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In this work, we consider numerical methods for integrating multirate ordinary differen-

tial equations. We are interested in the development of new multirate methods with good

stability properties and improved efficiency over existing methods. We discuss the develop-

ment of multirate methods, particularly focusing on those that are based on Runge-Kutta

theory. We introduce the theory of Generalized Additive Runge-Kutta methods proposed

by Sandu and Günther [20, 44]. We also introduce the theory of Recursive Flux Splitting

Multirate Methods with Sub-cycling described by Schlegel [49], as well as the Multirate In-

finitesimal Step methods this work is based on. We propose a generic structure called Flexible

Multirate Generalized-Structure Additively-Partitioned Runge-Kutta methods which allows

for optimization and more rigorous analysis. We also propose a specific class of higher-order

methods, called Relaxed Multirate Infinitesimal Step Methods. We will leverage GARK

theories to develop new theory about the stability and accuracy of these new methods.
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Chapter 1

Introduction

This thesis gives context for why higher-order multirate methods are useful, and demon-

strates newly developed methods with useful properties. These methods are motivated by

multiphysics, multiscale real-world application problems which are constructed by coupling

physical processes with potential disparate length and time scales together. Chemical reac-

tion networks are one example of this type of multirate problem, the brusselator test problem

being one particular example. The compressible Euler equations from fluid dynamics which

are used in numerical weather prediction is an example of a physical model which when

combined with adaptive mesh refinement or chemistry (or other physical models) has a mul-

tirate character. Specific multirate methods have been developed to address these problems

when there is both significant separation between the characteristic time scales and signifi-

cant coupling between the processes. This thesis focuses on developing and testing a set of

efficient, fully coupled fourth-order multirate methods with comparable stability properties

to leading existing third-order multirate methods.

1.1. Fundamental Concepts of Multirate Ordinary Differential Equations

One of the earliest references to multirate methods is found in a technical report from

1980 by Gear [15]. In the introduction, he defines “A multirate method for integrat-

ing ordinary differential equations is one in which different equations are integrated us-

ing different time steps.” We define a multirate method for integrating ordinary differ-

ential equations as any method that satisfies Gear’s definition, or any method that uses

operator splitting to integrate the integrand using different time steps. These methods

are most useful when the operator splitting is constructed so that the operator which re-

1



quires more work also requires a larger characteristic time-step size than other operators.

We will be considering a specialization of a problem posed as system of ordinary differen-

tial equations y′ (t) = f (t,y) , y (t0) = y0. An operator splitting for many rates yields

y′ (t) = f (t,y) =
∑i=N

i=1 f {i} (t,y) , y (t0) = y0. The splitting is defined so that the char-

acteristic timescale corresponding to f {i} (t,y) is non-increasing as i increases. This implies

f {1} (t,y) is the slowest operator since no other operator has a larger stable step size. Cor-

respondingly, f {N} (t,y) is the fastest operator since no other operator has a smaller stable

step size. In most cases, a many-rate problem can be rewritten as nested two-rate problems.

For instance, a method for integrating two-rates can be used on the two fastest rates as part

of the integration of the overall problem.

y′ (t) = f {1} (t,y) + f {2} (t,y) + f {3} (t,y) , y (t0) = y0

f {s} (t,y) = f {1} (t,y)

f {f} (t,y) = f {2} (t,y) + f {3} (t,y)

y′ (t) = f {s} (t,y) + f {f} (t,y)

This will be discussed in further detail for the methods developed in this thesis.

In a two-rate problem, we partition the function f (t,y) into a fast portion and a slow

portion. One common way is defining some additive partition of the function f (t,y) into a

fast function f {f} and a slow function f {s}. This is called the additive problem formulation.

Another common way is defining some partition of the solution y between fast components

y{f} and slow components y{s}. This is called the partitioned problem formulation. These

formulations are mathematically defined below.

The partitioned two-rate problem formulation consists of a system of ODEs which are

partitioned into slow and fast components, with their associated initial conditions,

[

y{s} (t)
]′

= f{s}
(

t,y{s} (t) ,y{f} (t)
)

, t ≥ t0 y{s} (t0) = y
{s}
0

[

y{f} (t)
]′

= f{f}
(

t,y{s} (t) ,y{f} (t)
)

, t ≥ t0 y{f} (t0) = y
{f}
0 .

This type of partitioning naturally arises when components of the solution represent different

types of physical variables. For instance, many physical systems from fluid dynamics may

2



be defined in terms of primitive variables such as pressure, density, and temperature which

are then discretized at particular positions in space to be represented as a system of ODEs.

A natural splitting may be to split by components along the different types of component

variables. This splitting has the benefit of being physically motivated, and not changing

as the time integration progresses. Another type of component-based splitting for variables

at specific physical locations can be based upon domain decomposition. This type of split-

ting is particularly helpful for grid-based problems with uneven grid refinement. Different

grid spacing can affect the requirements for a stable time step. Finally, component-based

splittings could change dynamically between time-integration steps based on where in the

problem domain the quickly changing dynamics is happening.

The additive two-rate problem formulation consists of a system of ODEs which can be

separated into the sum of a slow function and a fast function:

y′ (t) = f (t,y) , f (t,y) = f {s} (t,y) + f {f} (t,y) , y (t0) = y0.

We note that a partitioned problem can be reformulated as an additive problem,

y′ (t) =









y{s}

y{f}









′

=









f {s}
(

t,y{s} (t) ,y{f} (t)
)

f {f}
(

t,y{s} (t) ,y{f} (t)
)









(1.1)

=









0

f {f}
(

t,y{s} (t) ,y{f} (t)
)









+









f {s}
(

t,y{s} (t) ,y{f} (t)
)

0









= f {s} (t,y) + f {f} (t,y) , (1.2)

so the additive formulation is more general than the partitioned formulation. We note that

some sources consider reformulating additive problems into partitioned problems [1], via the

decomposition








y{s}

y{f}









′

=









f {s} (t,y{s} (t) ,y{f} (t)
)

f {f} (t,y{s} (t) ,y{f} (t)
)









y0 = y
{s}
0 + y

{f}
0 .
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However, since this decomposition is not unique due to the infinitely many different choices

for partitioning the initial condition, in this work we focus on additive approaches to multi-

rate problems. Each of these types of splittings has a corresponding adaptation of a standard

Runge-Kutta method.

Partitioned Runge-Kutta methods (PRKs) and their order conditions are discussed in

detail in the book by Hairer, Nørsett and Wanner [22]. PRK methods are represented

through a pair of Butcher tableau such as

c{1} A{1}

b{1}⊺

c{2} A{2}

b{2}⊺

where the number of stages in A{1} and in A{2} are s{1} and s{2} respectively. The stage and

the solution updates are:

f
{1}
i = f {1}



tn + c
{1}
i h,y{1}

n + h
s{1}
∑

j=1

a
{1}
ij k

{1}
j , y{2}

n + h
s{2}
∑

j=1

a
{2}
ij k

{2}
j



 , i = 1, 2, . . . , s{1},

k
{1}
i = y{1}

n + h

s{1}
∑

j=1

a
{1}
ij f

{1}
i , i = 1, 2, . . . , s{1},

y
{1}
n+1 = y{1}

n + h

s{1}
∑

i=1

b
{1}
i k

{1}
i ,

f
{2}
i = f {2}



tn + c
{2}
i h,y{1}

n + h
s{1}
∑

j=1

a
{1}
ij k

{1}
j , y{2}

n + h
s{2}
∑

j=1

a
{2}
ij k

{2}
j



 , i = 1, 2, . . . , s{2},

k
{2}
i = y{2}

n + h
s{2}
∑

j=1

a
{2}
ij f

{2}
i , i = 1, 2, . . . , s{2},

y
{2}
n+1 = y{2}

n + h

s{2}
∑

i=1

b
{2}
i k

{2}
i .
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Additive Runge-Kutta (ARK) methods and their order conditions are presented in detail

in the 2003 paper by Kennedy and Carpenter [25]. ARK methods are represented using a

pair of Butcher tableau, such as

c{1} A{1} A{2} c{2}

b{1}⊺ b{2}⊺

The stages and the solution update given s{1} = s{2} = s are:

ki = yn + h
s
∑

j=1

a
{1}
ij f {1}

(

tn + c
{1}
i h,kj

)

+ h
s
∑

j=1

a
{2}
ij f {2}

(

tn + c
{2}
i h,kj

)

, i = 1, . . . , s,

yn+1 = yn + h

s
∑

i=1

b
{1}
i f {1}

(

tn + c
{1}
i h,ki

)

+ h

s
∑

i=1

b
{2}
i f {2}

(

tn + c
{2}
i h,ki

)

.

1.2. Review of Known Methods

The family of methods developed in this thesis are demonstrated for problems where

both the fast and the slow operators are integrated explicitly. Similar techniques allow for

methods where the fast operator is integrated implicitly while the slow operator is integrated

explicitly. The background in this section is intended to give a general overview of the

historical development of multirate methods which depend upon Runge-Kutta theory, as

well as explaining the current state of the field.

In order to simplify the presentation of each method, we will consider a slow time-step of

size dts = h. In order to derive an integer time-scale separation, we use dtf to indicate the

problem’s fast characteristic time-scale, and dtf to indicate the fast time-step our method

will use. For the sake of notation, we use dts to indicate the slow characteristic time-scale,

which will be equal to dts, the slow time-step our method will use. We may then define the

time-scale separation between the problem’s characteristic time-scales as m = dts/dtf . The

methods will utilize this factor to determine the ratio of the slow time-step and the fast time-

step sizes, i.e. by rounding this up to the nearest integer, m ≈ m and m < m, we may define

a fast step size dtf = h/m so that it is a good approximation to dtf . Schlegel postulated

that a more efficient method could be created by allowing the number of fast steps per slow
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stage to vary within the method in 2012 [49]. Recent work by Bremicker–Trübelhorn and

Ortleb has investigated variable fast step sizes for specific numerical simulations by allowing

dtf,i = h/mi for each fast micro-step i [4].

The order of accuracy of a multirate method describes how the error behaves as h→ 0.

In order to investigate this order concept, we must define our terms. The fast component

method is the method which results if the multirate method is applied to a problem where the

slow function is equivalent to the zero function. The slow component method is the method

which results if the multirate method is applied to a problem where the fast function is

equivalent to the zero function. The coupling method is the interpolation method which

connects the slow component method to the fast component method. This can be further

split into interpolation using slow input data and interpolation using fast input data. When

dtf = h/m, the fast component method is typically a composition of m steps of a fast base

method, while the slow component method is typically one step of a slow base method. In

this typical case, the multirate method order depends on the base method orders and on the

coupling order.

With these definitions in place, we may precisely introduce the simplest multirate inte-

gration methods. In these methods, one integrates only a single time scale at a time, using

the results from the first portion as data when integrating the second portion. Without a

loss of generality, we may consider use of an explicit Euler base method for integration of

both the slow step and the corresponding m fast micro-steps,

y
{s}
n+1 = y{s}

n + hf {s} (t,y{s}
n ,y{f}

n

)

(1.3)

y
{f}
n+ i

m

= y
{f}
n+ i−1

m

+
h

m
f {f}

(

t,Yn+ i−1
m
,y

{f}
n+ i−1

m

)

i = 1, . . . , m. (1.4)

Here Yn+ i−1
m

is an approximation of the slow solution, y{s}, at the fast sub-step times,

tn+ i−1
m

= tn + (i − 1)h. Within the fastest-first strategy, the fast steps are performed first,

using one of

Yn+ i−1
m

= y{s}
n , or (1.5)

Yn+ i−1
m

=
2m− i+ 1

m
y{s}
n −

m− i+ 1

m
y
{s}
n−1 (1.6)
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for extrapolation of the slow solution values. Alternately, within the slowest-first strategy,

the slow step is performed first, using one of

Yn+ i−1
m

= y
{s}
n+1, or (1.7)

Yn+ i−1
m

=
m− i+ 1

m
y{s}
n +

i− 1

m
y
{s}
n+1 (1.8)

for interpolation of the slow solution values within the fast sub-steps. Gear is credited with

the original concept from a manuscript titled ”Automatic Multirate Methods for Ordinary

Differential Equations” from 1980, and continued to publish an article in BIT with Wells

from IBM in 1984, citing the earlier work [15, 16]. This definition was used in Well’s thesis

from 1982 [56].

Due to the decoupling of the slow and fast components, these methods are at best first-

order accurate (technically, only when using (1.6) or (1.8)), even if higher-order base methods

than Euler are used. This fastest-first and slowest-first terminology was used by Sandu and

Constantinescu in 2009 to describe their multirate method [41]. Recently in 2015, Fok

and Rosales focused on creating linearly higher-order multirate methods by improving the

interpolation between the fast base method and the slow base method directly [14]. They

construct a cubic interpolant by assuming a specific Runge-Kutta method, and matching

Taylor series error terms for specific Runge-Kutta stages.

1.2.1. Extrapolation Methods for Multirate ODEs

The earliest reference to multirate extrapolation methods is from Engstler and Lubich’s

1997 paper [11]. They generate higher-order solutions for the multirate system from these

first-order methods using extrapolation. To this end, successive higher-order solutions are

constructed from lower-order solutions at differing time step sizes using the Aitken-Neville

formula,

Tj,k+1 = Tj,k +
Tj,k − Tj−1,k

(nj/nj−1)− 1
, j ≤ m, k < j,

where ni < ni+1 ∈ N, dtf,i = h/ni and Ti,1 = ydtf,i (t + h) .
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Engstler and Lubich develop a multirate extrapolation method where the base first or-

der method is a particular implementation of extrapolated Euler method from Hairer and

Osterman [11, 22, 23]. Engstler and Lubich argue that ”Multirating is easy and natural

with extrapolation methods“ [11]. They use dense output methods in order to make their

multirate extrapolation method more efficient [11, 22, 23]. The original T1,1, T1,1, and T1,1 are

assumed to be computed directly. In order to compute T3,1 for the next level, Engtler sug-

gests two strategies. Either use polynomial extrapolation using previously computed function

values for the unknown ydtf,i , or approximate Euler steps by using polynomial interpolation

information only when the error estimate indicates that information is sufficiently accurate.

They compare their results with a single-rate Runge-Kutta code based on an eighth-order

Dormand-Prince [10, 11].

More recent methods of this type, including explicit fast integration and explicit slow

integration (explicit/explicit), as well as implicit fast integration and explicit slow integration

(implicit/explicit), have been explored by Constantinescu and Sandu [8, 9]. Their 2013 paper

proposes an extrapolation method based on the basic first-order accurate slowest-first and

fastest-first methods shown in equations (1.3)-(1.8) [9].

These multirate extrapolation method approaches increase the possible order of the re-

sulting method at the cost of extra time step calculations. Constantinescu extorts readers

to consider the “quality of solution that one should expect by using more efficient yet lower-

order time-integration methods” [9]. As the desired order of accuracy increases, this type of

extension increases in computational cost compared to non-extrapolation methods. Hence,

these methods are reasonable for extrapolating up by one or two orders of accuracy but be-

comes cost-prohibitive when generating high-order methods unless complicated procedures

are introduced to reduce the work.

1.2.2. Kværno-Rentrop Multirate Partitioned Runge-Kutta Methods

These methods improved on the extrapolation methods by reducing the computational

cost of integration for the same order of accuracy. Although these methods are described in a

8



number of works [2, 13, 18, 33], the 1999 preprint which originally defines these methods gives

perhaps the most straightforward definition [34]. They assume a partitioned formulation,

with variables split into active and latent. Active components occur on a smaller timescale,

and therefore are considered fast, while latent components are considered slow. Since this

is a partitioned problem, they develop two families of multirate partitioned Runge-Kutta

methods, MRKI and MRKII, and propose a specific second order multirate method MRK2(3)

with a third order embedding.

Kværno and Rentrop’s MRKI family of methods is built as a PRK using two Runge-Kutta

methods with tableau

c{f} A{f}

b{f}⊺

c{s} A{s}

b{s}⊺

that have s{f} and s{s} stages respectively. For ease of notation, they use λ = 1, . . . , m to

index the active steps within each latent step. These active steps consist of the fast stages

k
{f,λ}
i and the fast solutions y

{f}
λ+1:

k
{f,λ}
i = f {f}



tn +
(

λ+ c
{f}
i

) h

m
,y

{f}
λ +

h

m

s{f}
∑

j=1

a
{f}
ij k

{f,λ}
j , Y

{s,λ}
i



 ,

i = 1, 2, . . . , s{f}, λ = 1, . . . , m, and

y
{f}
λ+1 = y

{f}
λ +

h

m

s{f}
∑

i=1

b
{f}
i k

{f,λ}
i λ = 1, . . . , m.

The latent stages and solution are given by

k
{s}
i = f {s}



tn + c
{s}
i h,Y

{f}
i , y

{s}
0 + h

s{s}
∑

j=1

a
{s}
ij k

{s}
j



 , i = 1, 2, . . . , s{s},

y
{s}
n+1 = y{s}

n +
h

m

s{s}
∑

i=1

b
{s}
i k

{s}
i .
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As with the previous methods, extrapolation or interpolation of solution data between the

slow and fast variables is required, i.e. Y
{s,λ}
i ≈ y{s}

(

tn +
(

λ+ c
{f}
i

)

h
m

)

and Y
{f}
i ≈

y{f}
(

tn + c
{s}
i h

)

. To this end, Kværno and Rentrop suggest the extrapolation

Y
{λ,s}
i = y{s}

n +
h

m

s{s}
∑

j=1

(γij + ηj (λ))k
{s}
j

Y
{f}
i = y{f}

n + h
s{f}
∑

j=1

(

γij

)

k
{f,0}
j .

where η (λ) is a function from N→ Rs{s} , and where they define the coefficients

G =



































γ1,1 γ1,2 · · · · · · γ1,s{s}

γ2,1
. . .

. . .
. . .

...

...
. . . γi,j

. . .
...

...
. . .

. . .
. . . γs{s}−1,s{s}

γs{s},1 · · · · · · γs{s},s{s}−1 γs{s},s{s}



































, and

G =



































γ1,1 γ1,2 · · · · · · γ1,s{f}

γ2,1
. . .

. . .
. . .

...

...
. . . γi,j

. . .
...

...
. . .

. . .
. . . γs{f}−1,s{f}

γs{f},1 · · · · · · γs{f},s{f}−1 γs{f},s{f}



































.

This formulation extrapolates the fast solution for computing the slow stages based on the

first fast stage. It is used as the basis for the definition of the MRKI family of Multirate

Partitioned Runge-Kutta methods [34]. In this work, Kværno and Rentrop derive order

conditions for this family which relate the function η and coefficient matrices G and G

to the coefficients of the base methods. When the simplifying assumptions
∑s

j=1 ηj (λ) =
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λ
∑s

j=1 γi,j = ci, i = 1, 2, . . . , s and
∑s

j=1 γi,j = ci, i = 1, 2, . . . , s are satisfied, and the

base method is second order, then the multirate method MRKI will be second order. When

these simplifying assumptions are satisfied, and the base method is third order, there are

two additional conditions which must be fulfilled:
s
∑

i=1

s
∑

j=1

biγi,jcj =
1

6m

s
∑

i=1

s
∑

j=1

biηj (λ) cj =
λ (λ+ 1)

2m

[34]. Günther, Kværno and Rentrop’s 2001 paper in BIT gives a similar definition, replacing

the definition of the MRKI family with the definition of Multirate Partitioned Runge-Kutta

2(3) methods [18]. This newer definition simplifies the interpolation schemes between the

fast and the slow base methods, and uses G = G. It also makes the MPRK 2(3) method

uniquely determined by the choice of time-scale separation m. We refer to the resulting

scheme as the MPRK2(3) method; it uses the same explicit Runge-Kutta table for both the

fast and slow base methods,

0 0 0 0

1/2 1/2 0 0

3/4 0 3/4 0

2/9 1/3 4/9

,

sets the nonzero interpolation coefficients as γ21 = γ21 = 1
2
, γ31 = γ31 = 3

4
(1 − m), and

γ32 = γ32 =
3
4
m, and uses the interpolation function

η(λ) =

















(

− 1
m
+ 3

2
− m

4

)

λ− 1
2m

λ2

(

1
m
− 3

2
+ 3m

4

)

λ− 1
2m

λ2

(

1− m
2

)

λ+ 1
m
λ2

















. (1.9)
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1.2.3. Multirate Infinitesimal Step (MIS)

Multirate Infinitesimal Step methods are a general class of methods which were originally

developed by Wensch, Knoth and Galant as a generalization of split-explicit methods from

numerical weather prediction [27, 53, 57]. These methods also generalize the exponential

integrators of Cellidoni, Marthinsen, and Owren [6]. Early split-explicit methods used a

leapfrog scheme to advance from t− h to t+ h with the slow variables taking two steps and

the fast variables taking 2m steps [27]. This is similar to the simplest multirate method

mentioned in Section 1.1 [27]. Further methods were developed that took m/2 fast steps

between stages of a two-stage Runge-Kutta [53]. This early investigation contributed heavily

to a stability theory relevant to problems similar to the compressible Euler equations [53, 58].

