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Abstract

Recent developments of new methods for simulating electric circuits are described. Emphasis is put on methods
that fit existing datastructures for backward differentiation formulae methods. These methods can be modified to
apply to hierarchically organized datastructures, which allows for efficient simulation of large designs of circuits in
the electronics industry.
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1. Introduction

Circuit simulation applies to electronic networks, in which electronic elements like resistors, capacitors,
inductors, transistors and sources are connected into one big system. Similar networks one also encounters
in other network systems through which a flow can be observed. One can think of a network of rivers
and canals, or a network of a sewerage system, or of a blood circulation system. Even traffic flow can be
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studied by a network system. In fact a circuit simulator is well suited to analyse these other systems as
well, because the properties of electronic elements can very well be used in defining properties of special
sections in the other networks. A circuit simulator is also very often applied to so-called reduced order
models of more refined models arising in other application areas.

In analog circuit simulation a lot of different analyses can be applied such as DC or steady-state
analysis, transient analysis, AC-analysis (linear frequency domain analysis, after linearization around
a DC-solution), noise analysis, harmonic balance (nonlinear frequency domain analysis for harmonic
distortion analysis), pole-zero analysis (which requires a generalized eigenvalue analysis), mixed-signal
analysis (for circuits with analog as well as digital waveforms), and dedicated analyses for problems with
waveforms in the radio frequency (RF) range (1–10 GHz): periodic steady-state (PSS) analysis, periodic
AC, periodic noise.

Here we will focus on transient analysis, which is the analysis most heavily used. For this type of
analysis most circuit simulators apply the well-known backward differentiation formulae (BDF) inte-
gration method to the system of differential-algebraic equations (DAE) that arises after applying the
so-called modified nodal analysis to the network description of the circuit. In the Sections 2 and 3 we
will briefly describe the system of equations. Next, in Section 4, we recall some results that allow for
determining the DAE-index by checking the topology of the network. In Section 5 we will pay atten-
tion to the hierarchical framework and its options to speed up analysis. The form of the DAEs does not
elegantly meet the specifications of several standard implementations of algorithms for time integration
(even for BDF).Also these methods do not comply with hierarchical datastructures where recursion could
be exploited. Hence, applying these methods generally requires serious modification. The drawback is
that the algorithms are not easily changed later on in order to study alternatives. Clearly, there is a big
need to speed up transient simulations while maintaining or increasing the robustness of the methods.
In the Sections 6 and 7 some interesting developments can be recognized that will be addressed briefly,
amongst them methods that have better stability properties than BDF, while also offering higher accuracy
(Radau, MEBDF, Rosenbrock–Wanner). Section 8 gives requirements for, as well as first developments
of, new methods that could be applied to advanced problems involving multi-rate, multi-tone, and/or
mixed-signal and mixed-level aspects.

2. Kirchhoff Laws

The equations that govern the behaviour of an electronic circuit are formulated in terms of physical
quantities along the branches and at the nodes of the network. A simple example is shown inFig. 1,
involving a current sourcej1, an inductorl1, two capacitors,c1 andc2, and a resistorr1. The basic laws
deal with the currentsik through the branches between the nodes 0, . . . ,3, and the voltage differences
over the branches:

• Kirchhoff’s Current Law (KCL):
∑

k∈cutsetik = 0.
• Kirchhoff’s Voltage Law (KVL):

∑
k∈loopvk = 0.

Here a cutset is a set of elementary branchesBc that bridges two disjoint sub-networksBL, BR, such
thatBL ∪ Bc ∪ BR is the whole network. The KCL allows to set up (current) equations with voltages as
unknowns, the KVL can be used the other way around. The laws can be formulated very compactly by
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Fig. 1. Simple example circuit.

introducing an incidence matrix, which is completely determined by the topology of the circuit.Assuming
n nodes andb branches, the incidence matrixA ∈ Rn×b is defined by

aij =
{1 if branchj arrives at nodei,

−1 if branchj departs from nodei,
0 if branchj is not incident at nodei.

With this a direction of the branches is defined, but the actual choice is irrelevant. For the above example
we may choose the form

j1 c1 c2 l1 r1
0
1
2
3




−1 0 0 −1 −1
1 1 0 0 0
0 −1 1 1 0
0 0 −1 0 1


 .

Clearly, because all elements are two-nodal,
∑

i aij = 0 and Rank(A)�n − 1 (but for a proper circuit
Rank(A) = n − 1).

If we introduce the vectorib of branch currents, and the vectorvb of branch voltages, as well as the
vectorvn of nodal voltages, the laws can be summarized as

• KCL: Aib = 0.
• KVL: ATvn = vb.

