iteration.
And Q is the covariance matrix converted from its original TDOA form into the corresponding
distance form by multiplication by c2. The whole process should be repeated until the devia-
tions between successive estimated values of ẑ = [x̂, ŷ]T are sufficiently small. Although the
number of independent TDOA values obtainable from I BSs is I − 1, we can use in a noisy
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environment additional pairs of measurements that are not independent, since the noise that is
not correlated between those pairs gives them a degree of independence [89]. Therefore, more
pairs can also be used in the iterative LS estimator. For example, if we have four BSs, it is
possible to take these pairs of BSs to calculate TDOAs: (1,2), (1,3), (1,4), (2,3), (2,4), and
(3,4). The MU position can then be estimated iteratively using (5.4), where extra rows in G
and h matrices should be added to take into account the new pairs. In this case, it has been
found from the experimental results that the covariance matrix should be neglected, because it
is a singular matrix, and cannot be inverted; its determinant is approximately zero.

The drawback of iterative LS is that it is a computationally intensive method if the start-
ing point is not close enough. In addition, it has a convergence problem, convergence is not
guaranteed [43].

5.1.2 Divide-and-Conquer based on TDOA Estimator
Divide-and-Conquer estimator has been presented in [44] and [45], which can achieve a good
performance at high SNR. The principle of DAC estimator is to split the observations to small
sets each having a size equal to the number of unknowns. The MU coordinates are then esti-
mated for each set, (ẑ1, ẑ2, ..., ẑK), where K is the number of sets, and ẑk = [x̂k, ŷk]

T . The
final estimate can then be obtained by combining those estimates. Here, the basic principle
of DAC will be presented with some modifications. The proposed LS estimator, which will
be presented in Section 5.4.1, is used to estimate the MU coordinates of each set. Then, the
estimations will be combined by giving a weight to each estimation using the proposed method
in [44]. If we have four BSs such as in Fig. 5.1, the proposed LS estimator is used once for
each set as: set1 (1,2,3), set2 (2,3,4), set3 (3,4,1), and set4 (4,1,2). As it has been explained in
the previous section, we can use in a noisy environment additional pairs of measurements that
are not independent. The final ML estimate ẑML is the LS estimate of

ẑML = argmin︸︷︷︸
z

K∑
k=1

(dk − fk(z))TQk(dk − fk(z)) (5.7)

where dk = [d21, d31]T is a vector containing the measured TDOAs of set k multiplied by
c as shown in (5.3), Qk is the covariance matrix of set k converted to distance form, and
fk(z) = [f2(z), f3(z)]T is a vector containing the well known non-linear hyperbolic functions
shown in (5.3) as [45]

fi(z) = ‖z− zi‖ − ‖z− z1‖
=
√

(x− xi)2 + (y − yi)2 −
√

(x− x1)2 + (y − y1)2
(5.8)

where zi = [xi, yi]
T is the coordinates of BS number i, z1 = [x1, y1]T is the coordinates of the

reference BS of set k, and z = [x, y]T is the coordinates of MU, which should be estimated.
From [44], the ML position estimate ẑML shown in (5.7) can be approximated as follows

ẑML ≈
K∑
k=1

Wkẑk (5.9)

where the weighting vector Wk of ẑk that has been estimated from set k is

Wk = [
K∑
k=1

Ck]
−1Ck (5.10)
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where Ck is given by
Ck = Gk

TQ−1
k Gk (5.11)

where Gk = ∇fk(z) is the gradient of fk(z) with respect to z. In case of 2-D wireless po-
sitioning, each set should have three BSs to estimate zk, therefore, Gk could be written as

Gk =
[
∇f2(z) ∇f3(z)

]T
. (5.12)

The gradient of fi(z) is

∇fi(z) =
[

∂fi(z)
∂x

∂fi(z)
∂y

]
(5.13)

where
∂fi(z)

∂x
=

x− xi√
(x− xi)2 + (y − yi)2

− x− x1√
(x− x1)2 + (y − y1)2

, (5.14)

and
∂fi(z)

∂y
=

y − yi√
(x− xi)2 + (y − yi)2

− y − y1√
(x− x1)2 + (y − y1)2

. (5.15)

To summarize that first the intersections between hyperbolas defined by pairs of TDOA mea-
surements are estimated using the proposed LS estimator in Section 5.4.1. Then, the final
position estimate is calculated using (5.9) by combining the partial position estimates, where
each estimate has been given a weighting value calculated from (5.10).

The drawback of this estimator is that sets should have large enough Fisher information
[45], [43]. Therefore, optimum performance can be achieved only if the noise is small enough.

5.1.3 Chan Estimator

The principle of Chan estimator presented in [43] will be explained in the following. From Fig.
5.1, the squared distance between the MU and BS number i is

d2
i = (xi − x)2 + (yi − y)2 = Ki − 2xix− 2yiy + x2 + y2 (5.16)

where Ki = x2
i + y2

i . The set of non-linear equations whose solution gives MU position has
been defined in (5.3). The first step of Chan estimator is to assume that there is no relationship
between x, y, and d1. Another approximation to make the problem solvable is to assume
that the MU has equal distances to all BSs. In another way, it is far from system array, i.e.
d1 = d2 = ... = dI . The initial estimate of z can then be estimated by

ẑa = [x̂ ŷ d̂1]T = (GTQ−1G)
−1

GTQ−1h (5.17)

where Q is the covariance matrix converted from its original TDOA form into the correspond-
ing distance form. The matrix G is defined as

G =


(x2 − x1) (y2 − y1) d21

(x3 − x1) (y3 − y1) d31
...

...
...

(xI − x1) (yI − y1) dI1

 . (5.18)
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And the matrix h is defined as

h =


d2

21 −K2 +K1

d2
31 −K3 +K1

...
d2
I1 −KI +K1

 . (5.19)

After obtaining the initial estimate ẑa using (5.17), a diagonal matrix B = diag(d2, d3, ..., dI)
can be easily calculated from ẑa. The covariance matrix is then given by

Ψ = BQB. (5.20)

In case of wireless indoor positioning, the MU is close, and it has different distances to BSs.
The second step is to take that into account, hence, the MU position can be estimated as

ẑb = (GTΨ−1G)−1GTΨ−1h. (5.21)

Eq. (5.21) can also be iterated to provide a good estimate. The previous solution of ẑb =
[x̂, ŷ, d̂1]T assumes that x, y, and d1 are independent, where they are related by (5.16). The
final step of Chan method is to incorporate this relationship to give an improved estimate. The
derivation here is omitted and can be seen in [43]. By using the coordinates of BS one as a
reference, the deviations can be calculated as

∆ẑ = (GT
aΨ−1

a Ga)
−1GT

aΨ−1
a ha (5.22)

where

ha =

 (x̂− x1)2

(ŷ − y1)2

(d̂1)2

 , (5.23)

Ga =

 1 0
0 1
1 1

 , (5.24)

and
Ψa = 4Bacov(ẑb)Ba, (5.25)

where
Ba = diag(x̂− x1, ŷ − y1, d̂1) (5.26)

where d1 in (5.26) is calculated using x̂ and ŷ. The covariance matrix of ẑb is defined as

cov(ẑb) = (GTΨ−1G)−1. (5.27)

The final position estimate is then obtained from ∆ẑ as

ẑ =
√

∆ẑ + [x1, y1]T (5.28)

or
ẑ = −

√
∆ẑ + [x1, y1]T . (5.29)

The final solution is selected to lie in the region of interest. This estimator offers a computa-
tional advantage over the iterative LS estimator and eliminates the convergence problem.

The drawbacks of Chan estimator are that it is based on the assumption that the noises in
the TDOA measurements are small. It will be observed clearly in the measurements analysis.
It assumes initially the MU coordinates and the reference distance to the reference BS are
independent, and the MU has equal distances to all BSs, in another way, the MU is located in
the far field from the system. It needs three steps or more to get the final position estimate of
MU.
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5.2 Estimators Based on DOA Measurements
For DOA systems, the location and distances are found by triangulation. An example is
shown in Fig. 5.1. It should be noted that the DOA support is limited to one semi-plane,
θ̂ ∈ [−π/2, π/2], which is derived from the π ambiguity of subspace methods using ULAs
with isotropic antennas [108]. The reference antenna should be defined for each antenna array.
For example in Fig. 5.1, for BS number 1, the array axis goes from the reference antenna to
antenna number M . We recommend antenna numbering presented in Fig. 5.1, where it seems
that antenna lines build a closed loop around the interested area. The DOA estimation at BS
number i is defined with respect to the specific reference system of BS number i. From Fig.
2.2 and 5.1, the estimated angle θ̂ represents the angle between the orthogonal line to the array
axis and the impinging wave. The sign of the estimated DOA depends on the impinging wave
direction, where it is positive if the impinging wave comes from the right side of the orthog-
onal line, and it is negative if the impinging wave comes from the left side of this orthogonal
line. Therefore, the orientation of all antenna arrays in the positioning system should be known
precisely. As an example in Fig. 5.1, θ1 and θ3 are positive angles, while θ2 and θ4 are negative
angles. A common reference system should be used to define θ̃i,i = 1, ..., I , with respect to the
positive direction of the x axis. If four BSs are located in the XY plane, the estimated DOAs
at the four BSs are θ̂1, θ̂2, θ̂3, and θ̂4. The estimated DOA of each antenna array should be
calibrated to the whole system, for example in Fig. 5.1, the DOAs in degrees according to the
common reference system are θ̃1 = 45− θ̂1, θ̃2 = 135− θ̂2, θ̃3 = −135− θ̂3, and θ̃4 = −45− θ̂4.
Although two BSs are enough to localize the MU using DOA methods as it is shown in Fig.
2.12, more than two BSs are necessary, because the DOAs cannot be measured exactly and to
mitigate the situation in which the BSs are located on a straight line passing through the MU.
In fact, the minimum number of BSs should be three [108].

First, let us show how to find the coordinates of the MU using two BSs, for example BS
one and two in Fig. 5.1. By using the triangulation relationships, the non-linear equations can
be written as

tan(θ̃i) = (ŷ − yi)/(x̂− xi); i = 1, . . . , I. (5.30)

For I = 2, (5.30) can be rewritten as

ŷ = (x̂− x1) tan(θ̃1) + y1, (5.31)

x̂ = (ŷ − y2)/ tan(θ̃2) + x2. (5.32)

By replacing (5.31) into (5.32), x̂ can be obtained by

x̂ =
y1 − y2 − x1 tan(θ̃1) + x2 tan(θ̃2)

tan(θ̃2)− tan(θ̃1)
. (5.33)

By replacing (5.33) into (5.31), ŷ can be obtained by

ŷ =
y1 tan(θ̃2)− y2 tan(θ̃1) + x2 tan(θ̃2) tan(θ̃1)− x1 tan(θ̃2) tan(θ̃1)

tan(θ̃2)− tan(θ̃1)
. (5.34)

By using (5.33) and (5.34), the MU position (x̂, ŷ) can be estimated for each two BSs. It is
worth mentioning that the estimation accuracy using DOA observations depends on the position
of MU with respect to the BSs. The highest accuracy could be achieved if the positions of MU
and BSs form an acute triangle (all angles are less than 90◦) [6]. In the following, different
positioning methods based on the DOA observations will be introduced to estimate the MU
location (x̂, ŷ).
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5.2.1 Lines Intersection Estimator
The simplest method is to estimate the MU coordinates z = [x, y]T using (5.33) and (5.34),
which result from the intersection of possible lines. For example, if we have four BSs as shown
in Fig. 5.1, z can be estimated using the following sets of BSs: (1,2), (1,4), (2,3), and (3,4).
It should be noted that the worst cases of BSs combinations have been mitigated such as (1,3)
or (2,4), where those BSs are approximately located in the front of each other, consequence,
the intersection of their lines could not be available if their DOA measurements are noisy. The
final estimate of MU position can then be obtained using the median of the estimated values.

5.2.2 Least Square Estimator
A simple linear LS position estimator can be obtained by using the triangulation relationships
presented in (5.30), which can be written as:

x̂ tan(θ̃i)− ŷ = xi tan(θ̃i)− yi; i = 1, . . . , I (5.35)

which can be written in a matrix form as:

G.ẑ = b (5.36)

where

G =

 tan(θ̃1) −1
...

...
tan(θ̃I) −1

 , (5.37)

b =

 x1 tan(θ̃1)− y1
...

xI tan(θ̃I)− yI

 . (5.38)

The solution of ẑ = [x̂, ŷ]T is then given by

ẑ = G†b = (GTG)−1GTb. (5.39)

The drawback of this estimator is that it does not include any information about the variance of
the DOA measurements. Therefore, it can be improved by giving a weight to the LS estimator
as

ẑ = (GTd−1Q−1
DOAG)−1GTd−1Q−1

DOAb (5.40)

where
d = diag(d2

1, ..., d
2
I) (5.41)

which represents the distances between the BSs and the MU, which are unknown. However, the
dependency of the estimator on {di} is weak as presented in [47], [108]. Therefore, they can be
roughly calculated using the center of the interested area, or estimated from the RSS, or simply
replaced by an identity matrix. And QDOA is the variance matrix which can be represented as
follows:

QDOA =

 σ2
1 · · · 0
... . . . ...
0 · · · σ2

I

 (5.42)

where {σ2
i ; i = 1, . . . , I} are the DOA variances, which have been calculated from the DOA

measurements of each BS.
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5.2.3 Divide-and-Conquer based on DOA Estimator
The principle of DAC estimator based on DOA observations is like that of DAC based on
TDOA observations presented in Section 5.1.2 [46]. If we have a number of BSs I , which can
measure I DOAs of a single MU. The measured DOA at BS number i can be written as

θ̃i = fi(z) + wi (5.43)

where wi is a zero mean uncorrelated Gaussian noise with known variance σ2
DOA. From (5.30),

the non-linear relationship between the DOA measurements fi(z) and the MU position can be
expressed as

fi(z) = tan−1(
y − yi
x− xi

). (5.44)

Eq. (5.44) can be represented in a vector form by including all I DOA measurements as

θ = f(z) + w (5.45)

where θ = [θ̃1, ..., θ̃I ]
T , f(z) = [f1(z), ..., fI(z)]T , and w = [w1, ..., wI ]

T . The principle of
DAC estimator is to split the observations to small sets each having a size equal to the number
of unknowns. The MU coordinates are then estimated for each pair (ẑ1, ẑ2, ..., ẑK), where K is
the number of pairs, and ẑk = [x̂k, ŷk]

T . The final estimate can then be obtained by combining
those ML estimates. From [44], the ML position estimate ẑML could be estimated using (5.9),
where the weighting vector Wk of ẑk, which has been estimated from set k, is defined as

Wk = [
K∑
k=1

C′k]
−1C′k (5.46)

where C′k is given by
C′k = G′k

T
d−1Q′

−1
k G′k (5.47)

where Q′k = diag(σ2
1, σ

2
2) is the variance matrix of DOA measurements of pair k, and d =

diag(d2
1, d

2
2), where d1 and d2 are the distances between the MU and the BSs of pair k, which

are unknown and can be calculated to the center of the interested area. And G′k is the Jacobian
matrix of pair k. It represents the gradient of fk(z) = [f1(z), f2(z)]T with respect to ẑk which
can be obtained as [46]

G′k(ẑk) = ∇fk(ẑk) =
[

g1(ẑk) g2(ẑk)
]T (5.48)

where
gi(ẑk) =

1

‖ẑk − zi‖
[
− sin(fi(ẑk)) cos(fi(ẑk))

]
. (5.49)

If we have I BSs, it has been proposed in [46] that the total number of pairs is I/2, for
example, the interesting pairs are (2i, 2i − 1), where i = 1, 2, ..., I/2. The drawback of this
method is that if the number of BSs is odd, the DOA estimate of the remaining BS cannot
be utilized to improve the position estimation accuracy. To improve the previous method, we
can propose the following order for the existing BSs to find the lines intersection between the
selected pairs. The following interesting pairs are used (i, i + 1), when i = 1, 2, ..., I − 1, and
(i, 1), when i = I . For example, if I = 4 as shown in Fig. 5.1, the interesting pairs are (1,2),
(2,3), (3,4), and (4,1). For different distribution of BSs, all pairs should be used without those
pairs whose BSs are located in the front of each other, because for a small noise in their DOA
measurements, their lines may not intersect.

Such as the previous, the drawback of DAC estimator based on DOA is that a good perfor-
mance can be achieved only when the noise is small enough. For example in our experimental
results, the results of some pairs are empty, there is no intersection between their lines.
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5.2.4 Stansfield-Least Square Estimator
To solve the problem of partitioning, a non-iterative closed form has been proposed based on
the DOA measurements in [47], [117]. It is based on an approximation of the ML problem
to linearize the non-linear ML problem [118]. By using the triangulation relationships, the
non-linear equations presented in (5.30) can be written as

−x̂ sin(θ̃i) + ŷ cos(θ̃i) = xi sin(θ̃i) + yi cos(θ̃i) (5.50)

Based on the LS principle in the absence of noise, the proposed position estimate is

ẑ = (GTG)−1GTb (5.51)

where

G(θ̃) =

 − sin(θ̃1) cos(θ̃1)
...

...
− sin(θ̃I) cos(θ̃I)

 , (5.52)

and

b(θ̃) =

 −x1 sin(θ̃1) + y1 cos(θ̃1)
...

−xI sin(θ̃I) + yI cos(θ̃I)

 . (5.53)

The drawback of this estimator is that it does not include any information about the variance of
the DOA measurements. Therefore, it can be improved by including the variance matrix as

ẑ = (GTd−1Q−1
DOAG)−1GTd−1Q−1

DOAb (5.54)

where d and QDOA are given in (5.41) and (5.42), respectively.

5.3 Hybrid TDOA and DOA for Position Estimation
To improve the positioning accuracy, it is always useful to use various observations for po-
sition estimation. In the following, hybrid TDOA and DOA estimators will be described for
MU position estimation. As we have explained, there are two options to combine TDOA and
DOA measurements. The first option is a combination between the results of TDOA and DOA
methods after computing the position of MU for each method individually. To show that DAC
and hybrid based on weighting estimators will be presented based on TDOA and DOA mea-
surements. The second option is to use TDOA and DOA measurements together to estimate
the MU position, and for that the proposed method will be presented in Section 5.4.

5.3.1 Hybrid DAC based on TDOA and DOA Estimator
The principle of hybrid DAC is to combine DAC based on TDOA and DAC based on DOA
described in Sections 5.1.2 and 5.2.3, respectively. First, the intersections between lines defined
by pairs of DOA measurements are computed. Second, the intersections between hyperbolas
defined by sets of TDOA measurements are computed. Finally, all the partial position estimates
are combined by giving each estimate a weighting vector as follows [46]

ẑML =

K1∑
k=1

WTDOA
k ẑTDOAk +

K2∑
k=1

WDOA
k ẑDOAk (5.55)
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where

WTDOA
k = [

K1∑
k=1

Ck +

K2∑
k=1

C′k]
−1Ck (5.56)

WDOA
k = [

K1∑
k=1

Ck +

K2∑
k=1

C′k]
−1C′k (5.57)

whereK1 is the number of sets of TDOA measurements, andK2 is the number of pairs of DOA
measurements. Ck and C′k have been defined in (5.11) and (5.47), respectively.

5.3.2 Weighted TDOA and DOA Estimator
In the previous, the TDOA and DOA observations are used individually to find the position of
MU. The XY coordinates of MU position based on the TDOA measurements can be estimated
using the presented estimators in Section 5.1. A weighted least square estimator, which will
be presented in Section 5.4.1, can also be used. The XY coordinates of MU position based on
the DOA measurements can be estimated using the presented estimators in Section 5.2. The
final position of MU can be found by using any combination between the presented estimators
in Sections 5.1 and 5.2, where each estimated value should be given an appropriate weight
calculated from the measurements covariance or variance matrices.