Wensch et. al took these well-studied methods and developed a systematic approach to

the order conditions using PRK theory [57]. These methods continue to be developed at

second and third order for a variety of target problem types in the context of numerical

weather prediction and climate modeling [28, 29, 30, 49, 50, 57]. A representative problem

for how these methods are applied to a particular problem is some simplification of the one-

dimensional advection-diffusion-reaction equation as suggested by Schlegel, Knoth, Arnold

and Wolke [49, 52]:

∂

∂t
c = − ∂

∂x
(uc) +

∂

∂x

(

ρD
∂

∂x

c

ρ

)

+ f (x, t, c) (1.10)

Martin Schlegel’s 2012 dissertation describes in detail the Recursive Flux-Splitting Multirate

(RFSMR) methods he developed based on Multirate Infinetesimal Step methods [49]. These

RFSMR methods are named for the characteristic partitioning by fluxes, and account for the

support of the different fluxes. Schlegel, Knoth, Arnold and Wolke demonstrated that these

RFSMR methods improved parallel performance on the hierarchical grid scheme in COSMO-

MUSCAT “developed at the Institute for Tropospheric Research in Leipzig” [51]. Our new

methods will extend Multirate Infinitesimal Step theory alongside general multirate theory

developed by Michael Günther and Adrian Sandu. To allow for more consistent comparisons

12



to our newly developed methods, the next chapter gives deeper background on how one step

of a MIS or RFSMR method proceeds, and the theory we will leverage for order of accuracy

and linear stability of multirate methods.
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Chapter 2

Detailed Background Theory

In Chapter 1 we introduced context for existing multirate methods, especially focusing

on those related to Runge-Kutta theory. In this chapter, we will introduce Generalized-

Structure Additively-Partitioned Runge-Kutta (GARK) theory for describing a general fam-

ily of Runge-Kutta methods, including theory on order of accuracy. Next, we will discuss

how GARK theory is applied to MIS methods and how it is extended to develop a family

of Multirate Generalized Additive Runge-Kutta schemes. Finally, we will discuss various

stability theories as applied to multirate problems.

2.1. Generalized-Structure Additively-Partitioned Runge Kutta Methods

In a 2013 technical report [42] and a subsequent journal article in 2015 [44], Adrian Sandu

and Michael Günther proposed a new family of Runge-Kutta methods, named Generalized-

Structure Additively-Partitioned Runge Kutta (GARK) methods. This GARK family of

methods is an extension of some of the ideas put forth in the Kværno-Rentrop preprint

from 1999 [34], as well as the PRK and ARK families of methods, previously described in

Section 1.1. For this family of GARK methods, Sandu and Günther present order condi-

tions and a linear stability function. In order to simplify the theory, GARK methods are

formulated for an autonomous system of ODEs written in additively-split form,

dy

dt
= f(y) =

N
∑

q=1

f {q} (y) .
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The coefficients that define a GARK method are written in an expanded Butcher tableau:

A{1,1} A{1,2} · · · A{1,N−1} A{1,N}

A{2,1} . . .
. . .

. . . A{2,N}

...
. . . A{i,j} . . .

...

A{N−1,1} . . .
. . .

. . . A{N−1,N}

A{N,1} A{N,2} · · · A{N,N−1} A{N,N}

b{1}⊺ b{2}⊺ · · · b{N−1}⊺ b{N}⊺

(2.1)

The stages and the solution update are:

k{q,i} = yn + h

N
∑

m=1

s{q}
∑

j=1

a
{q}
ij f {m} (k{m,j}) ,

i = 1, . . . , s{q}, q = 1, . . . , N,

yn+1 = yn + h

N
∑

q=1

s{q}
∑

i=1

b
{q}
i f {q} (k{q,i})

We note that the stage values and the solution update are similar to those in the PRK and

ARK formulations. Similar to PRK, we have partitioned stage values. Similar to ARK, we

use all the functions f {q} from the additive partition of f(y) to update each stage as well as

the solution.

As we alluded to in Section 1.1, the order conditions depend on the component methods

A{i,i}, as well as coupling methods A{i,j} where i 6= j. As usual for Runge-Kutta methods,

we make the simplifying assumption that c
{σ}
j =

∑s{σ}

l=1 a
{σ,ν}
j,l ∀σ, ν = {1, . . . , N}. Sandu

and Günther refer to these as the internal consistency conditions in their derivation of

GARK order conditions [42, 20]. Their 2015 paper includes a proof using N-tree theory

to derive the GARK order conditions for GARK tableau of arbitrary size [44]. Their 2013

technical report explicitly lists order conditions in elementwise form for up to 4th order [42],

while the newer paper lists them in matrix-vector notation [44]. The newer paper includes a

15



Theorem regarding GARK order conditions for arbitrary orders based on Runge-Kutta order

conditions [44]. Namely, Theorem 2.3 from Sandu and Günther’s 2015 paper reads, “The

order conditions for a GARK method are obtained from the order conditions of ordinary

Runge-Kutta methods. The usual labeling of the Runge-Kutta coefficients (subscripts i, j,

k, . . .) is accompanied by a corresponding labeling of the different partitions for the N-tree

(superscripts σ, ν, µ, . . . )” [44]. We reproduce the summation form of these order condition

below, and then use the internal consistency condition assumptions to reproduce the matrix-

vector form of the GARK order conditions as well as a linear system representation. For

simplicity of notation when discussing the matrix-vector form of the GARK order conditions,

denote a vector of ones of length n as

1n =

















1

...

1

















∈ R
n×1

and the ith unit vector as ei. Equations (2.2)-(2.9) are reproduced in the form shown in

Sandu and Günther’s 2013 technical report [42]. These order conditions are determined by

matching the terms from the Taylor series expansion of the error between the computed and

exact solutions to the system of differential equations. They are essentially identical to the

usual Runge-Kutta order conditions, however there are superscripts which account for all

combinations of the internal GARK tables. In matrix-vector form, these usual Runge-Kutta

order conditions up to order 4 are the following,

b⊺
1 = 1,

b⊺c =
1

2
,

b⊺ (c)2 =
1

3
,

b⊺Ac =
1

6
,

b⊺ (c)3 =
1

4
,

(bc)⊺ Ac =
1

8
,

b⊺A (c)2 =
1

12
,

b⊺AAc =
1

24
.
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GARK first order conditions ∀σ = {1, . . . , N}:

s{σ}
∑

i=1

b
{σ}
i = 1. (2.2)

GARK second order conditions ∀σ, ν = {1, . . . , N}:

s{σ}
∑

i=1

s{ν}
∑

j=1

b
{σ}
i a

{σ,ν}
ij =

1

2
. (2.3)

GARK third order conditions ∀σ, ν, µ = {1, . . . , N}:

s{σ}
∑

i=1

s{ν}
∑

j=1

s{µ}
∑

k=1

b
{σ}
i a

{σ,ν}
ij a

{σ,µ}
ik =

1

3
, (2.4)

s{σ}
∑

i=1

s{ν}
∑

j=1

s{µ}
∑

k=1

b
{σ}
i a

{σ,ν}
ij a

{ν,µ}
jm =

1

6
. (2.5)

GARK fourth order conditions ∀σ, ν, λ, µ = {1, . . . , N}:

s{σ}
∑

i=1

s{ν}
∑

j=1

s{λ}
∑

l=1

s{µ}
∑

m=1

b
{σ}
i a

{σ,ν}
ij a

{σ,λ}
il a

{σ,µ}
im =

1

4
, (2.6)

s{σ}
∑

i=1

s{ν}
∑

j=1

s{λ}
∑

l=1

s{µ}
∑

m=1

b
{σ}
i a

{σ,ν}
ij a

{ν,λ}
jl a

{σ,µ}
im =

1

8
, (2.7)

s{σ}
∑

i=1

s{ν}
∑

j=1

s{λ}
∑

l=1

s{µ}
∑

m=1

b
{σ}
i a

{σ,ν}
ij a

{ν,λ}
jl a

{ν,µ}
jm =

1

12
, (2.8)

s{σ}
∑

i=1

s{ν}
∑

j=1

s{λ}
∑

l=1

s{µ}
∑

m=1

b
{σ}
i a

{σ,ν}
ij a

{ν,λ}
jl a

{λ,µ}
lm =

1

24
. (2.9)

This matrix-vector form closely matches the form used in Theorem 2.6 of [44], and as-

sumes a GARK method which has the same number of A{σ,ν} rows and A{σ,ν} columns. The

matrix-vector form is described by Equations (2.10)-(2.17) for all σ, ν, µ = 1, . . . , N,
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b{σ}⊺
1 = 1, (2.10)

b{σ}⊺c{σ} =
1

2
, (2.11)

b{σ}⊺
(

c{σ}
)2

=
1

3
, (2.12)

b{σ}⊺A{σ,ν}c{ν} =
1

6
, (2.13)

b{σ}⊺
(

c{σ}
)3

=
1

4
, (2.14)

(

b{σ}c{σ}
)

⊺

A{σ,ν}c{ν} =
1

8
, (2.15)

b{σ}⊺A{σ,ν}
(

c{ν}
)2

=
1

12
, (2.16)

b{σ}⊺A{σ,µ}A{µ,ν}c{ν} =
1

24
. (2.17)

Later in this dissertation, we will use a linear system form of the order conditions which
will be modeled after Equation (2.18). Equation (2.18) describes how the order conditions
depend linearly on b{σ}, where each row is reproduced for all appropriate σ, ν, µ, λ = 1, . . . , N,































































































































1 · · · 1

c
{σ}
1 · · · c

{σ}

s
{σ}

(

c
{σ}
1

)2
· · ·

(

c
{σ}

s
{σ}

)2

[

A{σ,ν}c{ν}
]

1
· · ·

[

A{σ,ν}c{ν}
]

s
{σ}

(

c
{σ}
1

)3
· · ·

(

c
{σ}

s
{σ}

)3

c
{σ}
1

[

A{σ,ν}c{ν}
]

1
· · · c

{σ}

s
{σ}

[

A{σ,ν}c{ν}
]

s
{σ}

∑

s
{ν}

j=1 A
{σ,ν}
1j

(

c
{ν}
j

)2
· · ·

∑

s
{ν}

j=1 A
{σ,ν}

s
{σ}j

(

c
{ν}
j

)2

[

A{σ,µ}A{µ,ν}c{ν}
]

1
· · ·

[

A{σ,µ}A{µ,ν}c{ν}
]

s
{σ}

(

c
{σ}
1

)4
· · ·

(

c
{σ}

s{σ}

)4

(

c
{σ}
1

)2 [

A{σ,ν}c{ν}
]

1
· · ·

(

c
{σ}

s{σ}

)2 [

A{σ,ν}c{ν}
]

s{σ}

∑s{ν}

j=1 c
{σ}
1 A

{σ,ν}
1j

(

c
{ν}
j

)2
· · ·

∑s{ν}

j=1 c
{σ}

s{σ}
A

{σ,ν}

s{σ}j

(

c
{ν}
j

)2

c
{σ}
1

[

A{f,f}A{σ,ν}c{ν}
]

1
· · · c

{σ}

s{σ}

[

A{f,f}A{σ,ν}c{ν}
]

s{σ}
([

A{σ,ν}c{ν}
]

1

)2
· · ·

([

A{σ,ν}c{ν}
]

s{σ}

)2

∑s{σ}

j=1 A
{σ,ν}
1j

(

c
{ν}
j

)3
· · ·

∑s{σ}

j=1 A
{σ,ν}

s{σ}j

(

c
{ν}
j

)3

∑s{ν}

i=1

∑s{µ}

j=1 A
{σ,ν}
1i c

{ν}
i A

{ν,µ}
ij

(

c
{µ}
j

)

· · ·
∑s{ν}

i=1

∑s{µ}

j=1 A
{σ,ν}

s{σ}i
c
{ν}
i A

{ν,µ}
ij

(

c
{µ}
j

)

∑s{ν}

i=1

∑s{µ}

j=1 A
{σ,ν}
1i A

{ν,µ}
ij

(

c
{µ}
j

)2
· · ·

∑s{ν}

i=1

∑s{µ}

j=1 A
{σ,ν}

s{σ}i
A

{ν,µ}
ij

(

c
{µ}
j

)2

[

A{σ,ν}A{ν,µ}A{µ,λ}c{λ}
]

1
· · ·

[

A{σ,ν}A{ν,µ}A{µ,λ}c{λ}
]

s{σ}






















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
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
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

























































b
{σ}
1

.

.

.

.

.

.

.

.

.

b
{σ}

s
{σ}



































=































































































































1

1
2

1
3

1
6

1
4

1
8

1
12

1
24

1
5

1
10

1
15

1
30

1
20

1
20

1
40

1
60

1
120































































































































. (2.18)

We will leverage GARK theory, including these order conditions, in this dissertation.
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2.2. Multirate Generalized Addidtive Runge Kutta

In an extension to their GARK family of methods, Sandu and Günther proposed a multi-

rate GARK (mGARK) family of methods [21], that provides a general basis for constructing

multirate GARK methods. Their impetus behind constructing a general framework is that

it allows multirate methods derived with potentially disparate contexts to be understood

and analyzed using a single unified approach. The same paper includes a discussion on how

to represent multirate methods which are based on Runge-Kutta methods that do not fit the

mGARK framework as a 2× 2 GARK. The mGARK schemes require two base methods:

c{f} A{f}

b{f}⊺

c{s} A{s}

b{s}⊺

that have s{f} and s{s} stages respectively, and assumes f (y) = f {f} (y) + f {s} (y) .

The definition of Multirate GARK method defines ”One macro-step of a generalized

additive multirate Runge-Kutta method with m equal micro-steps”

k
{s}
i = yn + h

s{s}
∑

j=1

a
{s,s}
i,j f {s}

(

k
{s}
j

)

h

m

m
∑

λ=1

s{f}
∑

j=1

a
{s,f,λ}
i,j f {f}

(

k
{f,λ}
j

)

, i = 1, . . . , s{s}

k
{f,λ}
i = yn +

h

m

λ−1
∑

l=1

s{f}
∑

j=1

b
{f}
j f {f}

(

k
{f,l}
j

)

+ h
s{s}
∑

j=1

a
{f,s,λ}
i,j f {s}

(

k
{s}
j

)

h

m

s{f}
∑

j=1

a
{f,f}
i,j f {f}

(

k
{f,λ}
j

)

, λ = 1, . . . , m, i = 1, . . . , s{f}

yn+1 = yn +
h

m

m
∑

λ=1

s{f}
∑

i=1

b
{f}
i f {f}

(

k
{f,λ}
i

)

+ h

s{s}
∑

i=1

b
{s}
i f {s}

(

k
{s}
i

)′′
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An mGARK method may be represented by the following choice of tableau:

A{f,f} A{f,s}

A{s,f} A{s,s}

b{f}⊺ b{s}⊺

=

1
m
A{f,f} 0 · · · · · · 0 A{f,s,1}

1s{f}b
{f}⊺ 1

m
A{f,f} . . . 0

... A{f,s,2}

...
. . . 1

m
A{f,f} . . .

...
...

...

...

. . .
. . .

. . . 0
...

1s{f}b
{f}⊺ · · · · · · s{f}b

{f}⊺ 1
m
A{f,f} A{f,s,m}

1
m
A{s,f,1} 1

m
A{s,f,2} 1

m
A{s,f,3} · · · 1

m
A{s,f,m} A{s,s}

1
m
b{f}⊺ 1

m
b{f}⊺ 1

m
b{f}⊺ · · · 1

m
b{f}⊺ b{s}⊺

This tableau takes advantage in notation of the vector product,

1s{f}b
{f}⊺ =



























b{f}⊺

b{f}⊺

...

b{f}⊺



























∈ R
s{f}×s{f}.

Each block row of A{f,f} can be considered one fast substep. The block lower triangular

portion of A{f,f} which consists of blocks of 1s{f}b
{f}⊺ for the mGARK can be considered as

selecting the initial condition for each fast stage. A{f,s} contributes from the slow stage solutions

k{s} to the fast stage solutions k{f}. A{s,f} contributes from the fast stage solutions k{f} to the

slow stage solutions k{s}. Recall Sandu and Günther require that GARK methods satisfy the

internal consistency conditions for the stage times, namely c{f} = A{f,f}
1s{f} = A{f,s}

1s{s} and

c{s} = A{s,f}
1s{f} = A{s,s}

1s{s} . Equations (2.19) and (2.20) describe how these stage times are

determined using the mGARK structure.

1

m
A{f,f}

1s{f} +
λ− 1

m
1s{f} = A{f,s,λ}

1s{s} = c{f,λ}, λ = 1, . . . ,m (2.19)

1

m

m
∑

λ=1

A{s,f,λ}
1s{f} = A{s,s}

1s{s} = c{s} (2.20)
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The mGARK’s autonomous formulation is assumed for theoretical purposes, however, the as-

sumed use case is one where the mGARK method accounts for variation in time t, as stated by the

concern that the stage times are “internally consistent” by enforcing the previously stated row-sum

simplifying assumption [44]. For a mGARK to be second order overall, the base methods must

each be second order and the second order coupling conditions must be satisfied. Similarly, for a

mGARK to be third order overall, the base methods must each be third order and the second and

third order coupling conditions must be satisfied. These order conditions follow directly from the

GARK order conditions stated previously.

As shown in [21], this multirate GARK framework is very useful for analysing a wide variety

of existing multirate methods, including those discussed in Chapter 1. However, the mGARK

paper [21] returns to the GARK framework to describe Multirate Infinitesimal Step methods,

rather than using the previously introduced mGARK framework. We will also use the GARK

framework directly to describe our newly developed methods. Since the mGARK framework is

built around base methods, it assumes that at most two different base methods are used. The

theory we develop will allow for an arbitrary number of base methods, however in practice only one

or two base methods will be used. This property of allowing for multiple base methods is one way to

address dynamically changing time-scale separation within a GARK step. Another way to address

this changing time-scale separation was investigated by Bremicker-Trubelhorn and Ortleb in their

recent paper which develops theory on using adaptive micro-step sizes with mGARK methods [4].

For the mGARK, the weights bj are used to construct the fast stage solutions and the final step

solution the same way. In our new methods, we will consider lifting this restriction.

2.3. Creating Multirate Methods using GARK theory

Although Sandu and Günther only defined one possible structure for a multirate GARK in their

paper [21], their paper [44] derived more general theoretical properties for GARKs, including order

conditions. In their discussion of Multirate Infinitesimal Step methods they define the coefficient

tables and the order conditions in terms of a 2 × 2 GARK. We will discuss these methods in

detail in the next section. In order to discuss MIS methods and the methods which we have

developed based on the MIS methods consistently, we will introduce some notation alongside the

relevant GARK theory. For clarity between our notation and our implementation, we will write
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out the non-autonomous form of the stage and solution updates. Using the GARK framework and

the associated theory, we consider arranging the following set of tableau in Butcher table form:

A{f,f} ∈ R
s{f}×s{f} , A{f,s} ∈ R

s{f}×s{s} , A{s,f} ∈ R
s{s}×s{f}, and A{s,s} ∈ R

s{s}×s{s} .