3. Modified nodal analysis

In nodal analysis one assumes current-defined, voltage-controlled components with branch constitutive
relations of the formib = j̃ (t, vb) (resistors, current sources) orib = (d/dt)q̃(t, vb) (capacitors) for the
particular elements involved, which in vector form sum up to a linear combination and for which after
applying the KCL and KVL equivalent properties ofA yield

ib = d

dt
q̃(t, vb) + j̃(t, vb),
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⇒ Aib = d

dt
Aq̃(t, vb) + Aj̃(t, vb),

⇒ 0= d

dt
Aq̃(t, ATvn) + Aj̃(t, ATvn).

If we assume that Rank(A) = n − 1, after grounding thekth nodal voltage tovk, we can leave out the
kth row ofA (which we denote bŷA) and we can formulate a system of equations inv̂n = vn − vkek (in
which we also leave out thekth coordinate):

0= d

dt
Âq̃(t, ÂTv̂n + vkA

Tek) + Âj̃(t, ÂTv̂n + vkA
Tek),

whereek ∈ Rn is thekth unit vector. Withx := v̂n, q(t, x) := Âq̃(t, ÂTv̂n + vkA
Tek) and j(t, x) :=

Âj̃(t, ÂTv̂n + vkA
Tek) we arrive at

d

dt
q(t, x) + j(t, x) = 0,

which in general is a DAE, because some clusters of resistive branches may occur, which will be purely
defined by algebraic equations.

In practice, one also considers voltage-defined, current-controlled components with branch equations
of the form

vj = d

dt
q̄(t, ij ) + j̄ (t, ij ),

which can be used to describe voltage sources and inductors. To cover also these equations we introduce
vb = (vT

b1
, vT

b2
)T andib = (iTb1

, iTb2
)T, respectively, both of lengthb = b1 + b2, in whichb1 corresponds

to the already considered current-defined, voltage-controlled part andb2 to the voltage-defined, current-
controlled part. We will consider theib2 as additional unknowns and start from

ib1 = d

dt
q̃(t, vb1, ib2) + j̃(t, vb1, ib2),

vb2 = d

dt
q̄(t, vb1, ib2) + j̄(t, vb1, ib2).

[For simplicity we have omitted thevb2 as variables at the right-hand sides.] After applying KCL and
KVL

A1ib1 + A2ib2 = 0, (KCL),

AT
1vn = vb1, AT

2vn = vb2, (KVL)

one has

−A2ib2 = d

dt
A1q̃(t, AT

1vn, ib2) + A1j̃(t, AT
1vn, ib2),

AT
2vn = d

dt
q̄(t, AT

1vn, ib2) + j̄(t, AT
1vn, ib2)
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and thus, after grounding,

−Â2ib2 = d

dt
Â1q̃(t, ŷ, ib2) + Â1j̃(t, ŷ, ib2),

ÂT
2 v̂n + vkA

T
2ek = d

dt
q̄(t, ŷ, ib2) + j̄(t, ŷ, ib2), where

ŷ = ÂT
1 v̂n + vkA

T
1ek,

which, after re-arranging everything to the right-hand side, again has the form (DAE)

d

dt
q(t, x) + j(t, x) = 0. (1)

Clearly, this can be written in a further standard form

f (t, x, ẋ) = �

�t
q(t, x) + �

�x
(q(t, x))ẋ + j(t, x) = 0,

which allows for applying several standard time integrators, but at the price of requiring second derivatives
when solving nonlinear systems. Of course, standard methods can also be easily applied to (1) after
introducingq as additional unknown, but in most cases this doubles the number of unknowns. In practice,
one formulates time integrators directly for DAEs of the form (1)[20]. Note that systems of this form
also arise in studying dynamics in multibody systems. In the electronic circuit application one has to
keep in mind that the unknownx contains all the nodal voltagesv̂n and (only) the currents of the voltage-
defined, current-controlled elements, thus two different physical quantities, of which the last one, one
may argue, was introduced by some artificial procedure that facilitated the modeling of the network.
Hence, in practice, in convergence and accuracy criteria, one mostly restricts oneself to thev̂n.