Let us assume the estimated XY coordinates based on TDOA and DOA observations are
ẑTDOA = [x̂, ŷ]T and ẑDOA = [x̂, ŷ]T , respectively. To combine the estimated coordinates,
appropriate weights should be used to scale the different accuracy of using TDOA and DOA
observations. The variances of TDOA and DOA observations represented in distance form are
used. For TDOA, it is obtained by calculating the mean of the diagonal elements of the covari-
ance matrix QTDOA converted from its original TDOA form into the corresponding distance
form as

σ2
r,TDOA = avg(diag(QTDOA)). (5.58)

For DOA, it is obtained by calculating the mean of the diagonal elements of the variance matrix
QDOA. To convert it to distance form, the unknown distances d = diag(d2

1, . . . , d
2
I) between the

MU and BSs can be calculated from the initial estimation of MU using TDOA measurements,
then

σ2
r,DOA = avg(diag(dQDOA)). (5.59)

Then, the required weights are

κTDOA =
σ2
r,DOA

σ2
r,DOA+σ2

r,TDOA
, κDOA =

σ2
r,TDOA

σ2
r,DOA+σ2

r,TDOA
. (5.60)

Therefore, the final estimate can be obtained:

ẑ = ẑTDOA.κTDOA + ẑDOA.κDOA. (5.61)

5.4 Proposed Hybrid TDOA and DOA Estimator
From the previous, DAC estimator requires that the Fisher information should be sufficiently
large, and the noise should be small enough. The methods which are based on the initial guess
cannot guarantee the convergence if the initial guess is not close enough to the MU position
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such as in [119]. Therefore, a direct method will be proposed in two steps. First, the weighted-
least square (W-LS) principle is used based on the TDOA measurements only to estimate the
initial position of MU, ẑ0 = [x̂0, ŷ0]T , since using TDOA observations is more accurate than
using DOA observations. Second, a hybrid TDOA and DOA method is used to get the final
position estimate.

5.4.1 Initial Position Estimation using Weighted-Least Square Estimator
Based on Fig. 5.1, the distances between MU and BSs can be defined as follows

d2
1 = (x− x1)2 + (y − y1)2

d2
2 = (x− x2)2 + (y − y2)2

d2
3 = (x− x3)2 + (y − y3)2

...
d2
I = (x− xI)2 + (y − yI)2

. (5.62)

The distances between MU and BSs can also be defined as [6]

d2 = d21 + d1

d3 = d31 + d1
...

dI = dI1 + d1

. (5.63)

By replacing (5.63) into (5.62), we obtained

d2
1 = (x− x1)2 + (y − y1)2

(d21 + d1)2 = (x− x2)2 + (y − y2)2

(d31 + d1)2 = (x− x3)2 + (y − y3)2

...
(dI1 + d1)2 = (x− xI)2 + (y − yI)2

(5.64)

After some manipulations in (5.64), we can derive a set of linear equations in a function of x̂,
ŷ, and d̂1 as follows

(x1 − x2)x̂+ (y1 − y2)ŷ = 1
2
(x2

1 − x2
2 + y2

1 − y2
2 + d2

21 + 2d21d̂1)

(x1 − x3)x̂+ (y1 − y3)ŷ = 1
2
(x2

1 − x2
3 + y2

1 − y2
3 + d2

31 + 2d31d̂1)
...

(x1 − xI)x̂+ (y1 − yI)ŷ = 1
2
(x2

1 − x2
I + y2

1 − y2
I + d2

I1 + 2dI1d̂1)

(5.65)

which can be represented in a matrix form as

A1.ẑ = b1 + b2.d̂1 (5.66)

where

A1 =


x1 − x2 y1 − y2

x1 − x3 y1 − y3
...

...
x1 − xI y1 − yI

 , (5.67)
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b1 =
1

2


x2

1 − x2
2 + y2

1 − y2
2 + d2

21

x2
1 − x2

3 + y2
1 − y2

3 + d2
31

...
x2

1 − x2
I + y2

1 − y2
I + d2

I1

 , (5.68)

and
b2 = [d21 d31 · · · dI1]T . (5.69)

Hence, the LS estimate of ẑ is

ẑ =

[
x̂
ŷ

]
= (AT

1 A1)−1AT
1 (b1 + b2.d̂1). (5.70)

To improve the LS estimator presented in (5.70), the covariance matrix of TDOA observa-
tions QTDOA, converted from its TDOA form into the corresponding distance form, should be
included as

ẑ = (AT
1 Q−1

TDOAA1)−1AT
1 Q−1

TDOA(b1 + b2.d̂1) (5.71)

which can be simplified as

ẑ =

[
x̂
ŷ

]
=

[
a1 + c1.d̂1

a2 + c2.d̂1

]
. (5.72)

From (5.72), x̂ and ŷ can be defined in terms of d̂1 as

x̂ = a1 + c1d̂1,

ŷ = a2 + c2d̂1.
(5.73)

From (5.62), d̂1 has been defined in terms of x̂ and ŷ as

d̂2
1 = (x̂− x1)2 + (ŷ − y1)2. (5.74)

By substitute x̂ and ŷ of (5.73) into (5.74)

d̂2
1 = (a1 + c1d̂1 − x1)2 + (a2 + c2d̂1 − y1)2. (5.75)

After some manipulations, d̂1 can be defined as

d̂1 =
−b±

√
b2 − 4ac

2a
(5.76)

where
a = c2

1 + c2
2 − 1,

b = 2c1(a1 − x1) + 2c2(a2 − y1),
c = (a1 − x1)2 + (a2 − y1)2.

(5.77)

From (5.76), d̂1 should be the positive value. Therefore, the MU coordinates (x̂, ŷ) can be
estimated directly using (5.76) and (5.72). The proposed W-LS estimator has been introduced
in [56] for wireless positioning using only TDOA observations.
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5.4.2 Final Position Estimation using Hybrid TDOA and DOA Estimator
As it has been shown in (5.3) and (5.30), the TDOA and DOA mathematical models are non-
linear. Therefore, a Taylor series expansion is used to linearize the TDOA and DOA mathemat-
ical models [119]:

ẑ =

[
x̂
ŷ

]
=

[
x̂0

ŷ0

]
+ (GTQ−1G)

−1
GTQ−1h (5.78)

where ẑ0 = [x̂0, ŷ0]T is the initial estimation of MU position using the previous step, G is the
designed matrix and can be represented as

G =



(x1 − x̂0)/d̂1 − (x2 − x̂0)/d̂2 (y1 − ŷ0)/d̂1 − (y2 − ŷ0)/d̂2

(x1 − x̂0)/d̂1 − (x3 − x̂0)/d̂3 (y1 − ŷ0)/d̂1 − (y3 − ŷ0)/d̂3
...

...
(x1 − x̂0)/d̂1 − (xI − x̂0)/d̂I (y1 − ŷ0)/d̂1 − (yI − ŷ0)/d̂I

− sin(θ̃1) cos(θ̃1)
...

...
− sin(θ̃I) cos(θ̃I)


, (5.79)

and

h =



d21 − d̂21
...

dI1 − d̂I1
−(x1 − x̂0) sin(θ̃1) + (y1 − ŷ0) cos(θ̃1)

...
−(xI − x̂0) sin(θ̃I) + (yI − ŷ0) cos(θ̃I)


(5.80)

where d̂i (i = 1, ..., I) and d̂i1 (i = 2, ..., I) have been calculated from the initial estimation
ẑ0 = [x̂0, ŷ0]T of step one. The combined covariance matrix of both TDOA and DOA measure-
ments is defined

Q =

[
QTDOA 0

0 QDOA

]
(5.81)

where QDOA is the variance matrix of DOA measurements, which can be represented as

QDOA =

 σ2
1 d̂

2
1 · · · 0

... . . . ...
0 · · · σ2

I d̂
2
I

 (5.82)

where σ2
i (i = 1, ..., I) are the DOA variances. The calculation in (5.78) uses the TDOA and

DOA estimates together based on the least square of TDOA and Stansfield of DOA principles.
The weighting matrix Q is used to scale the TDOA and DOA estimates inherently due to the
different accuracy of both types, as it will be seen in the measurement chapter.

The proposed estimator calculates the initial position estimate using TDOA observations.
Then, it uses the TDOA and DOA observations of all BSs at one time rather than split the
observations to small sets such as in DAC estimator, which is sensitive to noisy signals. It does
not need to assume that the MU is located in the far field for the initial estimation and then
another step to compensate that for the close field such as in Chan estimator. The proposed
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estimator does not need to assume that x̂, ŷ, and d̂1 are independent in the initial phase and then
another step to compensate that such as in Chan estimator, where the initial estimation of x̂, ŷ,
and d̂1 is done simultaneously. The proposed estimator can converge using only one iteration.
It has been presented in [58].

Finally, we would like to summarize the presented estimators in the previous part of this
chapter for MU coordinates estimation based on using TDOA and DOA observations individ-
ually or in hybrid. The summary is in Table 5.1. The weighted estimators require the values of
matrix Q either for TDOA or DOA observations, where the non-weighted estimators assume
that all BSs have the same variance (equal weight). In the measurement chapter, we will show
the performance of all previous algorithms for MU coordinates estimation.

5.5 Lower Bounds of TDOA and DOA Estimation Error Vari-
ances

The positioning accuracy is limited by the fundamental parameters of the wireless positioning
system such as the antenna array order, the number of subcarriers including subcarrier spacing,
the SNR, the estimated DOA with respect to the antenna array, and many others. To measure
the effect of those parameters on the positioning performance, the time delay and DOA error
variances should be calculated. The CRB provides a minimum limit or a lower bound on
the variance of any unbiased estimator of an unknown parameter(s) [27], [65]. Therefore,
if the time delay and the DOA are unbiased parameters, the estimation error variances are
lower bounded by the CRB [120], [121]. The CRB of DOA observations using the ULA has
been derived in [122] for narrowband signals without delay spread. In [27], the CRB of joint
time delay and DOA estimation has been derived for narrowband signals. Similarly, it has
been presented in [120] for a wireless senor network setup. The CRB of DOA estimation of
narrowband signals has been extended to the CRB of UWB orthogonal multi-carrier signals
in [65]. The main principle is that the Fisher information matrix (FIM) of OFDM signals is the
summation of the FIMs obtained from separate observations of the narrowband subcarriers. The
CRBs for location estimation accuracy of hybrid TOA / RSS and TDOA/RSS have been derived
in [121], [123]. Analysis of positioning systems using wideband antenna arrays, which are not
restricted to far-field assumptions, is presented in [124]. To include the effect of BSs locations,
the lower bound of positioning error has been presented in [108] using DOA observations and
in [125] using TDOA observations. The CRBs of joint time delay and DOA estimation and
of time delay estimation with spatial diversity are derived for wideband ULA-OFDM systems,
which have not presented in the literature. A single snapshot from the S-CFR is used, which
represents the best property of using MP algorithms compared to the other statistical super-
resolution algorithms.

If the time delay τ and the DOA θ are unbiased parameters, the error variances are lower
bounded by the CRB, denoted by σ2

τ,CRB and σ2
θ,CRB. To simplify the CRB derivation, it has

been assumed that the received signal comes from the far field with respect to the antenna array
as shown in Fig. 2.2, and the wireless channel is propagated via a LOS channel, hence, the time
delay and DOA can be assumed to be unbiased parameters. In practice, the DME is biased by
a NLOS propagation channel as well as a multipath delay spread.

The least square estimate of the S-CFR of the ULA-OFDM signal for the mth antenna and
the kth subcarrier is recalled from (4.10) in Section 4.2

Hm,k =
∑L

l=1
βm,l,k.e

−j2πk∆f(τl+mρsin θl/c)e−j2πfcmρ sin θl/c + wm,k (5.83)
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Table 5.1: List of estimators of MU position estimation.

Estimator Name Abbreviation
Estimators Based on TDOA Measurements

Iterative Least Square estimator ILS
Weighted Iterative Least Square estimator W-ILS
Least Square estimator (proposed) LS
Weighted-Least Square estimator (proposed) W-LS
DAC-Least Square estimator DAC-LS
Chan estimator Chan

Estimators Based on DOA Measurements
Lines Intersection estimator LI
Least Square estimator LS
Weighted Least Square estimator W-LS
Stansfield-Least Square estimator SLS
Weighted-Stansfield-Least Square estimator W-SLS
DAC based on lines intersection DAC-LI
Adapted DAC based on lines intersection A-DAC-LI

Hybrid Estimators Based on TDOA and DOA Measurements
Hybrid DAC based on TDOA and DOA estimator Hybrid-DAC
Weighted TDOA and DOA Estimator Hybrid-W
Hybrid TDOA and DOA Estimator (proposed ) Hybrid-WLS

where −(N − 1)/2 ≤ k ≤ (N − 1)/2, m = 0, . . . ,M − 1, the complex channel gain βm,l,k =
αm,l,k.e

−j2πfcτl , and wm,k is the AWGN at the mth antenna and the kth subcarrier. It should
be noted that time delays and arrival angles are relatively stationary. As it has been stated
in the previous to simplify the CRB derivation, let us assume the MU in the far field, and the
wireless channel propagated via a single path channel, hence, time delay and DOA are unbiased
parameters. From (5.83), the S-CFR will be then

Hm,k = β.e−j2πk∆f(τ+mρ sin θ/c)e−j2πfcmρ sin θ/c + wm,k (5.84)

where β = αe−j2πfcτ .
In the following, the CRB will be derived using multi-antenna multi-carrier systems for

DOA, time delay, and TDOA estimation individually. After that the CRB will be derived for
joint time delay and DOA estimation using a multipath channel.

5.5.1 DOA Estimation Error Variance

To get the DOA estimation error variance for OFDM signals, let us find it first for a single
subcarrier, for example at carrier frequency fc. By setting k = 0 in (5.84), it will be in a vector
form (along M antennas)

h = βx(θ) + w = u(θ) + w (5.85)

where the noise vector w is zero mean Gaussian with covariance Qn = σ2
nI, the channel gain

β = aejb represents two unknowns (its magnitude and phase), and x(θ) represents the steering
vector of the signal whose direction θ with respect to the ULA, which should be estimated. If
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the array center is the reference and the number of antenna elements is odd, the steering vector
is

x(θ) = [x−(M−1)/2, x−(M−3)/2, . . . , x−1, 1, x, . . . , x(M−3)/2, x(M−1)/2]T (5.86)

where x = e−j2πfcρ sin θ/c. The unknown parameters are η = [a, b, θ], which are modeled as
deterministic (i.e., fixed) quantities, hence, E{h} = u = βx(θ), where E{.} represents the
statistical expectation.

The error variance of an unbiased estimate of the lth parameter, ηl, is lower bounded by the
CRB inequality as follows [124], [122]

σ2
ηl,CRB

≥ F−1
ll (5.87)

where F−1
ll is the lth diagonal entry of the inverse of the FIM F whose (i, j)th is given by

Fij = −E{ ∂2

∂ηi∂ηj
[lnfh(h/η)]} (5.88)

where fh(h/η) is the probability density function (pdf) of the received vector given the param-
eters η. In our case, it is Gaussian

fh(h/η) = Ce−(h−u)HQ−1
n (h−u) (5.89)

where C is a normalization constant. To proceed for (5.88), the natural logarithm of (5.89) is

g(η) = ln{fh(h/η)} = ln(C)− 1

σ2
n

(h− u)H(h− u) (5.90)

which can be simplified to

g(η) = ln(C) +
1

σ2
n

(−hHh + β∗xHh + βhHx− |β|2xHx). (5.91)

Under the assumption of uncorrelated signals (diagonal F), the result of (5.87) in terms of the
interesting parameter θ is

σ2
θ,CRB ≥ {−E[

∂2g(η)

∂θ2
]}−1. (5.92)

The first partial derivative of x(θ) as a function of θ is

∂x(θ)

∂θ
= x1(θ) = −j2πfcρ cos θ/c[−(M−1)

2
x−(M−1)/2, −(M−3)

2
x−(M−3)/2,

. . . ,−x−1, 0, x, . . . , (M−3)
2

x(M−3)/2, (M−1)
2

x(M−1)/2]T
(5.93)

and

∂xH(θ)

∂θ
= xH1 (θ) = j2πfcρ cos θ/c[−(M−1)

2
x−(M−1)/2, −(M−3)

2
x−(M−3)/2,

. . . ,−x−1, 0, x, . . . , (M−3)
2

x(M−3)/2, (M−1)
2

x(M−1)/2]∗.

(5.94)

The multiplication of the above two equations is

xH1 (θ)x1(θ) = (2πfcρ cos θ/c)2
∑ (M−1)

2

m=
−(M−1)

2

m2. (5.95)
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The summation in (5.95) can be simplified to∑ (M−1)
2

m=
−(M−1)

2

m2 = 2
∑ (M−1)

2

m=1
m2 = M(M2 − 1)/12. (5.96)

If the number of antennas is even and the array center is the reference, the steering vector is

x(θ) = [x−(M−2)/2, x−(M−4)/2, . . . , x−1, 1, x, . . . , x(M−2)/2, xM/2]T . (5.97)

Such as in (5.95), the multiplication of the first partial derivative of xH(θ) and x(θ) is

xH1 (θ)x1(θ) = (2πfcρ cos θ/c)2
∑M

2

m=
−(M−2)

2

m2. (5.98)

The summation in (5.98) can be simplified to∑M
2

m=
−(M−2)

2

m2 = M(M−1)(M−2)+3M2

12
. (5.99)

Finally, if the number of antennas is 2, the steering vector is x(θ) = [1, x]T , and the multipli-
cation of the first partial derivative of xH(θ) and x(θ) is (2πfcρ cos θ/c)2.

To proceed for (5.92), we should first find the partial derivative of g(η) as a function of θ,
where the first two terms are constants with respect to θ

∂g

∂θ
=

1

σ2
n

{β∗xH1 h + βhHx1 − a2(xH1 x + xHx1)}. (5.100)

The second partial derivative of g(η) with respect to θ is

∂2g

∂θ2
=

1

σ2
n

{β∗xH2 h + βhHx2 − a2(xH2 x + xH1 x1 + xH1 x1 + xHx2)}, (5.101)

⇒ E{∂
2g

∂θ2
} =

1

σ2
n

{|β|2xH2 x + |β|2xHx2 − a2(xH2 x + xH1 x1 + xH1 x1 + xHx2)}, (5.102)

⇒ E[
∂2g

∂θ2
] =
−2a2

σ2
n

xH1 x1. (5.103)

Substituting the term xH1 x1 from the above equations based on the order of antenna array into
(5.103) gives

⇒ E{∂
2g

∂θ2
} =
−a2

6σ2
n

(2πfcρ cos θ/c)2B (5.104)

where the value of B depends on the order of antenna array which is

B =


M(M2 − 1) if M = odd &M 6= 1

M(M − 1)(M − 2) + 3M2 if M = even &M 6= 2

12 if M = 2

. (5.105)

From (5.92) and (5.104), the CRB variance of DOA estimation is

σ2
θ,CRB ≥

6

(2πfcρ cos θ/c)2γscB
(5.106)

where γsc = a2/σ2
n is the SNR per subcarrier. It should be noted the following from the above

relation:
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• The factor (2πfcρ cos θ/c) represents the effect of the orientation of the ULA (array axis)
with respect to the impinging wave direction. If the array axis is perpendicular to the
impinging wave (θ = 0◦), the CRB of DOA estimation is the minimum value, but if the
array axis is aligned to the same direction of the impinging wave (θ = ±π/2), the CRB
tends to infinity.

• If the SNR γsc increases, the error variance decreases.

• Increasing the number of antenna elements in the ULA (M ) improves the accuracy of the
DOA estimation.