A{f,f} A{f,s}

A{s,f} A{s,s}

b{f}⊺ b{s}⊺

The stage and solution updates based on these coefficients are defined as follows:

k
{f}
j = yn + h

s{f}
∑

l=1

a
{f,f}
jl f{f}

(

t+ c
{f}
l h,k

{f}
l

)

+ h

s{s}
∑

l=1

a
{f,s}
jl f{s}

(

t+ c
{s}
l h,k

{s}
l

)

k
{s}
i = yn + h

s{f}
∑

l=1

a
{s,f}
il f{f}

(

t+ c
{f}
l h,k

{f}
l

)

+ h

s{s}
∑

l=1

a
{s,s}
il f{s}

(

t+ c
{s}
l h,k

{s}
l

)

yn+1 = yn + h

s{f}
∑

l=1

b
{f}
l f{f}

(

t+ c
{f}
l h,k

{f}
l

)

+ h

s{s}
∑

l=1

b
{s}
l f{s}

(

t+ c
{s}
l h,k

{s}
l

)

where j = 1, . . . , s{f} and i = 1, . . . , s{s}.

The stages and solution updates when all stages are explicit, which generally follows from the

base methods being explicit, are defined as follows:

k
{f}
j = yn + h

j−1
∑

l=1

a
{f,f}
jl f{f}

(

t+ c
{f}
l h,k

{f}
l

)

+ h

s{s}
∑

l=1

a
{f,s}
jl f{s}

(

t+ c
{s}
l h,k

{s}
l

)

(2.21)

k
{s}
i = yn + h

s{f}
∑

l=1

a
{s,f}
il f{f}

(

t+ c
{f}
l h,k

{f}
l

)

+ h

i−1
∑

l=1

a
{s,s}
il f{s}

(

t+ c
{s}
l h,k

{s}
l

)

(2.22)

yn+1 = yn + h

s{f}
∑

l=1

b
{f}
l f{f}

(

t+ c
{f}
l h,k

{f}
l

)

+ h

s{s}
∑

l=1

b
{s}
l f{s}

(

t+ c
{s}
l h,k

{s}
l

)

(2.23)

where j = 1, . . . , s{f} and i = 1, . . . , s{s}. Multirate methods which use base methods commonly

have intermediate solutions which accumulate portions of the fast stage solutions. In some cases,

the first fast stage solution for each fast substep can be expressed as a linear combination of these

accumulated solutions and the slow function values for previous stages. Specifically, when the
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GARK coefficients a
{f,f}
jl = a

{f,f}
pl , we can take advantage of this structure to reduce the number of

vectors the size of y which must be stored during each stage computation.We will discuss notation

for these intermediate and partial solutions for specific examples and implementations later, in

Section 3.3.

Given this specific notation, we can use GARK theory to enumerate the order conditions for a

GARK of this size. As we alluded to in Section 2.1, the order conditions for full or overall order

depend on the classical order conditions, as well as coupling conditions, and internal consistency

conditions. For the methods we construct, we will rely on the GARK order conditions in matrix-

vector form as in Equations (2.10)-(2.17), as well as in linear system form as in Equation (2.18).

The classical conditions concern how the method works when either function from the splitting

is removed, i.e. the classical conditions correspond to the standard order conditions for the RK

method A{f,f},b{f}⊺, and c{f}, and similarly for the slow set of tableau. The coupling conditions

involve all the other possible combinations of fast and slow, such as b{f}⊺A{f,s}c{s} = 1
6 . Sandu

and Günther make a distinction between fast order conditions and slow order conditions based on

whether the order condition uses b{f} or b{s}.
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The fast order conditions up to fourth order are as follows:

b{f}⊺
1 = 1 (2.24)

b{f}⊺c{f} =
1

2
(2.25)

b{f}⊺
(

c{f}
)2

=
1

3
(2.26)

b{f}⊺A{f,f}c{f} =
1

6
(2.27)

b{f}⊺A{f,s}c{s} =
1

6
(2.28)

b{f}⊺
(

c{f}
)3

=
1

4
(2.29)

(

b{f}c{f}
)

⊺

A{f,f}c{f} =
1

8
(2.30)

(

b{f}c{f}
)

⊺

A{f,s}c{s} =
1

8
(2.31)

b{f}⊺A{f,f}
(

c{f}
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=
1

12
(2.32)

b{f}⊺A{f,s}
(

c{s}
)2

=
1

12
(2.33)

b{f}⊺A{f,f}A{f,f}c{f} =
1

24
(2.34)

b{f}⊺A{f,f}A{f,s}c{s} =
1

24
(2.35)

b{f}⊺A{f,s}A{s,f}c{f} =
1

24
(2.36)

b{f}⊺A{f,s}A{s,s}c{s} =
1

24
(2.37)
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The slow order conditions up to order four are as follows:

b{s}⊺
1 = 1 (2.38)

b{s}⊺c{s} =
1

2
(2.39)

b{s}⊺
(

c{s}
)2

=
1

3
(2.40)

b{s}⊺A{s,s}c{s} =
1

6
(2.41)

b{s}⊺A{s,f}c{f} =
1

6
(2.42)
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(
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)3

=
1

4
(2.43)
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8
(2.44)
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8
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)2

=
1

12
(2.46)
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=
1

12
(2.47)

b{s}⊺A{s,s}A{s,s}c{s} =
1
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(2.48)

b{s}⊺A{s,s}A{s,f}c{f} =
1

24
(2.49)

b{s}⊺A{s,f}A{f,f}c{f} =
1

24
(2.50)

b{s}⊺A{s,f}A{f,s}c{s} =
1

24
(2.51)
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Equation 2.52 expresses these in linear system form, where σ = s, ν = f or σ = f, ν = s for the

slow or fast order conditions respectively as a specification of Equation 2.18.
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Specifically, for the fast order conditions as a linear system we have the following,
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Note that adding the fifth order conditions, which follow from Theorem 2.3 in Sandu and

Günther’s 2015 paper, increases the total number of fast order conditions from 14 to 53 [44],
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2.3.1. More Flexible Structure for New Methods

To give us a consistent notation to compare multirate methods based on a 2 by 2 GARK

table, we consider using a block structure where each block-row represents one fast sub-step.

We denote block structure with superscripts, i.e.
[

A{f,f}]
i,j

= A{f,f,i,j},
[

b{f}]
j
= b{f,j}, and

specific elements with subscripts, i.e.
[

A{f,f,i,j}]
k,l

= a
{f,f,i,j}
k,l and

[

b{f,j}]
l
= b

{f,j}
l . This

yields the following table:

A{f,f} A{f,s}

A{s,f} A{s,s}

b{f}⊺ b{s}⊺

=

A{f,f,1,1} 0 · · · · · · 0 A{f,s,1}

A{f,f,2,1} A{f,f,2,2} . . . 0
... A{f,s,2}

A{f,f,3,1} . . . A{f,f,3,3} . . .
...

...

...

...

. . .
. . .

. . . 0
...

A{f,f,m,1} · · · · · · A{f,f,m,m−2} A{f,f,m,m−1} A{f,f,m,m} A{f,s,m}

A{s,f,1} A{s,f,2} A{s,f,3} · · · A{s,f,m} A{s,s}

b{f,1}⊺ b{f,2}⊺ b{f,3}⊺ · · · b{f,m}⊺ b{s}⊺

(2.55)

The blue portions of this GARK table indicates changes from the mGARK formulation.

Each block row from A{f,f} and A{f,s} may be considered as the fast stage updates for a fast

micro-step. The strictly lower triangular portion of A{f,f} may be considered as the initial

conditions for each block row, based upon previous fast stage solution values. This more

flexible notation addresses the situation where the fast base method changes between fast

sub-steps. It also gives the option of using a different initial condition for the fast sub-steps.

The added flexibility with the b{f,j} assists in developing optimized methods and addressing

new embedding and solution techniques in a general fashion.
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2.4. MIS methods as an extension of GARK theory

Although MIS methods are discussed in Sandu and Günther’s paper which develops

mGARK methods, Sandu and Günther use GARK theory, rather than the newly defined

mGARK theory, to analyze these methods [21]. The methods developed in this dissertation

will follow closely from the pairing of GARK theory with MIS methods. For the purpose of

detailed examination, we will consider MIS methods as described by Sandu and Günther in

the GARK context [21]. Sandu and Günther specifically present MIS methods in a GARK

context in Theorem 4 of their 2013 paper in Numerische Mathematik on multirate GARK

methods, summarized as “the MIS scheme is a particular instance of a GARK method”

[20]. In this formulation, the additive two-rate problem formulation is appropriate. The

problem is stated as being autonomous, i.e. the ODE right-hand side function depends only

on the solution, f (y), rather than f (t,y), in order to simplify the theory and the algorithm.

This assumption is relaxed in a recent paper by Knoth wherein a way to apply a Multirate

Infinitesimal Step method to a non-autonomous problem is described [29]. Similar to the

mGARK formulation, MIS methods in the GARK context are constructed using Runge-

Kutta methods for the base methods:

Fast or Inner Base Method Slow or Outer Base Method

c{f} A{f}

b{f}⊺
=

cI AI

bI⊺

c{s} A{s}

b{s}⊺
=

cO AO

bO⊺

Unless otherwise specified, MIS methods typically assume the same inner and outer base

methods, i.e. cI = cO, AI = AO and bI⊺ = bO⊺.
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The coefficients that define a MIS method are written in an expanded Butcher tableau:

A{f,f} =

































cO2 A
I 0 · · · 0

cO2 1b
I⊺

(

cO3 − cO2
)

AI
. . .

...

...

(

cO3 − cO2
)

1bI⊺

...

. . . 0

cO2 1b
I⊺

(

cO3 − cO2
)

1bI⊺ · · ·
(

1− cO
sO

)

AI
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


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
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I⊺ 0 · · · · · · 0

cO2 b
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(
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)

bI⊺ 0 · · · 0

...
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. . . 0 0

cO2 b
I⊺

(
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)

bI⊺ · · ·
(

cO
sO
− cO

sO−1

)

bI⊺ 0




















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
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A{f,s} =



























cI (e⊺2)A
O

1e
⊺

2A
O + cI (e⊺3 − e

⊺

2)A
O

1e
⊺

3A
O + cI (e⊺4 − e

⊺

3)A
O

1e
⊺

4A
O + cI

(

bO⊺ − e
⊺

4A
O
)
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A{s,s} = AO

c{f} =



























cO2 c
I

cO2 1+
(

cO3 − cO2
)

cI

cO3 1+
(

cO4 − cO3
)

cI

cO4 1+
(

1− cO4
)

cI



























c{s} = cO

b{f} =

[

cO2 b
I

(

cO3 − cO2
)

bI · · ·
(

cO
sO
− cO

sO−1

)

bI
(

1− cO
sO

)

bI

]

b{s} = bO
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These coefficients can be represented elementwise as follows:

a
{s,s}
i,j = aOi,j, j = 1, . . . , i− 1,

a
{s,f,l}
i,p = bIp

(

cOl+1 − cOl
)

, l = 1, . . . , sO − 1, i = l + 1, . . . , sO, p = 1, . . . , sI ,

a
{f,s,i}
k,j = aOi,j + cIk

(

aOi+1,j − aOi,j
)

, i = 1, . . . , sO − 1, j = 1, . . . , i, k = 1, . . . , sI ,

a
{f,f,i,l}
k,p =















bIp
(

cOl+1 − cOl
)

l = 1, . . . , i− 1

aIk,p
(

cOi+1 − cOi
)

l = i,

, i = 1, . . . , sO − 1, p, k = 1, . . . , sI ,

b{f,i}p = bIp
(

cOi+1 − cOi
)

, i = 1, . . . , sO − 1,

b{s}p = bOp , p = 1, . . . , sI .

The final fast sub-step defines the last block-row of the A{f,f} and A{f,s} tables, as well

as the final step solution update.

a
{f,s,sO}
k,j = aOsO,j + cIk

(

bOj − aOsO,j

)

, j = 1, . . . , sO − 1, k = 1, . . . , sI ,

a
{f,f,sO,l}
k,m =















bIp
(

cOl+1 − cOl
)

l = 1, . . . , sO − 1

aIk,p
(

1− cOsO
)

l = sO,

, p, k = 1, . . . , sI ,

b
{f,sO}
p = bIp

(

1− cOsO
)

, p = 1, . . . , sI ,

b{s}p = bOp , p = 1, . . . , sI .

Augmenting the Butcher tableau of the base methods,

cO AO

bO⊺

→

cO AO 0

1 bO⊺

0

bO⊺

0
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we are able to write the MIS method in the GARK formulation more concisely, by considering

i = 1, . . . , sO + 1 for A’s and c’s,

a
{s,s}
i,j = aOi,j , j = 1, . . . , i− 1,

a
{s,f,l}
i,p = bIp

(

cOl+1 − cOl
)

, l = 1, . . . , sO + 1, i = l + 1, . . . , sO, p = 1, . . . , sI ,

a
{f,s,i}
k,j = aOi,j + cIk

(

aOi+1,j − aOi,j
)

, i = 1, . . . , sO, j = 1, . . . , i, k = 1, . . . , sI ,

a
{f,f,i,l}
k,p =















bIp
(

cOl+1 − cOl
)

l = 1, . . . , i− 1

aIk,p
(

cOi+1 − cOi
)

l = i,

, i = 1, . . . , sO, p, k = 1, . . . , sI ,

b{f,i}p = bIp
(

cOi+1 − cOi
)

i = 1, . . . , sO, ; p = 1, . . . , sI ,

b{s}p = bOp , p = 1, . . . , sI .

For Multirate Infinitesimal Step methods, Sandu and Günther proved that given 3rd

order base methods, Equation (2.56) is the additional necessary and sufficient condition for

making the multirate method 3rd order [43]

1

2

sO
∑

i=2

(

cOi − cOi−1

) (

e⊺i + e⊺i−1

)

AOcO +
(

1− cOsO
)

(

1

4
+

1

2
e⊺
sO
AOcO

)

=
1

6
. (2.56)

Equation (2.56) is equivalent to the condition implicitly defined by Knoth and Wensch in

their 2009 paper [57]. Their aim is to improve the stability region of these methods, by using

genetic optimization on two free parameters and then using visual inspection to compare the

resulting stability plots. They use this strategy to pick 3 specific sets of MIS coefficients to

test. Knoth and Wensch’s 2014 paper improves on their earlier results by strictly defining

the optimization objectives by aiming to minimize error coefficients and maximize the stable

step size [29]. In both cases, the stability is optimized by considering a simplification of the

compressible Euler equations as a stability test problem [29].

If the inner and outer base method are the same Runge-Kutta method, then the time-

scale separation based on the ratio of fast function calls to slow function calls is m = sO.

This can be increased through recursion, as suggested by Schlegel, Knoth and Arnold [50].

Increasing the time-scale separation of these methods through recursion is both an asset and a
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detriment. They are very simple to write down and very simple to implement. However, since

the method’s time-scale separation must be m =
(

sO
)j
, j ∈ N, the time-scale separation of

the problem may not be captured precisely, which leads to more computational work.

We also note that these authors have presented another formulation where instead of

increasing the time-scale separation through recursion, the inner base method is composed

of a sub-cycled inner method. This allows for more general time-scale separationsm =
(

sO
)

∗

j, j ∈ N. This approach, which uses recursion to address operator splitting and subcycling

to address time-scale separations, is fully described in Schlegel’s PhD dissertation [49]. We

will discuss our application of the GARK framework to this formulation in Chapter 3.

2.5. Linear Stability Theory for Multirate Systems

The usual linear stability approach poses a linear test problem, and investigates the

stability for varied eigenvalues and time-step sizes. Given an eigenvalue λ having negative

real part, the following linear stability test problem is considered

y′ = λy, y(0) = 1, (2.57)

having exact solution y = eλt. A recurrence relation is developed to relate successive solution

vectors yn+1 and yn by an amplification function R:

yn+1 = R (hλ) yn = · · · = [R (hλ)]n+1 y0 = [R (hλ)]n+1 .

Since the true solution y → 0 as t → ∞, this leads to the definition of the stability region

associated with the linear stability test problem: S = {hλ = z ∈ C : |R (z)| ≤ 1}. While this

stability concept is sufficient for most IVP methods, it does not capture the complexity of

multiple eigenvalues for the different parts of a multirate method. An alternate multirate

stability approach considered by Sandu and Günther for their Multirate Generalized Additive

Runge Kutta is an additive linear stability approach which focuses on how the stability

of the base methods affect the stability of the multirate method directly. This approach

was previously used by Wensch and Knoth in 2009 for MIS methods to examine stability

properties under the assumption of an infinite number of fast substeps [57]. Equation (2.58)
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below describes the initial value problem used by Sandu and Günther to test linear stability

given the dominant eigenvalues of f {f} and f {s}, λf and λs respectively, where λs is assumed

to have negative real part [21, 44]:

y′ = λfy + λsy, y(t0) = 1. (2.58)

Similar to the previous linear stability recurrence relation, a recurrence relation,

yn+1 = R (hλs, hλf ) yn =⇒ yn = [R (hλs, hλf)]
n y0 = [R (hλs, hλf)]

n ,

can be derived [21]. In Sandu and Günther’s analysis of this linear stability function for

the MGARK, they define conditions on the coupling matrices A{f,s,λ} and A{s,f,λ} such that

if time steps are chosen that guarantee the individual algebraic stability of the fast base

method and the slow base method, then this is “a sufficient condition for the stability of

the overall multirate method” [21]. Sandu and Günther call this Theorem 1 (Stability of

multirate GARK schemes), which is restated below. [21]

Theorem 2.1 Consider a multirate GARK scheme with positive fast weights, b
{f}
i > 0 for

i = i, . . . , s{f}. The scheme is stability-decoupled iff A{f,s} is given by

A{f,s,µ} =
[

B{f}]−1
(

b{f}b{s}
⊺ −A{s,f,µ}B{s}

)

, µ = 1, . . . , m.

with B
{f}
i,j =















b
{f}
i i = j

0 i 6= j

and B
{s}
i,j =















b
{s}
i i = j

0 i 6= j

This theorem on stability–decoupling focuses on defining coupling matrix A{f,s} based

upon existing base methods and choice of coupling matrix A{s,f}, and directly applies only

to multirate GARK schemes. Another potential stability concept is to use the more general

approach to linear stability proposed by Sandu and Günther’s in 2016 paper for a GARK

method (2.1) which proposes the following test problem: y′ =
∑N

i=1 λ
{i}y, y (0) = 1 [44]. By

restricting the GARK table to the 2x2 GARK table used in multirate contexts and relabeling
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according to fast and slow tables, we can represent the GARK stability concept in a multirate

context, resulting in the following stability function,

R (hλf , hλs) = 1 +

[

hλfb
{f}⊺ hλsb

{s}⊺

]









Is{f} − hλfA
{f,f} hλsA

{f,s}

hλfA
{s,f} Is{s} − hλsA

{s,s}









−1 







1s{f}

1s{s}









.

A more thorough concept of linear stability for multirate methods was first proposed

by Kværno [33] in 2000. This stability concept was not published again until 2007, when

it began to be commonly used [24, 31, 47, 45]. The previously mentioned test problems

are specific instances of Kværno’s stability test problem with various coefficients set to 0.