4. Topological analysis

Well-posedness of the circuit equations cannot be established by considering each circuit branch in
isolation. Rather, the topology, i.e., the way in which the branches are interconnected, plays an essential
role. For an in-depth analysis, see[11]. As an example, consider the circuit shown at the left inFig. 2.
This circuit contains two ideal voltage sourcesaandb. The potential in the nodes 0 and 1 will be denoted

0

1

a b

0

1

a b

Fig. 2. Left: A loop of voltage sources. Right: A capacitor/voltage source loop.
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asvn,0 andvn,1, respectively. Because of KVL, the voltage differenceva overa is equal tovn,1 − vn,0;
similarly, the voltage differencevb overb is equal tovn,1 − vn,0. Obviously, ifva �= vb then there is no
solution. Ifva = vb, there are infinitely many solutions, since any amount of current could flow through
the loop. Thus the circuit equations corresponding to this circuit are not well-posed. In general, necessary
conditions for the circuit equations to be well-posed are that no loops of voltage sources occur, nor cutsets
that consist of branches of current sources. A circuit simulator usually detects such topologies and gives
an error message if it encounters them. This is a form oftopological analysis, i.e., analysis on the solution
behaviour of the circuit which involves the interconnections between the circuit branches.

A more subtle problem arises in the circuit shown at the right inFig. 2. Assume that voltage sourcea
is time-dependent, i.e.,va = va(t). The capacitorb has the branch equationib = Cv′

a(t). Observe that
the current depends on the first derivative of the source term. This may lead to numerical problems; we
typically have that the local discretization error made forib is one order lower than the order of the time
integration method[17]. This phenomenon is calledorder reduction. Another problem arises whenva(t)
is not differentiable.va(t) might be a block pulse coming from a digital part of the circuit, or it might be a
white noise source. In these cases, the solution only exists in a generalized sense. To classify these cases
the concept of DAE-index has been introduced. A DAE with DAE-index 0 is just an ordinary differential
equation. When the DAE-index equalsmwith m�1, derivatives up to orderm − 1 of the input sources
are needed to uniquely define the solution of the system of DAE. For the current example, the resulting
system of DAEs has DAE-index 2 (for definitions and generalizations we refer to[6,11,17,25]).

It is clear that one wants to avoid circuits that define DAEs with DAE-index greater than 1. Here
topological analysis can be of help. Indeed, apart from detecting pathological configurations, topological
analysis can be helpful in the simulation of correct circuits. A typical result, derived and discussed in
[11,20,32], is as follows.

Theorem 1. Assume

• The circuit graph and the element characterizations are time independent.
• There are no cutsets of current sources.
• There are no loops of voltage sources.
• All L-I cutsets do not contain current-controlled sources.
• All V-C loops do not contain voltage-controlled sources.
• All components are passive.

Then the system(1) has DAE-indexm�1.

5. Hierarchical simulation

In practice, electronic circuits (circuit ‘model’) are defined in a hierarchical way using sub-circuits
(sub-model). This allows for re-use of very large, carefully designed sub-circuits from a model-library
(for instance describing interconnect). But also the compact models for transistors easily fit in a hierar-
chical description. Thinking in sub-circuits allows to define, design and test local functionality and to use
the result as a parameterized building block that is connected to a parent circuit by its terminal nodes (ter-
minals). To capture full functionality the sub-circuit may have internal nodes. Of course, each sub-circuit
may give rise to more sub-sub-circuits, etc. An example of a parent-circuit with two sub-circuits is shown
in Fig. 3. Several circuit simulators generate a flat description to apply the analysis to. While integrating,
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Fig. 3. Example of a parent circuit with two, parallel, sub-circuits.

special algebraic techniques are needed to solve the large intermediate linear systems efficiently. However,
it is clear from the figure above, that the original description already offers inherent parallelism and that at
each level the local systems may be quite moderate. There even may be repetition of sub-circuits (which
occurs frequently in memory circuits). This is fully exploited by hierarchical simulators like HSIM[22]
and Pstar[29].

To describe the hierarchical problem in more detail we split the unknownsx(j) in sub-circuit j in
terminal(y(j)) andinternal (z(j)) unknowns:

x(j) =
(
y(j)

0

)
+

(
0
z(j)

)
.

It is assumed that the equations for the internal unknowns,(d/dt)f (j)1 (t, y(j), z(j))+ f (j)2 (t, y(j), z(j))=0,
say, uniquely determinez(j) for giveny(j) (which is just elimination of the internal unknowns from the
system). A simple example in which this assumption is violated is given by a sub-circuit consisting of
one voltage sourceE, of which the internal unknowniE (current throughE) is not determined by the
terminal voltages only. In this case the introduction of a terminal current as additional unknown at the
parent circuit level and lifting the equation foriE to the parent level solves the modeling problem (after
which theiE is determined in an implicit way by the whole system). This can be generalized to sequences
of currents of voltage-defined elements.