Similar to the principle in [65], the FIM of OFDM signals is the summation of the N FIMs
obtained from separate observations of the N narrowband subcarriers, where N is the length
of the estimated CFR of the OFDM signal. Hence, the FIM of OFDM signal is

FOFDM =
∑N−1

k=0
Fsc,k (5.107)

where the subscript sc denotes the FIM Fk of a single subcarrier. The CRB of DOA estimation
for OFDM signals is then given by

σ2
θ,CRB,OFDM ≥ {FOFDM}−1. (5.108)

For simplicity, let us mention to the minimum frequency among subcarriers by f0 and fk =
f0 + k∆f , where k = 0, . . . , N − 1. As a consequence, the CRB variance of DOA estimation
for OFDM signals can be evaluated easily from (5.106) and (5.107) as

σ2
θ,CRB,OFDM ≥

6

(2πρ cos θ/c)2Bγsc
∑N−1

k=0 f
2
k

(5.109)

where the value of B is given in (5.105).
From (5.109), the main system parameters affecting on the CRB based on the DOA mea-

surements are the SNR per subcarrier γsc, the order of antenna array M , the system BW rep-
resented by the number of subcarriers N , and the DOA of the received signal θ. To show the
effect of the above parameters, assume the discussed parameter is variable and the remaining
parameters are constants with the following values: the number of antennas M is 4, the system
BW is 20 MHz, the DOA is 5 degrees, and γsc is 20 dB. The carrier frequency fc is 5.25 GHz,
and the spacing between the adjacent antenna elements ρ is the half wave length. To show the
effect of SNR, Fig. 5.2 (left) shows the standard deviation (STD) of DOA in degrees with re-
spect to SNR per subcarrier. To show the effect of DOA of the received signal, Fig. 5.2 (right)
shows the STD of DOA in degrees with respect to the DOA of the received signal. To show the
effect of a number of antennas in the ULA, Fig. 5.3 (left) shows the STD of DOA in degrees
with respect to the number of antennas. To show the effect of a system BW, Fig. 5.3 (right)
shows the STD of DOA in degrees with respect to the system BW. It has been preferred in the
previous to plot the STD of DOA estimation rather than the DME, because the DME depends
on the distance between the MU and the BS in case of using DOA measurements. From Fig.
5.2 (right), the MU position with respect to BS could be in the critical region (θ ≈ ±π/2),
therefore, the number of BSs in the positioning system should be enough for reliable accuracy.
In addition, from Fig. 5.3, instead of increasing the antenna array order (system complexity)
to increase the accuracy of DOA estimation, the system BW can be increased to get a high
accuracy.
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Figure 5.2: STD of DOA estimates versus γsc (left) and DOA of the received signal (right).
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5.5.2 TDOA and Time Delay Estimation Error Variance
To derive the CRB error variance of time delay estimation for OFDM signals, let us find it first
for the reference antenna (m = 0). Substituting m into (5.84) yields

Hk = βe−j2πk∆fτ + wk (5.110)

which can be written in a vector form:

h = βz(τ) + w = v(τ) + w (5.111)

where z(τ) represents the steering vector of the signal whose time delay τ , which should be
estimated. If the carrier frequency fc is the reference and the number of OFDM sensors (pilots)
is odd, which represents the CFR length, the steering vector is

z(τ) = [z−(N−1)/2, z−(N−3)/2, . . . , z−1, 1, z, . . . , z(N−3)/2, z(N−1)/2]T (5.112)

where z = e−j2π∆fτ . The number of OFDM pilots per one OFDM symbol is usually even,
however, an interpolation is made for the dc subcarriers as it has been explained in Section
3.3.2. The unknown parameters are t = [a, b, τ ], which are modeled as deterministic parame-
ters, hence, E[h] = v = βz(τ).

Such as the previous, under the assumption of uncorrelated signals (diagonal F), the CRB
of time delay estimation is

σ2
τ,CRB,OFDM ≥ {−E[

∂2g(t)

∂τ 2
]}−1 (5.113)

where g(t) is the natural logarithm of (5.89), which is a function of time delay τ here, as

g(t) = ln(C) +
1

σ2
n

(−hHh + β∗zHh + βhHz− |β|2zHz). (5.114)

Using the previous procedure of DOA error variance gives a solution similar to (5.103)

⇒ E{∂
2g(t)

∂τ 2
} =
−2a2

σ2
n

zH1 z1. (5.115)

Such as in (5.95), the multiplication of the first partial derivative of the time delay steering
vectors zH(τ) and z(τ) is

zH1 (τ)z1(τ) = (2π∆f)2N(N2 − 1)/12. (5.116)

From (5.113), (5.115), and (5.116), the CRB of time delay estimation for OFDM signals is

σ2
τ,CRB,OFDM ≥

6

(2π∆f)2N(N2 − 1)γsc
(5.117)

where γsc is the SNR per subcarrier. It should be noted the following from the above relation:

• Increasing the number of subcarriers including the subcarrier spacing decreases the CRB
error variance of time delay estimation, which improves the accuracy of positioning.

• If the SNR γsc increases, the error variance decreases.
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Let us now extend the CRB of time delay estimation using OFDM signals to include the
effect of multiple snapshot principle based on the spatial diversity. The S-CFR samples using
M antennas and N subcarriers presented in (5.84) can be written in a vector form along the
subcarriers for the mth antenna as follows

hm = βzm(τ) + wm (5.118)

where the time delay steering vector is

zm(τ) = e−j2πfcmρ sin θ/c[z−(N−1)/2
m , z−(N−3)/2

m , . . . , z−1
m , 1, zm, . . . , z

(N−3)/2
m , z(N−1)/2

m ]T

(5.119)
where zm = e−j2π∆f(τ+mρ sin θ/c). The first partial derivative of zm(τ) as a function of τ is

∂zm(τ)

∂τ
= zm,1(τ) = −j2π∆fe−j2πfcmρ sin θ/c[−(N−1)

2
z−(N−1)/2
m , −(N−3)

2
z−(N−3)/2
m ,

. . . ,−z−1
m , 0, zm, . . . ,

(N−3)
2

z(N−3)/2
m , (N−1)

2
z(N−1)/2
m ]T .

(5.120)

The multiplication of the first partial derivative of the time delay steering vectors is

zHm,1(τ)zm,1(τ) = (2π∆f)2N(N2 − 1)/12. (5.121)

And then proceed as before to obtain

E{∂
2g(t)

∂τ 2
} =
−2a2

σ2
n

zHm,1zm,1 =
−a2

6σ2
n

(2π∆f)2N(N2 − 1). (5.122)

From the result in (5.122), we can assume without approve that the FIM of the OFDM signal
with spatial diversity is the summation of the M FIMs obtained from separate observations of
M antennas

FOFDM,SD =
∑M−1

m=0
FOFDM,m (5.123)

where the subscript SD stands for the spatial diversity. From (5.123), the FIM of the OFDM
signal using antenna array with M antennas is

FOFDM,SD = −E{∂
2g(t)

∂τ 2
}.M =

a2

6σ2
n

(2π∆f)2N(N2 − 1)M. (5.124)

Finally, the CRB of time delay estimation for OFDM signals with spatial diversity is

σ2
τ,CRB,OFDM,SD ≥

6

(2π∆f)2N(N2 − 1)Mγsc
. (5.125)

It is worth mentioning from (5.125) that the accuracy of time delay estimation does not affected
by the orientation of antenna arrays with respect to the MU in case of using more than one
antenna for spatial diversity.

The DME variance can then be obtained by multiply the time delay (TOA) error variance
with c2 as, σ2

r,TOA = c2σ2
τ . The DME variance using TDOA measurements has been computed

in [125] for cellular positioning as

σ2
r,TDOA = 2σ2

r,TOA. (5.126)

However, the positioning error variance using TDOA measurements depends on the BSs loca-
tions with respect to the reference BS. Assume the number of BSs in the localization system is
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I , the CRB on the positioning error variance using TDOA measurements has been calculated
in [125] as

σ2
r,TDOA =

4σ2
r,TOA

∑I
i=2{1− cos(θi − θ1)}∑I

i=2

∑I
j=2
j 6=i
{sin(θj − θi) + sin(θi − θ1) + sin(θ1 − θj)}2

(5.127)

where θi, {i = 1, . . . , I}, is the angle from BS number i to the MU. In the above relation, a
LOS single path has been assumed to all BSs. In practice, the time delay error variance of each
BS depends on its channel profile.

From (5.125) and (5.127), the CRB of the positioning error variance using TDOA mea-
surements depends on the SNR per subcarrier γsc, the order of antenna array M , the system
BW represented by the number of subcarriers N and the subcarrier spacing ∆f , and the BSs
locations. Let us assume we have four BSs, and the DOAs are 46.5, 135.3, -158.3, and -21.2
degrees. To show the effect of the above parameters, assume the discussed parameter is vari-
able, and the remaining parameters are constants with the following values, the system BW is
20 MHz, the number of antennas M is 4, and γsc is 20 dB. The carrier frequency fc is 5.25
GHz, and the spacing between the adjacent antenna elements is the half wave length. To show
the effect of SNR, Fig. 5.4 shows the STD of time delay and positioning using TDOA error
variances in nanoseconds and in meters, respectively, with respect to SNR per subcarrier γsc.
To show the effect of system bandwidth, Fig. 5.5 shows the STD of time delay and positioning
using TDOA error variances with respect to the system BW. To show the effect of a number of
antennas, Fig. 5.6 shows the STD of time delay and positioning using TDOA error variances
with respect to the number of antennas. From Fig. 5.5 and 5.6, it can conclude that increasing
system BW is more useful than increasing number of antennas for spatial diversity.

5.5.3 Joint Time Delay and DOA Estimation Error Variance
In the previous, some assumptions have been assumed to derive the CRB of time delay and
DOA error variances individually to let us present the effect of the main system parameters
clearly. In this section, the derivation of the CRB of joint time delay and DOA estimation using
a single snapshot from the S-CFR will be presented for the wireless multipath channel. The
noiseless S-CFR has been recalled from (4.10)

Hm,k =
∑L

l=1
βm,l,kx

m
l z

k
l (5.128)

where x(θl) = e−j2πfcρ sin θl/c and z(τl) = e−j2π∆fτl . By assuming that the MU is in the far
field, the channel complex gain of path l in (5.128) is αl ≈ αm,l,k, hence, βl = αle

−j2πfcτl . The
noisy channel estimate is written in a matrix form:

Ĥ = H + W (5.129)

where W is the additive noise. The matrix H can be factorized as in (4.15) to

H = [x(θ1), . . . ,x(θL)]

 β1 0
. . .

0 βL

 [z(τ1), . . . , z(τL)]T (5.130)

where the steering vector x(θl) of θl is determined from the antenna geometry:

x(θl) = [1, xl, . . . , x
M−1
l ]T (5.131)
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Figure 5.4: STD of time delay and positioning using TDOA error variances versus γsc.
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Figure 5.6: STD of time delay and positioning using TDOA error variances versus M .

and the steering vector z(τl) of τl is determined from the OFDM sensors (pilots):

z(τl) = [z
−(N−1)/2
l , z

−(N−3)/2
l , . . . , z−1

l , 1, zl, . . . , z
(N−3)/2
l , z

(N−1)/2
l ]T (5.132)

Eq. ( 5.130) can be simply written:

H = X(θ)AdZ
T (τ ) (5.133)

where Ad = diag{A0}, A0 = [β1, . . . , βL]T , θ = [θ1, . . . , θL], and τ = [τ1, . . . , τL]. By using
the general relation vec[Cdiag(a)B] = (BT �C)a [27] (the vector operation of a matrix H is
obtained by stacking each column of the matrix H one under another), we obtain

vec[H] = [Z(τ )�X(θ)]A0 = U(θ, τ )A0 (5.134)

which is a column-wise Kronecker product as in (B.2) of appendix B

Z�X = [z1 ⊗ x1, z2 ⊗ x2, . . .] (5.135)

where� and⊗ are the Khatri-Rao and the Kronecker products as in appendix B. The MN ×L
matrix U(θ, τ ) represents the space-frequency response matrix with L paths. For a single path,
the space-frequency response vector u(θ, τ) is

u(θ, τ) = z(τ)⊗ x(θ). (5.136)

Consequently, the space-frequency response matrix for L paths is defined as in (5.135) as

U(θ, τ ) = Z(τ )�X(θ) = [u(θ1, τ1), . . . ,u(θL, τL)]. (5.137)

The general form of (5.134) including noise is

y = vec[Ĥ] = U(θ, τ )A0 + w (5.138)

where w = vec[Ŵ] is a complex, stationary, and zero mean Gaussian process. It is uncorrelated
from path to path, which means E{wwH} = σ2

nI and E{wwT} = 0.
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The CRB depends on the modeling of path fading, which can be modeled as random vari-
ables with a known distribution or as unknown deterministic parameters [27]. In this work,
the CRB of deterministic parameters is derived, which can be written in a vector form as,
Ω = [σ2

n,A
T
Re,A

T
Im,θ, τ ], where ARe = Re[A0], and AIm = Im[A0]. The likelihood function

of the channel estimates y (independent and identical Gaussian distribution) is

fy(y/Ω) =
1

(2π)MN(σ2
n/2)MN

.exp{− 1
σ2
n
[y −UA0]H [y −UA0]}. (5.139)

The log-likelihood function of (5.139) is

ln{fy} = C −MNlnσ2
n − 1

σ2
n
[y −UA0]H [y −UA0] (5.140)

where C is a constant parameter, and can be ignored. Hence, (5.140) can be redefined as

g(Ω) = −MNlnσ2
n − 1

σ2
n
[y −UA0]H [y −UA0] (5.141)

which can be simplified to

g(Ω) = −MNlnσ2
n + 1

σ2
n
{−yHy + yHUA0 + AH

0 UHy −AH
0 UHUA0}. (5.142)

To calculate the FIM, the above equation should be derived with respect to σ2
n, ARe, AIm, θ,

and τ as follows:
∂g

∂σ2
n

=
−MN

σ2
n

+
1

σ4
n

wHw (5.143)

∂g

∂ARe

=
1

σ2
n

[yHU + UHy −UHUA0 −AH
0 UHU]

⇒ ∂g

∂ARe

=
1

σ2
n

[wHU + UHw] =
1

σ2
n

[(UHw)H + UHw]

⇒ ∂g

∂ARe

=
2

σ2
n

Re[UHw] (5.144)

∂g

∂AIm

=
1

σ2
n

[jyHU− jUHy + jUHUA0 − jAH
0 UHU]

⇒ ∂g

∂AIm

=
j

σ2
n

[(UHw)H −UHw]

⇒ ∂g

∂AIm

=
2

σ2
n

Im[UHw] (5.145)

∂g

∂θl
=

1

σ2
n

∂

∂θl
[yHUβl + β∗l U

Hy − β∗l UHUβl]

⇒ ∂g

∂θl
=

2

σ2
n

Re[β∗l d
H
θl

w]; l = 1, . . . , L (5.146)

where dθl is the derivative with respect to θl of the lth column of U, which is dθl = z(τl) ⊗
∂x(θl)/∂θl (see (5.136)). Similarly, the derivative of g(Ω) with respect to τl is

⇒ ∂g

∂τl
=

2

σ2
n

Re[β∗l d
H
τl

w]; l = 1, . . . , L (5.147)
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where dτl = ∂z(τl)/∂τl⊗ x(θl). From (5.137), the previous two equations (5.146) and (5.147)
can be written compactly:

⇒ ∂g

∂θ
=

2

σ2
n

Re[AH
d DH

θ w] (5.148)

⇒ ∂g

∂τ
=

2

σ2
n

Re[AH
d DH

τ w] (5.149)

where Dθ = ∂U/∂θ = [dθ1 , . . . ,dθL ] = Z � X1, and Dτ = ∂U/∂τ = [dτ1 , . . . ,dτL ] =
Z1�X, where the index 1 means the first derivative with respect to the appropriate parameters.
Similarly to the procedure of [27], the first derivative of the log-likelihood function g(Ω) with
respect to the interesting parameters η = [θ, τ ]T can be written as

∂g

∂η
=

2

σ2
n

Re[β∗1dHθ1w, . . . , β
∗
LdHθLw, β∗1dHτ1w, . . . , β

∗
LdHτLw] (5.150)

which can be written in a matrix form:

∂g

∂η
=

2

σ2
n

Re[AHDHw] (5.151)

where D = [DθDτ ] and A = I2 ⊗Ad. To simplify for the final result, the following relations
will be used [122]:

Re(B)Re(CT ) = 1
2
{Re(BCT) + Re(BCH)}, (5.152)

Im(B)Im(CT ) = −1
2
{Re(BCT)− Re(BCH)}, (5.153)

Re(B)Im(CT ) = 1
2
{Im(BCT)− Im(BCH)}. (5.154)

By using the results proven in [122], it has been found that ∂g/∂σ2
n is not correlated with the

other derivatives in the above. Then, by using (5.152) to (5.154) and the fact thatE{wwT} = 0
and E{wwH} = σ2

nI, we obtain

E{( ∂g
∂σ2

n

)2} =
MN

σ4
n

(5.155)

E{( ∂g

∂ARe

)(
∂g

∂ARe

)T} =
2

σ4
n

E{Re[UHwwTU∗] + Re[UHwwHU]}

⇒ E{( ∂g

∂ARe

)(
∂g

∂ARe

)T} =
2

σ2
n

Re[UHU] (5.156)

E{( ∂g

∂ARe

)(
∂g

∂AIm

)T} =
2

σ4
n

E{Im[UHwwTU∗]− Im[UHwwHU]}

⇒ E{( ∂g

∂ARe

)(
∂g

∂AIm

)T} =
−2

σ2
n

Im[UHU] (5.157)

E{( ∂g

∂AIm

)(
∂g

∂AIm

)T} =
−2

σ4
n

E{Re[UHwwTU∗]− Re[UHwwHU]}

⇒ E{( ∂g

∂AIm

)(
∂g

∂AIm

)T} =
2

σ2
n

Re[UHU] (5.158)
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E{( ∂g

∂ARe

)(
∂g

∂η
)T} =

2

σ4
n

E{Re[UHwwTD∗A∗] + Re[UHwwHDA]}

⇒ E{( ∂g

∂ARe

)(
∂g

∂η
)T} =

2

σ2
n

Re[UHDA] (5.159)

E{( ∂g

∂AIm

)(
∂g

∂η
)T} =

2

σ4
n

E{−Im[UHwwTD∗A∗] + Im[UHwwHDA]}

⇒ E{( ∂g

∂AIm

)(
∂g

∂η
)T} =

2

σ2
n

Im[UHDA] (5.160)

E{( ∂g
∂η

)(
∂g

∂η
)T} =

2

σ4
n

E{Re[AHDHwwTD∗A∗] + Re[AHDHwwHDA]}

⇒ E{( ∂g
∂η

)(
∂g

∂η
)T} =

2

σ2
n

Re[AHDHDA] (5.161)

The FIM of the deterministic parameters is obtained by E{( ∂g
∂Ω

)( ∂g
∂Ω

)T}, where ∂g/∂Ω =
∂g/∂{σ2

n,A
T
Re,A

T
Im,θ, τ}. Finally, by using the results of [122], the CRB of the interest-

ing parameters η = [θ, τ ]T (the DOAs and the relative time delays) for ULA-OFDM systems
can be shown to be

σ2
η,CRB,ULA−OFDM =

σ2
n

2
{Re[AHDH(I−UU†)DA]}−1 (5.162)

It is worth mentioning that the output of (5.162) takes the following form

σ2
η,CRB,ULA−OFDM =

[
{DOA}L×L {DOA.TOA}L×L

{TOA.DOA}L×L {TOA}L×L

]
(5.163)

where the diagonal elements of (5.162), which represent our concern, are [σ2
θ1
, . . . , σ2

θL
, σ2

τ1
, . . .

, σ2
τL

].
It is worth mentioning that the CRBs of time delay and DOA error variances are given in

(5.162) for all effective paths. For wireless positioning, the CRBs of the first path (σ2
τ1,CRB

,
σ2
θ1,CRB

) represent the most concern. The relation in (5.162) can be simplified to show the
effect of the system parameters on σ2

τ1,CRB
and σ2

θ1,CRB
more obviously. To simplify the math-

ematical manipulations, it is recommended to assume a wireless channel of a single path.
The following results are used: dHθ1dθ1 = (2πfcρcosθ1/c)

2NM(M2 − 1)/12, and dHτ1dτ1 =
(2π∆f)2MN(N2 − 1)/12, where M > 2. After some mathematical manipulations, it has
been obtained

σ2
θ1,CRB

=
6σ2

n

(2πfcρ cos θ1/c)2NM(M2 − 1)|β1|2
, (5.164)

σ2
τ1,CRB

=
6σ2

n

(2π∆f)2MN(N2 − 1)|β1|2
. (5.165)

Such as the previous, the following observations can be obtained from (5.164): the factor
(2πfcρ cos θ1/c) represents the effect of the orientation of the ULA (array axis) with respect to
the impinging wave direction. If the array axis is perpendicular to the impinging wave (θ = 0◦),
the CRB of DOA estimation is the minimum value, but if the array axis is aligned to the same
direction of the impinging wave (θ = ±π/2), the CRB tends to infinity. If the SNR γ =|β1|2/σ2

n
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increases, the error variance decreases. Increasing the number of antenna elements in the ULA
M as well as the number of subcarriers N improves the accuracy of the DOA estimation. From
(5.165), increasing the number of subcarriers including the subcarrier spacing as well as the
number of antennas decreases the CRB error variance of the time delay estimation.