The benefit of Kværno’s stability concept is that unlike the others it includes in its analysis

the mechanisms for fast-slow coupling within the fast and slow solution updates. More

specifically, we consider the test problem (2.59) below, having fast variable yf and slow

variable ys,

y′ (t) = Gy (t) , y (t) =









yf (t)

ys (t)









, y (t0) =









yf (t0)

ys (t0)









G =









g11 g12

g21 g22









, Z = hG =









hg11 hg12

hg21 hg22









. (2.59)

As usual, the stability function is defined by constructing a recursion based on the numerical

method,









yf,n+1

ys,n+1









= S(Z)









yf,n

ys,n









where S(Z) =









s11(Z) s12(Z)

s21(Z) s22(Z)









. (2.60)

The multirate method is stable if the dominant eigenvalue of S has magnitude less than

1 for a given step size h and coupling matrix G. While more complex than typical linear

stability regions (seemingly depends on five parameters, h, g11, g12, g21 and g22 instead of

only two, h and λ), Kværno’s test problem gives plottable stability information since we
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can find the eigenvalues of S as a function of 3 real parameters. The parametrization used

in papers from 2007, 2008 and 2014 by Kuhn and Savcenco depends on the three derived

parameters ξ, η, and κ [31, 47, 45]. A similar set of parameters was used by Constantinescu

in 2013 [9]. The parameter β = g12g21
g11g22

measures the off-diagonal coupling strength of the

problem. Given the assumption that g11 < 0 and g22 < 0, the eigenvalues of G have negative

real part if β < 1. We also assume that z11 ≤ 1. The parameter η = β
2−β

measures has

the same sign as g12g21, and changes sign when g12g21 = g11g22. For rescaled versions of this

problem where g11 = −1 and g22 = m = κ, this change of sign occurs when g12g21 = m.

Constantinescu’s rescaling of this problem assumes that g22 = −m, g11 = −1, |g21| ≤ m,

and |g12| ≤ 1. If those assumptions are satisfied, then g12g21 ≤ m, so η has the same sign as

g12g21. In this case, if η < 0, the off-diagonal coupling terms have opposite signs. Using our

previous assumptions on β and on z11, −1 ≤ 1 ≤ 1. The problem stiffness is related to the

parameter ξ = hg11
1−hg11

∈ (−1, 0), so as ξ → −1, hg11 → −∞. The problem stiffness increases

as ξ moves from 0 to -1. The parameter κ = g22/g11 measures the time-scale separation

of the problem. In these references, a method is presented for plotting the corresponding

stability region for a fixed coupling strength. Figure 2.1 gives an example of how we will plot

these stability regions, and how to read those plots. Note that η = −1 is never stable, since

this value of η corresponds to off-diagonal coupling of opposite sign which is infinitely large.

Since Kværno’s stability concept is the most general for multirate methods and takes into

account stability resulting from how the fast and slow components are coupled together, we

will base our stability analyses in the remainder of this thesis on this approach.
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Figure 2.1. κ = 10 and κ = 100 for similarly constructed methods. Note that the ξ axis

changes for the κ = 100 plot on the right, to show that the stability area is diminished for

larger κ. The yellow area is stable by our stability concept. η < 0 shows stability parameters

where the off-diagonal coupling terms have opposite signs. One explanation for the extended

stability in the η = −.6 and ξ = −.25 on the κ = 10 plot is that the opposite signs on the

off-diagonal coupling terms have a net effect of decreasing the stability requirements.
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Chapter 3

Framework for Relaxed Multirate Infinitesimal Step Methods

3.1. Proposed Flexible Multirate GARK (fmGARK) structure

We tested a wide range of existing multirate methods in order to evaluate strengths and

weaknesses of existing approaches, and to consider potential areas for improvement. One

potential limitation that we identified in the multirate GARK structure is the assumption

that the same fast method is used for all fast micro-steps. To ameliorate this, we consider

a more general multirate GARK structure than the one proposed by Sandu and Günther

[43, 21]. Our description of the fmGARK structure as a GARK is modeled after Sandu

and Günther’s Theorem 4, ”the MIS scheme is a particular instance of a GARK method”

[20]. We propose a new multirate GARK framework, which we name Flexible Multirate

Generalized–Structure Additively–Partitioned Runge–Kutta (fmGARK) methods. This is

a more flexible approach than the multirate GARK described in Section 2.2 [21]. In the

following section, we specify the fmGARK structure, and show how it describes a particular

instance of a GARK method. Notation is consistent with our earlier definition of an MIS in

a GARK context in Section 2.3.

3.2. Structure

We first considered constructing this structure by relaxing assumptions about the initial

conditions and base methods used in internal fast sub-steps. This structure is based on

the MIS definition, and cannot be used to describe the entire set of multirate methods the

mGARK does. Definitions: Let T In =
cIn AIn

(

bIn
)

⊺

be an “inner” Runge–Kutta table of at
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least second order, and TO =
cO AO

(

bO
)

⊺

be an “outer” Runge-Kutta table of at least third

order. We assume that these Runge-Kutta methods have sIn and sO stages, respectively.

In general, elementwise form, we define the fmGARK matrix entries as follows. We

index the slow stages as i = 1, . . . , sO similar to how they are indexed for the MIS methods.

The superscript indices correspond to the general structure from (2.55), and indicate the

GARK tableau block, as stated in Section 2.3. We include below some examples of how the

coefficients relate to the block structure. The algorithm we developed and tested assumes

both the inner and outer base methods are explicit. Our later investigation of the order

condition requirements regarding our newly developed methods assumes that the first stage

of the inner base method is explicit. The indexes given for coefficients here assume explicit

inner and outer base methods; these indexes may be extended to include the full Runge-

Kutta table from each base method if needed. The A{s,s} matrix shows how the slow base

method is only used once in the slow component method, unlike the fast base method, which

is used m times in the fast component method.

A{s,s} =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 0

a
{s,s}
2,1 0 0 0

a
{s,s}
3,1 a

{s,s}
3,2 0 0

a
{s,s}
4,1 a

{s,s}
4,2 a

{s,s}
4,3 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

The block matrices A{s,f,i} describe how the fast stages associated with the ith fast sub-step

affect the slow stages.

A{s,f,1} =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 0

a
{s,f,1}
2,1 a

{s,f,1}
2,2 a

{s,f,1}
2,3 a

{s,f,1}
2,4

a
{s,f,1}
3,1 a

{s,f,1}
3,2 a

{s,f,1}
3,3 a

{s,f,1}
3,4

a
{s,f,1}
4,1 a

{s,f,1}
4,2 a

{s,f,1}
4,3 a

{s,f,1}
4,4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A{s,f,2} =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 0

0 0 0 0

a
{s,f,2}
3,1 a

{s,f,2}
3,2 a

{s,f,2}
3,3 a

{s,f,2}
3,4

a
{s,f,2}
4,1 a

{s,f,2}
4,2 a

{s,f,2}
4,3 a

{s,f,2}
4,4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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The first row of A{f,s,l} has one fewer non-zero entry than the other rows, since we have

assumed the first stage of the base methods is explicit. These matrices describe how the

slow stages affect the fast stages.

A{f,s,1} =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 0

a
{f,s,1}
2,1 0 0 0

a
{f,s,1}
3,1 0 0 0

a
{f,s,1}
4,1 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A{f,s,2} =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a
{f,s,2}
1,1 0 0 0

a
{f,s,2}
2,1 a

{f,s,2}
2,2 0 0

a
{f,s,2}
3,1 a

{f,s,2}
3,2 0 0

a
{f,s,2}
4,1 a

{f,s,2}
4,2 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

In addition to A{f,f} being block lower triangular, A{f,f,i,i} has the same nonzero pattern

as AIn,

A{f,f,1,1} =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 0

a
{f,f,1,1}
2,1 0 0 0

a
{f,f,1,1}
3,1 a

{f,f,1,1}
3,2 0 0

a
{f,f,1,1}
4,1 a

{f,f,1,1}
4,2 a

{f,f,1,1}
4,3 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A{f,f,2,1} =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a
{f,f,2,1}
1,1 a

{f,f,2,1}
1,2 a

{f,f,2,1}
1,3 a

{f,f,2,1}
1,4

a
{f,f,2,1}
2,1 a

{f,f,2,1}
2,2 a

{f,f,2,1}
2,3 a

{f,f,2,1}
2,4

a
{f,f,2,1}
3,1 a

{f,f,2,1}
3,2 a

{f,f,2,1}
3,3 a

{f,f,2,1}
3,4

a
{f,f,2,1}
4,1 a

{f,f,2,1}
4,2 a

{f,f,2,1}
4,3 a

{f,f,2,1}
4,4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A{f,f,2.2} =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 0

a
{f,f,2.2}
2,1 0 0 0

a
{f,f,2.2}
3,1 a

{f,f,2.2}
3,2 0 0

a
{f,f,2.2}
4,1 a

{f,f,2.2}
4,2 a

{f,f,2.2}
4,3 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Now that we have shown the non-zero structure of these coupling matrices, let us consider

how specifically to determine those non-zero coefficients.
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The base method tableau TIn and TO determine the resulting multirate method. We

define component-wise the intermediate fast sub-step solutions using the same MIS problem

formulation as in Section 2.4 as follows,

a
{s,s}
i,j = aOi,j, j = 1, . . . , i− 1,

a
{s,f,l}
i,p = bIlp

(

cOl+1 − cOl
)

, l = 1, . . . , sO − 1, i = l + 1, . . . , sO, p = 1, . . . , sIl,

a
{f,s,i}
k,j = aOi,j + cIik

(

aOi+1,j − aOi,j
)

, i = 1, . . . , sO − 1, j = 1, . . . , i, k = 1, . . . , sIi,

a
{f,f,i,l}
k,p =















bIlp
(

cOl+1 − cOl
)

l = 1, . . . , i− 1

aIlk,p
(

cOi+1 − cOi
)

l = i,

, i = 1, . . . , sO − 1, p, k = 1, . . . , sIi,

where all values not defined are 0. The final fast sub-step defines the last block-row of

the A{f,f} and A{f,s} tables, as well as the final step solution update in a similar fashion,

a
{f,s,sO}
k,j = aOsO,j + c

I
sO

k

(

bOj − aOsO,j

)

, j = 1, . . . , sO − 1, k = 1, . . . , sIsO ,

a
{f,f,sO,l}
k,m =















bIlp
(

cOl+1 − cOl
)

l = 1, . . . , sO − 1

aIlk,p
(

1− cOsO
)

l = sO,

, p, k = 1, . . . , sIl.

Again as with the MIS methods from Section 2.4, we augment the Butcher tableau of

the base methods,

cO AO

bO⊺

→

cO AO 0

1 bO⊺

0

bO⊺

0

which allows us to write the MIS method in the fmGARK formulation more concisely, by

considering i = 1, . . . , sO+1 for A’s and c’s. This is relevant to how we consider implementing

these methods in a memory-efficient manner, since the extra stage of the A’s shows the

complete fast substep, including the final step at ci = 1.
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This more concise formulation written componentwise is as follows:

a
{s,s}
i,j = aOi,j, j = 1, . . . , i− 1,

b
{s}
i = bOi ,

a
{s,f,l}
i,p = bIlp

(

cOl+1 − cOl
)

, l = 1, . . . , sO, i = l + 1, . . . , sO, p = 1, . . . , sIl,

a
{f,s,i}
k,j = aOi,j + cIik

(

aOi+1,j − aOi,j
)

, i = 1, . . . , sO, j = 1, . . . , i, k = 1, . . . , sIi,

a
{f,f,i,l}
k,p =















bIlp
(

cOl+1 − cOl
)

l = 1, . . . , i− 1

aIlk,p
(

cOi+1 − cOi
)

l = i,

, i = 1, . . . , sO, p, k = 1, . . . , sIi.

The structure of the fmGARK leaves b{f} undetermined. Specific choices for b{f} will be

discussed in Chapter 4. We note that with this approach, we may consider the traditional

MIS fast coefficients as an embedding option b̃
{f,i}
p = bIip

(

cOi+1 − cOi
)

, alongside b
{s}
i = bOi ,

leaving b{f} free to be determined based on the user’s target objective.

We note that with the above definition, the internal “row-sum” consistency conditions

are satisfied, since

c
{s,s}
i = cOi ,

c
{s,f}
i =

i
∑

l=2

(

cOl − cOl−1

)

s
I
l−1
∑

p=1

bIl−1
p =

i
∑

l=2

(

cOl − cOl−1

)

= cOi ,

c
{f,s,i}
k =

i−1
∑

j=1

aOi−1,j + c
Ii−1(aOi,j−aOi−1,j)
k = cOi−1 + c

Ii−1

k

(

cOi − cOi−1

)

,

c
{f,f,i}
k =

sIl−1
∑

p=1

bIl−1
p

i−1
∑

l=2

(

cOl − cOl−1

)

+

sIl−1
∑

p=1

a
Il−1

k,p

(

cOi − cOi−1

)

= cOi−1 + c
Ii−1

k

(

cOi − cOi−1

)

.

We can represent these stage times in vector form as follows:

c{f} =

















c{f,1}

...

c{f,sO}

















where c{f,i} =

















c
{f,f,i}
1

...

c
{f,f,i}
sI

















=

















c
{f,s,i}
1

...

c
{f,s,i}
sI

















=

















cOi−1 + c
Ii−1

1

(

cOi − cOi−1

)

...

cOi−1 + c
Ii−1

sO

(

cOi − cOi−1

)

















.
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This fully defines an fmGARK scheme as an instance of a GARK method. Representing

the stage solutions in a similar block-vector form to c{f} gives us the following notation,

k{f} =

















k{f,1}

...

k{f,sO}

















stage vectors: k{f,i} =

















k
{f,i}
1

...

k
{f,i}
sI

















, at stage times:

















cOi−1 + c
Ii−1

1

(

cOi − cOi−1

)

...

cOi−1 + c
Ii−1

sO

(

cOi − cOi−1

)

















.

Consider Equations (2.21)-(2.23) for the stage and solution updates for the fully explicit

2×2 GARK method. These update formulae allow us to simplify the fmGARK stage and

solution update formulae by substituting for the specific block-structure. We assume that

the first stage of the inner base method is explicit. The MIS structure is formulated so that

if there is no coupling between the fast and slow processes in the differential equation, the

original base methods are used as they would be if there was no interpolation or coupling

matrices in the multirate method. For explicit methods, this means that the coefficients

in A
{f,f,i,j}
1,q are identical to the coefficients in A

{s,f,j}
i,q . In order to take advantage of this

structure, we define k̂
{f,i}
1 to be k

{f,i}
1 minus the slow coupling portion, that is, k̂

{f,i}
1 =

k
{f,i}
1 − h

∑s{s}

l=1 a
{f,s}
jl f {s}

(

t + c
{s}
l h,k

{s}
l

)

. We can use this portion of the stage solution to

accumulate an initial condition for k
{f,i}
p , where p = 2, . . . , sIi and for calculating the next

initial condition k̂
{f,i+1}
1 . Finally, this accumulated initial condition k

{f,sO}
1 can be used with

the remaining k
{f,sO}
p stages to form the fast part of the embedded MIS solution method.

k̂
{f,1}
1 = yn (3.1)

k
{f,i}
1 = yn +

j−1
∑

l=1

h ∗ a
{f,f}
jl

∗ f
{f}

(

t + c
{f}
l

h,k
{f}
l

)

+

s
{s}
∑

l=1

h ∗ a
{f,s}
jl

∗ f
{s}
(

t + c
{s}
l

h,k
{s}
l

)

(3.2)

k
{f,i}
1 = k̂

{f,i}
1 +

s
{s}
∑

l=1

h ∗ a
{f,s,i}
jl

∗ f
{s}
(

t + c
{s}
l

h,k
{s}
l

)

(3.3)

k̂
{f,i}
1 = yn +

j−1
∑

l=1

h ∗ a
{f,f}
jl

∗ f
{f}

(

t + c
{f}
l

h,k
{f}
l

)

(3.4)

= yn +

i−1
∑

p=1

sIi
∑

l=1

h ∗ a
{f,f,i,p}
jl

∗ f
{f}

(

t + c
{f,p}
l

h,k
{f,p}
l

)

(3.5)

= yn +

i−1
∑

p=1

sIi
∑

l=1

h ∗ b
Ip

l

(

c
O
p+1 − c

O
p

)

∗ f
{f}

(

t + c
{f,p}
l

h,k
{f,p}
l

)

(3.6)

=

i−1
∑

p=1

k
{f,i}
1 +

sIi
∑

l=1

h ∗ b
Ii−1
l

(

c
O
i − c

O
i−1

)

∗ f
{f}

(

t + c
{f,i−1}
l

h,k
{f,i−1}
l

)

(3.7)
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k
{f,i}
j = k̂

{f,i}
1 +

j−1
∑

l=1

h ∗ a
{f,f,i,i}
jl

∗ f
{f}

(

t + c
{f}
l

h,k
{f}
l

)

+

s
{s}
∑

l=1

h ∗ a
{f,s,i}
jl

∗ f
{s}
(

t + c
{s}
l

h,k
{s}
l

)

(3.8)

k
{s}
i = k̂

{f,i}
1 +

i−1
∑

l=1

h ∗ a
{s,s}
il

∗ f
{s}
(

t + c
{s}
l

h,k
{s}
l

)

(3.9)

ỹn+1 = k

{

f,sO
}

1 +
s
I
sO
∑

l=1

h ∗ b
I
sO

l

(

1 − c
O

sO

)

∗ f
{f}

(

t + c

{

f,sO
}

l
h,k

{

f,sO
}

l

)

(3.10)

+

s
{s}
∑

l=1

h ∗ b
{s}
l

∗ f
{s}
(

t + c
{s}
l

h,k
{s}
l

)

(3.11)

yn+1 = yn +

s
{f}
∑

l=1

h ∗ b
{f}
l

∗ f
{f}

(

t + c
{f}
l

h,k
{f}
l

)

+

s
{s}
∑

l=1

h ∗ b
{s}
l

∗ f
{s}
(

t + c
{s}
l

h,k
{s}
l

)

(3.12)

This notation will assist in describing our memory-efficient implementation for fmGARK

methods.

3.3. Implementation and Memory Considerations

To ensure no duplicate function calls, we must store vectors the size of our solution

vector y, commensurate with the number of stages of our base methods. In particular,

while computing the stage solution updates for k{f,i} and k
{s}
i , we must store k

{f,i}
1 , the

s{I} fast function vectors f
{f,i}
l = f {f}

(

t+ c
{f,i}
l h,k

{f,i}
l

)

, and the s{O} slow function vectors

f
{s}
i = f {s}

(

t + c
{s}
i h,k

{s}
i

)

. This is sufficient storage to compute the embedded MIS solution

ỹn+1 without requiring recomputed function calls. In order to compute the fmGARK solution

yn+1, we must also store yn+1 and the vector of coefficients b{f}, if these are unique or

unstructured. In order to only store maxs
{O}

i=1 s{Ii} + s{O} + 2 vectors the size of our solution

vector y, we overwrite f{f,i} with f{f,i+1} after the ith fast substep has completed, and f{f,i}

has been used to generate the initial condition k̂
{f,i+1}
1 for the (i + 1)st fast substep. In

the subcycled version of the code, we overwrite f{f,i} after each subcycled fast substep has

completed, and f{f,i} has been used to update the temporary initial condition k̂
{f,i}
1 for

the next subcycled fast substep. To emphasize those vectors which are overwritten while

remaining consistent with previous notation, we mark out the extra index in the pseudocode,

i.e. k̂{f,i} → k̂{f,✄i} and f{f,i} → f{f,✄i}. Algorithm 1 gives the psuedocode for a generic

fast sub-step when there is subcycling given an fmGARK structure, but does not define

specifically how to determine A{f,f}.
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Algorithm 1: Fast Substep for general A{f,f} (Corresponds to ith outer stage, kth

subcycle)

Data: f {f},h,t = tn,k
{f,i}
1 ,f

{f,i}
1,...,s{Ik}

,f
{s}
1,...,s{O} ,i,k,T

I ,TO

; // i.e. TO =⇒ A{O},b{O}, c{O}, s{O}

Result: f
{f,i}
1,...,s{Ik}

1 c
{f,✄i}
j = cOi + cIij

(

cOi+1 − cOi
)

; // Calculate stage times for ith fast substep

2 l=1;

3 k
{f,✄i}
l = k

{f,✄i}
1 +

∑l−1
j=1 ha

{f,f,i,i}
lj f

{f,✄i}
j +

∑i
j=1 ha

{f,s,i}
lj f

{s}
j ; // Linear combination

4 f
{f,✄i}
l = f {f}

(

t + c
{f,i}
l h,k

{f,✄i}
l

)

; // Calculate func vecs:1st fast stage

5 for l ← 1 to s{Ik} do

6 k
{f,✄i}
l = k

{f,✄i}
1 +

∑l−1
j=1 ha

{f,f,i,i}
lj f

{f,✄i}
j +

∑i
j=1 ha

{f,s,i}
lj f

{s}
j ; // Linear comb

7 f
{f,✄i}
l = f {f}

(

t+ c
{f,i}
l h,k

{f,✄i}
l

)

; // Calculate func vecs:lth fast stage

8 end
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Consider the case where T {Ii} =
cIi AIi

(

bIi
)

⊺

is chosen to be a composition of internal

steps, so that the fast stages are sub-cycled. This commonly happens in practice, and

removes the computational overhead of recursion. When we represent this as a butcher

table, a composition of steps of an inner method is represented as shown in Equation (3.13).