For communication purposes between a parent and a sub-circuit we introduce an additional incidence
matrix

Bj(i, k) =
{

1 if unknownksub ≡ iparent,

0 else.

Then:xparent= Bjy(j) andy(j) = BT
j x

parentexpress the sub-circuit terminalsy(j) in terms ofxparentand
the other way around. Now, assumingN parallel sub-circuits, the following system of results:

d

dt

N∑
j=1

Bjq(j)(t,w(j)) +
N∑

j=1

Bj j (j)(t,w(j)) + d

dt
qparent(t, x) + jparent(t, x) = 0,
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∀j : d

dt
f (j)1 (t, BT

j x, z
(j)) + f (j)2 (t, BT

j x, z
(j)) = 0,

wherew(j) =BT
j x+ z(j). In this way, elimination of the internal unknowns at the sub-circuit levels gives

way to a remaining system at the parent level that has as size the number of unknowns at this level. The
resulting approach is a ‘Frontal Solver’-like one. Note, that the internal unknowns at the sub-circuit level,
z(j), in general have to be found by solving a nonlinear system of equations.

Another option is to write the whole system as a flat circuit problem in which all unknowns at all
levels occur. All analyses give rise to nonlinear systems in which expressions and matrices are linear
combinations of parts with the time-derivatives and the remaining parts. Hence in the remainder of this
section we will confine ourself to consider just a nonlinear system of equations. The flat system to start
from may be written as follows:

Algorithm 1 General nonlinear solver

Let x(0) andz(j) be given
for all l = 0, . . . , L − 1 do

Let [z(j)](0) = z(j)

for all k = 0, . . . , K − 1 do
SolveZj�[z(j)](k) = −fj (BT

j x
(l), [z(j)](k))

Define[z(j)](k+1) = [z(j)](k) + �[z(j)](k)
end for
Let [z(j)] = [z(j)](K) and[x(l)](0) = x(l)

for all s = 0, . . . , S − 1 do
Solve(A + ∑N

j=1[Zj ]−1Bj )�x(s) = −f0([x(l)](s), z(1), . . . , z(N))

Define[x(l)](s+1) = [x(l)](s) + �x(s)

end for
Let x(l+1) = [x(l)](S)

end for

f0(x, z(1), z(2), . . . , z(N)) = 0,

fj (BT
j x, z

(j)) = 0, j = 1, . . . , N ,

which can be solved in several ways. LetA=�f0/�x,Cj =�f0/�z(j),Zj =�fj /�z(j), andBj =�fj /�y(j)BT
j .

HereA andZj are square matrices. Standard Newton–Raphson uses as Jacobian matrix

Y =




A C1 C2 . . . CN

B1 Z1
B2 Z2
...

. . .

BN ZN


 ,

which has an arrow-like shape. Both algorithms can be covered by the generalAlgorithm 1. The sub-circuit
approach is similar to a hierarchical domain decomposition with ‘overlap’ (because of the terminals).
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Note that in the above algorithm thek-loop can be done in parallel. IfK = S = 1 the algorithm is just
Newton–Raphson for a flat problem. IfK=∞ andS=∞ (iteration until convergence) this is the approach
mentioned before: nonlinear elimination of the internal unknownsz(j). A variant that ensures quadratic
convergence of the overall procedure can be found in[18]. In [4] an efficient linear solver is described
that directly applies to a flat matrixY after revealing its inherent arrow-like structure.

In Pstar[29] each parent or sub-circuit is typically treated by looping over all its components, being
simple elements (like capacitors, resistors, etc.), or sub-circuits (implying recursion), or devices (the
compact transistor models), or items like parameters (evaluate expression).

Algorithm 2 Pstar’s ordered items loop[29]

for all j = 0, . . . , J − 1 (ordered items loop in a parent circuit)do
if Item(j) = sub-circuitthen