It is worth mentioning that to get the factorization in (5.130) for joint time delay and DOA
estimation problem, it has been assumed that τ1 � mρsinθ1/c as described in Section 4.2.
However, if the CRB is derived such as the previous for the DOA estimation only, the term
Nf 2

c in (5.164) should be replaced by
∑N−1

k=0 f
2
k , where fk = f0 + k∆f , k = 0, . . . , N − 1, and

f0 is the minimum frequency among subcarriers. However, the ratio between those two terms
is one for 802.11ac bandwidths.

The CRB of joint time delay and DOA estimation depends on the ULA-OFDM system
parameters. Those parameters include the SNR, the order of antenna array M , the system BW.
To show the effect of the above parameters, assume the discussed parameter is variable and the
remaining parameters are constants with the following values: the number of antennas M is 4,
the system BW is 20 MHz, and the SNR is 20 dB. The carrier frequency fc is 5.25 GHz, and
the spacing of the antenna elements is the half wave length. Let us assume the number of paths
is 3 with time delays τ = [20, 60, 90] ns and relative DOAs θ = [−5, 0, 20] degrees. The path
gains are A0 = [0,−9,−13] dB. To show the effect of SNR, Fig. 5.7 shows the STD of the
first path time delay and the relative DOA with respect to SNR. To show the effect of a system
BW, Fig. 5.8 shows the STD of the first path time delay and DOA with respect to the system
BW. To show the effect of a number of antennas in the ULA, Fig. 5.9 shows the STD of the
first path time delay and DOA with respect to the number of antennas.

As it is known, the multipath channel degrades the performance of the positioning system.
This can be observed clearly from the CRB figures plotted in Sections 5.5.1 and 5.5.2, where a
single path is used, and the CRB figures of this Section, where a multipath channel is used.
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Figure 5.7: STD of the first path time delay and relative DOA estimates versus the SNR.

20 40 80 160
0

0.1

0.2

0.3

0.4

0.5

MHz

S
T

D
 o

f 
T

O
A

 (
n
s)

20 40 80 160
0.02

0.04

0.06

0.08

0.1

0.12

MHz

S
T

D
 o

f 
A

O
A

 (
d

e
g

re
e
)

Figure 5.8: STD of the first path time delay and relative DOA estimates versus system BW.
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Figure 5.9: STD of the first path time delay and relative DOA estimates versus a number of
antennas.





CHAPTER 6

Performance Evaluation Based on
Channel Measurements

In this chapter, we present the capability of recent subspace-based algorithms to estimate the
propagation time delays, and the relative DOAs associated with signals in a multipath commu-
nication channel for wireless indoor positioning using IEEE 802.11 standards. The 1-D and
2-D MP algorithms are applied in a new way to estimate the required parameters from the es-
timated S-CFR. The effect of temporal, spectral, and spatial diversity principles on the system
performance will be presented. The performance of the proposed estimators of MU coordinates
estimation will be investigated. To measure the performance of the proposed algorithms, the
root mean square error (RMSE) of the estimated position will be calculated.

In the beginning, the necessary measurement tools will be presented. Then, the expected
performance of using RSS methods will be confirmed. After that, the capability of 1-D MP
algorithms to estimate the TDOA associated with signals in a multipath communication channel
will be presented. The performance of the forward MP, and UMP, the forward-backward MP-
Ex, and UMP-Ex, SBMP, and MBMP algorithms will be investigated and compared for TDOA
estimation using OFDM systems. The accuracy and stability of various MP algorithms are
investigated using 802.11a, 802.11n, and 802.11ac system parameters. The performance of
multiple snapshot principle will be presented based on using multiple OFDM training symbols,
a number of antennas, and frequency diversity. The effect of SNR on the performance will also
be presented. The performance of using wider channel bandwidths is emphasized. To do that
a number of experiments have been done. As an initial investigation for 1-D MP algorithms, a
1-D TDOA system has been built by using a direct connection between the transmitter and the
receiver through a number of cables with different lengths, then using a LOS wireless channel
with and without a reference signal, and then using a NLOS wireless channel. After that a 2-D
wireless indoor positioning system has been built using four BSs. The performance of MU
position estimation based on TDOA measurements in the XY plane will be presented.

The capability of 2-D MP algorithms will be presented to estimate the propagation time
delays and the relative DOAs simultaneously using multi-antenna multi-carrier systems for
wireless positioning. The performance of using 2-D MP, 2-D MP-Ex, 2-D UMP, and 2-D BMP
will be investigated and compared. The performance of using multiple antennas and wideband
orthogonal multi-carrier signals of 802.11ac will be presented. As an initial investigation for 2-
D MP algorithms, LOS and NLOS experiments will be made. After that a 2-D wireless indoor
positioning has been built by using four BSs. The performance of MU position estimation
based on the TDOA and DOA measurements in the XY plane will be presented. A comparison
will be made between the performance of using 1-D MP algorithms for TDOA estimation with
spatial diversity and 2-D MP algorithms for hybrid TDOA and DOA estimation.
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6.1 Measurement Tools
The real-time multi-carrier system can be achieved by using transmitter and receiver equip-
ments, which can send and receive the real-time multi-carrier signal simultaneously. The anal-
ysis bandwidth of that type of equipments, which are available, is limited to 25 MHz. The
real-time multi-carrier system can also be achieved using the channel sweeping at different fre-
quencies. By using this principle, another type of equipments can be used to deal with the wide
bandwidths of 802.11ac. This section presents the measurement tools that are used during this
work for experimental investigation.

6.1.1 The Vector Signal Generator (Agilent MXG N5182A)
In our experiments, the RF vector signal generator from Agilent [126] shown in Fig. 6.1(a)
acts as a transmitter for 802.11a, 802.11n, or 802.11ac frame. This signal generator covers the
frequency range of 100 kHz to 8.5 GHz. The minimum and maximum output powers of MXG
are -110 dBm and 13 dBm, respectively. The maximum analysis bandwidth is 25 MHz. The
required parameters of MXG can be controlled via LAN interface using Standard Commands
for Programmable Instruments (SCPI). Those parameters are the carrier frequency, the sam-
pling frequency, the output power, and the buffer size. The baseband IQ data is generated using
Matlab and sent to the signal generator via LAN connection. The signal generator saves the
IQ data, applies the IF modulation and RF up conversion and then transmits the signal with the
predefined parameters. MXG can be configured to transmit the same signal, which has been
saved in the buffer, continuously.

6.1.2 The Antennas
The Tri-Band Rubber Duck antenna [127] is used. The frequency range of that type of antennas
is from 2.4 GHz to 2.5 GHz, 4.9 GHz to 5.3 GHz, and 5.7 GHz to 5.8 GHz. The omni-
directional antennas provide broad coverage and 3 dBi gain.

6.1.3 The Signal Analyzer (Agilent EXA N9010A)
The EXA signal analyzer from Agilent [128] shown in Fig. 6.1(b) acts as a receiver. This signal
analyzer covers the frequency range of 9 kHz to 7 GHz. The maximum input power is 30 dBm,
and the maximum analysis bandwidth is 25 MHz. It has an absolute sensitivity of -79.4 dBm
and a dynamic range of 93.1 dB. The required parameters of EXA can be controlled using
Matlab via LAN interface using SCPI commands. Those parameters are the carrier frequency,
the analysis bandwidth, the time of recording, the mechanical attenuation, and the buffer size.
The receiver downconverts the RF signal and generates the IQ baseband data which is sent back
to the external PC for processing. By the way, the sampling rate of EXA is 45 MS/s, therefore,
an appropriate filter should be used to convert the sampling rate to 20 MS/s. To do that the
default filter of Matlab environment that is based on the Farrow structure has been used [129],
[130].

6.1.4 The Software Defined Radio Modules
The software defined radio (SDR) modules represented by the recent two versions from USRP
(Universal Software Radio Peripheral) family are available in the laboratory, which can be used
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(a) Agilent MXG N5182A

(b) Agilent EXA N9010A

Figure 6.1: The RF Vector Signal Generator (Agilent MXG N5182A) and the Signal Analyzer
(Agilent EXA N9010A).

as a transceiver. Those are the USRP2 from Ettus [131] and NI USRP-2921 from National
Instruments [132] as shown in Fig. 6.2. Both of them contain the RF front-end and the D/A
and A/D converters. They are equipped with the XCVR2450 daughter-board, which has dual
tunable bands of 2.4 GHz and 5 GHz. Although the XCVR2450 daughter-board has two ports,
it does not support full-duplex mode or diversity mode. The maximum analysis bandwidth is
25 MHz. The maximum value of the overall gain of both analog and digital hardware receiver
is 31.5 dB and of the transmitter is 25 dBm. The sample clock rate of A/D is 100 MS/s and of
D/A is 400 MS/s. It is possible to synchronize a number of devices with an external reference
clock and 1 Pulse Per Second (1PPS) signal. The high sample rate processing, like digital
up and down conversion, takes place in the FPGA (Field Programmable Gate Array). The
configurations and firmware are stored in a secure digital flash card in case of USRP2 while
NI USRP is equipped with built-in memory. They can be connected to the host computer via
Gigabit Ethernet card, which allows to send or receive 25 MS/s. The SDR environments of
USRP2 and NI USRP have been integrated into the LabView and Matlab/Simulink tools. It is
worth mentioning that the SDR packages of both tools can be used to receive at 20 MS/s, but
they cannot be used to send at 20 MS/s in this time.

6.1.5 The Network Analyzer (Agilent ENA E5071C)
The network analyzer from Agilent [133] shown in Fig. 6.3 is used to measure the indoor CFR.
ENA covers the frequency range of 9 kHz to 8.5 GHz. The maximum transmitted power of
ENA is 10 dBm. The complex frequency channel response can be obtained by sweeping the
channel at uniformly spaced frequencies. The real and imaginary parts of the forward trans-
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(a) USRP2

(b) NI USRP-2921

Figure 6.2: The SDR modules USRP2 from Ettus and NI USRP-2921 from National Instru-
ments.

mission coefficient S21 can be measured and stored for further processing. A procedure of
calibration should be followed before any experiment to reduce the effect of equipment char-
acteristics on the measured data. The benefit of using ENA is that large bandwidths of 802.11
standards can be investigated. For example, in case of 160 MHz analysis bandwidth, each mea-
surement recorded using ENA should cover a 160 MHz bandwidth, where the sampling interval
should be set to the subcarrier spacing of 802.11 standards, ∆f = 312.5 kHz. Therefore, the
number of samples of the CFR is 512 samples, which is equal to the maximum IFFT/FFT order
of 802.11ac.

6.1.6 The Wideband Time Domain Transmission (Agilent DCA 86100A)

The Agilent 86100A Infiniium [134] shown in Fig. 6.4 is a wide-bandwidth oscilloscope that
also functions as a Digital Communication Analyzer (DCA) and a time-domain reflectome-
ter/transmission (TDR/TDT). Since, the time delay estimation is the core of time-based wireless
positioning, the wideband TDT is used to measure the propagation time delays of the system
cables. It is also used to measure the time delay of the omni-directional antennas. To measure
the time delay precisely, it is recommended to record the waveform on DCA screen, and then
calculate the time delay of a given setup, for example cables, from the derivative waveform to
mitigate the problem of a large rise time, especially in case of using long cables.
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Figure 6.3: The Network Analyzer (Agilent ENA E5071C).

Figure 6.4: The Wideband Time Domain Transmission (Agilent DCA 86100A).
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6.2 RSS Techniques Investigation
As an initial investigation of radio signal characteristics, it is interested to discuss the expected
performance from using the RSS for wireless positioning. In this section, the path loss model
and the fingerprinting techniques presented in Section 2.6.1 are used to confirm why the RSS
is not used in this work for high-resolution wireless positioning.

6.2.1 Investigation of Distance Estimation using Path Loss Model
To measure the capability of distance estimation using path loss model presented in Section
2.6.1.1, some experiments were performed. The RF Vector Signal Generator, Agilent MXG
N5182A was used as the 802.11a transmitter. The SDR module represented by USRP2 was
used as the 802.11a receiver. An overview of the interested part of 802.11a frame has been
presented in Section 3.3.1. Omni-directional antennas were used in a LOS. The transmitter
power of MXG was configured to 13 dBm, and the receiver gain of USRP2 was configured to
20 dB. The carrier frequency was 5.25 GHz.

Three experiments have been made, where in all of them, the RSS was measured using
USRP2 at 10 positions. Those 10 positions have been distributed at distances from 1 m to 10 m
with respect to the transmitter, MXG. The reference power was recorded at 1 m. The positions
of USRP2 in the first and second experiments were in the middle of the lab as shown in Fig. 6.5,
where the recording was in two different times (two days). For experiment three, the locations
of USRP2 were in the left side of the lab as shown in Fig. 6.5. The estimated values of the
mean path loss exponent n, and the measured powers at the reference distance, d0 = 1m, have
been summarized in Table 6.1. Fig. 6.6 shows the estimated distances with respect to the actual
distances. The accuracy at distances larger than 5 m is very bad. The RSS is instantaneous
inside the building and varies over the time, even at a fixed position. In general, using the path
loss model for distance estimation based on the RSS cannot achieve high accuracy due to

1. The accuracy of using RSS decreases with greater distances due to the fact that the free
space attenuation increases with the logarithm of the distance, where at somehow dis-
tance from the transmitter, the mean path loss exponent n has different value.

2. The value of RSS is changeable due to the radio channel impediments such as shadowing,
and multipath effects as well as the orientation of the wireless device.

6.2.2 Investigation of Wireless Positioning using Fingerprinting
To get the principle and the required effort of the positioning based on the fingerprinting, a
simple experiment has been made by using four receivers and one transmitter. The system

Table 6.1: The measured parameters of the path loss model.

Experiment number P (d0) dBm n

Exp.1 (time 1) 28.31 1.89
Exp.2 (time 2) 24.42 1.9
Exp.3 25.21 1.96
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Figure 6.5: The environment of RSS technique investigation based on the path loss model.
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Figure 6.6: The estimated distances using the path loss model versus the actual distances.



118 Chapter 6. Performance Evaluation Based on Channel Measurements

parameters were the same of system parameters in Section 6.2.1, where four USRP2 modules
were used as fixed BSs, and the signal generator (MXG) was used as a MU, which should be
localized. The training sequence of IEEE 802.11a was used to measure the RSS in both offline
and online modes. The radio map has been created by measuring the RSS of the transmitter at
all receivers, where its location has been changed between points in the interested area. Fig. 6.7
shows the positions of fixed BSs (USRP2 modules), the points of radio map, and the position of
MU, which should be estimated. At each point, the RSS of the transmitter has been measured
40 times, in another way, 40 OFDM frames have been recorded. The recorded radio map is
presented in Table 6.2. The deviation of recorded RSS at MU position z can be obtained by
using the Euclidean distance as

σRSS(dBm) =

√√√√ 4∑
i=1

(RSSik −RSSiz)2 (6.1)

where RSSik is the measured RSS in dBm using USRP2 number i, {i = 1, . . . , 4} while the
position of MU is at point ak, {k = 1, . . . , 9}, in the radio map. RSSiz is the measured RSS
using USRP2 number i while the position of MU is at point z, which should be estimated as
shown in Fig. 6.7. The results of (6.1) using all points of radio map ak is as follows

σRSS(dBm) =

[
a1 a2 a3 a4 a5 a6 a7 a8 a9

13.75 16.55 10.45 18.25 3.89 12.36 19.24 6.49 18.78

]
. (6.2)

From (6.2), the minimum deviation has been obtained at point a5, therefore, the estimated
coordinates of MU is the coordinates of point a5.

It can be easily found that the radio map creation is a challenge. To locate the reference
points inside the interested area, it needs a huge effort. The expected accuracy depends on
the resolution of radio map creation process; the minimum distance between radio map points
as shown clearly in Fig. 6.7. If the area of interest is large, the necessary number of BSs
increases, and then the required effort of radio map creation and the size of database increase
dramatically. Therefore, searching for the best match inside this large database requires a huge
computational burden, and for any change in the environment, the creation of radio map should
be repeated.

6.3 Simulation Results

6.3.1 Effect of Pencil Value
In this section, simulation results are presented to show the effect of the pencil parameter value.
It was assumed that there are two paths with power 0.75 and 0.25 Watt. The time delay differ-
ence between them is 50 ns. The number of trials is 5000, and the SNR is 25 dB. The channel
type is AWGN channel. Let us select the BW of 802.11ac or 802.11n to be 20 MHz. The first
LTF is used to estimate the CFR; the number of CFR samples isN = 57 after doing an interpo-
lation to mitigate the discontinuity at the carrier frequency. Fig. 6.8 shows the performance of
all 1-D MP algorithms in terms of−10log10(RMSE) versus the pencil value, where the RMSE
is in a nanosecond. It is clear that the best range of pencil value to be selected is between 16 and
40. To be more general, the pencil value should be selected around N/3 or 2N/3. However, to
reduce the complexity of SVD for 1-D MP algorithms, it should be selected around 2N/3, as it
is explained in Section 3.9.
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Figure 6.7: System setup of fingerprinting investigation

Table 6.2: The recorded RSS at radio map points with their coordinates.

Radio (x,y) coordinates Measured RSS in dBm using
Map Points in meter USRP2 (1) USRP2 (2) USRP2 (3) USRP2 (4)
a1 (1,0) 6.50 23.50 11.39 3.42
a2 (3,0) 1.72 0.93 7.20 -2.20
a3 (5,0) 5.58 3.84 10.55 12.36
a4 (1,2) 17.57 14.7 -4.44 13.18
a5 (3,2) 5.44 9.55 5.42 8.33
a6 (5,2) 12.62 4.92 7.16 12.27
a7 (1,4) 20.36 6.37 2.76 15.08
a8 (3,4) 4.98 10.17 4.00 14.71
a9 (5,4) -6.44 0.34 9.97 18.84
z (2.5,2) 3.45 12.63 6.26 9.35
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Figure 6.8: The performance of all 1-D MP algorithms at 20 MHz BW versus the pencil value.

6.3.2 Effect of SNR and Temporal and Frequency Diversities
In this section, simulation results are shown to illustrate the performance of using the 802.11ac
BWs versus SNR, where the 1-D UMP algorithm is used, since it achieves the lowest complex-
ity as it is shown in Fig. 3.7. It was assumed that there are two paths with gains 0 dB and -2.6
dB. The time-delay difference between them is 50 ns. The number of trials is set to 1000. At
low SNR, the modified MDL criterion cannot detect the number of paths correctly, therefore, a
threshold was used to configure large over estimation. Fig. 6.9 shows the −10log10(RMSE)
versus SNR for single snapshot with 20, 40, 80, 80+80, and 160 MHz BWs, and for 8 temporal
snapshots with 20 MHz BW. It is clear that using wide BWs and multiple snapshots increases
the accuracy at low SNR considerably. Fig. 6.10 shows the RMSE and number of real multi-
plications using 1-D UMP algorithm versus number of useful LTFs per OFDM frame, namely
1, 2, 4, 6, or 8, where 20 MHz BW and SNR of 20 dB were used. Results have been introduced
in [54].

6.4 Measurement Systems Using 1-D MP Algorithms
In this section, the performance of various 1-D MP algorithms to estimate the propagation time
delays is presented through some experiments. Those experiments include a propagation time
delay difference between cables, a wireless channel with a reference signal, or LOS and NLOS
wireless channels with spatial diversity by using a number of antennas.

6.4.1 Measurements Analysis using 20 MHz Bandwidth
The experimental results are presented to show the capability of MP, MP-Ex, UMP, UMP-Ex,
SBMP, and MBMP algorithms to estimate TDOA using OFDM systems. The wideband TDT,
Agilent 86100A, presented in Fig. 6.4 was used to measure the propagation time delays in
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some available cables. Two cables of lengths 405 cm and 2024 cm were used. The propagation
time delay difference between cables is dt21 = 65.82ns as shown in Fig. 6.11.

The RF Vector Signal Generator, Agilent MXG N5182A, was used to generate the 802.11a
and 802.11n standards with output power of -20 dBm. The Signal Analyzer, Agilent EXA
N9010A, was used as a receiver with a sampling frequency of 20MS/s and gain of 0 dB. A
carrier frequency of 2.4 GHz was used. Due to the limitations of this equipment, the BW of 20
MHz only was used. For 802.11ac wide BWs, namely 40, 80, and 160 MHz, a network analyzer
will be used as shown in the following sections. The transmitter and receiver were connected
through the above mentioned cables in a power divider/power combiner configuration to build
a 1-D TDOA estimation problem. The type of power splitters used in this experiment is ARRA
A4200-4. Their frequency range is from 2 to 4 GHz, and the phase unbalance is 3 degrees. Fig.
6.12 shows the system configuration.

