104 research outputs found

    Numerical Simulation of Electronic Systems Based on Circuit- Block Partitioning Strategies

    Get PDF
    Numerical simulation of complex and heterogeneous electronic systems can be a very challenging issue. Circuits composed of a combination of analog, mixed-signal and digital blocks or even radio frequency (RF) blocks, integrated in the same substrate, are very difficult to simulate as a whole at the circuit level. The main reason is because they contain a lot of state variables presenting very distinct properties and evolving in very widely separated time scales. Examples of practical interest are systems-on-a-chip (SoCs), very common in mobile electronics applications, as well as in many other embedded electronic systems. This chapter is intended to briefly review some advanced circuit-level numerical simulation techniques based on circuit-block partitioning schemes, which were especially designed to address the simulation challenges brought by this kind of circuits into the computer-aided-design (CAD) field

    Hybrid Time-Frequency Numerical Simulation of Electronic Radio Frequency Systems

    Get PDF
    This chapter is devoted to the discussion of a hybrid frequency-time CAD tool especially designed for the efficient numerical simulation of nonlinear electronic radio frequency circuits operating in an aperiodic slow time scale and a periodic fast time scale. Circuits driven by envelope-modulated signals, in which the baseband signal (the information) is aperiodic and has a spectral content of much lower frequency than the periodic carrier, are typical examples of practical interest involving such time evolution rates. The discussed method is tailored to take advantage of the circuits and signals heterogeneity and so will benefit from the time-domain latency of some state variables in the circuits. Because the aperiodic slowly varying state variables are treated only in time domain, the proposed method can be seen as a hybrid scheme combining multitime envelope transient harmonic balance based on a multivariate formulation, with a purely time-step integration scheme

    Analysis of multirate behavior in electronic systems

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaEsta tese insere-se na área da simulação de circuitos de RF e microondas, e visa o estudo de ferramentas computacionais inovadoras que consigam simular, de forma eficiente, circuitos não lineares e muito heterogéneos, contendo uma estrutura combinada de blocos analógicos de RF e de banda base e blocos digitais, a operar em múltiplas escalas de tempo. Os métodos numéricos propostos nesta tese baseiam-se em estratégias multi-dimensionais, as quais usam múltiplas variáveis temporais definidas em domínios de tempo deformados e não deformados, para lidar, de forma eficaz, com as disparidades existentes entre as diversas escalas de tempo. De modo a poder tirar proveito dos diferentes ritmos de evolução temporal existentes entre correntes e tensões com variação muito rápida (variáveis de estado activas) e correntes e tensões com variação lenta (variáveis de estado latentes), são utilizadas algumas técnicas numéricas avançadas para operar dentro dos espaços multi-dimensionais, como, por exemplo, os algoritmos multi-ritmo de Runge-Kutta, ou o método das linhas. São também apresentadas algumas estratégias de partição dos circuitos, as quais permitem dividir um circuito em sub-circuitos de uma forma completamente automática, em função dos ritmos de evolução das suas variáveis de estado. Para problemas acentuadamente não lineares, são propostos vários métodos inovadores de simulação a operar estritamente no domínio do tempo. Para problemas com não linearidades moderadas é proposto um novo método híbrido frequência-tempo, baseado numa combinação entre a integração passo a passo unidimensional e o método seguidor de envolvente com balanço harmónico. O desempenho dos métodos é testado na simulação de alguns exemplos ilustrativos, com resultados bastante promissores. Uma análise comparativa entre os métodos agora propostos e os métodos actualmente existentes para simulação RF, revela ganhos consideráveis em termos de rapidez de computação.This thesis belongs to the field of RF and microwave circuit simulation, and is intended to discuss some innovative computer-aided design tools especially conceived for the efficient numerical simulation of highly heterogeneous nonlinear wireless communication circuits, combining RF and baseband analog and digital circuitry, operating in multiple time scales. The numerical methods proposed in this thesis are based on multivariate strategies, which use multiple time variables defined in warped and unwarped time domains, for efficiently dealing with the time-scale disparities. In order to benefit from the different rates of variation of slowly varying (latent) and fast-varying (active) currents and voltages (circuits’ state variables), several advanced numerical techniques, such as modern multirate Runge-Kutta algorithms, or the mathematical method of lines, are proposed to operate within the multivariate frameworks. Diverse partitioning strategies are also introduced, which allow the simulator to automatically split the circuits into sub-circuits according to the different time rates of change of their state variables. Novel purely time-domain techniques are addressed for the numerical simulation of circuits presenting strong nonlinearities, while a mixed frequency-time engine, based on a combination of univariate time-step integration with multitime envelope transient harmonic balance, is discussed for circuits operating under moderately nonlinear regimes. Tests performed in illustrative circuit examples with the newly proposed methods revealed very promising results. Indeed, compared to previously available RF tools, significant gains in simulation speed are reported

    High-order Relaxed Multirate Infinitesimal Step Methods for Multiphysics Applications