Recursion
else ifItem(j) = devicethen

1 Step ‘Recursion’
else ifItem(j) = elementthen

Do actions for element
else ifItem(j) = parameterthen

Do actions for parameter
else

Default actions
end if

end for

A typical action for an element or for a device is to determine its contribution to the right-hand side of
the Newton–Raphson correction equation and its contribution to the partial JacobiansC = (�/�x)q(t, x)
andG = (�/�x)j(t, x). For basic, linear, 2-node elements between two nodesa andb the contributions
�C and�G toC andG, respectively, can be compactly written as
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Algorithm 3 The main Pstar recursions for time integration[29]

for all i = 0, . . . , I − 1 (Time step iteration)do
for all k = 0, . . . , K − 1 (Newton iteration)do
Recursion I (Bottom-Up):Assembly of the matrix and the right-
hand side [A �xn+1 = b ≡ −F(xn)] and the partial decomposition
[A = UL, Lxn+1 = c ≡ U−1b].
Add the resulting Schur complement for the terminal unknowns to the
corresponding rows and columns of the matrix at the parent circuit.
Add the part ofc for the terminals to the corresponding coordinates
of the right-hand side at the parent circuit level.
Recursion II (Top-Down): Obtain the terminal values from the parent
circuit. Solve the remaining lower-triangular system for the new
solution [�xn+1 = L−1c, xn+1 = xn + �xn+1. The terminal value at
the top level is just the ground value.

end for
Recursion III (Bottom-Up): Determine the discretization-error estimation.

end for

HereR,C, L, J,Estand for resistor, capacitor, inductor, current source and voltage source, respectively.
Furthermoreq stands for the charge stored at a capacitor, and� stands for the flux through an inductor.
In the 3rd and 4th column,e= ea − eb andẽ= ec in whichea, eb, andec are the unit vectors forvan, vbn
andiElement, respectively.

Depending on actions being done before or after the recursions and passing data to or lifting data
from a sub-circuit, or device, one can speak of Top-Down and of Bottom-Up recursions. Both types of
recursions are found in Pstar[29].

For instance, a typical time integration loop is shown in Algorithm 3. The partial Gaussian Elimination
procedure easily accommodates a hierarchical procedure. At a sub-circuit level we decompose the local
matrixA in a UL-decomposition (which is due to ordering the terminal unknowns first)

A =
(
A�,� A�,�

A�,� A�,�

)
= UL,

U =
(
I U�

∅ U�

)
and U−1 =

(
I Ũk

0 U−1
�

)
,

L =
(
A� ∅
L� L�

)
.

Clearly:A�,� =U�L�,L� =U−1
� A�,�, Ũk =−A�,�A

−1
�,�,U� =−ŨkU�. Also Diag(U�)=I (which, usually,

is not stored). After decomposition the matrix looks like
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The Schur complement,A�, is added to the parent level asBjA�B
T
j .

6. DC analysis

A basic analysis is to determine the steady-state, or DC, solutionxDC, which solvesj(xDC)= 0. In fact
many other analyses use as first step an implicit DC analysis. For instance, time integration is usually
started by disturbing the DC-solution by time-dependent current or voltage sources. In this case no explicit
initial solution is given.

In general the steady-state problem is a nonlinear problem that is much harder to solve than an inter-
mediate nonlinear problem in a time integration procedure. Hence, in this case, the Newton-procedure
is combined with continuation methods (gmin-stepping) and damping strategies. Even pseudo-transient
procedures may be applied. Another problem that has to be dealt with is the occurrence of floating areas
(areas that become decoupled when connecting capacitors are skipped).

An analysis one particularly is interested in is fault analysis in which one studies the effect when a resis-
tor is disturbed, or when it is replaced by an ‘open’(g=0) or by a short (R=0). Note that the sparse matrix
contribution of a linear resistorR(a, b) (with i = g ∗ v) to the Jacobian matrixG also allows for efficient
fault simulation by applying a so-called one-step relaxation[30]. The Sherman–Morrison–Woodbury
formula[21] for expressing the inverse of a perturbed matrix in terms of the inverse of the unperturbed
one, allows to re-use the last UL-decomposition of the Jacobian of the DC-analysis. For instance, for an
open fault one introduces a defect of−geeT to the Jacobian and one may use the following expression
for the inverse of the Jacobian:

J−1 =


I − G−1eeT

−1

g
+ eTG−1e


G−1.

Note that fault analysis is a particular application of a more general sensitivity analysis. Here also the
decomposition of the Jacobian is re-used, but in the case of the above matrix update a more accurate
Jacobian is used than in the general procedure for sensitivity analysis.

7. Time integration

In circuit design, transient analysis is most heavily used. Consequently, there is a constant interest in
methods that offer better performance with respect to robustness as well as to reduction of CPU-time.
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Because the underlying circuit equations are DAE, an issue for robustness is how well the time integrator
behaves when problems of higher index have to be treated: does reduction of the order of integration
happen, and does one obtain consistent solutions (i.e., does the solution stay on the manifold defined by
the algebraic conditions). Other points of interest are stability conditions[16], and the damping behaviour
along the imaginary axis. In fact one prefers no damping along a large part of the imaginary axis, but one
insists on damping at infinity.