For further processing, 2000 OFDM frames are detected and recorded to estimate the corre-
sponding CFRs using one LTS and one HT-LTF with Tx power of -20 dBm for a single snapshot
principle. From Section 3.3, the frequency separation between pilots must be equal. Hence, an
interpolation between the two subcarriers around the dc is used to mitigate the discontinuity of
the CFR; consequently, N is equal to 53 and 57 in case of 802.11a and 802.11n, respectively.
The pencil parameter was selected to be P = 2N/3, hence, P = 35 for 802.11a, and P = 38
for 802.11n as shown in Table 3.5.

To compare the performance of these algorithms, the RMSE and STD of the estimators are
plotted in Figs. 6.13 and 6.14 for 802.11a and 802.11n, respectively. From Figs. 6.13 and 6.14,
it can be noted that all MP algorithms resemble reliable accuracy and STD in the range of a
few hundreds of picoseconds using one OFDM training symbol and 20 MHz BW. However,
UMP-Ex and MBMP (when all invariances are used) achieve the same RMSE and STD, and
the best performance. It is worth noting that converting to real computations removes part of
the noise. The accuracy of all MP algorithms using 802.11n parameters is better than using
802.11a parameters. This is expected as 802.11n has larger useful BW; the number of occupied
subcarriers in LTS of 802.11a and in LTF of 802.11n is 52 and 56, respectively, as it is presented
in Table 3.1. Clearly, TDOA estimation accuracy strongly depends on the system BW. From
Fig. 3.7, the complexity ratio of UMP-Ex to MBMP is around 0.70, and for UMP to MBMP is
around 0.55. Therefore, regarding the accuracy and complexity, UMP-Ex is the best choice for
TDOA estimation applications.

Fig. 6.15 shows a comparison between using 1 CFR and 2 CFRs with a more noisy signal,
Tx power of -30 dBm. It is clear that using multiple snapshots increases the accuracy and
decreases the variance of the estimators. It can also be noted that using multiple snapshots
in UMP achieves some accuracy better than that in UMP-Ex, where the variance of UMP-Ex
is smaller than that of UMP. However, using multiple snapshots increases the computational
complexity. Results have been introduced in [53], [54].

6.4.2 TDOA Estimation using a LOS Wireless Channel and a Reference
Signal

The second part of our experimental verifications is to investigate the TDOA estimation using
the wider bandwidths of 802.11n and 802.11ac. The network analyzer, Agilent ENA E5071C,
presented in Fig. 6.3 was used. It was used to measure the indoor frequency channel response
in the frequency range of 802.11ac. A frequency range of 5170 MHz to 5330 MHz is used,
which corresponds to a 160 MHz BW. The measurement system is shown in Fig. 6.16. To
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Figure 6.11: The measured propagation time delays of path 1 and path 2 using the TDT.
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Figure 6.12: The measurement system using Vector Signal Generator and Signal Analyzer.
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Figure 6.13: Comparison of estimation accuracy and stability of various MP algorithms using
single snapshot with Tx power of -20 dBm and IEEE 802.11a parameters.
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Figure 6.14: Comparison of estimation accuracy and stability of various MP algorithms using
single snapshot with Tx power of -20 dBm and IEEE 802.11n parameters.
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using 1 and 2 snapshots with Tx power of -30 dBm.
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maintain the principle of TDOA estimation, the transmitter port and the receiver port of ENA
were connected through cable 1 of length 405 cm, and cable 2 of length 701 cm plus a wireless
channel in a power divider/power combiner configuration as shown in Fig. 6.16. The type of
power splitters used in this experiment is ARRA A5200-2. Their frequency range is from 4
GHz to 8 GHz, and the phase unbalance is 3 degrees. To let the received power of direct path
and shortest wireless path are comparable, an attenuator of 20 dB was used in the direct path as
shown in Fig. 6.16. The TDT presented in Fig. 6.4 was used to measure the propagation time
delays of those two cables with their necessary connections, where the time delay of path 1
(direct path) is 17.16 ns and of path 2 (wireless path) is 28.39 ns as shown in Fig. 6.17. Omni-
directional antennas were used, which have 3 dBi gain and 0.668 ns time delay, measured using
the TDT. The transmitted power of ENA was -5 dBm. Our goal is to estimate the time delay
difference between direct estimated path, represented by cable 1, and first estimated wireless
path as a 1-D TDOA problem.

The discrete samples of the CFR can be obtained using a multi-carrier modulation tech-
nique such as OFDM or channel sweeping at uniformly spaced frequencies. The frequency
responses were collected at 8 LOS positions. The separation distances between the transmitter
and receiver were arranged from 0 m to 7 m. The antenna height in both Tx and Rx was 152
cm. The real and imaginary parts of the forward transmission coefficient S21 were measured
and stored for further processing. For each position, eight measurements were recorded for av-
eraging purposes. Each measurement covers a 160 MHz bandwidth with a sampling interval set
to 312.5 kHz. The number of CFR samples is 512, which is equal to the maximum IFFT/FFT
order of 802.11ac.

Fig. 6.18 shows the RMSE and STD of each BW of 802.11ac using the single snapshot 1-D
UMP-Ex algorithm. The parameters of each BW presented in Table 3.5 were used. It is clear
that accuracy and STD in the range of a few hundreds of picoseconds can be achieved, and the
accuracy and stability increase if the BW increases. However, from Table 3.4 and Fig. 3.7, if
the BW increases, the computational complexity increases. Hence, to reduce the complexity
of 160 MHz BW, it can be treated as two snapshots of 80 MHz BW, 80+80 MHz, as shown in
Fig. 6.18, where a very small variance has been achieved. Results of this experiment have been
published in [54].

6.4.3 Time Delay Estimation using a LOS Wireless Channel with Diver-
sity Techniques

The goal of the experimental results presented in this section is to show the capability of 1-D
matrix pencil algorithms including 1-D MP, 1-D MP-Ex, 1-D UMP, 1-D UMP-Ex, 1-D SBMP,
and 1-D MBMP algorithms to estimate the propagation time delays using multi-antenna multi-
carrier systems. The effect of using the principle of multiple snapshots based on the spatial
diversity and frequency diversity will be studied. The network analyzer, Agilent ENA E5071C,
was used to measure the indoor CFR in the frequency range of 802.11ac. A frequency range of
5170 MHz to 5330 MHz is used. The system environment is shown in Fig. 6.19, and the inside
view of the measurement locations in Fig. 6.20. The omni-directional antennas presented in the
previous were used. The designed ULA presented in Fig. 4.3 was used at the receiver, where
the maximum number of antenna elements is eight. As it has been mentioned in Section 4.2.1,
the separation distance between antenna elements was designed to be 2.857 cm, calculated from
the half wavelength of the carrier frequency 5.25 GHz. From Fig. 6.19, the transmitter antenna
at the location point (150, 586.5) cm was connected to port 1 of ENA through cable 1 of length
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Figure 6.16: Frequency response measurement system using ENA with a reference signal.
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Figure 6.17: The measured propagation time delays of path 1 and path 2 using the TDT, where
Y-axis represents the derivative of output voltage of port 2.
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Figure 6.18: Comparison of estimation accuracy and stability of various 802.11ac BWs using
single snapshot UMP-Ex algorithm.

12 m and time delay 45.64 ns, measured using the TDT. At the receiver side, one antenna
from the antenna array elements was used to take the measurements at one time, which was
connected to port 2 through cable 2 of length 1 m and time delay 4.79 ns, measured using the
TDT. The remaining antenna elements in the antenna array were terminated by 50 Ohm loads.
The connection between antenna elements and port 2 was changed manually. The coordinates
of the antenna array center are (3, 11) cm. The transmitted power of the ENA is 10 dBm. Fig.
6.21 shows the measurement system using ENA and the designed antenna array.

The complex CFR of each antenna element can be obtained by sweeping the channel at
uniformly spaced frequencies. The frequency responses were collected at LOS position. The
antenna height in both Tx and Rx was 153 and 149.5 cm, respectively. The real and imag-
inary parts of the forward transmission coefficient S21 were measured and stored for further
processing. For averaging purposes, 60 measurements were recorded during two days. Each
measurement covers a 160 MHz BW with a sampling interval set to 312.5 kHz. The number
of CFR samples is 512. In the following experiments using the network analyzer, a threshold
was used to mitigate the large over estimation of a number of effective paths using the modified
MDL criterion in (3.30) due to the low noise floor of the network analyzer. The number of
effective paths will be limited to 12 paths if the result of the modified MDL is larger than that.

To show the performance comparison of all 1-D MP algorithms in case of LOS environment
and the effect of using the spatial diversity, let us select the operating system BW to be 40 MHz
and the number of antenna elements in the antenna array to be 3 antennas. The RMSE and
STD of time delay estimation in nanoseconds are shown in Fig. 6.22. From Fig. 6.22, the
accuracy and stability of time delay estimation of all 1-D MP algorithms are smaller than 700
ps (picoseconds). Also using the forward-backward principle in 1-D MP-Ex and 1-D UMP-Ex
with the spatial diversity achieves the best performance, which is in the range of 220 ps. The
1-D UMP-Ex and 1-D MBMP achieve the same accuracy. Clearly, 1-D UMP-Ex is the best
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Figure 6.19: System environment in both scenarios of LOS and NLOS wireless channels be-
tween the transmitter and the receiver with ULA.

Figure 6.20: Inside view of measurement locations in case of LOS wireless channel.
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Figure 6.21: The measurement system using ENA and the designed antenna array.

regarding the accuracy, stability, and complexity.

By using 1-D UMP-Ex algorithm, let us show the effect of increasing system bandwidth
and using multiple snapshot principle based on the frequency diversity while M is 1. Fig.
6.23 shows the RMSE and STD in nanoseconds for all 802.11ac BWs and possible frequency
diversities. In Fig. 6.23, 20+20, 40+40, and 80+80 MHz represent the frequency diversities
of 40, 80, and 160 MHz BWs, respectively. The multiple snapshot principle was used as in
(3.68). From Fig. 6.23, it is clear that using high BWs leads to high performance, for example
at 160 MHz BW, the RMSE of time delay estimation is in the range of 30 ps. Using the
frequency diversity in a multiple snapshot principle allows to use all measured CFR samples.
Consequence, a huge reduction in the complexity can be achieved as shown in Fig. 3.7 with
a little bit reduction in the performance. For example, in Fig. 6.23, by using 40+40 MHz
BW rather than 80 MHz BW or 80+80 MHz BW rather than 160 MHz BW, a comparable
performance can be achieved.

Finally, it is interesting to show in this experiment also the comparison between achieved
performance from increasing system BW and spatial diversity order. Fig. 6.24 shows the
performance of time delay estimation of 1-D UMP-Ex using various 802.11ac BWs and a
number of antenna elements, which could be 1, or 2,..., or 8 plotted from left to right for each
BW. The maximum number of antenna elements in 802.11ac is eight antennas. To make a
reliable conclusion, let us repeat the previous LOS measurement at different positions for Tx
and Rx inside the environment of Fig. 6.19. The maximum order of ULA at Rx is 6. Fig. 6.25
shows the performance of using various 802.11ac BWs and different orders of ULA. From Figs.
6.24 and 6.25, using spatial diversity for 1-D MP algorithms in LOS environments improves
the accuracy of time delay estimation slightly, but the achieved performance is not like that
of increasing system BW. In addition, using high orders of spatial diversity at high BWs is
approximately useless in LOS channels. It is worth mentioning that the bars in Fig. 6.24 and
Fig. 6.25 are not smooth due to the small number of measurements.
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Figure 6.22: Comparison of time delay estimation accuracy and stability of various 1-D MP
algorithms using 40 MHz BW and 3 antenna elements in a LOS environment.
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Figure 6.23: Comparison of estimation accuracy and stability of various 802.11ac BWs and
possible frequency diversities using UMP-Ex algorithm and single antenna.
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Figure 6.24: Comparison of time delay estimation accuracy of 1-D UMP-Ex using various
802.11ac BWs and different orders of ULA (1 to 8) plotted from left to right for each BW in a
LOS environment.
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Figure 6.25: Comparison of time delay estimation accuracy of 1-D UMP-Ex using various
802.11ac BWs and different orders of ULA (1 to 6) plotted from left to right for each BW in a
LOS environment.
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6.4.4 Time Delay Estimation using a NLOS Wireless Channel with Di-
versity Techniques

The system parameters used in the previous section of LOS environment are used here for a
NLOS environment. The system environment is shown in Fig. 6.19, and the inside view of the
measurement locations in Fig. 6.26 . As shown in Fig. 6.19, the coordinates of the transmitter
antenna in the corridor are (117, 468.5, 153) cm, and the coordinates of the antenna array center
in the lab are (0,0,149.5) cm. At the receiver side in the lab, the number of antenna elements
in the ULA could be 4, 6, or 8, where one antenna from the antenna array elements was used
to record the measurements at one time. The remaining antenna elements in the antenna array
were terminated by 50 Ohm loads. The connection between antenna elements and port 2 was
changed manually.

The frequency responses were collected at a NLOS position. There is a wall between Tx
and Rx of thickness 13 cm. The real and imaginary parts of the forward transmission coefficient
S21 were measured and stored for further processing. The number of recorded measurements
is 60, collected during two days for averaging purposes. Such as the previous experiment, each
measurement covers a 160 MHz BW with a sampling interval set to 312.5 kHz.

To show the performance comparison of all 1-D MP algorithms in case of a NLOS environ-
ment and the effect of using the spatial diversity, the operating system BW was selected to be
40 MHz and the array order to be 3. The RMSE and STD of time delay estimation are shown in
Fig. 6.27. The accuracy and stability of all 1-D MP algorithms are smaller than 1.75 ns. If we
compare between the performance presented in Fig. 6.27 of NLOS and that of LOS presented
in Fig. 6.22, a stability degradation occurs in case of NLOS by amount of 1 ns. However, if
the direct path is still detected in the received signal, the performance can be improved. For
example, if the system BW has been increased to 160 MHz BW and the number of antenna
elements has been increased to 8 elements, a huge improvement can be achieved as shown in
Fig. 6.28. From Fig. 6.28, all 1-D MP algorithms achieve accuracy and stability smaller than
30 ps rather than 1-D UMP, where its RMSE and STD are 54 ps and 65 ps, respectively. The
achieved RMSE and STD of the forward and backward 1-D UMP-Ex and MBMP are 15 ps
and 22 ps, respectively.

Finally, Fig. 6.29 shows the comparison between the achieved performance to estimate
time delays using 1-D UMP-Ex by increasing system BW and spatial diversity order. From
Fig. 6.29, it can be observed for NLOS scenarios that it is recommended to use wide BWs with
spatial diversity to estimate the direct path precisely.

6.5 Measurement Systems Using 2-D MP Algorithms

In this section, some experimental results are presented to show the capability of 2-D MP
algorithms including 2-D MP, 2-D MP-Ex, 2-D UMP, and 2-D BMP algorithms to estimate
the propagation time delays and the relative DOAs of a wireless channel using multi-antenna
multi-carrier systems. The previous two experiments presented in Fig. 6.19 of LOS and NLOS
using 1-D MP algorithms with spatial diversity will be repeated here using 2-D MP algorithms.
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(a) Tx (b) Rx

Figure 6.26: Inside view of measurement locations in case of NLOS wireless channel.
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Figure 6.27: Comparison of time delay estimation accuracy and stability of various 1-D MP
algorithms using 40 MHz BW and 3 antenna elements in a NLOS environment.
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Figure 6.28: Comparison of time delay estimation accuracy and stability of various 1-D MP
algorithms using 160 MHz BW and 8 antenna elements in a NLOS environment.

20 40 80 160
0

0.5

1

1.5

2

2.5

3

R
M

S
E

 (
ns

)

MHz

Using 1−D UMPEx

 

 
1 Ant
2 Ant
3 Ant
4 Ant
5 Ant
6 Ant
7 Ant
8 Ant

Figure 6.29: Comparison of time delay estimation accuracy of 1-D UMP-Ex using various
802.11ac BWs and antenna array order 1 to 8 plotted from left to right for each BW in a NLOS
environment.
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6.5.1 Joint Time Delay and DOA Estimation using a LOS Wireless Chan-
nel

The system parameters and configurations presented in Section 6.4.3 and shown in Fig. 6.19
and Fig. 6.21 are also used here. At the receiver, the number of antenna elements in the ULA is
eight. Fig. 6.30 shows the comparison of time delay and DOA estimation accuracy of 2-D MP
algorithms, where the system BW is 40 MHz and the number of antenna elements is 3. From
Fig. 6.30, the RMSE of time delay estimation is smaller than 200 ps and the RMSE of DOA
estimation is smaller than 2.54 degrees. By using the 2-D UMP algorithm, Fig. 6.31 shows the
RMSE of both time delay and DOA estimation in case of using 20, 40, 80, or 160 MHz BW
and in case of using 3, 4, 6, or 8 antenna elements plotted from left to right for each BW. From
Fig. 6.31 of a LOS environment, using a number of antennas improves the accuracy of DOA
estimation. The accuracy of time delay estimation is very high in a LOS environment.

If we compare between the RMSE of time delay estimation of 1-D UMP-Ex presented in
Figs. 6.24 and 6.25 and of 2-D UMP presented in Fig. 6.31, it can be noted that in general the
accuracy of 1-D UMP-Ex is a little bit better than that of 2-D UMP in a LOS channel. However,
in case of using 2-D UMP, an extra information is available, which is the DOA. Therefore, a
precise comparison will be given later, where a full 2-D wireless indoor positioning will be built
and all estimated values either time delays or DOAs are used for MU coordinates estimation.

6.5.2 Joint Time Delay and DOA Estimation using a NLOS Wireless Chan-
nel

The system parameters and configurations presented in Section 6.4.4 and shown in Fig. 6.19
and Fig. 6.21 are also used here, where the number of antenna elements in the antenna array
could be 3, 4, 6, or 8. By using 40 MHz BW and 3 antenna elements, Fig. 6.32 shows the
RMSE of both time delay and DOA estimations of various 2-D MP algorithms. The real MP
algorithms, represented by 2-D UMP and 2-D BMP, achieve RMSE of time delay estimation
in the range of 910 ps and RMSE of DOA estimation in the range of 9.1 degrees. To improve
the performance in the NLOS environment, let us increase the system BW to 80 MHz and
the number of antenna elements to 8. Fig. 6.33 shows the RMSE of time delay and DOA
estimations. In case of real MP algorithms, the achieved RMSE of time delay estimation is
in the range of 60 ps and of DOA estimation is in the range of 0.2 degree. Fig. 6.34 shows
the performance of 2-D UMP using various 802.11ac BWs, and a number of antenna elements
which could be 3, 4, 6, or 8 plotted from left to right for each BW. If the BW and / or the number
of antennas increase(s), the accuracy of time delay and DOA estimation increases. It should be
noted that if the number of subcarriers increases (BW), the necessary number of antennas for
accurate DOA decreases, which can reduce the receiver complexity.

From the previous, we can conclude that using multi-antenna multi-carrier principles can
successfully enhance the dimensionality of the signal subspace for joint time delay and DOA
estimation; it represents a robust technique versus multipath channel fading. The 2-D UMP
is the best choice for wireless positioning regarding complexity and accuracy. Based on the
NLOS experimental results, accuracy in the range of a few tens of picoseconds, and a fraction
of one degree could be achieved. It is worth mentioning that using different wall may lead
to different results, where each wall has different characteristics. Results have been presented
in [57].
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Figure 6.30: Comparison of time delay and DOA estimation accuracy of various 2-D MP
algorithms using 40 MHz BW and 3 antenna elements in a LOS environment.
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Figure 6.31: Comparison of time delay and DOA estimation accuracy of 2-D UMP using var-
ious 802.11ac BWs and a number of antenna elements (3, 4, 6, or 8) plotted from left to right
for each BW in a LOS environment.
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Figure 6.32: Comparison of time delay and DOA estimation accuracy of various 2-D MP
algorithms using 40 MHz BW and 3 antenna elements in a NLOS environment.
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Figure 6.33: Comparison of time delay and DOA estimation accuracy of various 2-D MP
algorithms using 80 MHz BW and 8 antenna elements in a NLOS environment.
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Figure 6.34: Comparison of time delay and DOA estimation accuracy of 2-D UMP using var-
ious 802.11ac BWs and a number of antenna elements (3, 4, 6, or 8) plotted from left to right
for each BW in a NLOS environment.