T {Ii} =

(

1
ni
cI
)

1
ni
AI

(

1
ni
cI + 1

ni
1
)

1
ni
bI

...

. . .

(

1
ni
cI + 2

ni
1
) ... 1

ni
AI

...
...

1
ni
bI

...

. . .

...

(

1
ni
cI + ni−1

ni
1
)

...

1
ni
bI

· · · · · ·

1
ni
bI

...

1
ni
bI

1
ni
AI

1
ni
bI · · · · · · 1

ni
bI 1

ni
bI

(3.13)

Since any updates to slow function values are calculated at the same time as the first fast

stage in T {Ii}, each block of fast stage updates in T {Ii} requires the same amount of mem-

ory or re-computation as using a single method of the size of
cI AI

(

bI
)

⊺

. Algorithm 2

describes how f
{f,i}
1,...,s{I}

is updated. This update is similar to an ARK step where the fast

function f {f} corresponds to A{1}, and the slow function f {s} corresponds to A{2}. The

non-zero structure of these matrices of coefficients is demonstrated in Equations (3.14)

and (3.15). When T {Ii} is a diagonally-implicit Runge-Kutta (where a
{I}
i,i is not necessar-

ily equal to zero), line 8 changes to k
{f,✄i}
l = k̂

{f,✄i}
1 +

∑l
j=1 h

(

(c
{O}
i+1 −c

{O}
i )

ni
(a

{I}
l,j )

)

f
{f,✄i}
j +
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∑i
j=1 h

(

a
{O}
i,j + (

c
{I}
l

ni
+ (k−1)

ni
)(a

{O}
i+1,j − a

{O}
i,j )

)

f
{s}
j . To make solving our order conditions

more straightforward, we generally assume the first stage of the inner base method to be

explicit. This is reflected in the pseudocode shown below.

A
{1}

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 · · · · · · · · · · · · 0




(c
{O}
i+1

−c
{O}
i

)

ni
(a

{I}
2,1 )





.
.
.

.

.

.





(c
{O}
i+1

−c
{O}
i

)

ni
(a

{I}
3,1 )





.
.
.

.
.
.

.

.

.

.

.

.
.
.
.

.
.
.

.

.

.

.

.

.





(c
{O}
i+1

−c
{O}
i

)

ni
(a

{I}
l,j

)





.
.
.

.
.
.

.

.

.





(c
{O}
i+1

−c
{O}
i

)

ni
(a

{I}

s{I},1
)



 · · · · · · · · ·





(c
{O}
i+1

−c
{O}
i

)

ni
(a

{I}

s{I},s{I}−1
)



 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(3.14)

A
{2}

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

a
{O}
i,1

+ (
c
{I}
1
ni

+
(k−1)

ni
)(a

{O}
i+1,1

− a
{O}
i,1

)

)

· · ·

(

a
{O}
i,i

+ (
c
{I}
1
ni

+
(k−1)

ni
)(a

{O}
i+1,i

− a
{O}
i,i

)

)

0 · · · 0

(

a
{O}
i,1 + (

c
{I}
2
ni

+
(k−1)

ni
)(a

{O}
i+1,1 − a

{O}
i,1 )

)

· · ·

(

a
{O}
i,i

+ (
c
{I}
2
ni

+
(k−1)

ni
)(a

{O}
i+1,i − a

{O}
i,i

)

) .
.
.

.

.

.

.

.

. · · ·

.

.

.

.

.

.

.

.

.

(

a
{O}
i,j

+ (
c
{I}
l
ni

+
(k−1)

ni
)(a

{O}
i+1,j − a

{O}
i,j

)

)

· · ·

(

a
{O}
i,i

+ (
c
{I}
l
ni

+
(k−1)

ni
)(a

{O}
i+1,i − a

{O}
i,i

)

) .
.
.

.

.

.

.

.

. · · ·

.

.

.

.

.

.

.

.

.


a
{O}
i,1

+ (
c
{I}

s{I}

ni
+

(k−1)
ni

)(a
{O}
i+1,1

− a
{O}
i,1

)



 · · ·



a
{O}
i,i

+ (
c
{I}

s{I}

ni
+

(k−1)
ni

)(a
{O}
i+1,i

− a
{O}
i,i

)



 0 · · · 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (3.15)

Algorithm 3 describes how to incrementally update y, ỹ and k̂
{f,✄i}
1 within a macrostep

based on the RFSMR step strategy. Our new methods replace this algorithm in order to

create a higher order method overall. We will discuss these new methods, as well as the

method-specific algorithm updates Algorithm 5 and Algorithm 6 in Chapter 4. Algorithm

3 is included here solely as an example for potential embedding purposes. Algorithm 4

describes the overall structure of a fmGARK step.

Aside from the particular input looping parameters, and flagCase which denotes the

final solution algorithm, all variables can be considered to be in a global namespace for the

purpose of the algorithms in this work. If a local namespace is required, this is clarified

by specifying input variables or flags such as flagCase = 1,iin := i,kin := k. In summary,

Algorithm 2 describes how a fast step update uses data from slow function values with the

coefficients from a particular A{f,s,i}. This fast sub-step function takes as meaningful inputs

i, which tells the function which slow stage loop it’s being called from, k which tells the
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Algorithm 2: Fast Substep Showing base methods for MIS A{f,f} (Corresponds to ith

outer stage, kth subcycle out of ni subcycles)

Data: f
{f,i}
1,...,s{I}

,f
{s}
1,...,s{O},h,t = tn, k̂

{f,i}
1 , i , k ,T {I},TO

; // i.e. TO =⇒ A{O},b{O}, c{O}, s{O} and T I =⇒ A{I},b{I}, c{I}, s{I}

Result: f
{f,i}
1,...,s{I}

1 for l← 1 to s{I} do

2 tchl = t+

(

cOi +
(

cOi+1 − cOi
)

(

c
{I}
l

ni
+ (k−1)

ni

))

h

3 end

4 l=1;

5 k
{f,✄i}
l = k̂

{f,✄i}
1 +

∑i
j=1 h

(

a
{O}
i,j + (

c
{I}
l

ni
+ (k−1)

ni
)(a

{O}
i+1,j − a

{O}
i,j )

)

f
{s}
j ; // Linear

combination

6 f
{f,✄i}
l = f{f}

(

tchl,k
{f,✄i}
l

)

; // Calculate func vecs:1st fast stage

7 for l← 1 to s{I} do

8 k
{f,✄i}
l = k̂

{f,✄i}
1 +

∑l−1
j=1 h

(

(c
{O}
i+1 −c

{O}
i )

ni
(a

{I}
l,j )

)

f
{f,✄i}
j +

∑i
j=1 h

(

a
{O}
i,j + (

c
{I}
l

ni
+ (k−1)

ni
)(a

{O}
i+1,j − a

{O}
i,j )

)

f
{s}
j ; // Linear comb

9 f
{f,✄i}
l = f{f}

(

tchl, k̂
{f,✄i}
l

)

; // Calculate func vecs:lth fast stage

10 end
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Algorithm 3: Solution update for RFSMR

Data: f
{f,i}
1,...,s{I}

,f
{s}
1,...,s{O},h, i , k , flagCase ,T {I},TO

; // i.e. TO =⇒ A{O},b{O}, c{O}, s{O} and T I =⇒ A{I},b{I}, c{I}, s{I}

Result: y , k̂
{f,✄i}
1

1 if flagCase == 0 ; // Incremental solution updates within macro-step

2 then

3 k̂
{f,✄i}
1 = k̂

{f,✄i}
1 +

∑sI

j=1 h

(

(c
{O}
i+1 −c

{O}
i )

ni
(b

{Ik}
j )

)

f
{f,✄i}
j ;

4 else if flagCase == 1 ; // Final solution updates

5 then

6 y = k̂
{f,✄i}
1 +

∑sI

j=1 h

(

(c
{O}
i+1 −c

{O}
i )

ni
(b

{Ik}
j )

)

f
{f,✄i}
j ;

7 y = y +
∑sO

j=1 h
(

(b
{O}
j )

)

f
{s}
j ;

function which subcycle loop it’s being called from, and the k̂
{f,i}
1 which has accumulated

the fast initial condition from the previous fast sub-steps. Algorithm 3 describes how the

intermediate solution updates are accumulated within a macro-step.

3.4. Order Conditions for Relaxed Framework

Order considerations are dependent both on the original outer method and on the choice

of how to weight the fast stage function value’s contribution to the final step solution.

The existing RFSMR methods are at least second order accurate, given a second order

accurate inner method and a second order accurate outer method. Equations (2.2)-(2.9)

which describe the summation form of the order conditions can be applied to analyzing

the order of the fmGARK methods. Conceptually, we will consider separately the row-sum

conditions, the conditions with b{f}, and the conditions for b{s}. The row-sum conditions,

or internal consistency conditions were addressed earlier when considering the fmGARK

structure. The linear system form of the order conditions is described generally in Equation

(2.18) and specifically for these types of structures in Equation (2.52). When discussing
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Algorithm 4: fmGARK macro-step

Data: f{f},f{s},h,t = tn,y = yn,T
In ,TO ; // i.e. TO =⇒ A{O},b{O}, c{O}, s{O}

Result: y = yn+1

1 for l← 1 to s{O} do

2 tchsl = t+ cOl h

3 end

4 i=1;k=1;l=1;

5 initialize f
{f}
1,...,s{I}

,f
{s}
1,...,s{O} to zero vectors;

6 initialize k̂
{f,✄i}
1 = y,k

{s}
1 = y;

7 Update k
{s}
i = k

{f,i}
1 +

∑i−1
l=1 ha

{s,s}
il f

{s}
l ;

8 Calculate f
{s}
i = f{s}

(

tchsi ,k
{s}
i

)

;

9 Algorithm 3-6 flagCase = −1,i := i,k := k ; // Update y

10 Algorithm 2 ; // Update f
{f,✄i}
1,...,s{I}

for kth substep

11 for k ← 2 to ni do

12 Algorithm 3-6 flagCase = 0,iin := i,kin := k − 1 ; // Update y,k̂
{f,✄i}
1

13 Algorithm 2 ; // Update f
{f,✄i}
1,...,s{I}

for kth substep

14 end

15 for i← 2 to s{O} do

16 Algorithm 3-6 flagCase = 0,iin := i− 1,kin := ni ; // Update y,k̂
{f,✄i}
1

17 Update k
{s}
i = k̂

{f,i}
1 +

∑i−1
l=1 ha

{s,s}
il f

{s}
l ;

18 Calculate f
{s}
i = f{s}

(

tchsi ,k
{s}
i

)

;

19 k=1;l=1;

20 Algorithm 2 ; // Update f
{f,✄i}
1,...,s{I}

for kth substep

21 Algorithm 3-6 flagCase = −1,iin := i,kin := k ; // Update y

22 for k ← 2 to ni do

23 Algorithm 3-6 flagCase = 0,iin := i,kin := k − 1 ; // Update y,k̂
{f,✄i}
1

24 Algorithm 2 ; // Update f
{f,✄i}
1,...,s{I}

for kth substep

25 end

26 end

27 Algorithm 3-6 flagCase = 1,iin := i,kin := k ; // Update y,ỹ
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fmGARK order conditions, it is helpful to draw on analysis found in Sandu and Günther’s

paper on Multirate GARK [21].

The fmGARK structure draws from the theory behind MIS methods. We will show

here that this means that the slow order conditions Equations (2.38)-(2.42) are automati-

cally satisfied if the base inner method is at least second order and the base outer method

is at least third order. This is accomplished by leveraging certain assumed properties of

the inner base method, such as
∑

j b
{I}
j = 1,

∑

j b
{I}
j c

{I}
j = 1

2
and

∑

j b
{O}
j

[

c
{O}
j

]2

= 1
3
.

As mentioned in Section 3.2, the row-sum conditions, also called the internal consistency

conditions are automatically satisfied by the fmGARK structure, which simplifies the or-

der conditions. Equations (2.38)-(2.41) follow directly from the outer base method being

third order. For the overall method to be third-order, we require two coupling conditions

be satisfied: b{s}⊺A{s,f}c{f} = 1
6
and b{f}⊺A{f,s}c{s} = 1

6
. By matrix-vector multiplication,

we can show that given our assumptions the first condition is satisfied automatically. The

second condition may be addressed based upon a specific choice of b{f}⊺. Equation (3.25)

demonstrates by substitution how the fmGARK structured table automatically satisfies the

third order slow coupling condition [20].

b{s}A{s,f}c{f} =
s{O}
∑

i=1

b
{O}
i

i−1
∑

j=1

(

cOj+1 − cOj
) (

bI
j

)⊺ (

cOj 1+
(

cOj+1 − cOj
)

cIj
)

(3.16)

=
s{O}
∑

i=1

b
{O}
i

i−1
∑

j=1

(

cOj+1 − cOj
)

(

cOj
(

bI
j

)⊺

1+
(

cOj+1 − cOj
) (

bI
j

)⊺

cIj

)

(3.17)

=
s{O}
∑

i=1

b
{O}
i

i−1
∑

j=1

(

cOj+1 − cOj
)

(

cOj ∗ 1 +
(

cOj+1 − cOj
) 1

2

)

(3.18)

=

s{O}
∑

i=1

b
{O}
i

i−1
∑

j=1

(

cOj+1 − cOj
)

(

1

2

(

cOj+1 + cOj
)

)

(3.19)

=
1

2

s{O}
∑

i=1

b
{O}
i

i−1
∑

j=1

(

cOj+1 − cOj
) (

cOj+1 + cOj
)

(3.20)

=
1

2

s{O}
∑

i=1

b
{O}
i

i−1
∑

j=1

[

cOj+1

]2 −
[

cOj
]2

=
1

2

s{O}
∑

i=1

b
{O}
i





i−1
∑

j=1

[

cOj+1

]2 −
[

cOj
]2



 (3.21)
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=
1

2

s{O}
∑

i=1

b
{O}
i





i
∑

j=2

[

cOj
]2 −

i−1
∑

j=1

[

cOj
]2



 (3.22)

=
1

2

s{O}
∑

i=1

b
{O}
i

[

[

cOi
]2 −

[

cO1
]2
]

(3.23)

=
1

2

s{O}
∑

i=1

b
{O}
i

[

cOi
]2

(3.24)

=
1

2

(

1

3

)

=
1

6
(3.25)

Note that Equation (3.24) implies that
∑

k A
{s,f}
ik c

{f}
k = 1

2

[

cOi
]2

= 1
2

[

c
{s}
i

]2

. We can show

that the fourth-order slow conditions represented by Equations (2.43)-(2.50) can be similarly

satisfied given a third-order inner base method and a fourth-order outer base method. The

fourth-order slow condition represented by Equation (2.51) will require an additional con-

dition on the outer base method to be satisfied, and therefore will be discussed at the end.

Equations (2.43), (2.44), (2.46), and (2.48) follow directly from assuming the outer base

method is fourth-order. Given our assumed method orders, there are 4 fourth-order cou-

pling conditions which include
(

b{s})⊺ , that are automatically satisfied, which were stated

previously as Equations (2.45), (2.47), (2.49), and (2.50). These are as follows:

(

b{s}c{s}
)⊺

A{s,f}c{f} =
s
∑

i=1

∑

k

(

b
{s}
i c

{s}
i

)

A
{s,f}
ik c

{f}
k

=
s
∑

i=1

(

b
{s}
i c

{s}
i

) 1

2

(

c
{s}
i

)2

=
1

2

s
∑

i=1

b
{s}
i

(

c
{s}
i

)3

=
1

2

(

1

4

)

Since the outer method is fourth-order
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Eq.(2.42) =⇒
(

b
{s}

)

⊺

A
{s,f}

(

c
{f}

)2

=
sO
∑

i=1

b
{s}⊺
i

i−1
∑

j=1

(

c
O
j+1 − c

O
j

)
s
Ij
∑

k=1

b
Ij
k

(

c
O
j +

(

c
O
j+1 − c

O
j

)

c
Ij
k

)2

=
sO
∑

i=1

b
{s}⊺
i

i−1
∑

j=1

(

c
O
j+1 − c

O
j

)
s
Ij
∑

k=1

b
Ij
k

((

1 − c
Ij
k

)

c
O
j + c

O
j+1c

Ij
k

)2

=

sO
∑

i=1

b
{s}⊺
i

i−1
∑

j=1

(

c
O
j+1 − c

O
j

)

s
Ij
∑

k=1

b
Ij
k

(((

1 − c
Ij
k

)

c
O
j

)2

+ 2

(

1 − c
Ij
k

)

c
O
j c

O
j+1c

Ij
k

+

(

c
O
j+1c

Ij
k

)2)

=
sO
∑

i=1

b
{s}⊺
i

i−1
∑

j=1

(

c
O
j+1 − c

O
j

)
s
Ij
∑

k=1

b
Ij
k

(((

1 − c
Ij
k

)2 (

c
O
j

)2
)

+ 2c
O
j c

O
j+1c

Ij
k

− 2c
O
j c

O
j+1

(

c
Ij
k

)2

+

(

c
O
j+1c

Ij
k

)2)

=

sO
∑

i=1

b
{s}⊺
i

i−1
∑

j=1

(

c
O
j+1 − c

O
j

)

s
Ij
∑

k=1

(

b
Ij
k

(

c
O
j

)2
− 2

(

c
O
j

)2
b
Ij
k

c
Ij
k

+
(

c
O
j

)2
b
Ij
k

(

c
Ij
k

)2)

+
sO
∑

i=1

b
{s}⊺
i

i−1
∑

j=1

(

c
O
j+1 − c

O
j

)
s
Ij
∑

k=1

(

2c
O
j c

O
j+1b

Ij
k

c
Ij
k

− 2c
O
j c

O
j+1b

Ij
k

(

c
Ij
k

)2

+
(

c
O
j+1

)2
b
Ij
k

(

c
Ij
k

)2)

=
sO
∑

i=1

b
{s}⊺
i

i−1
∑

j=1

(

c
O
j+1 − c

O
j

)







(

c
O
j

)2
s
Ij
∑

k=1

b
Ij
k

− 2
(

c
O
j

)2
s
Ij
∑

k=1

b
Ij
k

c
Ij
k

+
(

c
O
j

)2
s
Ij
∑

k=1

b
Ij
k

(

c
Ij
k

)2







+
sO
∑

i=1

b
{s}⊺
i

i−1
∑

j=1

(

c
O
j+1 − c

O
j

)