Common methods for time integration of the differential-algebraic circuit equations are the BDF
methods (see[20] to apply Runge–Kutta methods). BDF Methods do not suffer from reduction of the
order of integration when applied to DAEs of higher index, and generate consistent solutions[31].
These and other properties, as e.g., variable stepsize control, made these methods very popular for cir-
cuit simulation, however at the cost of being conditionally stable when the order of integration exceeds
2. Improvements were looked for in combining BDF with the Trapezoidal Rule[19] (less damping),
or in new methods, e.g., Implicit Runge–Kutta methods (IRK) like Radau-methods[10] (3rd order L-
stable IRK with options for parallelism), or CHORAL[15] (embedded Rosenbrock–Wanner method
of order “(2)3”, stiffly accurate and L-stable). A second order L-stable integration method with a so-
called high pass filter along the imaginary axis that easily fits an environment developed for BDF-
methods is described in[20]. A recent study on Modified Extended BDF methods[7] was also motifated
by this.

Other approaches, that start from a boundary-value problem point of view, are Generalized BDF-
methods (GBDF)[5], but these can be applied to initial-value problems as well. Parallelism for this last
case is considered in[23].

7.1. BDF, Trapezoidal Rule

Consider a linears-step method to approximateq(ti, xi) at ti = t0 + i�t by

q(ti+s, xi+s) ≈
s−1∑
j=0

�jq(ti+j , xi+j ) + �t

s∑
j=0

�j

d

dt
q(ti+j , xi+j ),

with s�1,�0, �1, . . . , �s−1 ∈ R and�0, �1, . . . , �s ∈ R. Furthermore,�2
0+�2

0 >0. To satisfy the algebraic
constraints atti+s we will restrict ourselves to�s �= 0. Assuming�s = −1

d

dt
q(ti+s, xi+s) ≈ −1

�s�t

s∑
j=0

�jq(ti+j , xi+j ) − 1

�s

s−1∑
j=0

�j

d

dt
q(ti+j , xi+j )

= 1

�s�t
q(ti+s, xi+s) + −1

�s�t

s−1∑
j=0

�jq(ti+j , xi+j )

+ 1

�s

s−1∑
j=0

�j j(ti+j , xi+j ).
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Hence, atti+s , (1) is approximated by an equation of the form

1

�s�t
q(ti+s, xi+s) + j(ti+s, xi+s) + bi+s = 0.

The DAE-nature implies that to be successful, the methods have to be implicit. The BDF integration
methods and the Trapezoidal Rule immediately fit into the above formulation. The methods are robust
and allow an elegant Local Truncation Error estimation based on the observation that

�LTE(t) ≈ �LTE(ti+s)

=Ck+1�tk+1 dk+1

dtk+1q(ti+s)

≈C′
k+1(q(ti+s) − q(0))

≈C′
k+1

�q
�x

(x(ti+s) − x(0)),

(for some constantC′
k+1), where the Newton initializationx(0) is predicted by extrapolation of appropriate

order

x(0) = Extrap(xi+s−1, . . . , xi−1),

which may be saved or is easily re-evaluated, andx(ti+s) is approximated by the solution of the converged
Newton process at time levelti+s . [Note thatx ∈ Ker(�q/�x) may be omitted.] An alternative is to re-
use the Jacobian of the Newton–Raphson process to scale the�LTE back tox(ti+s) − x(0) [27]. In both
cases an upperbound with‖x(ti+s) − x(0)‖2

2 arises as controlling quantity. Note that this includes both
differences of nodal voltages and the added branch currents. In practice, one restricts oneself to estimate
the�LTE(t) for the nodal voltage unknowns only. Automatic control techniques[28] are of interest for
obtaining results with reduced noise when varying parameters.

We conclude this section with some remarks concerning the consistency of the solutionx. Let P be
a time-independent projector of maximum rank that does not depend on the solution with the property
Pq(t, x) = 0 [20]. This immediately impliesPj(t, x) = 0. With this operator it is easily shown that the
BDF methods (for whichbj = 0, j = 0, . . . , s − 1), generate consistent solutions (i.e., they satisfy the
algebraic constraintsPj(ti+s, x) = 0 at time levelti+s), even in the presence of inconsistent solutions
at previous time levels. This property is also exploited in the Trap-BDF2 method[19]. For BDF, even
the order of integration is independent of the DAE-index[6,31]. The well-known drawbacks are that the
unconditionally stable methods are restricted to have at most integration order 2 and that these methods
show too much damping along the imaginary axis.