6.6 Measurement Analysis for 2-D Wireless Indoor Position-
ing

In this section, the problem of highly resolving the channel profile parameters of multipath
signals will be investigated using a single transmitter and a number of receiving BSs for 2-
D wireless indoor positioning based on the TDOA or hybrid TDOA and DOA observations.
Fig. 6.35 shows the test environment used in this work. To estimate XY coordinates of the
transmitter based on the received signal characteristics, four BSs are used, where two BSs are
located in the Lab and in LOS with the transmitter while the other two BSs are located in the
corridor and in NLOS with the transmitter as shown in Fig. 6.35. A number of antennas could
be used at each BS for space diversity or DOA estimation.

The experimental results are presented to show the capability of using the enhanced 1-D
and 2-D MP algorithms to estimate the propagation time delays, and the time delays with the
relative DOAs, respectively, using multi-antenna multi-carrier systems. The network analyzer
was used. It was used to measure the indoor CFR in the frequency range of 802.11ac. The
measurement system is shown in Fig. 6.21. Omni-directional antennas were used, which have
3 dBi gain and 0.668 ns time delay, measured using the wideband TDT. At the receivers, the
number of antenna elements in the ULA could be 1, 2,..., or 6 for each BS. The separation dis-
tance between antenna elements was designed to be the half wavelength of the carrier frequency
5.25 GHz.

The XY coordinates of receivers and transmitter (in cm) are as follows: BS1 (146.2, -
172.6), BS2 (841.6, -213.2), BS3 (907.7, 338.2), BS4 (19.1, 333.4), and Tx (462.1, 161.4),
respectively, where the coordinates of each BS are the coordinates of its antenna array center.
Fig. 6.36 shows the locations of the four BSs and the MU in the XY plane with the relative
angles. The height of antenna arrays in all BSs is 149.5 cm, and the height of Tx antenna is
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Figure 6.35: The lab and corridor used as test environment.

153 cm. The transmitter antenna at the location point in the lab was connected to port 1 of
ENA through cable 1 of length 100 cm and time delay 4.79 ns, measured using the TDT. At the
receiver sides, one antenna from the antenna array elements was used to take the measurements
at one time, which was connected to port 2 through cable 2 of length 1230 cm and time delay
46.807 ns, measured using the TDT. The remaining antenna elements in the antenna array were
terminated by 50 Ohm loads. The connection between array elements and port 2 was changed
manually. The transmitted power of the ENA was 10 dBm.

The CFRs were collected at LOS and NLOS positions. There is a wall between the trans-
mitter and the two BSs in the corridor of thickness 13 cm as shown in Fig. 6.35. For each Rx
antenna, 310 measurements were recorded for averaging purposes during eight days and at dif-
ferent times during the day, the human body is not present. Each measurement covers 80 MHz
BW with a sampling interval set to 312.5 KHz. The number of CFR samples is 256. Such as
the previous, a threshold was used to mitigate the large over estimation of a number of effective
paths using the modified MDL. The main reason of recording data at different times is that
accuracy with the same deviation is obtained if the indoor channel is measured in a very small
time interval, which doesn’t represent the actual performance. As a result, the CFRs should be
recorded at different times through the day. The relationship between the accuracy and the time
of recording in different environments using many devices is still a future work.

In the following, we will present and compare between the achieved performance by us-
ing 1-D UMP-Ex and 2-D UMP algorithms for channel profile parameters estimation, and the
presented algorithms in Table 5.1 for MU coordinates estimation. To estimate the transmitter
position using TDOA observations, the following estimators will be used: ILS and W-ILS es-
timators of Section 5.1.1, DAC-LS estimator of Section 5.1.2, Chan estimator of Section 5.1.3,
and the proposed LS and W-LS estimators of Section 5.4.1. To estimate the transmitter position
using DOA observations, the following estimators will be used: LI estimator of Section 5.2.1,
LS and W-LS estimators of Section 5.2.2, SLS and W-SLS estimators of Section 5.2.4, and
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Figure 6.36: The locations of base stations and MU presented the relative angles.

DAC-LI and A-DAC-LI estimators of Section 5.2.3. To combine TDOA and DOA observa-
tions together, the following estimators will be used: Hybrid-DAC estimator of Section 5.3.1,
Hybrid-W estimator of Section 5.3.2, and the proposed Hybrid-WLS estimator of Section 5.4.
The impact of the number of antennas M for each array and the system bandwidth will be
analyzed.

To show the performance of the above methods, the RMSE and the distribution of the
position error represented by the cumulative distribution function (CDF) will be used. The
following criterion will be used to evaluate the distribution of the position error

ez = ‖ẑ− z‖ =

√
(x̂− x)2 + (ŷ − y)2 (6.3)

where ez represents the distance between the estimated position and the actual position of the
MU.

6.6.1 Using 1-D MP Algorithms for 2-D Wireless Indoor Positioning
6.6.1.1 Position RMSE versus System Bandwidths

In this section, the performance of using 1-D UMP-Ex algorithm and the introduced MU posi-
tion estimators in Chapter 5 that are based on TDOA observations will be presented. Fig. 6.37
shows the RMSE of the estimated XY coordinates in cm, where a single antenna per each BS
was used. It can be noted that at lowest system parameters such as 20 MHz BW and single an-
tenna, using the variance of measurements for weighting to estimate MU coordinates improves
the performance of XY coordinates estimation, especially if the TDOA observations are noisy.
In additional to the lowest complexity of the proposed W-LS estimator, which requires only a
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single iteration, it achieves a modest performance improvement over the other estimators. Chan
estimator at those lowest system parameters is the worst estimator while the achieved RMSE is
553 cm at 20 MHz BW and M = 1, which is outside the scope of Fig. 6.37. Also it is obviously
that using high BWs improves the performance of MU position estimation considerably. Fig.
6.38 and 6.39 shows the STD of the estimated X and Y coordinates in cm while the various
802.11ac BWs with a single antenna are used. It is clear that the STD of Y estimates is more
than that of X estimates due to the non-symmetry in the locations of BSs as shown in Fig. 6.36.
Therefore, the location of BSs inside the building should be designed properly. Results have
been introduced in [55].

6.6.1.2 Position RMSE versus Number of Antennas

In this section, we need to study the effect of increasing number of antennas in all BSs for
spatial diversity. The RMSE of the estimated XY coordinates by using 20, 40, and 80 MHz
BWs, and a number of antennas M = 1, . . . , 6 for each BS is shown in Fig. 6.40, in which the
W-LS estimator is used. Clearly, a huge performance improvement has been obtained by using
high BWs with spatial diversity. For example, the RMSE is just 1.64 cm in case of using 80
MHz BW and M = 3. Fig. 6.41 shows the distribution of the estimated XY coordinates in the
XY plane while 40 MHz BW and 3 antennas in the ULA for each BS were used. The W-LS
estimator was used to estimate the MU coordinates.

Let us now plot the CDF of error distance ez between the estimated MU position and the
actual position using (6.3). Fig. 6.42 shows the CDFs of the position error ez in cm for various
number of snapshots based on the spatial diversity (M = 1, . . . , 6) using 40 MHz BW. By
investigating the CDFs of the position error, it has been noted that it is enough to increase the
number of antennas for spatial diversity to 4 to achieve considerable improvement. It is worth
mentioning that using only one iteration in the W-LS estimator achieves excellent performance.
From the previous results of TDOA estimation using 1-D MP algorithms, it should be noted
that using multiple snapshot principle based on the spatial diversity improves the performance
considerably. Results have been introduced in [56].

6.6.2 Using 2-D MP Algorithms for 2-D Wireless Indoor Positioning
If the BSs of the wireless indoor positioning system are equipped with antenna arrays, the 2-D
MP algorithms can be used to estimate not only the time delays, but also the relative DOAs.
The hybrid TDOA and DOA estimators are used to estimate the MU coordinates. However,
it is interesting first to investigate the performance of using TDOA and DOA observations
individually, and then the hybrid TDOA and DOA estimators.

6.6.2.1 Position RMSE versus System Bandwidths and Number of Antennas using TDOA
Estimates

In this subsection, the previous investigation of using 1-D UMP-Ex will be repeated here by
using 2-D UMP. The TDOA observations have been used to estimate the MU position. Fig.
6.43 shows the RMSE of MU position estimation in cm versus 802.11ac BWs while three
antennas have been used for each array in all four BSs. The performance of all MU coordinates
estimators presented in Table 5.1 based on the TDOA observations has been presented. Chan
estimator achieves the worst performance at low system BW (20 MHz BW) while the RMSE
is 14 cm. Fig. 6.44 shows the RMSE of MU position estimation in cm while the system
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Figure 6.37: Comparison of XY coordinates estimation accuracy of various 802.11ac BWs and
MU position estimators, where M = 1.
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Figure 6.38: The STD of X coordinate estimates in cm.
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Figure 6.39: The STD of Y coordinate estimates in cm.
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BW is fixed at 20 MHz, and the number of antennas in all arrays has been changed equally
between M = 2 and M = 6. From the above, it can be observed that the estimators with
weights provide a modest improvement over non-weighted estimators, especially at low order
of system parameters. The weighted ILS estimator is close to the W-LS in our experimental
results, where the MU is located approximately in the center of the interested area. For another
scenario, this estimator has a problem to converge, because it strongly depends on the initial
value, which is taken usually the center of the interested area. The W-LS estimator is the best
regarding the complexity and accuracy among the six considered estimators. Fig. 6.45 shows
the performance of W-LS estimator versus all system BWs and antenna array orders.

The coming conclusion can be revealed from the above figures of TDOA scenario, if the
system BW is limited, the performance can be improved by using the multiple snapshot prin-
ciple based on the spatial diversity. For example from Fig. 6.45, by using 20 MHz BW with
six antennas for each BS, the RMSE of W-LS is 5.66 cm, and by using 80 MHz BW with 2
antennas for each BS, the RMSE of W-LS is 4.27 cm.

6.6.2.2 Position RMSE versus System Bandwidths and Number of Antennas using DOA
Estimates

In this section, the performance of using DOA observations resulting from using 2-D UMP
to estimate the MU position will be investigated. Fig. 6.46 shows the RMSE in cm of the
estimated MU position versus system BWs while M = 4, and Fig. 6.47 shows the RMSE
versus antenna array order and 40 MHz BW. The performance of W-SLS estimator is the best
estimator over the seven considered estimators, where the performance of LS estimator is the
worst. The performance of LS and SLS estimators is improved by including the weights, and
the performance of DAC based on LI (DAC-LI) has been improved a little bit in A-DAC-LI by
including all estimated DOAs of pairs, which are not located in the front of each other. It should
also be noted that LI estimator achieves reliable accuracy, where all possible of BS pairs have
been considered if the BSs of the discussed pair are not located in the front of each other. One
thing also improves the accuracy of LI estimator is the results mitigation of noisy pairs if the
corresponding two lines are not intersected (the estimated DOAs in the discussed two BSs are
noisy). From the above two figures, if the order of antenna arrays is limited, the performance
of using DOA observations can be improved by using wide BWs. For example, by using 40
MHz BW and M = 6, the RMSE of W-SLS is 7.37 cm as shown in Fig. 6.47. And by using
80 MHz BW and M = 4, the RMSE of W-SLS is 7.1 cm as shown in Fig. 6.46.

We now evaluate the distribution of the position error defined by (6.3) for all estimators
presented in Table 5.1 that are based on DOA observations. Fig. 6.48, 6.49, and 6.50 show that
for three cases: (M = 4, BW = 20 MHz), (M = 4, BW = 40 MHz), and (M = 4, BW = 80 MHz),
respectively. Results reveal the following: the weighted estimators provide better performance
than the non-weighted estimators especially if the BW increases. The gap between the perfor-
mance of both types increases by increasing the system BW. In general, the performance of
W-SLS and A-DAC-LI are the best. In case of A-DAC-LI, if the lines of the investigated pair
are not intersected, there is no result to be included. It should be noted that the LI estimator
does not include any weight, but the DAC-LI or A-DAC-LI, which are based on lines intersec-
tion, give a weight to each outcome of each discussed pair to get the final MU position estimate
as described in Section 5.2.3.
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Figure 6.43: Comparison of XY coordinates estimation accuracy of various 802.11ac BWs and
MU position estimators while M = 3, based on the TDOA observations.
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Figure 6.44: Comparison of XY coordinates estimation accuracy based on the TDOA observa-
tions for different number of array elements and 20 MHz BW.
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Figure 6.45: The performance of W-LS estimator based on TDOA observations versus system
BWs and antenna array orders.
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Figure 6.47: Comparison of XY coordinates estimation accuracy based on DOA observations
for different number of array elements and 40 MHz BW.
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Figure 6.48: The distribution of the position error ez of various estimators based on DOA
observations (BW = 20 MHz, M = 4).
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Figure 6.49: The distribution of the position error ez of various estimators based on DOA
observations (BW = 40 MHz, M = 4).
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Figure 6.50: The distribution of the position error ez of various estimators based on DOA
observations (BW = 80 MHz, M = 4).
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6.6.2.3 Position RMSE using Hybrid TDOA and DOA

So far, the performance of using the outcomes of 2-D UMP algorithm (time delay and DOA)
has been investigated individually. The following conclusions can be drawn from the previous
results: the performance of the proposed W-LS estimator is the best for MU position estimation
using the TDOA observations, and the performance of W-SLS estimator is the best for MU po-
sition estimation using the DOA observations. Let us now compare between the performance
of these two estimators to estimate the MU position. Fig. 6.51 shows a comparison between the
RMSE of W-LS estimator using TDOA observations, and W-SLS estimator using DOA obser-
vations. Results, shown for three cases M = 2, M = 4, and M = 6 with 20, 40, and 80 MHz
BWs, reveal the following: using TDOA observations for localization is more accurate than
using DOA observations although both of them have been extracted from the same subspace by
using the same eigenvectors (refer to Section 4.3.2). As a result, to combine the results of using
TDOA and DOA observations, appropriate weights should be given based on their range-based
accuracy. Those weights cannot be constants, where each environment or each time of record-
ing has its own characteristics. As it has been described in Chapter 5, the covariance matrix of
TDOA observations and the variance matrix of DOA observations converted to distance form
have been used. Those variance matrices are used to scale the different accuracy for the final
result. To do that there are two options. The first option is to use them to scale the outcomes
of both estimators to get the final estimate of MU position such as in Hybrid-DAC estimator
presented in Section 5.3.1 and Hybrid-W estimator presented in Section 5.3.2. The second op-
tion is to use them to scale the TDOA and DOA observations inherently using one estimator
such as the proposed Hybrid-WLS estimator presented in Section 5.4. It can also be observed
that if the system BW is fixed, for example at 20 MHz, the achieved accuracy is not increased
smoothly by increasing the number of antennas. Logically, the accuracy should be increased
by increasing the number of antennas till by a very small amount. However, the number of
snapshots is not that large (310 snapshots), and they were recorded during eight days and at
different times during the day. Another reason behind that could be the limited accuracy of
antenna arrays fabrication, where the distance between antenna elements is not exactly equal.
In the following, the performance of using the above hybrid estimators will be presented.

6.6.2.3.1 Position RMSE using DAC based on TDOA and DOA Estimator
The performance of Hybrid-DAC estimator is presented in Fig. 6.52, where the RMSE is
plotted versus system BW and number of antennas. It has been observed that the position
RMSE is reduced by increasing the number of antennas and system BW considerably. It should
also be noted that increasing system BW is more useful for MU localization than a number of
antennas. The reason behind that is the accuracy of using TDOA is more than that of using
DOA.

6.6.2.3.2 Position RMSE using Weighted TDOA and DOA Estimator
Similar to the previous paragraph where the impact of increasing M and system BW have
been evaluated for Hybrid-DAC estimator. We now investigate the resulting impact of those
parameters using Hybrid-W estimator. The outperformed W-LS among the other six estimators
using TDOA observations, and the outperformed W-SLS among the other seven estimators
using DOA observations are used. From the first look to Fig. 6.53, it can be observed that
a modest performance improvement has been occurred compared to the previous estimator at
low order of M and low system BW. However, the performance is comparable to the previous
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Figure 6.51: Comparison between the RMSE of W-LS estimator using TDOA observations,
and W-SLS estimator using DOA observations.
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estimator at high order of M and system BW. Similar results are obtained by increasing the
number of antennas and system BW.

6.6.2.3.3 Position RMSE using Proposed Hybrid TDOA and DOA Estimator
In this paragraph also, the impact of arrays order and system BW has been investigated for the
proposed Hybrid-WLS estimator as shown in Fig. 6.54. It provides the excellent performance
of MU positioning using joint time delay and DOA estimation among the three estimators at
low system conditions. At low system conditions, a sensitive improvement has been occurred,
and that is due to processing on both estimates of TDOA and DOA once. A considerable
accuracy has been obtained at wide BWs and high order of antenna arrays. For example, if the
system BW is 80 MHz and M = 3, the RMSE is 1.58 cm.

Finally, it is interesting also to show the error distributions of the three previous estimators.
Two sceneries will be presented: low system conditions (M = 2, and BW = 20 MHz), and good
system conditions (M = 3, and BW = 80 MHz) as shown in Fig. 6.55. Results, shown for two
cases (M = 2, and BW = 20 MHz) and (M = 3, and BW = 80 MHz), reveal the following:
the proposed hybrid estimator provides the excellent performance among the three considered
estimators. The curve of its CDF is the sharpest among the three estimators. Furthermore,
we can conclude that using TDOA and DOA observations in a single estimator and scale the
different accuracy inherently achieves better performance than the problem dividing to two
parts such as the principle of the hybrid estimator based on weighting or that of hybrid DAC,
which divides the observations to some sets and some pairs. The performance of the proposed
hybrid estimator can also be recognized from the constellation of the estimated XY coordinates
on the XY plane as shown in Fig. 6.56 for the two mentioned cases of low system conditions
and good system conditions.

6.6.3 Performance Comparison between 1-D MP with Spatial Diversity
and 2-D MP Algorithms

So far, the performance of 1-D MP using the effective 1-D UMP-Ex, and that of 2-D MP using
the effective 2-D UMP has been presented. Let us now compare between their performances
to show which is more robust for wireless indoor positioning if the BSs are perfectly synchro-
nized. The result of 1-D MP processing is the time delays of the effective paths in the channel
profile, and the results of 2-D MP processing are the time delays and the relative DOAs of the
effective paths in the channel profile for all BSs within the service.

Let us now combine the results in Fig. 6.40 of 1-D UMP-Ex with the proposed W-LS
estimator, and the results in Fig. 6.54 of 2-D UMP with the proposed hybrid TDOA and DOA
estimator to get Fig. 6.57. It can be observed that at low system conditions, the accuracy of 1-D
UMP-Ex with spatial diversity is exceeding that of 2-D UMP. However, if the antenna arrays
order increases beyond 5, the 2-D UMP performs better than the 1-D UMP-Ex with the cost of
complexity (% will be smaller than 0.23).

Finally, it is interesting to confirm the previous conclusion by presenting the position error
distributions through the CDFs. Let us fix the system BW to be 40 MHz, and show the CDFs of
both techniques versus increasing number of CFRs measured from antenna array elements in
each BS. They are used in a multiple snapshot principle for 1-D UMP-Ex and steering vectors
for 2-D UMP. The number of antennas in each BS has been configured to be 2, 3, or 4. Results
have been presented in Figs. 6.58, 6.59, 6.60, respectively. In all figures, the CDF of 1-D
UMP-Ex is sharper than that of 2-D UMP. Consequence, it can be concluded that the accuracy
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Figure 6.53: The performance of the weighted TDOA and DOA estimator versus number of
antennas and system BWs.
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Figure 6.55: The distribution of the position error ez of various hybrid estimators based on
TDOA and DOA observations.

of MU position estimation using 1-D MP techniques with spatial diversity is exceeding that of
using 2-D MP techniques if the BSs are perfectly synchronized. The 1-D MP algorithms do
not only succeed in the achieved accuracy, but also in the complexity, as it has been presented
in Section 4.8 through Fig. 4.7. Really, it is surprising that our result at low system conditions
reveals that joint time delay and DOA estimation by ULA-OFDM technology does not give
an improvement on the position accuracy over than that obtained from time delay estimation
using SIMO-OFDM technology while the antenna array is used for spatial diversity. In another
way, we can say, using DOA observations for positioning gives a negligible improvement in
the positioning accuracy over than that obtained from using TDOA observations if the BSs
are perfectly synchronized. However, if the BSs cannot be synchronized perfectly, the hybrid
TDOA and DOA should be outperformed than using only TDOA with spatial diversity by
assuming that the RF daughter-boards of antenna elements of each BS can be synchronized
perfectly. Table 6.3 shows a comparison between 1-D MP with spatial diversity and 2-D MP
algorithms.