    Get PDF
    In this work, we consider numerical methods for integrating multirate ordinary differential equations. We are interested in the development of new multirate methods with good stability properties and improved efficiency over existing methods. We discuss the development of multirate methods, particularly focusing on those that are based on Runge-Kutta theory. We introduce the theory of Generalized Additive Runge-Kutta methods proposed by Sandu and Günther. We also introduce the theory of Recursive Flux Splitting Multirate Methods with Sub-cycling described by Schlegel, as well as the Multirate Infinitesimal Step methods this work is based on. We propose a generic structure called Flexible Multirate Generalized-Structure Additively-Partitioned Runge-Kutta methods which allows for optimization and more rigorous analysis. We also propose a specific class of higher-order methods, called Relaxed Multirate Infinitesimal Step Methods. We will leverage GARK theories to develop new theory about the stability and accuracy of these new methods

    Modelação e Simulação Eletrotérmica de Circuitos e Sistemas Eletrónicos

    Get PDF
    Esta dissertação insere-se na área da modelação e simulação eletrotérmica de circuitos eletrónicos que contêm MOSFETs de potência. Visa essencialmente o estudo da aplicabilidade de ferramentas computacionais inovadoras que consigam simular, de forma eficiente, circuitos que operem em múltiplas escalas temporais, como é o caso da simulação elétrica e térmica conjunta. A simulação eletrotérmica de um componente eletrónico cujo funcionamento depende fortemente da temperatura necessita que, durante o seu período de operação, se conheça com rigor o valor da temperatura em vários pontos do seu interior, de modo a se poder estimar o seu comportamento. O modelo do MOSFET utilizado, baseado em modelos SPICE, é um modelo eletrotérmico contínuo, que permite que a temperatura de funcionamento seja atualizada dinamicamente durante o processo de simulação. Em conjunto com o modelo do MOSFET são também adotados nesta dissertação modelos de propagação térmica baseados em linhas de transmissão de calor. Para se poder tirar o proveito dos diferentes ritmos de evolução temporal existentes entre as variáveis de estado elétricas e térmicas, são utilizadas algumas técnicas numéricas avançadas baseadas em esquemas Runge-Kutta multi-ritmo. Nesta dissertação é dada especial atenção ao método de ordem 2(3). O desempenho deste método numérico é avaliado em dois exemplos de aplicação ilustrativos, com resultados bastante interessantes. Através da análise comparativa entre os resultados obtidos com os métodos numéricos convencionais presentes nos simuladores SPICE e o método proposto, é possível constatar ganhos significativos em termos de poupança de esforço computacional

    Time domain analog circuit simulation

    Get PDF
    AbstractRecent developments of new methods for simulating electric circuits are described. Emphasis is put on methods that fit existing datastructures for backward differentiation formulae methods. These methods can be modified to apply to hierarchically organized datastructures, which allows for efficient simulation of large designs of circuits in the electronics industry

    Locally implicit discontinuous Galerkin time domain method for electromagnetic wave propagation in dispersive media applied to numerical dosimetry in biological tissues

    Get PDF
    International audienceWe are concerned here with the numerical simulation of electromagnetic wave propagation in biological media. Because of their water content, these media are dispersive i.e. their electromagnetic material characteristics depend of the frequency. In the time-domain, this translates in a time dependency of these parameters that can be taken into account through and additional (auxiliary) differential equation for, e.g, the electric polarization, which is coupled to the system of Maxwell's equations. From the application point of view, the problems at hand most often involve irregularly shaped structures corresponding to biological tissues. Modeling realistically the interfaces between tissues is particularly important if one is interested in evaluating accurately the impact of field discontinuities at these interfaces. In this paper, we propose and study a locally implicit discon-tinuous Galerkin time-domain method formulated on an unstructured tetrahedral mesh for solving the resulting system of differential equations in the case of Debye-type media. Three-dimensional numerical simulations are presented concerning the exposure of head tissues to a localized source radiation. 1. Introduction. This article is concerned with the numerical simulation of electromagnetic wave propagation in dispersive media. These are materials in which either or both of the electromagnetic material parameters ε and µ are functions of frequency. Note that the conductivity σ may also be a function of frequency, but its effect can be rolled into the complex permittivity. In reality, all materials have frequency-dependent ε and µ, but many materials can be approximated as frequency-independent over a frequency band of interest, simplifying their analysis and simulation. Here, we will focus on the much more common case of frequency-dependent permittivity. A lot of practical electromagnetic wave propagation problems involve such propagation media, such as those involving the interaction of an electromagnetic wave with biological tissues. The numerical modeling of the propagation of electromagnetic waves through human tissues is at the heart of many biomedical applications such as the microwave imaging of cancer tumors or the treatment of the latter by hy-perthermia. For example, microwave imaging for breast cancer detection is expected to be safe for the patient and has the potential to detect very small cancerous tumors in the breast [3, 14, 24]. Beside, the definition of microwave-based hyperthermia as an immunotherapy strategy for cancer can also be cited [2, 11]. The electroporation technique can also be an application, which consists of applying nanopulses to the tissues, enabling only intracellular membranes to be affected, and then opening the route to therapeutic strategies such as electrochemotherapy or gene transfer [21, 30, 25, 26, 28]. Because for all these biomedical applications experimental modeling is almost impossible , computer simulation is the approach of choice for understanding the underlyin

    Multiphysics simulations: challenges and opportunities.

    Full text link
    • …
    corecore