The Trapezoidal Rule has no damping oniR, has integration order 2, but does generate a consistent
solution atti+s only whenPj(ti+s−1, x)=0, which assumes a consistent initialization. The method shows
reduction of convergence order with increasing DAE-index.

With the operatorP, aP-Stabilized Trapezoidal Rule can be formulated, that guarantees consistency:

q(xn+1) − q(xn)
�t

+ 1

2
[j(xn+1) + (I − P)j(xn)] = 0. (2)
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Fig. 4. Waveforms of a circuit with DAE-index 2 obtained by the Trapezoidal Rule without and withP-stabilization.

The effect is easily demonstrated for a circuit with a DAE-index 2 unknown. Results are shown inFig. 4.
This approach easily generalizes to other linear multistep methods.

We finally note that after multiplying (2) with(I −P), theP-Stabilized Trapezoidal Rule shows a 2nd
order time integration order for the equations in the Range ofq.

7.2. Radau

In [10], IRK methods ere studied, in which each of the internal approximations could be computed
concurrently on more processors. It is nice that thesequentialcosts of these methods are of the same
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order as those of codes based on BDF, whereas the methods benefit from the advantages of IRKs over
BDFs: no order barrier (like Dahlquist’s order barrier) and being a one-step method it allows easy change
of stepsize and commodation with discontinuities. A two-stage Radau IIA method (a third order, L-stable
IRK method) was studied more closely, based on re-using as much of Pstar’s current time integration
procedure (that, historically, was optimized for BDF-methods and Trapezoidal Rule time integration).
The L-stable Radau IIA methods withs-stages have order 2s − 1. These Radau methods have the next
time pointtn as final stage level. This is of importance when dealing with DAEs: when all the algebraic
equations are satisfied at all stage points, they are automatically satisfied in the step point in which case
one automatically generates consistent approximations to the solution[13].

The particular two-stage Radau IIA method for

y′ = f (t, y), f, y ∈ Rd, t0� t� tend, y(t0) = y0 (3)

required one LU-factorization of dimensiond per time step and two evaluations of the right-hand side
functionf per iteration of the nonlinear solver. More precisely, the Radau IIA method is defined by

R(Yn) ≡ Yn − [1 1] ⊗ yn−1 − h(A ⊗ I )F (Yn) = 0,

Yn =
(

g

yn

)
, A =

[ 5
12 − 1

12
3
4

1
4

]
, (4)

whereg, yn contain approximations at the time levelstn−1 + 1
3h and tn, respectively, andF T(Yn) =

[f T(tn−1 + 1
3h, gn) f T(tn, yn)]. Eq. (4) may be solved by a modified Newton method (which can be

proved to converge)

(I − B ⊗ hJ )(Y
(j)
n − Y

(j−1)
n ) = −R(Y

(j−1)
n ), B =

[ 1
6

√
6 0

4 − 4
3

√
6 1

6

√
6

]
, (5)

whereJ is the Jacobian matrix off at some previous approximation.
For each transformationQ, Ã = Q−1AQ has the same complex pair of eigenvalues asA. Writing

Ã = L̃Ũ one considersBQ = QL̃Q−1 and one is interested in those matricesBQ that have only one
double real eigenvalue. The above matrixB can even be obtained by a lower-triangular matrixQ.

Note thatB is lower-triangular and that only one matrix of sized × d has to be inverted. When dealing
with more general matricesAof even size, the procedure above can be seen as a step whenA is transformed
to 2× 2 block-diagonal form, in which case further parallelism can help to improve performance.

However, no elegant implementation could be derived, that could easily deal with a datastructure that
was tailored to a particular BDF-implementation. Clearly, actual implementation requires a significant
effort and to really appreciate the results of the sequential algorithm, benchmarking against other methods
(like MEBDF [7]) or Trap-BDF2[19] will be needed.

7.3. Rosenbrock–Wanner methods

In [15] embedded Rosenbrock–Wanner methods were studied more closely. The methods, being IRK,
apply one Newton–Raphson iteration and accuracy control is based on controlling the time step. The
method derived is tailored to the circuit equations, where evaluation of Jacobians is relatively cheap when
compared to evaluation of the right-hand side. The order is “(2)3”. The method is stiffly accurate, L-stable
and shows moderate damping along a specified interval[−i�, i�]. Also one has damping fori� when



456 J.G. Fijnvandraat et al. / Journal of Computational and Applied Mathematics 185 (2006) 441–459

xn k 1 xn 1 xn x n+1

x n,t n)g( g(x n+1 n,t )

xn k

xn

2nd BDF step

1st BDF step

Evaluation step

(3 x same Jacobian)

Final step

Fig. 5. Steps in the MEBDF.