6.6.4 2-D Wireless Indoor Positioning at a Number of Static Positions

In this section, the performance of 1-D UMP-Ex and 2-D UMP to estimate the coordinates
of the transmitter is presented. The transmitter is located at three static positions. The XY
coordinates of the transmitter in the lab are at position 1 (313,160), position 2 (463,160), and
position 3 (613,160) in cm, where the test environment presented in Fig. 6.35 is used. For
each Rx antenna, 10 measurements were recorded for averaging purposes. The system BW is
configured to be 40 MHz and the number of array elements is 4 for each BS. The other system
parameters have been configured such as the previous. The proposed W-LS estimator is used



156 Chapter 6. Performance Evaluation Based on Channel Measurements

0 2 4 6 8 10
−3

−2

−1

0

1

2

3

4

BS1 BS2

BS3
BS4

meter

m
et

er

Using 20 MHz BW and M = 2

(a) BW = 20 MHz, M = 2

0 2 4 6 8 10
−3

−2

−1

0

1

2

3

4

BS1 BS2

BS3
BS4

meter

m
et

er

Using 80 MHz BW and M = 3

(b) BW = 80 MHz, M = 3

Figure 6.56: Localization results using (BW = 20 MHz, M = 2) and (BW = 80 MHz, M = 3)
.
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Table 6.3: Comparison between 1-D MP algorithms with spatial diversity and 2-D MP algo-
rithms.

Description 1-D MP with Spatial Diversity 2-D MP with Antenna Arrays
Complexity Less complex, the complexity ra-

tio of 1-D UMP-Ex to 2-D UMP is
0.23

More complex, the complexity ratio
of 2-D UMP to 1-D UMP-Ex is 4.3

Array imper-
fections

Antenna elements work as a kind
of spatial diversity, hence, it is not
sensitive to antenna array imperfec-
tions.

The space dimension depends on
the steering vector accuracy, hence,
it is sensitive to antenna array
imperfections, hence, calibration
should be made.

Accuracy More accurate (especially at low
system parameters) if the BSs are
perfectly synchronized.

Less accurate (especially at low
system parameters). It is more use-
ful for non-perfectly synchronized
BSs.

Arrays orien-
tation

The orientation of all antenna arrays
in the whole system should not be
known.

The orientation of all antenna ar-
rays in the whole system should be
known.

MU position
vs. array
orientation

It does not depend on the arrival an-
gle, see (5.125).

The DOA observation depends on
the arrival angle, hence, the location
of MU is important with respect to
each antenna array in all BSs within
the service, see (5.109).

Distance be-
tween MU and
BS

It has no impact on the time delay
estimation if the first path is still de-
tected ∗.

Using DOA for positioning depends
on the estimated value of θ, hence,
if the MU is far away from the BS,
it leads to high positioning error ∗.

∗ It is worth mentioning that if the Tx and Rx are in a NLOS, there is an induced propagation time delay, which
depends on the material characteristics of the objects that are located in the media between them. However, the

induced propagation time delay could be assumed as an insignificant parameter.
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for 1-D UMP-Ex, and the proposed hybrid estimator is used for 2-D UMP. Fig. 6.61 and 6.62
show the localization results using 1-D UMP-Ex and 2-D UMP, respectively.
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Figure 6.61: Localization results using 40 MHz BW and 4 antennas for each BS using 1-D
UMP-Ex.
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Figure 6.62: Localization results using 40 MHz BW and 4 antennas for each BS using 2-D
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CHAPTER 7

UDP Identification for High-Resolution
Wireless Indoor Positioning

In indoor environments, the MU is often in a NLOS state, and the direct path could be com-
pletely blocked due to the harsh nature of indoor environments. Therefore, the estimated time
delay of the first path should be identified either as a very weak DDP (detected direct path) or
even as an UDP (undetected direct path). Consequently, precise estimation of the channel pro-
file parameters is not enough for high-resolution wireless indoor positioning system. However,
it stays representing a key element to identify the UDP condition. In the previous, the accurate
estimation of channel profile parameters has been addressed using the MP algorithms. In this
chapter, the proper modeling of DDP and UDP channel profiles will be treated and addressed
to the problem of UDP identification.

7.1 Introduction to the Problem of UDP Channel
From the previous, a precise wireless positioning system can be obtained by measuring the
time delays of the received signals at a number of BSs. The accuracy of time-based wire-
less positioning systems depends strongly on the precise estimation of the FDP. The indoor
environments are commonly known as dense multipath propagation environments with high
probability of NLOS signal propagation. Hence, the estimated time delay of the FDP could be
larger than the real time delay of the direct path between the MU and the BS. Consequently, the
estimated distance is positively biased. Using the estimated time delays of the UDP channel
profiles degrades the positioning accuracy significantly. Therefore, one of the major challenges
for wireless indoor positioning is the identification of UDP condition. Adding the channel
obstruction knowledge improves the accuracy of the positioning system. The results can be
discarded or rectified if there is a limited connectivity.

Several methods have been proposed mainly for NLOS identification in the cellular net-
works and recently for the UWB technology. These methods can be classified into three
groups [135]. The first one is based on range estimates. In [136], the variance of range mea-
surements is used to identify the LOS channels in the cellular domain. It has been assumed
that the MU is moving, the surrounding obstacles are varying, and the variance of LOS range
measurements is known. Hence, the variance of NLOS range measurements is very large, and
it changes over the time. The running variance-based methods have a latency. On the other
hand, the MU is mostly static in wireless indoor networks. Hence, the deviation between the
LOS and NLOS variances is negligible, and a wrong decision can be occurred. The second one
is based on channel statistics. Here, one or more features from the received signal are extracted
to identify the channel profile condition. The mean excess delay, the RMS delay spread, and
the Kurtosis parameters have been used in [82]. The Kurtosis is a measure of how peaky a
sample data, and it is defined as the ratio of the fourth moment of the data to the square of the
second-order moment of the data (the variance) [82]. The Kurtosis provides information about
the amplitude statistics of the multipath components. It has been found that the above statistics
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can be modeled by log-normal distribution; the IEEE 802.15.4a UWB channel models are uti-
lized rather than that obtained from measurements. In [63], the RMS delay spread and the total
power are used and modeled by normal and Weibull distributions, respectively. The channel
profiles have been obtained from the measurements with a system BW of 500 MHz centered
around 1 GHz. The channel profile parameters have been estimated using the conventional
chirp-z method along with raised cosine filter. The third one is based on the electronic map
of the building. The ray-tracing is used as in [137], where the electronic map including walls
and other obstacles should be known. However, it takes a long time in large buildings, and it is
difficult to incorporate each wall and all obstacles in the electronic map.

The objectives of this chapter are three-fold. First, the problem of estimating the propaga-
tion time delays and the relative amplitudes of multipath signals has been investigated using a
single transmitter and a number of receiving BSs in both scenarios of DDP and UDP condi-
tions. Second, the statistics of the observable channel profile parameters in both DDP and UDP
conditions are presented using IEEE 802.11 wideband signals. Third, the performance of the
proposed method for UDP identification is presented.

The rest of the chapter is organized as follows: system model and channel profile hypothe-
ses are presented in Section 7.2. The statistics of channel profile parameters are presented in
Section 7.3 through a number of experiments. The likelihood-ratio test is presented in Section
7.4. System performance and conclusions are presented in Section 7.5.

7.2 System Model
In time-based wireless indoor positioning, the time delay of the FDP is used as an estimate time
delay of the direct path denoted by τ̂1. The main features of τ̂1 have been investigated in Section
2.5, which includes the main sources of the DME, ξd = |d̂− d|, in time-based wireless indoor
positioning. Based on Section 2.5, the estimated channel profiles can be classified mainly into
two types (two hypotheses) based on the availability of the direct path: the DDP and the UDP
channel profiles

S0 : DDP τ̂1 − τ1 is very small⇒ ξd ≈ 0
S1 : UDP τ̂1 − τ1 is very large⇒ ξd � 0

(7.1)

where S0 is the DDP hypothesis, and S1 is the UDP hypothesis. For DDP hypothesis, the DME
is very small and the estimated parameters of the channel profile can be used to estimate the
MU coordinates. For UDP hypothesis, the DME is very large and the estimated parameters of
the channel profile should be mitigated.

7.3 Statistical Modeling of Multipath Channel Features
The estimated parameters of the channel profile represent the key element to identify the chan-
nel condition. To investigate that let us describe first the measurement system.

Experimental results are presented now to show the capability of using the enhanced 1-D
UMP-Ex for a high-resolution estimate of the propagation time delays and the channel gains
for wireless indoor positioning with UDP identification capability. The following system en-
vironments are used to investigate the statistics of DDP and UDP conditions as shown in Fig.
7.1. For DDP investigation, four BSs are located in the lab in LOS with the transmitter while
the other two BSs are located in the corridor in NLOS with the transmitter (the direct path is
still detected). The wall has a thickness of 13 cm. The location of the transmitter has been
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switched between three positions in the middle of the lab. For UDP investigation, two BSs are
located in the antenna room in NLOS with the transmitter, where the direct path is corrupted
by the metallic chamber, and two BSs are located in the corridor in NLOS with the transmitter,
where the direct path is corrupted by the elevator shaft and most of the time by the elevator
itself. The location of the transmitter has been switched between three positions as shown in
Fig. 7.1. The height of all antennas in the system was 150 cm. The omni-directional antennas
with 3 dBi gain were used. The network analyzer, Agilent ENA E5071C, was used to measure
the indoor CFR in the frequency range of 802.11ac. A carrier frequency of 5.25 GHz was used.
The transmitted power of the ENA was 10 dBm. The time delays of the connecting cables have
been measured using the wideband TDT, Agilent 86100A.

The complex CFR of each antenna element can be obtained by sweeping the channel at
uniformly spaced frequencies. The real and imaginary parts of the forward transmission co-
efficient S21 were measured and stored for further processing. For averaging purposes and
accurate statistics, 9000 measurements were recorded for DDP condition during ten days. And
6000 measurements were recorded for UDP condition during seven days. Each measurement
covers 160 MHz BW with a sampling interval set to ∆f =312.5 KHz. The number of samples
of the CFR is 512 samples, which is equal to the maximum IFFT/FFT order of 802.11ac.

Let us now investigate the time delay and power characteristics of the received radio signals
in both DDP and UDP conditions. A single snapshot from a LOS channel and a NLOS channel
corrupted by a chamber have been used. Fig. 7.2 shows the estimated time delays and the
relative amplitudes of the effective paths in both scenarios. The following observations can be
made: (a) In DDP condition, the FDP is the strongest path. However, that is not necessary,
because in most NLOS environments, the direct path is not the strongest path, but it can be
detected. (b) In UDP condition, the FDP is usually not the strongest path, and the amplitudes
of the successive paths are comparable to the first path. Also the received signals are highly
attenuated compared to that of DDP condition. (c) The mean time delay of the UDP channel
profiles is larger than that of the DDP channel profiles. Therefore, the total power and the mean
time delay of the received signal can be used to identify the UDP condition. To do that the
statistics of multipath channel profiles in both scenarios should be investigated.

7.3.1 Mean Excess Time Delay
The mean excess time delay τMED of the multipath channel is an important parameter that can
be calculated from the estimated parameters of the L̂ effective paths as in (2.8)

τMED =
∑L̂

l=1
τ̂l |αl|2/

∑L̂

l=1
|αl|2,

where |αl|2 is the power of lth path. From the above equation and Fig. 7.2, it can be found
that the parameter τMED of the DDP channel profiles should be smaller than that of the UDP
channel profiles.

In order to determine the goodness-of-fit of τMED in both DDP and UDP conditions, the
Anderson-Darling (AD) statistic, it is also known as empirical cumulative distribution function
(ECDF), is used to measure how well the given data fit the 16 common different distributions
using Minitab statistical tool. The distribution of the smallest adjusted AD statistic value offers
the best fit; the data points follow the straight line well. The confidence level of this test has
been selected to be 95%. It has been found that τMED can be best modeled with the normal
distribution. The probability plots and the PDFs of τMED in DDP and UDP conditions are
shown in Fig. 7.3. To show the difference more obviously, the estimated τMED has been
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converted to distance by multiplication by the speed of light, c. Clearly, an observable gap
between DDP and UDP statistics is available, hence, the normal distribution parameters in both
scenarios are distinctive. The normal distribution of both scenarios can then be described as

p(τMED/S0) =
1√

2πσ0

e−(τMED−µ0)2/2σ2
0 (7.2)

p(τMED/S1) =
1√

2πσ1

e−(τMED−µ1)2/2σ2
1 (7.3)

where µ0 and σ0 are the mean and standard deviation of the normal distribution of the DDP
channel profiles. Similarly, µ1 and σ1 are the mean and standard deviation of the normal distri-
bution of the UDP channel profiles. Table 7.1 presents the statistics of τMED in both scenarios.

7.3.2 Total Power

The total power of the received signal is defined as

Ptot = 10 log10(
∑L̂

l=1
|αl|2). (7.4)

From (7.4) and Fig. 7.2, it is worth mentioning that the total power of the UDP channel profiles
should be more attenuated than that of the DDP channel profiles.

Such as the previous, the AD statistic is used to determine the best fit. To show the differ-
ence more clearly between the total power of UDP and DDP channel profiles, let us present the
results in terms of power loss instead of total power as, Ploss = −Ptot. It has been found that
the Ploss parameter can also be best modeled with the normal distribution. Fig. 7.4 shows the
probability plots and the PDFs of the Ploss parameter in both DDP and UDP conditions. The
observable gap between DDP and UDP power loss statistics allows us to distinguish between
both conditions. The normal distribution of both conditions can be described as in (7.2) and
(7.3) for DDP and UDP conditions, respectively, in terms of the Ploss parameter. The mean
and standard deviation of the Ploss parameter in both scenarios are presented in Table 7.1. It
is worth mentioning that the gap between the PDF of UDP and that of DDP in case of the
Ploss parameter is larger than that in case of the τMED parameter, hence, using Ploss for UDP
identification should lead to better results.

7.3.3 Hybrid Time-Power Parameter

Besides τMED and Ploss parameters, a hybrid parameter can be extracted from both parameters
for UDP identification. Since the time delay and the relative amplitude of each effective path
have been estimated from the measured CFR, the hybrid parameter can then be defined as

κ = τMED × Ploss. (7.5)

From the previous, the statistics of the hybrid parameter κ in DDP conditions should be very
smaller than that in UDP conditions. By using the AD statistic to determine the best fit, it has
been found that the parameter κ can be best modeled with the log-normal distribution. Fig. 7.5
shows the probability plots and the PDFs of the parameter κ in both conditions. The observable



7.3. Statistical Modeling of Multipath Channel Features 169

302520151050

0.9999

0.99
0.95

0.8

0.5

0.2

0.05
0.01

0.0001

Distance (m)

P
ro

ba
bi

lit
y

DDP
UDP

Probability of Normal Distribution Fit

(a) Probability plot

28,024,521,017,514,010,57,03,5

0,5

0,4

0,3

0,2

0,1

0,0

Distance (m)

D
e

ns
ity

DDP
UDP

PDF Comparison

(b) PDF plot

Figure 7.3: Validity of modeling τMED by normal distribution.



170 Chapter 7. UDP Identification for High-Resolution Wireless Indoor Positioning

1101009080706050

0.9999

0.99
0.95

0.8

0.5

0.2

0.05
0.01

0.0001

Power (dB)

P
ro

ba
bi

lit
y

DDP
UDP

Probability of Normal Distribution Fit

(a) Probability plot

96908478726660

0,30

0,25

0,20

0,15

0,10

0,05

0,00

Power (dB)

D
e

ns
ity

DDP
UDP

PDF Comparison

(b) PDF plot

Figure 7.4: Validity of modeling Ploss by normal distribution.



7.4. Likelihood-ratio Test for UDP Channel Profile Identification 171

gap between DDP and UDP statistics of the hybrid parameter κ allows us to distinguish between
both conditions. The log-normal distribution can be described as

p(κ/Si) =
1

κ
√

2πσi
e−(ln(κ)−µi)2/2σ2

i (7.6)

where the superscript i = {0, 1} denotes the channel condition, µi and σi are the mean and
standard deviation of ln(κ), respectively. The statistics of the κ parameter are presented in
Table 7.1. It is worth mentioning that the time delay and the relative amplitude of the FDP
only have been used in [63] to define a hybrid parameter, which could be valid for wireless
indoor positioning based on the TOA observations. However, the time delays and the relative
amplitudes of all effective paths should be used as in (7.5) for wireless indoor positioning
based on the TDOA observations. It is worth mentioning that the BW of 160 MHz is used in
the previous statistical figures.

7.4 Likelihood-ratio Test for UDP Channel Profile Identifi-
cation

The normal PDFs of τMED and Ploss, and the log-normal PDF of κ in the DDP and UDP con-
ditions are pDDP (τMED), pUDP (τMED), pDDP (Ploss), pUDP (Ploss), pDDP (κ), and pUDP (κ),
respectively. If the statistics of those parameters are already known for DDP and UDP con-
ditions using the results in Table 7.1, the binary likelihood-ratio test can be performed to se-
lect the more likely hypothesis [82]. To identify the channel profile condition, the following
likelihood-ratio tests are used:

1. Mean Excess Time Delay Test:

pDDP (τMED)

pUDP (τMED)

S0

≷
S1

1 (7.7)

2. Power Loss Test:
pDDP (Ploss)

pUDP (Ploss)

S0

≷
S1

1 (7.8)

3. Hybrid Time-Power Test:
pDDP (κ)

pUDP (κ)

S0

≷
S1

1 (7.9)

The outputs of the above likelihood-ratio tests are compared to one. If it is larger than one,
the estimated channel profile is more likely to be of the DDP condition, and can be used to
calculate the MU coordinates. Otherwise, the estimated channel profile is more likely to be
of the UDP condition, hence, the estimated time delay of the first path should be discarded.
Only the remaining BSs, which have channel profiles belonging to the DDP condition should
be used to estimate the MU coordinates. If the connectivity is limited, τ̂1 of UDP channel can
be rectified; it is still a future work.

From (7.7) to (7.9), the PDF of each parameter has been used individually to make a de-
cision. However, a joint likelihood-ratio test can be formed by combining the likelihood tests
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of all parameters. A sub-optimal likelihood test can be obtained by assuming that the investi-
gated parameters τMED, Ploss, and κ are independent, similar to the principle used in [82]. The
sub-optimal likelihood function can then be defined as

pDDP (τMED)

pUDP (τMED)
× pDDP (Ploss)

pUDP (Ploss)
× pDDP (κ)

pUDP (κ)

S0

≷
S1

1. (7.10)

The decision of (7.10) should provide the highest accuracy for channel profile type detection.

7.5 System Performance
To show the performance of the proposed methods: the enhanced 1-D UMP-Ex algorithm for
the propagation time delays and the relative amplitudes of multipath signals estimation, and the
likelihood-ratio test for UDP channel profile identification, let us investigate the probability of
UDP identification using 6000 channel profiles. The probability of UDP identification by using
20, 40, 80, and 160 MHz BWs of 802.11ac is shown in Fig. 7.6. A huge performance has been
achieved due to the high-resolution estimation of the channel profile parameters. For example,
the probability of UDP identification is more than 96.6% at the smallest BW (20 MHz). It is
better than the reported results in the survey of [135], although the UWB technology is used
in most of the proposed methods. The highest probability of UDP identification using channel
measurements was 89.29% presented in [81] while the system BW was 500 MHz around 1
GHz. Results have been introduced in [59].

To show the validation of the proposed algorithms in different environment using the pre-
vious system setup, let us record the indoor CFRs of another harsh environment such as in Fig.
7.7. It shows the stairs of building 2 and 3 in the university of Magdeburg. Fig. 7.8 shows the
inside view of the measurement environment between floors 3 and 2. The transmitter position
has been switched between seven positions in the third floor as shown in Fig. 7.7. The position
of the receiver has also been switched between seven positions in the second and first floor. For
each position, 250 measurements have been recorded. The Concrete thickness of each floor is
around 38 cm.