2c

O
j c

O
j+1

s
Ij
∑

k=1

b
Ij
k

c
Ij
k

− 2c
O
j c

O
j+1

s
Ij
∑

k=1

b
Ij
k

(

c
Ij
k

)2
+
(

c
O
j+1

)2
s
Ij
∑

k=1

b
Ij
k

(

c
Ij
k

)2







=
sO
∑

i=1

b
{s}⊺
i

i−1
∑

j=1

(

c
O
j+1 − c

O
j

)

(

(

c
O
j

)2
− 2

(

c
O
j

)2 1

2
+
(

c
O
j

)2 1

3
+ 2c

O
j c

O
j+1

1

2
− 2c

O
j c

O
j+1

1

3
+
(

c
O
j+1

)2 1

3

)

=

sO
∑

i=1

b
{s}⊺
i

i−1
∑

j=1

(

c
O
j+1 − c

O
j

)

(

✟✟✟
(

c
O
j

)2
−
✟✟✟✟2
(

c
O
j

)2 1

2
+
(

c
O
j

)2 1

3
+ c

O
j c

O
j+1 −

2

3
c
O
j c

O
j+1 +

1

3

(

c
O
j+1

)2
)

=
sO
∑

i=1

b
{s}⊺
i

i−1
∑

j=1

(

c
O
j+1 − c

O
j

)

(

1

3

(

c
O
j

)2
+

1

3
c
O
j c

O
j+1 +

1

3

(

c
O
j+1

)3
)

=
sO
∑

i=1

b
{s}⊺
i

i−1
∑

j=1

(

1

3

(

c
O
j

)2
c
O
j+1 +

1

3
c
O
j c

O
j+1c

O
j+1 +

1

3

(

c
O
j+1

)3
)

−

(

1

3

(

c
O
j

)2
c
O
j +

1

3
c
O
j c

O
j+1c

O
j +

1

3

(

c
O
j+1

)2
c
O
j

)

=
sO
∑

i=1

b
{s}⊺
i

i−1
∑

j=1

(

✘✘✘✘✘1

3

(

c
O
j

)2
c
O
j+1 +

❳❳❳❳❳
1

3
c
O
j c

O
j+1c

O
j+1 +

1

3

(

c
O
j+1

)3
)

−

(

1

3

(

c
O
j

)2
c
O
j +✘✘✘✘✘1

3
c
O
j c

O
j+1c

O
j +

❳❳❳❳❳
1

3

(

c
O
j+1

)2
c
O
j

)

=

sO
∑

i=1

b
{s}⊺
i





i−1
∑

j=1

1

3

(

c
O
j+1

)2
−

1

3

(

c
O
j

)2
c
O
j





=
sO
∑

i=1

b
O
i





i−1
∑

j=1

1

3

(

c
O
j+1

)3
−

1

3

(

c
O
j

)2
c
O
j





=
sO
∑

i=1

b
O
i





i
∑

j=2

1

3

(

c
O
j

)3
−

i−1
∑

j=1

1

3

(

c
O
j

)2
c
O
j





=
sO
∑

i=1

b
O
i







1

3

(

c
O
i

)3
−
✟✟✟✟✯

0
1

3

(

c
O
1

)3







=
1

3

sO
∑

i=1

b
O
i

(

c
O
i

)3
=

1

3

(

1

4

)

=
1

12

Some order conditions follow from the proof for Equation (2.42) directly.

b{s}⊺A{s,s}A{s,f}c{f} =
s
∑

i=1

b
{s}⊺
i A

{s,s}
ij

1

2

(

c
{s}
j

)2

=
1

2
b{s}⊺A{s,s}

(

c
{s}
j

)2

=
1

2

1

12
=

1

24
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Final algebraic steps for showing Eq. (2.50) is automatically satisfied for the fmGARK
strucuture are omitted.

Eq.(2.50) =⇒ b
{s}⊺

A
{s,f}

A
{f,f}

c
{f}

= b
{s}⊺

A
{s,f}











































































cO2 AI
1

cO2 b
I
1

.

.

.

(

cO3 − cO2

)

AI
2

.

.

.

(

cO3 − cO2

) (

b
I
2

)

⊺

.

.

.

.

.

.

(

cO4 − cO3

)

AI
3

.

.

.

cO2

(

b
I
1

)

⊺

.

.

.

(

cO3 − cO2

) (

b
I
2

)

⊺

(

cO4 − cO3

) (

b
I
3

)

⊺

.

.

.

(

cO4 − cO3

) (

b
I
3

)

⊺

(

1 − cO4

)

AI
4











































































∗ c
{f}

= b
{s}⊺

























0 · · · · · · 0

cO2

(

b
I
1

)

⊺
0 · · · 0

cO2

(

b
I
1

)

⊺
(

cO3 − cO2

) (

b
I
2

)

⊺

0 0

cO2

(

b
I
1

)

⊺
(

cO3 − cO2

) (

b
I
2

)

⊺
(

cO4 − cO3

) (

b
I
3

)

⊺

0

























×























cO2 AI
1c

O
2 c

I
1

cO2

(

b
I
1

)

⊺

cO2 c
I
1 +

(

cO3 − cO2

)

AI
2

(

cO2 1 +
(

cO3 − cO2

)

c
I
2

)

cO2

(

b
I
1

)

⊺

cO2 c
I
1 +

(

cO3 − cO2

) (

b
I
2

)

⊺
(

cO2 1 +
(

cO3 − cO2

)

c
I
2

)

+
(

cO4 − cO3

)

AI
3

(

cO3 1 +
(

cO4 − cO3

)

c
I
3

)

cO2

(

b
I
1

)

⊺

cO2 c
I
1 +

(

cO3 − cO2

) (

b
I
2

)

⊺
(

cO2 1 +
(

cO3 − cO2

)

c
I
2

)

+
(

cO4 − cO3

) (

b
I
3

)

⊺
(

cO3 1 +
(

cO4 − cO3

)

c
I
3

)

+
(

1 − cO4

)

AI
4

(

cO4 1 +
(

1 − cO4

)

c
I
4

)























= b
{s}⊺

























0 · · · · · · 0

cO2

(

b
I
1

)

⊺
0 · · · 0

cO2

(

b
I
1

)

⊺
(
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) (

b
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⊺

0 0

cO2

(

b
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1

)

⊺
(
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) (

b
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2

)

⊺
(

cO4 − cO3

) (

b
I
3

)

⊺

0

























×























(

cO2

)2
AI

1c
I
1

1
2

(

cO2

)2
1 +

(

cO3 − cO2

) (
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I
2 +

(
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)
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2c

I
2

)

1
2

(

cO2

)2
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2

(
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)
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(
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cO3 c
I
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(
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3c

I
3
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1
2

(
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)2
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2

(
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2

(
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cO4 c
I
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I
4

)























= b
{s}⊺























0

(
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)3 1
6

1
6
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)3

1
6

(

cO4

)3























=
1

6
b
{s}⊺

(

c
{s}

)3
=

1

6

1

4
=

1

24
because outer method is fourth order and inner method is at least third order
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Finally, we consider equation for satisfying the coupling condition Equation (2.51) can

be simplified for a 4-stage outer method as follows.

b
s⊺

A
s,f

A
f,s

c
s

= b
O
2

(

cO2
2

(

e
⊺

2

)

AO c
O
)

+ b
O
3

((

cO2

2

(

e
⊺

2

)

A
O

+
(

c
O
3 − c

O
2

)

(

e
⊺

2A
O

+
1

2

(

e
⊺

3 − e
⊺

2

)

A
O
)

)

c
O

)

(3.26)

+ b
O
4

((

cO2

2

(

e
⊺

2

)

A
O

+
(

c
O
3 − c

O
2

)

(

e
⊺

2A
O

+
1

2

(

e
⊺

3 − e
⊺

2

)

A
O
)

+
(

c
O
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O
3

)
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e
⊺

3A
O

+
1

2

(

e
⊺

4 − e
⊺

3

)

A
O
)

)

c
O

)

(3.27)

=

(

(

b
O
2 + b

O
3 + b

O
4

)

(

cO2

2

)

+

(

1 −
1

2

)

b
O
3

(

c
O
3 − c

O
2

)

+

(

1 −
1

2

)

b
O
4

(

c
O
3 − c

O
2

)

)

(

e
⊺

2

)

A
O
c
O

(3.28)

+

(

b
O
3

(

c
O
3 − c

O
2

) 1

2
+ b

O
4

(

c
O
3 − c

O
2

) 1

2
+ b

O
4

(

c
O
4 − c

O
3

)

(

1 −
1

2

))

(

(

e
⊺

3

)

A
O
)

c
O

(3.29)

+ b
O
4

(

c
O
4 − c

O
3

)

(

1

2

(

e
⊺

4

)

A
O
)

c
O

(3.30)

=

(

(

b
O
2 + b

O
3 + b

O
4

)

(

cO2

2

)

+

(

1

2

)

b
O
3

(

c
O
3 − c

O
2

)

+

(

1

2

)

b
O
4

(

c
O
3 − c

O
2

)

)

(

e
⊺

2

)

A
O
c
O

(3.31)

+

(

b
O
3

(

c
O
3 − c

O
2

) 1

2
+ b

O
4

(

c
O
3 − c

O
2

) 1

2
+ b

O
4

(

c
O
4 − c

O
3

)

(

1

2

))

(

(

e
⊺

3

)

A
O
)

c
O

(3.32)

+ b
O
4

(

c
O
4 − c

O
3

)

(

1

2

(

e
⊺

4

)

A
O
)

c
O

(3.33)

=

(

(

b
O
2

)

(

cO2

2

)

+

(

1

2

)

b
O
3

(

c
O
3

)

+

(

1

2

)

b
O
4

(

c
O
3

)

)

(

e
⊺

2

)

A
O
c
O

(3.34)

+

(

b
O
3

(

c
O
3 − c

O
2

) 1

2
+ b

O
4

(

−c
O
2

) 1

2
+ b

O
4

(

c
O
4

)

(

1

2

))

(

(

e
⊺

3

)

A
O
)

c
O

(3.35)

+ b
O
4

(

c
O
4 − c

O
3

)

(

1

2

(

e
⊺

4

)

A
O
)

c
O

(3.36)

=

























(

(

bO2

)

(

cO2
2

)

+
(

1
2

)

bO3

(

cO3

)

+
(

1
2

)

bO4

(

cO3

)

)

(

bO3

(

cO3 − cO2

)

1
2

+ bO4

(

−cO2

)

1
2

+ bO4

(

cO4

) (

1
2

))

bO4

(

cO4 − cO3

) (

1
2

(

e
⊺

4

)

AO
)

cO




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




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(3.37)

=

























(

(

bO2

)

(

cO2
2

)

+
(

1
2

)

bO3

(

cO3

)

+
(

1
2

)

bO4

(

cO3

)

)

(

bO3

(

cO3 − cO2

)

1
2

+ bO4

(

−cO2

)

1
2

+ bO4

(

cO4

) (

1
2

))

bO4

(

cO4 − cO3

) (

1
2

)






















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=
1

2























0

((

bO2

) (

cO2

)

+ bO3

(

cO3

)

+ bO4

(

cO3

))

(

bO3

(

cO3 − cO2

)

+ bO4

(

−cO2

)

+ bO4

(

cO4

))

bO4

(

cO4 − cO3

)























⊺

A
O
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O

(3.39)

This simplification of the slow fmGARK order condition which is not automatically

satisfied gives us a specific condition on the outer method which forces the not-automatically

satisfied condition regarding b{s} to be satisfied. Now that we have introduced the fmGARK

structure and given a basic idea of how the RFSMR can be implemented in the fmGARK

context, we will discuss in the following chapter the development and properties of our new

specific fmGARK methods.
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Chapter 4

Proposed Relaxed MIS methods and comparative fmGARK methods

We will distinguish these different types of fmGARK methods by choosing b̂{f} to target

a specific objective. This choice does not change the intermediate stage solutions within the

fmGARK step, but does alter how those stage solutions are glued together to generate the

final step solution.

In order to uniquely determine a fmGARK method, we must choose the base inner

method and the base outer method, as well as make a choice about the method’s targeted

time-scale separation. These choices determine the structure detailed in Section 3.2. For our

implementations, we relied on Butcher’s derivation of families of explicit 3rd order and 4th

order base Runge-Kutta methods [5]. The form of these 3-stage and 4-stage Runge-Kutta

methods were derived in another form by Runge and Konig in 1924 [40]. According to Hairer,

the original form may be included in a publication by Kutta from 1901 [22]. These tables

are reproduced below for convenience.

Explicit 2-stage RK method:

0

c2 c2

1 − 1
2c2

1
2c2

.

Explicit 3-stage RK method for c2 6= 0 6= c3 6= c2 6= 2
3

0

c2 c2

c3
c3

(

3c2−3c22−c3

)

c2(2−3c2)
c3(c3−c2)
c2(2−3c2)

−3c3+6c2c3+2−3c2
6c2c3

3c3−2
6c2(c3−c2)

2−3c2
6c3(c3−c2)

.

Explicit 3-stage RK method for c2 = c3 = 2
3
, b3 6= 0:

0

2
3

2
3

2
3

2
3

− 1
4b3

1
4b3

1
4

3
4

− b3 b3

.
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Explicit 4-stage RK method satisfying condI:

0

1 − c3 1 − c3

c3
c3(1−2c3)
2(1−c3)

c3
2(1−c3)

1
12c33−24c23+17c3−4

2(1−c3)
(

6c3−1−6c23

)

c3(1−2c3)

2(1−c3)
(

6c3−1−6c23

)

1−c3
(

6c3−1−6c23

)

6c3−1−6c23
12c3(1−c3)

1
12c3(1−c3)

1
12c3(1−c3)

6c3−1−6c23
12c3(1−c3)

.

Explicit 4-stage RK method satisfying condII:

0

c2 c2

1
2

1
2

− 1
8c2

1
8c2

1 1
2c2

− 1 − 1
2c2

2

1
6

0 2
3

1
6

.

Explicit 4-stage RK method satisfying condV:

0

1
2

1
2

1
2

1
2

− 1
6b3

1
6b3

1 0 1 − 3b3 3b3

1
6

2
3

− b3 b3
1
6

.

Butcher also derives a general solution for a 3-stage third order explicit Runge-Kutta

method which depends only on two free variables, c2 and c3.

0

c2 c2

c3
c3(3c2−3c22−c3)

c2(2−3c2)
c3(c3−c2)
c2(2−3c2)

−3c3+6c2c3+2−3c2
6c2c3

3c3−2
6c2(c3−c2)

2−3c2
6c3(c3−c2)

(4.1)
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Butcher also derives a general solution for a 4-stage fourth order explicit Runge-Kutta

method which depends only on two free variables, c2 and c3.

a21 = c2, (4.2)

a31 =
c3 (c3 + 4c22 − 3c2)

2c2 (2c2 − 1)
, (4.3)

a32 = −
c3 (c3 − c2)

2c2 (2c2 − 1)
, (4.4)

a41 =
−12c3c22 + 12c23c

2
2 + 4c22 − 6c2 + 15c2c3 − 12c23c2 + 2 + 4c23 − 5c3
2c2c3 (−4c3 + 6c3c2 + 3− 4c2)

, (4.5)

a42 =
(c2 − 1) (4c23 − 5c3 + 2− c2)

2c2 (c3 − c2) (−4c3 + 6c3c2 + 3− 4c2)
, (4.6)

a43 = −
(2c2 − 1) (c2 − 1) (c3 − 1)

c3 (c3 − c2) (−4c3 + 6c3c2 + 3− 4c2)
, (4.7)

b1 =
6c3c2 − 2c3 − 2c2 + 1

12c3c2
, (4.8)

b2 = −
(2c3 − 1)

12c2 (c2 − 1) (c3 − c2)
, (4.9)

b3 =
(2c2 − 1)

12c3 (c2 − c3c2 + c23 − c3)
, (4.10)

b4 =
−4c3 + 6c3c2 + 3− 4c2
12 (c3 − 1) (c2 − 1)

. (4.11)

When specifying a method to implement, choosing the b̂{f} is related to how we choose

these base methods.

4.1. Same strategy: RFSMR or MIS

As defined in Section 2.4 and briefly mentioned in Section 3.2, the RFSMR approach

and MIS methods can be represented using the fmGARK structure we have defined. This

essentially chooses b
{f,i}
p = bIp

(

cOi+1 − cOi
)

i = 1, . . . , sO, ; p = 1, . . . , sI . This strategy for

gluing together the final step solution uses the same strategy as for determining the fast

stage solutions. Conceptually, it sets up fast integration problem between τi,1 = c
{O}
s{O},

the final stage time and τi+1,1 = 1, where the final step solution is calculated. It uses a

source term made out of the slow function data, such as ri =
∑i−1

j=1

(

aOij − aOi−1,j

)

f {s}
(

k
{s}
j

)

.

The corresponding ODE setup is ∂k{f,i}

∂τ
= 1

cOi −cOi−1
ri + f {f} (k{f,i}) , τ ∈ [τi,1, τi+1,1] , i =
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2, . . . , sO + 1. This is shown in psuedocode in Algorithm 3 when flagCase is equal to 1.

When considering the method order, we can draw from the fmGARK slow order condi-

tions and from previous literature as referenced in Section 2.4 which yields Equation (2.56).

Methods of this type are at worst second order methods. For an inner method which has

four stages or less, methods of this type are at worst second order and at best third order.

Given a 3-stage RK method defined by Equation (4.1), Equation (4.12) gives the two

choices of c2 which will force the RK method to automatically satisfy (2.28).

c2 =











































(2(c43 − 5c33 +
21
4
c23 − 11

6
c3 +

1
4
)(1/2) − c3 + 2c23 + 1)/(4c3)

for c3 6= 0 and c3 6= 2/3 and 0 ≤ 12c43 − 60c33 + 63c23 − 22c3 + 3

−(c3 + 2(c43 − 5c33 +
21
4
c23 − 11

6
c3 +

1
4
)(1/2) − 2c23 − 1)/(4c3)

for c3 6= 0 and 0 ≤ 12c43 − 60c33 + 63c23 − 22c3 + 3

(4.12)

A specific example of a 3-stage RK method method from the literature which we will

reference in future tests is the three-stage third order method where c = [0, 1/3, 3/4] orig-

inally proposed by Knoth and Wolke. This method, reproduced below as Equation (4.13)

automatically satisfies (2.28). We will reference Equation (4.13) later when we test our

methods.

KW3 :

0 0 0 0

1
3

1
3

0 0

3
4

−3
16

15
16

0

1
6

3
10

8
15

(4.13)

Given a 4-stage RK method defined by Equations (4.2) -(4.11), Equation (4.14) must be

satisfied in order for the RK method to automatically satisfy (2.28).

−3(c2 − 1)(6c22c
2
3 − 4c22c3 − 6c2c

3
3 + 8c2c

2
3 − 11c2c3 + 6c2 + 4c33 − 7c23 + 7c3 − 3)

+ 2(2c2 − 1)(4c2 + 4c3 − 6c2c3 − 3) = 0 (4.14)
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The solutions to Equation (4.14) are plotted in Figure 4.1. Note that for the RFSMR

and MIS methods the higher order error terms may differ based on the base methods chosen

and the time-scale separation. Although our implementation pseudocode only considers the

case where the inner method is explicit, it is not a necessary assumption in order for a

RFSMR method which satisfies Equation (2.28) to be third-order.

4.2. Relaxed Multirate Infinitesimal Step Methods: preserves linear invariants

The target objective for the Relaxed Multirate Infinitesimal Step (RMIS) method is to

create a fully fourth-order accurate method which is defined generically in terms of the

time-scale separation m. We accomplish this by considering a variation on the so-called

mass-preserving extension Schlegel’s dissertation proposes which preserves linear invariants

[49]. Schlegel proposes expanding A{s,s} and b{s} by inserting redundant zero columns to

force b{s} and b{f} to have the same dimension. He then proposes a general form with

b
{s}
j = b

{f}
j = ωb

{f}
j + (1− ω)b

{s}
j . Schlegel’s dissertation claims that if b

{s}
j = b

{f}
j = b

{s}
j

is chosen that stability is reduced, but does not provide any supporting results. Schlegel also

demonstrates some examples where choosing ω 6= 0 can introduce extra computational work

by requiring extra function calls of the slow function. A disadvantage of Schlegel’s approach

for these methods is that his tripartite splitting which increased the efficiency of his methods

is not easily extendable with the “extended partitioned methods.” Schelegel’s dissertation

includes a preliminary proof that this mass preserving extension is third order if and only if

the original RFSMR it is based on is third order.