� → ∞.As in the Radau case, implementation did not easily fit an existing BDF-datastructure. However,
the properties are rather promising and it is worth to test the method on a large class of industrial problems.
Of interest too is that these methods are basis in studying a multi-rate approach in which different stepsizes
are used on different locations of the circuit, depending on the activity of the solution[2,3].

7.4. MEBDF

In 1983, J. Cash proposed the MEBDF method, which combines better stability properties and higher
order of integration than BDF, but requires more computations per step[8,9]. One timestep with the
MEBDF method consists of three BDF steps and an evaluation step. This results in more work compared
to BDF, but the order of integration increases with one for most circuits. This implies that for integration
order 3 we normally apply the 3-step BDF method, while with the MEBDF method a 2-step method
suffices. In[7] (see also[1]) MEBDF was studied when applied to circuit equations. In particular, the
focus was on the following quasi-linear DAE:

Ax′(t) + g(x(t), t) = 0, (6)

wherex(t) ∈ Rm, t ∈ R andA is a constantm × m matrix. The steps in MEBDF are indicated inFig. 5.
For index 1 DAEs, thek-step MEBDF has integration orderk + 1, while for index 2 DAEs, the order of
thek-step MEBDF reduces tok [1,7]. Thek-step BDF method does not suffer from order reduction: in
either case thek-step BDF has orderk [31].
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BDF generates consistent solutions, even if one starts with inconsistent initial values[7,31]. Because
BDF serves in predicting for the extrapolation point, MEBDF inherits this property from BDF. This is
in contrast to, for instance, solutions obtained by using the Trapezoidal Rule. This property is important
when visualizing results for problems with discontinuities. It is known that computing consistent initial
values from the DC operating point only requires solving an additional linear system[11]. Another way
of getting consistent initial values is integrating forward, till there is no influence of the (inconsistent)
initial values and then integrating backward.

Thek-step MEBDF-methods are A-stable (see[16]) for k�3, while for BDF this is restricted to the
casek�2 [8]. Thus, these MEBDF-methods ‘break’Dahlquist’s Law[16]: we have higher order methods
with unconditional stability. When applied to index-1 DAEs, the 3-step MEBDF-method has order 4 and
is A-stable. When applied to index-2 DAEs, the order of integration reduces (modestly) to 3, but the
method’s stability property remains, which compares favourably to the 3-step BDF method. Fork >3,
thek-step MEBDF-methods become conditionally stable, but also here the stability conditions are better
than those for BDF.

As a consequence, the MEBDF-methods are more suited for oscillatory problems than the BDF-methods
[7,9].

Concerning implementation, we note that the MEBDF methods use two BDF-approximations at two
subsequent time points to improve the result at the first time point. The approach looks attractive because
implementation may re-use existing BDF-based datastructures efficiently. In the modified version, also
the number of needed LU-factorizations is reduced to only 1. Variants also allow parallelism[12].

Before real implementation, a profound benchmarking on a large set of problems arising from circuit
design is worth to be done[1]. Also the behaviour when applied to problems with delays needs to be
studied.

8. Outlook and conclusion

High-performance circuit simulation has to deal with a lot of challenges for which at this moment
several pragmatic ‘engineering’ approaches are used and where a sound mathematical background is
lacking. In fact simulation has to become orders faster and has to deal with circuits that are orders larger
than met before.
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These days, circuit simulation becomes really mixed-signal analysis in which a large digital dominated
circuitry is combined with a relatively small analog dominated one. In the digital part one can restrict
oneself to less accurate compact models of transistors, while in the analog part one will insist on using
accurate ones. The digital part is the area for model reduction, preferably done in the time domain.
Here table-modeling is frequently encountered. By this combined approach in modeling we can speak of
mixed-level simulation.

In this paper we emphasized to exploit the hierarchical circuit description. It is of interest to recognize
hierarchy even in flat circuit descriptions. The hierarchical formulation gives rise to a natural form of
parallelism and also to successful application of bypassing those hierarchical branches that will behave
nearly identical to similar ones that have already been treated before. To different sub-circuits multi-rate
time integration schemes may be applied. In practice a balance between a hierarchical formulation and
some flattened one has to be found (in the last one feed-back loops are treated correctly in a more natural
way).

Finally, in the analog part special techniques are needed for high-performance RF-simulation to deal
with multi-tone problems. Here, interesting progress is found in[20,26,24]. We also refer to the overview
given in[14].
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