Although a rigid obstruction is available between the transmitter and the receiver, it has been
found that the receiver located in the second floor (one floor down) can detect approximately
the direct path; the RMSEs of various 802.11ac BWs (20, 40, 80, and 160 MHz) are 1.59, 0.95,
0.46, and 0.28 meter, respectively. However, the receiver located in the first floor (two floors
down) cannot detect the direct path; the RMSEs of various 802.11ac BWs (20, 40, 80, and 160
MHz) are 9.54, 4.12, 2.88, and 3.03 meter, respectively. From the RMSEs (the DMEs), it is
worth mentioning that the direct path between the transmitter and the receiver located in the
first floor is totally blocked. However, the RMSEs or the DMEs of using 80 or 160 MHz BWs
are smaller than the expected. As a result, the first path that has been estimated comes through
the concrete objects of the two floors, and not through the free space between stairs. Hence,
let us now check the ability of the proposed algorithms for UDP correct identification using
the estimated channel parameters of this receiver. The statistical results of Table 7.1 are used.
Fig. 7.9 shows the probability of UDP correct identification. Such as the previous, an excellent
performance has been obtained.

As a conclusion, the 1-D UMP-Ex algorithm is used to estimate the time delays and the
relative amplitudes for a high-resolution wireless indoor positioning system. The channel pro-
file statistics and the proper modeling of both DDP and UDP conditions using 802.11ac signals
have been presented for UDP identification. Experimental results using the emerging IEEE
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Table 7.1: The mean and standard deviation of the normal PDFs for τMED and Ploss, and the
log-normal PDF for ln(κ) using 802.11ac parameters.

Ch. Parameter \ BW MHz 20 40 80 160

τMED (ns)
DDP

µ0 25.91 25.46 22.73 21.05
σ0 7.14 6.52 3.75 3.33

UDP
µ1 65.95 61.98 60.86 59.47
σ1 28.66 10.96 9.35 8.98

Ploss (dB)
DDP

µ0 61.12 61 61.34 61.8
σ0 2.95 2.74 2.19 1.79

UDP
µ1 86.87 86.61 86.27 86.87
σ1 4.66 3.61 3.74 3.93

ln(κ)
DDP

µ0 7.33 7.32 7.23 7.16
σ0 0.25 0.23 0.16 0.15

UDP
µ1 8.60 8.57 8.55 8.54
σ1 0.30 0.18 0.15 0.14
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Figure 7.6: Probability of UDP identification using the proposed methods and 802.11ac signals.
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Figure 7.7: Another test environment (the stairs of building 2 and 3 in the university of Magde-
burg).
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Figure 7.8: The real environment between floor 3 and floor 2 of building 2 and 3 in the univer-
sity of Magdeburg.
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Figure 7.9: Probability of UDP identification using the proposed methods and 802.11ac signals,
where the receiver is located under two floors.
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802.11ac standard reveal that the achieved probability of correct identification can be more
than 96.6% at the smallest bandwidth. The high accuracy of UDP identification leads to pre-
cise positioning. As a future work, channel models should be developed for wireless indoor
positioning taking into account different indoor areas. Appropriate weights could be given to
the results of UDP channels if the connectivity is limited for calculating the MU coordinates.
The results of 2-D UMP are the amplitudes, the time delays, and the DOAs of the multipath
channel components, hence, the DOAs can also be used to identify the channel condition be-
sides the investigated parameters of the channel profile.





CHAPTER 8

Conclusions and Future Work

8.1 Conclusions
In the following, we briefly summarize the conclusions drawn from our research work presented
in this dissertation. More details can be found in the previous chapters.

In the future, the LBS based on the wireless indoor positioning systems will be widely
used, which need accurate position estimation in indoor environments. The traditional position-
ing systems such as GPS or cellular positioning cannot provide that in indoor environments.
Therefore, there is a need for new positioning systems that are designed for indoor applications
and can overcome the challenges of indoor environments. As a result, the wireless indoor posi-
tioning is emerging as a new important research area. In this work, an effective wireless indoor
positioning has been developed based on the opportune signals of IEEE 802.11 standards. The
emerging 802.11ac standard for the 5 GHz band enhances the MIMO order to 8 × 8 and sys-
tem BW to 160 MHz compared to 802.11n and 802.11a. The performance of using wideband
orthogonal multi-carrier signals and multi antennas for wireless indoor positioning has been
presented.

The fundamentals of position estimation have been presented such as the wireless posi-
tioning architecture, the model of indoor radio propagation channel, the possible locations of
MU inside the building, and many others. The characteristics of radio signals including RSS,
DOA, TOA, and TDOA have been presented with their advantages and disadvantages. Since
our concern is the high accuracy, the time-based wireless positioning techniques have been pre-
ferred in this work. One from our goals is that the MU should be a very simple device, and the
complexity could be added only to the network side, therefore, the TDOA principle has been
preferred in this work. In fact, using TDOA principle for wireless positioning can operate with
system elements using their normal frame formats. In addition, the main sources of DME in
time-based wireless indoor positioning systems have been presented.

The channel profile parameters such as the time delays and the relative amplitudes of a
multipath channel can be extracted from the CFR. Therefore, the principle of CFR and CIR of
the multipath wireless channel has been presented. To measure the CFR, the preamble of the
OFDM frame has been used. The LTS of 802.11a and the LTF of 802.11n and 802.11ac have
been preferred to achieve the highest range of estimated time delays. The discontinuity of the
estimated CFR is solved by doing an interpolation, hence, the time delay estimation problem
of OFDM signal in a multipath channel is fully equivalent to the DOA problem using the ULA
in antenna array processing. In fact, the CFR of the multipath radio channel can be seen as a
harmonic signal model. Therefore, the super-resolution algorithms of DOA estimation can be
enhanced for OFDM time delay estimation.

High-accuracy with low-complexity position estimation is essential for many applications
using recent wireless networks. Recently, variants of MP algorithms have been presented to
estimate the DOA of coherent or non-coherent signals using ULA. They are working with data
directly without forming a covariance matrix, and the snapshot-by-snapshot analysis is used.
The DOA in the presence of multipath coherent signals can be estimated without performing
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additional processing such as the other subspace-based algorithms.
In this work, the problem of highly resolving the propagation time delays and the rela-

tive amplitudes associated with signals in a multipath communication channel is addressed for
wireless positioning based on the TDOA observations. The recent subspace-based algorithms,
represented by MP, UMP, and BMP algorithms, are applied in a new way to estimate those pa-
rameters from the measured CFR using OFDM systems. In fact, the UMP and BMP algorithms
are enhanced from the MP algorithm by doing a real computation to reduce the complexity, es-
pecially that of SVD computation. To evaluate the performance of various MP algorithms more
precisely, the empirical CFR should be employed. Therefore, a number of experiments have
been made in typical indoor environments.

The accuracy, stability, and complexity of the forward MP, and UMP, the forward-backward
MP-Ex, and UMP-Ex, SBMP, and MBMP algorithms are investigated for TDOA estimation
using 802.11ac parameters, and compared to the corresponding performance of 802.11a and
802.11n. The performance of using wideband orthogonal multi-carrier signals and diversity
techniques are presented. Using the wide BWs of 802.11ac improves the accuracy and stability
of TDOA estimation, especially at low SNR. Using multiple LTFs per OFDM frame in multiple
snapshot principle increases the accuracy and stability also. However, using both of them
increases the complexity of TDOA estimation. To reduce the complexity of high BWs of
802.11ac, it can be treated in multiple snapshot principle based on the frequency diversity. To
reduce the complexity of the 160 MHz BW, it can be treated as two snapshots of 80 MHz BW.
Accuracy and STD in the range of a few hundreds of picoseconds are achieved using various
MP algorithms. The MBMP and UMP-Ex provide better performance than the others, and
they have the same accuracy when all invariances of MBMP are used. The complexity ratio
of UMP-Ex to MBMP is 0.70. Therefore, UMP-Ex is the best choice for TDOA estimation
applications.

Since the most-recent wireless generations use the MIMO-OFDM technology such as 802.11
ac, the availability of multiple antennas in BSs can be used to estimate the DOA as another ob-
servation and as a kind of spatial diversity for TDOA estimation besides the frequency diversity
coming from OFDM. Therefore, the hybrid TDOA and DOA observations have been used. If
the ULA is used with OFDM, then we have an array of two dimensions, the first dimension
is the OFDM pilots, distributed equally in the frequency dimension, and the second dimen-
sion is the array elements, distributed equally in the space dimension. It represents the key
element for us to enhance the 2-D MP algorithms, which have been presented based on the
uniform space between array elements using the URA to estimate multiple frequencies or az-
imuth and elevation angles. In this work, the 2-D MP, 2-D UMP, and 2-D BMP algorithms
have been implemented in different realizations to estimate the propagation time delays and
the relative DOAs for a high-resolution wireless positioning system. Those recent subspace-
based algorithms are applied in a new way to estimate these parameters simultaneously from
the measured S-CFR using multiple antennas and wideband orthogonal multi-carrier signals.
Using the priori information of wireless positioning (our concern is to estimate the time delay
and the DOA of the shortest path) mitigates the problem of repeated poles and hence reduces
the complexity of calculating extra EVD problems.

From the results of LOS and NLOS experiments, using multi-antenna multi-carrier prin-
ciples can successfully enhance the dimensionality of the signal subspace for joint time delay
and DOA estimation; it represents a robust technique versus multipath channel fading. The
performance of the 2-D MP, 2-D MP-Ex, 2-D UMP, and the 2-D BMP algorithms have been
investigated and compared using 802.11ac system parameters. The 2-D UMP is the best choice
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for wireless positioning regarding the complexity and accuracy. Based on the NLOS experi-
mental results, accuracy in the range of a few hundreds of picoseconds, and a fraction of one
degree could be achieved.

The necessary number of antennas for accurate DOA estimation can be reduced by increas-
ing the number of subcarriers (BW), which reduces the receiver complexity. In general, if the
order of arrays is limited, the performance can be improved by using wide BWs, and if the sys-
tem BW is limited, the performance can be improved by using arrays of high order. It is worth
mentioning that the diversity and the improvement techniques provide a significant enhance-
ment to the performance if the system BW is limited, but if the system BW is wide enough,
they provide only small enhancement. It has been observed that the position RMSE is reduced
by increasing the number of antennas and system BW. However, increasing system BW is more
useful for MU localization than increasing the number of antennas. The reason behind that is
the accuracy of using TDOA is more than that of using DOA.

The principle of 1-D MP algorithms are also enhanced to estimate the propagation time de-
lays from the S-CFR using multi-antenna multi-carrier systems for a high-resolution wireless
positioning. Using the spatial diversity principle in 1-D MP algorithms improves the accu-
racy of wireless positioning considerably especially at low SNR and narrow system BWs; it
represents a robust technique versus multipath channel fading.

From the previous, in addition to spectral diversity coming from OFDM, two principles
are presented to use the spatial diversity through 1-D and 2-D MP algorithms. The required
complexity for TDOA estimation with spatial diversity and that for hybrid TDOA and DOA
estimation is compared. The complexity ratio of 1-D UMP-Ex to 2-D UMP is around % =
0.23 at all BWs of 802.11ac. Our experimental results using the emerging 802.11ac standard
reveal using DOA observations besides TDOA observations for positioning in 2-D UMP gives
a negligible improvement to the positioning accuracy over than that obtained from using TDOA
observations if the BSs are perfectly synchronized. However, if the BSs cannot be synchronized
perfectly, the hybrid TDOA and DOA should be outperformed than using only TDOA with
spatial diversity by assuming that the RF daughter-boards of antenna elements of each BS
could be synchronized and calibrated perfectly. At low system conditions, the accuracy of 1-D
UMP-Ex with spatial diversity is exceeding that of 2-D UMP. However, if the antenna arrays
order increases beyond 5, the 2-D UMP performs better than the 1-D UMP-Ex with the cost of
complexity (% will be smaller than 0.23). Using the spatial diversity principle in 1-D UMP-Ex
reduces the complexity and increases the accuracy. The reasons behind that are: it mitigates the
problem of antenna arrays imperfections and orientations that are typical in DOA. The accuracy
of DOA estimates depends on the MU position with respect to the antenna array of each BS
within the service. The distance between the MU and the BS has a negligible impact on the
time delay estimation if the direct path is still detected while in 2-D UMP if the MU is far away
from the BS, the DOA estimates lead to high positioning error.

To estimate the MU coordinates, the non-iterative W-LS estimator is presented based on
the TDOA estimates, and the non-iterative hybrid W-LS estimator is also presented based on
the TDOA and DOA estimates. The TDOA and DOA observations have been given some
weights due to the different accuracy of each type. The proposed estimators solve the problem
of the initial guess and that of partitioning of the other estimators. They are robust against
channel fading and low SNR. The lower bounds, represented by the CRB, of TDOA and DOA
estimation error variances are derived in terms of the fundamental parameters of the wireless
indoor positioning system such as the antenna array order, number of subcarriers including the
subcarrier spacing, SNR, and the DOA.
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Experimental results using 802.11ac system parameters and the proposed techniques show
that accuracy in the range of 1.5 cm can be achieved for 2-D wireless indoor positioning. The
location of BSs inside the building should be designed properly. The achieved accuracy is very
useful not only for positioning but also for communication applications.

Since the MU is often in a NLOS state, the direct path could be completely blocked due to
the harsh nature of indoor environments. Therefore, the estimated time delay of the first path
should be identified either as a very weak DDP or even as a UDP. The channel profile statis-
tics and the proper modeling of both DDP and UDP conditions using 802.11ac signals have
been treated and addressed for UDP identification. The mean excess time delay and the power
loss have been used. The PDF of mean excess time delay is best modeled by normal distri-
bution; similarly, the power loss is modeled. The mean excess time delay and the power loss
are multiplied to get the hybrid parameter, which is best modeled by log-normal distribution.
The binary likelihood ratio test has been used to identify the channel profile condition. Ex-
perimental results using the emerging 802.11ac standard reveal that the achieved probability of
correct identification can be more than 96.6% at 20 MHz BW. If the estimated channel profile
is more likely to be of the UDP condition, the estimated time delay of the shortest path should
be discarded. Only the remaining BSs, which have channel profiles belonging to the DDP con-
dition should be used to estimate the MU coordinates. The results can be rectified if there is a
limited connectivity. Adding the channel obstruction knowledge improves the accuracy of the
positioning system.

8.2 Future Work
As it has been stated, the wireless indoor positioning is a new research field having multiple
research aspects. There are many research topics that should be more investigated such as chan-
nel measurement and modeling, develop new positioning algorithms, solve the synchronization
problems based on the capability of the commercial oscillators, and many others. In fact, the
applications of wireless indoor positioning systems are different, as a result, the required accu-
racy and the system requirements are different. Those different scenarios make the research in
the area of indoor positioning interesting and challenging.

The following specific projects can be investigated as a continuation of the research work
in this dissertation that are based on the TDOA and DOA estimation techniques. In this work,
it has been preferred to use the WLAN for wireless indoor positioning, where the multipath
channel parameters such as the amplitudes, the relative time delays, and the relative DOAs have
been estimated. The estimated parameters can be used for joint communication and positioning.
They can be used for equalization assistance and beam forming especially in the downlink.

In this work, the ULA is used in the BSs, however, different antenna arrays can be used such
as the URA. The various 2-D MP algorithms can then be easily extended to 3-D MP algorithms
to do joint estimation for time delays, and both azimuth and elevation angles. Another extension
of this work can be the utilization of the spatial diversity in the MU transmission, since most
of MU devices are equipped with two antennas. A few BSs are occurring with circular antenna
array, therefore, the 2-D MP algorithms should be enhanced to work with those kind of BSs.

The CRBs of TDOA and DOA estimation error variances for a single path channel, and
that of joint time delay and DOA estimation error variance for a multipath channel have been
derived to investigate the lower bound of their error variances. It has been assumed that the
time delay and the DOA are unbiased parameters. In practice, the DME is biased by NLOS
propagation channel. Therefore, the CRB of TDOA and DOA including the NLOS effects
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can be derived for MIMO-OFDM systems. In this work, the variances of TDOA and DOA
observations have been used to give a weight to each observation. Another extension of this
work is to investigate the capability of obtaining the appropriate weights from the estimated
channel profile parameters without using the statistical variances.

In this work, a limited number of UDP channel profiles have been investigated. Therefore,
channel models should be developed for wireless indoor positioning taking into account dif-
ferent indoor areas. In case of UDP condition, if the connectivity is limited for calculating
the MU coordinates, appropriate weights could be given to the results of UDP channels. To
identify the UDP condition, the amplitudes and the relative time delays have been used. How-
ever, the results of 2-D MP algorithms are the amplitudes, the time delays, and the DOAs of
the multipath channel components, hence, the DOAs can also be used to identify the channel
condition besides the investigated parameters of the channel profile.

On the other hand, tracking and positioning of multiple objects need to be investigated. The
DME can be reduced adaptively by developing some algorithms for tracking. The electronic
map of the building can also be used to correct the final position estimate.
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APPENDIX A

The Unitary Matrix Transformation

A square matrix BN×N is called unitary if it satisfies

B−1 = BH . (A.1)

Therefore, BHB = I, where I is the identity matrix. As a result, the columns of the matrix B
must be orthonormal.

A matrix AM×P is called a centro-hermitian matrix [138] if it satisfies

A = Π
M

A∗Π
P

(A.2)

where Π
q

is called the exchange matrix, which is a square matrix (q × q). The components of

the exchange matrix are zeros except for ones on the anti-diagonal as

Π
q

=

0 · · · 1
... . . . ...
1 · · · 0

 . (A.3)

The exchange matrix Π
q

reverses the ordering of the rows.

The UMP algorithm uses the following three theorems, where their proofs can be found
in [90], [138] and many other references therein.

Theorem 1: If a vector x = [x0, x1, · · · , xN−1]T is centro-hermitian, where N is an odd
number, consequence, Π

N
x∗ = x, then the matrix Y

Y =


x0 x1 . . . xP
x1 x2 . . . xP+1
...

... . . . ...
xN−P−1 xN−P · · · xN−1


(N−P )×(P+1)

(A.4)

is also centro-hermitian, where each column of Y is a windowed part of x.
Theorem 2: The following matrix [Y : Π

N−P
Y∗ Π

P+1
] is always a centro-hermitian matrix,

where Y is any complex (N − P )× (P + 1) matrix.
Theorem 3: If a matrix Y of size (M × P ) is centro-hermitian, then QH

MYQP is a real
matrix, where QM and QP are unitary matrices whose columns are conjugate symmetric and
have a sparse structure as in (3.37) and (3.38) for even and odd order, respectively, [94].

187





APPENDIX B

Kronecker and Khatri-Rao Products

The Kronecker product is often used to build up repeated copies of small matrices. Those
matrices are often zeros and ones. If A is an N ×M matrix and B is a K ×L matrix, then the
Kronecker product A⊗B is the NK ×ML matrix as the following [139], [116]

A⊗B =

a11B · · · a1MB
... . . . ...

aN1B · · · aNMB

 . (B.1)

The Khatri-Rao product of an N × M matrix A and a P × M matrix B is defined as the
NP ×M matrix [116]

A�B = [a1 ⊗ b1
...a2 ⊗ b2

... · · · ...aM ⊗ bM ] (B.2)

where ai and bi denote the ith column of the matrices A and B, respectively. The first subma-
trix of (B.2) is

a1 ⊗ b1 =

a11b1
...

aN1b1

 . (B.3)

The interesting property between both products is

(A⊗B)(C�D) = AC�BD. (B.4)
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APPENDIX C

The QR and QZ algorithms

The generalized eigenvalue problem is defined:

(A− λB)q = 0 (C.1)

where A and B are square matrices of size L×L. The decomposition problem of matrix pencil
pair (A,B) in (C.1) is reduced to a generalized Schur problem by QZ algorithm [83], [140].
The standard eigenvalue problem is defined:

(C− λI)q = 0. (C.2)

From (C.1) and (C.2), it is clear that if B = I, the generalized eigenvalue problem reduces
to a standard eigenvalue problem. The decomposition problem of (C.2) is reduced to a Schur
form for the standard eigenvalue problem by QR algorithm [83], [140]. However, (C.2) can be
obtained from (C.1) by using the Moore-Penrose pseudo-inverse of (3.26) as

C = B†A =
(
BHB

)−1
BHA. (C.3)
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