We develop the Relaxed Multirate Infinitesimal Step Method after we attempt to examine

the properties of b̂{f}A{f,f}A{f,s}c{s} = 1
24

and whether there are any consistent features of

b̂{f} regardless of time-scale separation and base method selection. In order to do this,

we reduce the number of non-zero elements we allow b̂{f} to have while solving the order

conditions as a linear system which is linear in b̂{f} as in Equation (2.53) and Equation

(2.54). This leads to the observation that when the stage times match for the fast and the

slow method, and we use the same b weights for the final step, we can automatically solve
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Figure 4.1. Choices of c2 and c3 on these lines result in the 3rd order RFMSR method,

otherwise the method is 2nd order
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the linear system of order conditions.

The RMIS method yields b{f} with the embedding b̃{f} :

b{f,l}p =















bOl−1 p = 1

0 p = 2, . . . , sIl−1

, l = 2, . . . , sO, sO + 1

b̃{f,l}p =















b
I
sO

p

(

cOl − cOl−1

)

l = 2, . . . , sO,

b
I
sO

p

(

1− cOsO
)

l = sO + 1,

, p = 1, . . . , sIl−1.

An example of how we implement this is with the pseudocode from Section 3.3, by choosing

to use Algorithm 5 instead of Algorithm 3.

Algorithm 5: Solution update for RMIS

Data: f
{f,i}
1,...,s{I}

,f
{s}
1,...,s{O},h, i , k , flagCase ,T {I},TO

; // i.e. TO =⇒ A{O},b{O}, c{O}, s{O} and T I =⇒ A{I},b{I}, c{I}, s{I}

Result: y , ỹ , k̂
{f,✄i}
1

1 if flagCase == 0 ; // Incremental solution updates within macro-step

2 then

3 k̂
{f,✄i}
1 = k̂

{f,✄i}
1 +

∑sI

j=1 h

(

(c
{O}
i+1 −c

{O}
i )

ni
(b

{Ik}
j )

)

f
{f,✄i}
j ;

4 else if flagCase == 1 ; // Final solution updates

5 then

6 ỹ = k̂
{f,✄i}
1 +

∑sI

j=1 h

(

(c
{O}
i+1 −c

{O}
i )

ni
(b

{Ik}
j )

)

f
{f,✄i}
j ;

7 ỹ = ỹ +
∑sO

j=1 h
(

(b
{O}
j )

)

f
{s}
j ;

8 y = y +
∑sO

j=1 h
(

(b
{O}
j )

)

f
{s}
j ;

9 else

; // Incremental solution updates occurring once per slow stage

10 y = y + h(b
{Ik}
i )f

{f,✄i}
1 ;
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As we mentioned previously, the fast order condition from Equation (2.37) partially

motivates the design decisions in formulating the RMIS type of multirate method. For

thoroughness, we now consider all the fast order conditions for this particular type of b{f}.

In Section 3.4 we show the conditions required for all slow order conditions to be satisfied,

including Equation (3.39). For the Relaxed Multirate Infinitesimal Step methods, the fast

order conditions Equations (2.24)-(2.37) either reduce to classical conditions on the inner

method which can be satisfied by original assumptions of a certain order for the inner method,

or reduce to the slow order conditions on b{s}, Equations (2.38)-(2.51). We get this result for

the RMIS automatically when the first stage of the inner base method is explicit since this

causes b{f}A{f,f} = b{s}A{s,f} and b{f}A{f,s} = b{s}A{s,s}. For an RMIS method where the

first row of A{I} which is equal to zero, b{s}A{s,f} = b{s}A{s,s} and b{f}A{f,f} = b{f}A{f,s}.

This means that if we satisfy the order conditions regarding b{s}, we force the order conditions

regarding b{f} to be satisfied by construction of the RMIS method. We have not examined

the fast order conditions for an RMIS method without this assumption. Therefore, without

the assumption that the first stage of the inner method is explicit, we can only guarantee

that an RMIS method is second order. This means that in order for an RMIS method to

be fourth order, the first stage of the inner method must be explicit, the inner method must

be at least third order, the outer method must be at least fourth order, and the condition

derived in Equation (3.39) must be satisfied.

Given a 4-stage RK method defined by Equations (4.2) -(4.11), Equations (4.15)-(4.16)

give the two choices of c2 which will force the RK method to automatically satisfy (2.51).

The solutions to Equations (4.15)-(4.16) are plotted in Figure 4.2.

c2 = −
−6c23 +

√

36c43 − 120c33 + 80c23 − 12c3 + 1 + 2c3 − 3

4(3c3 + 1)
, c3 ∈ (0, 3/4] (4.15)

c2 =
6c23 +

√

36c43 − 120c33 + 80c23 − 12c3 + 1− 2c3 + 3

4(3c3 + 1)
, c3 ∈ (0, 3/4] (4.16)
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We generally only consider base methods with non-decreasing stage times, that is ci+1 ≥

ci. Listed below are the three methods based on Butcher’s specific cases which satisfy the

condition on the outer base method in order to generate a 4-stage fourth order RMIS method

[5].

Case I Case II Case V

0 0 0 0 0

1
3

1
3

0 0 0

2
3

−1
3

1 0 0

1 1 −1 1 0

1
8

3
8

3
8

1
8

0 0 0 0 0

1
5

1
5

0 0 0

1
2

−1
8

5
8

0 0

1 3
2

−5
2

2 0

1
6

0 2
3

1
6

0 0 0 0 0

1
2

1
2

0 0 0

1
2

−1
2

1 0 0

1 0 1
2

1
2

0

1
6

1
2

1
6

1
6

We will reference Equation (4.17) later when we test our methods.

3/8− Rule :

0 0 0 0 0

1
3

1
3

0 0 0

2
3

−1
3

1 0 0

1 1 −1 1 0

1
8

3
8

3
8

1
8

(4.17)

Note that for the RMIS the higher order error terms will only differ due to the base

methods chosen, and will not be affected by the time-scale separation.

4.3. Optimized methods

Rather than approaching the choice of b{f} in a general way, we can also consider op-

timizing for specific base methods, time scale separations, and objectives. The fmGARK

order conditions are related to the local truncation error terms in a similar fashion that a
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Figure 4.2. Choices of c2 and c3 on these lines result in the 4th order RMIS method, otherwise

the method is 3rd order
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standard RK order condition relates to the local truncation error terms. In order to ap-

proach this optimization problem, we consider representing the fmGARK order conditions

as a system of equations linear in b{f}, A4b
{f} = r4 for the order conditions up to order

4 as in Equation 2.53, and A5b
{f} = r5 for the 39 additional order conditions required for

order 5 as in Equation 2.54. The RMIS method described in Section 4.2 is an example of the

existence of a solution to the linear system formulation of the third-order conditions with

b̂{f}. If the conditions for a fourth-order RMIS are met, then there exists a solution to the

linear system formulation of the fourth-order conditions with b̂{f}. Given that we have a

solution to a set of order conditions, we look for a solution to the linear system formulation

of the fourth-order conditions with b̂{f} = b{f} + Wα, α ∈ R39. W is a matrix whose

columns are the basis vectors for Nul (A4). We set up a minimization problem to determine

our optimized method,

min
α

∥

∥

∥

∥

∥

∥

∥

∥









r4

r5
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



−









A4

A5









b{f}

∥

∥

∥

∥

∥

∥

∥

∥

2

= min
α∈R39

∥

∥

∥

∥

∥

∥

∥

∥









r4

r5









−









A4

A5









(b+Wα)

∥

∥

∥

∥

∥

∥

∥

∥

2

(4.18)

= min
α∈R39

∥

∥

∥

∥

∥

∥

∥

∥









r4

r5









−









A4

A5









b{f} −









A4

A5









Wα

∥

∥

∥

∥

∥

∥

∥

∥

2

(4.19)

= min
α∈R39

∥

∥

∥

∥

∥

∥

∥

∥









0

r5









−









0

A5b
{f}









−









0

A5Wα









∥

∥

∥

∥

∥

∥

∥

∥

2

(4.20)

= min
α∈R39

∥

∥r5 − A5b
{f} −A5Wα

∥

∥

2
(4.21)

We developed methods using Matlab’s built in optimization methods in order to minimize

the fifth-order error terms. We investigate whether weighting optimization so that the linear

system accounted for differences between the elementary weights. Our objective function

(4.21) is wrapped with another function which ensures we only optimize over the bf com-

ponents which are non-zero for the RFSMR. Our initial guess is a vector of zeros, we use

fminsearch on Matlab version R2015b with the following options set: TolFun=1e-9,TolX=1e-
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9,MaxIter=250000,MaxFunEvals=250000. The iteration limiting is set to a high value so

that the optimization ends when a local minimum is found. Regardless of how we set up our

optimization problem for choosing b
{f}
p , we developed an algorithm which is aware of how

those b
{f}
p line up with each fast sub-step.

An example of how this could be implemented with the pseudocode from Section 3.3 is

by choosing to use Algorithm 6 instead of Algorithm 3.

Algorithm 6: Solution update for fmGARK

Data: f
{f,i}
1,...,s{I}

,f
{s}
1,...,s{O},h, i , k , flagCase , b{f} ,T {I},TO

; // i.e. TO =⇒ A{O},b{O}, c{O}, s{O} and T I =⇒ A{I},b{I}, c{I}, s{I}

Result: y , ỹ , k̂
{f,✄i}
1

1 if flagCase == 0 ; // Incremental solution updates within macro-step

2 then

3 k̂
{f,✄i}
1 = k̂

{f,✄i}
1 +

∑sI

j=1 h

(

(c
{O}
i+1 −c

{O}
i )

ni
(b

{Ik}
j )

)

f
{f,✄i}
j ;

4 p = (i− 1) ∗ ni ∗ sI + (k − 1) ∗ sI ;

5 y = y +
∑sI

j=1 h(b
{f}
p+j)f

{f,✄i}
j ;

6 else if flagCase == 1 ; // Final solution updates

7 then

8 ỹ = k̂
{f,✄i}
1 +

∑sI

j=1 h

(

(c
{O}
i+1 −c

{O}
i )

ni
(b

{Ik}
j )

)

f
{f,✄i}
j ;

9 ỹ = ỹ +
∑sO

j=1 h
(

(b
{O}
j )

)

f
{s}
j ;

10 p = (i− 1) ∗ ni ∗ sI + (k − 1) ∗ sI ;

11 y = y +
∑sI

j=1 h(b
{f}
p+j−sI

)f
{f,✄i}
j ;

12 y = y +
∑sO

j=1 h
(

(b
{O}
j )

)

f
{s}
j ;
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4.4. Comparisons

We can compare the restrictions for the outer method on the RFSMR and on the RMIS in

Figure 4.3. This allows a visual confirmation that there are two 4-stage explicit RK methods

which yield a 3rd order RFSMR and a 4th order RMIS. We can also compare the types

of coefficents available if we require c3 ≥ c2. A strong contribution of the new fmGARK

structure, and especially of the RMIS methods we developed is that the order of accuracy

will be at least as good, and sometimes better than the existing RFSMR and MIS methods.

Another benefit of these newly developed methods is the opportunity to use the RFSMR

as an embedding for estimation of the local truncation error. Having an approximation

of the error allows us to evaluate how to choose our step size as we proceed through the

integration. It also can allow for adaptive splittings, especially for component-wise splittings

where certain components can be marked as fast or slow based on whether the current

time-scale separation target of the method is appropriate for the amount of error found.
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3
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c
3

Figure 4.3. Choices of c2 and c3 on these lines result in the higher order method, otherwise

the method is lower order
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Chapter 5

Numerical Tests: Observed Order

In this work, we consider three test problems, the inverter-chain problem, a stability system

problem, and the brusselator. These numerical tests are meant to verify the correctness

of our software implementation, and to compare our computational results against their

theoretically expected orders of convergence. The numerical tests also allow us to perform

efficiency comparison tests, where we use metrics based on typical error norms and use

function calls to define the cost of the integration.

5.1. Test Problems

In the following 3 subsections, we will briefly describe each of the three test problems. We

include the application-based and mathematical motivation. We specify the system of ODEs

and the fast/slow partitioning. We indicate the time-scale separation of the test problem.

5.1.1. Inverter-chain Test Problem

The inverter-chain problem is so named because it models a chain of MOSFET (metal

oxide semiconductor field effect transistor) inverters. These inverters transforms a signal from

0 to 1 and from 1 to 0. This physical model is appropriate because it is regularized, tunable,

and scalable [18]. The solutions are very regular, and approach equilibrium points. It was

first described from a physical perspective in Kværno and Rentrop’s 1999 paper [34], which

also gives a mathematical model which is formulated as a partitioned system of ordinary

differential equations. The specific system of ODEs that we use to exercise our multirate

methods is primarily based on Kværno and Rentrop’s 1999 paper, although a scaling term

is added as in the more recent test problem defined by Bartel and used by Constantinescu

and Sandu [2, 9].
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The mathematical model is based on Kirchoff’s laws, namely: Kirchoff’s current law

which states “At any node in an electrical circuit, the sum of the currents flowing into that

node is equal to the sum of the currents flowing out of that node” and Kirchoff’s voltage

law which states “The signed sum of the voltages around any closed circuit must be zero”.

Kværno identifies the following modeling principles for this setup:

• There are five basic elements: resistor, capacitor, inductor (in analogue circuits), volt-

age and current sources.

• The (non)linear controlled voltage or current source and the resistor describe the static

behavior.

• The (non)linear controlled capacitors or inductors describe the dynamic behavior. [34]

Specifically, a voltage controlled current source is selected in order to simplify the resulting

model. “The current source fits the drain current with respect to the gate voltage,”

IGS = IGD = IGB = 0, B : bulk, D : drain, G : gate, S : source,

IBD = IBS = 0,

IDS = K · g (yG, yD, yS) ,

where g is defined piecewise:

g (yG, yD, yS) = (max (yG − yS − yT , 0))
2 − (max (yG − yD − yT , 0))

2

The technical parameters are: K = 2 · 10−4 [AV −2] , yT = 1 [V] , yop = 5 [V] .

Applying Ohms law, assuming a constant capacitor and using y0 = 0 gives

y′1 = (yop − y1) / (RC)−K · g (yin, y1, y0) /C.

The runtime of this circuit is measured in nanoseconds, so we scale by a factor 109. Realistic

values for the resistor R = 5 · 103 and for the capacitor C = .2 · 10−12 we end up with the

normalized equation

y′1 = (yop − y1)− g (yin, y1, y0) .
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The output of an inverter can be fed as the gate-input of a next inverter and so on in order to

create an inverter chain[34]. We convert this into a partitioned problem by considering some

of the inverters as fast y
{f}
1,...,b = [y1, . . . ,yb] and the rest as slow y

{s}
1,...,ni−b = [yb+1, . . . ,yni

].

This component solution partitioning also partitions the differential equations.

[y′(t)]b+1,...,ni
=
[

y{s} (t)
]′
1,...,ni−b

= f {s} (t,y)

[y′(t)]1,...,b =
[

y{f} (t)
]′
1,...,b

= f {f} (t,y)

Substituting in the fast and slow functions as follows from the model, the following system

is obtained,[34]

[y′(t)]k =
[

y{s} (t)
]′
(k−b)

= (yop − yk (t))− g(yk−1(t), yk (t) , y0) for k = b+ 1, . . . , ni

[y′(t)]k =
[

y{f} (t)
]′
(k)

=















(yop − y1 (t))− g(yin (t) , y1 (t) , y0), k = 1

(yop − yk (t))− g((yk−1(t), yk (t) , y0), k = 2, ..., b.

One of the reasons this model was selected as a test problem is that the inverter-chain problem

is consistently used to exercise multirate methods for multiphysics applications which use

Runge-Kutta base methods [2, 9, 18, 24, 36, 47, 46, 48, 49, 54, 55]. In addition to the 1999

paper by Kværno and Rentrop, it has been extend by Günther and by Constantinescu to

be more tunable [9, 19, 17, 34]. Making a similar modification to the Kværno version of the

model adds a parameter γ which controls the strength of the forcing/source term g.

[y′(t)]k =
[

y{s} (t)
]′
(k−b)

= (yop − yk (t))− γg(yk−1(t), yk (t) , y0) for k = b+ 1, . . . , ni

[y′(t)]k =
[

y{f} (t)
]′
(k)

=















(yop − y1 (t))− γg(yin (t) , y1 (t) , y0), k = 1

(yop − yk (t))− γg((yk−1(t), yk (t) , y0), k = 2, ..., b.
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This tunable parameter makes determining the time-scale separation much more straight-

forward. We choose γ = 100 so that the maximum time-scale separation 100. Here, the

piecewise-constant forcing function yin(t) is defined as

yin(t) =















0 0 ≤ t < 5,

t− 5 5 ≤ t ≤ 10.

We integrate this problem from 0 ≤ t ≤ 7, and have chosen our forcing function as in [34].

For our tests, we choose our partitioning so that the fast components are the first b = 3

components (which correspond to the first 3 inverters) out of ni = 100. In initial testing,

we selected b = 20 based on Günther’s claim that over the entire time integration interval,

there are about 20 active inverters, with a large latent part[18]. However, perhaps due to

the solutions appearing to follow a boundary layer in the beginning of the time integration

interval, this proved unstable for some larger choices of the time-step size, such as h = .01.

The distinction between which components we mark as fast and which are marked as slow

is shown in Figure 5.1. For added detail, we note the importance of using a suitable time-

step, especially when the solutions are first diverging from the boundary layer as shown in

Figure 5.2

Kværno and Rentrop develop their component-based partitioning for this system adap-

tively throughout the integration window. Each component is marked stiff or non-stiff, and

also marked as partitioned into a latent (slow) or active (fast) component. To summarize

their partitioning strategy, first new step sizes are proposed for all active components using

two different error approximations, then components where the more stable approximation

suggests a larger step size is required are marked as stiff, then based on the active proposed

time-steps and the stiff marking, a macro step size is proposed for the latent components,

then this macro step is compared with the proposed fast step sizes in order to find an integer

time-scale separation m. This inverter chain problem and it’s adaptivity strategy for time-

step selection motivate our future goal of developing time-step adaptivity selection based on

using Algorithm (3) to create an embedded solution to compare against our Algorithm (5)

solution.
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Figure 5.1. Solutions for the inverter chain problem with ni = 100: Dotted lines represent

the fastest components, while thick lines represent the slowest, i.e. y1 is the blue dotted

curve at the top-left and y100 remains at the value 2.5 at the final time, t = 7.
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Figure 5.2. Small differences in the initial integration solution may result in disparate solu-

tion values
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5.1.2. Kuhn Linear Test Problem

This test problem was chosen because it demonstrates a strongly-coupled problem which

is linear. This is meant to exercise the performance of the error terms which correspond

to the coupling matrices A{f,s} and A{s,f}. Kuhn and Lang proposed the following two-

component initial value problem when examining the linear stability of a multirate system

with a splitting [31]:









[

y{f} (t)
]′

[

y{s} (t)
]′









=









−5 −1900

5 −50

















y{f} (t)

y{s} (t)









, t ∈ [0, 1] , (5.1)









y{f}(0)

y{s}(0)









=









1

1









.

Kuhn and Lang reference the ratio of the off-diagonal entries as a measure of the stiffness

of the system, κ = 10 for this particular method, which follows the original description by

Kværno [31, 33]. Constantinescu and Sandu rescale their interpretation of the 2 × 2 linear

stability problem, and measure the time-scale separation by dividing the diagonal entries,

and assume that a11/a22 > 1 [9]. Although this problem is linear, there is an interesting

multirate structure in that y{f} (t) has a faster time-scale mainly based on the coupled data

from y{s} (t). In order to transform Equation (5.1) into a form similar to scaled problem

Constantinescu and Sandu propose, the order of the equations and the solution vector must

be scaled. Equations (5.2)-(5.4) show this transformation using the assumption Kuhn and

Lang make about which component is slow and which is fast. Equations (5.5)-(5.6) show

this transformation respecting the assumption Constantinescu and Sandu make about how

the diagonal elements of a linear system determine which components are fast and which

components are slow. The eigenvalues of this system are complex conjugates, −55
2
± 5

2

√
1439,

indicating that the solutions to this problem are oscillatory and rapidly decay to zero, as

shown below in Figure 5.3.
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Figure 5.3. Solutions for the Kuhn test problem (5.1): note that the second compenent

reaches equilibrium much more rapidly than, and does not vary by as much as, the first

component.
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







[

y{f} (t)
]′

[

y{s} (t)
]′









=









−5 −1900

5 −50

















y{f} (t)

y{s} (t)









, t ∈ [0, 1] , (5.2)









y{f}(0)

y{s}(0)









=









1

1









,









[

y{s} (t)
]′

[

y{f} (t)
]′









=









−50 5

−1900 −5

















y{s} (t)

y{f} (t)









(5.3)









y{s}(0)

y{f}(0)









=









1

1









,









[

y{ŝ} (t)
]′

[

y{f̂} (t)
]′









=









−1 1/10

−38 1/10

















y{ŝ} (t)

y{f̂} (t)









, t ∈ [0, 1] , (5.4)









y{f̂}(0)

y{ŝ}(0)









=









1/50

1/50









,









[

y{s̃} (t)
]′

[

y{f̃} (t)
]′









=









−10 1

−380 −1

















y{s̃} (t)

y{f̃} (t)









, t ∈ [0, 1] , (5.5)









y{f̃}(0)

y{s̃}(0)









=









1/5

1/5









.

5.1.3. Brusselator Test Problem

We consider a system of ordinary differential equations which captures some of the phys-

ical problems of the brusselator chemical reaction network problem first described as a 1D

PDE by Prigogine in 1967 [37]. More recent usages of this test problem have been seen in a
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multiphysics paper by Estep in 2008, and a general computational multiphysics review paper

in 2013 [12, 26]. Our version of the problem is a tunable two-rate initial-value problem rep-

resented as a system of Ordinary Differential Equations, [22]. It is very similar to the ODE

system Hairer proposed as a simplification from 6 derivative terms to 2 derivative terms [22].

For our system, we include y3 which has the fast initial transient, whereas Hairer neglects

this term [22]. It may be formulated as an additive problem as follows:

dy

dt
= f {f} + f {s}

=

















0

0

b−y3

ε

















+

















a− (y3 + 1)y1 + y2y
2
1

y3y1 − y2y
2
1

−y3y1

















=

















0

0

2.5−y3

10−2

















+

















1.2− (y3 + 1)y1 + y2y
2
1

y3y1 − y2y
2
1

−y3y1

















. (5.6)

We integrate over the interval 0 ≤ t ≤ 10, with the initial conditions y = [3.9, 1.1, 2.8].

Although a, b, and ε can be used to represent a variety of problems, we choose a = 1.2,

b = 2.5, and ε = 10−2. This is a model of a chemical reaction network with three different

reactants, where 5.6 defines the evolution of the concentrations. As shown in the partitioning,

the fast function f {f} contains the term which is scaled by ε. The problem time-scale

separation is approximately 1/ε = 102 = 100. With this particular choice of parameters and

initial conditions, the problem exhibits a sudden change in the solution at the start of the

simulation for t < 0.2, with slower variation for the remainder of the time interval, as shown

in Figure 5.4. Because our tests are carried out with a fixed macro time-step h, this slower

variation made our tests less sensitive to small variations after the initial sudden change.

This particular test also exercises the nonlinear error terms.
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Figure 5.4. Solutions for the Brusselator test problem (5.6): y3 initially rapidly approaches

b = 2.5, then varies slowly thereafter.
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5.2. Test Setup

In order to test our methods numerically, we implemented Algorithms 2-6 in MATLAB.

For these tests, we only consider explicit inner base methods and explicit outer base methods.

Specifically, we consider the 3-stage third order method with equally spaced stage times KW3

from Equation (4.13) and the 4-stage fourth order method with equally spaced stage times

3/8− Rule from Equation (4.17). The KW3 base method is of interest because the RFSMR

which used the KW3 as the inner and outer base method performed the best in our initial

comparative study, and because it is used in the literature for comparisons with newly

developed methods [29, 50, 49, 57]. We chose the 3/8− Rule method because it is generated

from one of the c2, c3 pairs for which a RFSMR method will be third order and a RMIS

method will be fourth order. This method also has the benefit of the stage times being equally

spaced, which simplifies determining how many subcycles are necessary between each slow

outer stage time in order to target a particular time-scale separation. It also has historical

significance because Runge and König include it in their 1924 book [40]. Given these two base

methods, we will use the previously mentioned test problems to investigate the convergence

and efficiency properties of the fmGARK method types enumerated in Chapter 4. As these

are explicit methods and we have not investigated efficient time-step adaptivity strategies

the tests here will use a fixed time-step h. We have chosen h values so that all step sizes

are the same, and the final time step ends at tF . Specifically, we choose h values so that

integration intervals of integer length would have an integer number of time-steps h between

t0 and tF .

h ∈{0.1, 0.05, 0.025, 0.0125, 0.01, 0.005, 0.0025, 0.00125, . . .

0.001, 0.0005, 0.00025, 0.000125, 0.0001, 0.00005, 0.000025, 0.0000125}
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To reiterate, the stage and solution values are represented by

k
{f}
j = yn + h

j−1
∑

l=1

a
{f,f}
jl f {f}

(

t+ c
{f}
l h, k

{f}
l

)

+ h
s{s}
∑

l=1

a
{f,s}
jl f {s}

(

t+ c
{s}
l h, k

{s}
l

)

,

k
{s}
i = yn + h

s{f}
∑

l=1

a
{s,f}
il f {f}

(

t + c
{f}
l h, k

{f}
l

)

+ h
i−1
∑

l=1

a
{s,s}
il f {s}

(

t + c
{s}
l h, k

{s}
l

)

,

yn+1 = yn + h
s{f}
∑

l=1

b
{f}
l f {f}

(

t + c
{f}
l h, k

{f}
l

)

+ h
s{s}
∑

l=1

b
{s}
l f {s}

(

t + c
{s}
l h, k

{s}
l

)

.

Specifically, we will show results for a total of five different combinations of these two

base methods with our three fmGARK method types each of which has its own specific

intermediate solution calculation and final step solution update as represented by Algo-

rithms 3-6. As stated in Section 3.3, the implementation we suggest requires that we store

maxs
{O}

i=1 s{Ii}+s{O}+2 vectors the size of our solution y. Note that Algorithm 6 requires the

storage of the entire vector bf , which is a vector the same length as the total number of fast

stage functions computed, whereas for the other two algorithms we must store only the inner

and outer base method. Algorithm 3 using the Knoth-Wolke 3 base method was chosen to

be used as a baseline to compare against which theoretically should demonstrate 3rd order

behavior. Algorithm 5 using the Knoth-Wolke 3 base method was chosen to demonstrate a

method where the outer base method assumptions for the RMIS method are not satisfied,

which theoretically should demonstrate 3rd order behavior. Algorithm 3 using the case I base

method was chosen to demonstrate a method where the outer base method assumptions for

the fmGARK slow order condition (2.51) are satisfied, but the underlying algorithm should

cause it to theoretically demonstrate 3rd order behavior. Algorithm 5 using the case I base

method was chosen to demonstrate a method where the outer base method assumptions for

the fmGARK slow order condition (2.51) are satisfied, and the underlying algorithm should

cause it to theoretically demonstrate 4th order behavior. Algorithm 6 using the case I base

method was chosen to demonstrate a method where the outer base method assumptions for

the fmGARK slow order condition (2.51) are satisfied, and the underlying algorithm should

cause it to theoretically demonstrate 4th order behavior.
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In order to evaluate the convergence and efficiency of these methods, we must derive an

exact solution to the test problems or compute a reference solution as appropriate. For the

Kuhn problem, we compute error by comparison against the analytical solution,









y1

y2









=









y{f}

y{s}









= e{−55 t
2}









cos
(

5
√
1439t
2

)

− 751√
1439

sin
(

5
√
1439t
2

)

cos
(

5
√
1439t
2

)

− 7√
1439

sin
(

5
√
1439t
2

)









.

For the inverter chain and brusselator test problems we compute error by comparison against

reference solutions. For these problems, we generated reference solutions by using the 12th

order accurate implicit Runge-Kutta Gauss method, taking fixed time-steps which are 4 times

smaller than the smallest h value tested for our multirate methods. Using these reference

and exact solutions, we can approximate or measure the error in the solution computed using

our method. Denote our computed solution at time tn = t0 + hn as yn,h and the reference

or exact solution at time tn = t0 + hn as yn,ref , our approximation for the method’s error at

tn = t0 + hn is

errn,h = yn,h − yn,ref .

The canonical root-mean-square norm modifies the vector two-norm by normalizing by the

number of observations to allow for a better comparison of error. Specifically, the vector

root-mean-squared norm for a vector v with N components is

‖v‖RMS =

(

1

N

N
∑

i=1

v2i

)1/2

=
1

N1/2
‖v‖2 .

We base our error metric for each method and for each h value on this norm. Note that our

bounds of integration are t ∈ [t0, tF ] with a fixed macro step size h. Therefore, the number

of error vectors calculated is tF−t0
h

. Equation (5.7) below shows how to compute RMSerror

as a metric which measures the error for a particular multirate method, h choice, and test

problem integrated for t ∈ [t0, tF ] based on the reference solutions.
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RMSerror =




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


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1/2

(5.7)

The TotalFunctionCalls metric for the efficiency analysis is based on tF−t0
h

: the number

of macro steps taken, ni : the number of fast step subcycles per slow stage, s{I} : inner base

method stages and s{O} : outer base method stages. Specifically, it adds the number of

outer base method stages which require a new slow function call to the number of inner base

method stages which require a new fast function call multiplied by the number of substeps

per slow stage.

TotalFunctionCalls =
tF − t0

h



s{O} +

s{O}
∑

i=1

s{I}ni





Note that tF−t0
h

(

s{O} +
∑s{O}

i=1 s{I}ni

)

= h ∗ tF−t0
h2

(

s{O} +
∑s{O}

i=1 s{I}ni

)

. Requiring the

first stage time c1 = 0 and the last stage time c4 = 1 is a necessary, but not sufficient

condition for Runge-Kutta methods which are explicit with four stages and satisfy the row-

sum assumption to be fourth order [22]. Because of the structure of the fmGARK method,

A{s{O},s{O}} is equal to the zero matrix because 1 − c(s{O}) = 0. So total function calls per

macro step for our particular methods which use \ref{1/3} are 4+(4∗33+4∗33+4∗33) = 400,

and which use 4.13 are 3 + (3 ∗ 35+ 3 ∗ 35+ 3 ∗ 35) = 318. The fast stage to slow stage ratio

for 4.17 is 408/4 = 102, and for 4.13 is 315/3 = 105.

5.3. Numerical Convergence and Efficiency Results

As stated in Section 5.2, the metrics we use to compute observed numerical order are the

fixed time-step size h, the RMS-norm based error metric RMSerror and the total number

of function calls TotalFunctionCalls. In order to investigate order of convergence, we

compare our metric RMSerror with h values for each of our test problems. We will present
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Table 5.1. Table of Method Efficiency Properties: The base method choice determines the

number of stages, and affects the ratio of fast stages to slow stages in the overall GARK

table.

Method Efficiency s{I} = s{O} s{f}/s{s}
(

s{O} +
∑s{O}

i=1 s{I}ni

)

Algorithm 6 w/ Base Method 4.17 4 102 400

Algorithm 5 w/ Base Method 4.17 4 102 400

Algorithm 5 w/ Base Method 4.13 3 105 318

Algorithm 3 w/ Base Method 4.17 4 102 400

Algorithm 3 w/ Base Method 4.13 3 105 318

tables of observed numerical order based on a least-squares fit of the h vs RMSerror data

where outliers are ignored, that is, we only include simulations for numerical order calculation

when 10−9 ≤ RMSerror ≤ 1. We also plot RMSerror vs h in order to examine convergence

behavior not captured by the best-fit line. To read the convergence plots, the slope on

the log-log plot corresponds to the order of convergence. As shown in Table 5.1, the cost

per macro time step h is affected by how many stages the base methods have. In order

to investigate the efficiency of these methods, we plot RMSerror vs TotalFunctionCalls.

These plots are meant to give a fairer comparison of efficiency and meant to be general. If a

user knew the relative cost of computing f {f} vs computing f {s}, a problem-specific metric

for efficiency could be developed. To read the efficiency plots, the most efficient method will

have a line that is furthest towards the bottom-left corner.

5.3.1. Inverter-chain Results

As we described in Subsection 5.1.1, the inverter-chain problem we’re interested in has

a multirate structure which exhibits weakly-coupled behavior between the time-scales. This
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test problem has boundary-layer behavior near the beginning of the time integration win-

dow. As described in Table 5.2, all methods tested had the expected order of accuracy

except for Algorithm 6 w/ Base Method 4.17. The order of accuracy plot Figure 5.5

Table 5.2. Table of Inverter-Chain Convergence: The order of accuracy is expected, although

our measure of observed order is limited by the inclusion of all results with error between 1

and 10−9

Multirate Method Expected Order Observed Order

Algorithm 6 w/ Base Method 4.17 4 1.74

Algorithm 5 w/ Base Method 4.17 4 4.07

Algorithm 5 w/ Base Method 4.13 3 2.93

Algorithm 3 w/ Base Method 4.17 3 2.98

Algorithm 3 w/ Base Method 4.13 3 2.98

shows that the points excluded from our best fit line calculation do not have substan-

tially increasing RMSerror for increasing h. Algorithm 6 w/ Base Method 4.17 initially (for

h ∈ { 0.05, 0.025, 0.0125) has a slope which is sharper than Algorithm 5 w/ Base Method

4.17, however for this pattern does not hold for the simulations with the smaller h values.

There’s a small increase in RMSerror and then the slope observed from RMSerror decreased

for h ∈ { 0.005, 0.0025, 0.00125, 0.001}, which could be taken to indicate convergence which

is at least 3rd order. Finally, the smallest h values tested have notably similar RMSerror

values, for h ∈ { 0.00025, 0.000125, 0.0001, 0.00005, 0.000025, 0.0000125}. Our speculation

for this unusual behavior is that the lack of structure in b{f} for this optimized method

caused the double-precision order to suffer for smaller h. We speculate that the method

performed at 4th order for larger h values, before the accumulated inaccuracy brought about

by this lack of structure caused one of the 4th order error terms to no longer be canceled
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out, resulting in the observed third order behavior. However, this method still converged to

a solution that is 10−8 away from our reference solution.
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Figure 5.5. Convergence for the inverter chain problem: note that for this problem the slope

for order of accuracy is consistent for all methods except Algorithm 6 w/ Base Method 4.17.

The flattening of the error for this method may be due to inaccurate capturing of the initial

integration window causing this method to converge to a solution which is approximately

10−8 away from the reference solution.
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We can see in Figure 5.6 that changing the x-axis from h to TotalFunctionCalls rescales

the tested methods which were based on Base Method 4.17 by tF−t0
h2

(

s{O} +
∑s{O}

i=1 s{I}ni

)

=

7
h2 × 400 and those which were based on Base method (4.13) by 7

h2 × 318. When considering

the efficiency for all h values, and therefore for all RMSerror observed, we see that Algorithm

5 w/ Base Method 4.17 is the clear winner.
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Figure 5.6. Efficiency for the inverter chain problem: note that for this problem the most

efficient methods for larger error values are Algorithm 5 w/ Base Method 4.17 and Algorithm

6 w/ Base Method 4.17, while for smaller errors Algorithm 5 w/ Base Method 4.17 is the

clear winner; all other methods perform comparably well.
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5.3.2. Kuhn Linear Results

As we described in Subsection 5.1.2, the Kuhn linear problem we’re interested in has a

multirate structure which exhibits strongly-coupled linear behavior between the time-scales.

As described in Table 5.3, all methods tested had the expected order of accuracy.

Table 5.3. Table of Kuhn Convergence: The observed order of accuracy is slightly better

than expected based on theory

Multirate Method Expected Order Observed Order

Algorithm 6 w/ Base Method 4.17 4 4.22

Algorithm 5 w/ Base Method 4.17 4 4.22

Algorithm 5 w/ Base Method 4.13 3 3.09

Algorithm 3 w/ Base Method 4.17 3 3.18

Algorithm 3 w/ Base Method 4.13 3 3.09

The order of accuracy plot Figure 5.7 shows that the points excluded from our best fit

line calculation do not have increasing RMSerror for increasing h. The linear problem shows

very straight order of accuracy lines for all methods except Algorithm 6 w/ Base Method

4.17, which begins to level off before it achieves the limit of double-precision representation

of the solution.

Note that Figure 5.8 shows the change in x-axis from h to TotalFunctionCalls rescales

the tested methods which were based on Base Method 4.17 by tF−t0
h2

(

s{O} +
∑s{O}

i=1 s{I}ni

)

=

1
h2 × 400 and those which were based on Base method (4.13) by 1

h2 × 318. Considering

the efficiency for all 0.01 ≤ h ≤ 10−4, we see that Algorithm 5 w/ Base Method 4.17 and

Algorithm 6 w/ Base Method 4.17 perform similarly and are the farthest towards the bottom-

left corner. Algorithm 6 w/ Base Method 4.17 begins flattening as RMSerror→ 10−10.
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Figure 5.7. The numerical order observed is close to the expected values
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Figure 5.8. The higher order of accuracy methods are more efficient for almost all h values

tested
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5.3.3. Brusselator Results

As we described in Subsection 5.1.3, the Brusselator problem we’re interested in has

a multirate structure which exhibits weakly-coupled nonlinear behavior between the time-

scales. Table 5.4 describes the theoretically expected order of accuracy and the observed

order of accuracy to make a comparison. We note that Algorithm 6 w/ Base Method 4.17

has an observed order of accuracy of 5.83, which suggests that the optimization successfully

minimized the dominant error terms for this problem. The other methods have an observed

numerical order of accuracy which is consistent with the theoretically expected order of

accuracy.

Table 5.4. Table of Brusselator Convergence: The observed order of accuracy is slightly

better than expected based on theory, and the observed order for the optimized method is

significantly better

Multirate Method Expected Order Observed Order

Algorithm 6 w/ Base Method 4.17 4 5.83

Algorithm 5 w/ Base Method 4.17 4 4.16

Algorithm 5 w/ Base Method 4.13 3 3.30

Algorithm 3 w/ Base Method 4.17 3 3.28

Algorithm 3 w/ Base Method 4.13 3 3.02

Figure 5.9 shows that all methods perform at least as well as the expected order of

accuracy. All methods tested leveled out at an error floor around 10−9, which is likely the

accuracy of our reference solution. We can see in Figure 5.10 that changing the x-axis from h

to TotalFunctionCalls rescales the tested methods which were based on Base Method 4.17

by tF−t0
h2

(

s{O} +
∑s{O}

i=1 s{I}ni

)

= 10
h2×400 and those which were based on Base method (4.13)
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Figure 5.9. The optimized method and the RMIS seem to do best
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by 10
h2 × 318. When considering the efficiency, we observe that around RMSerror = 10−5, the

higher order methods begin to outperform the lower order methods. I don’t know why the

constant multiplier ch4 is so large for these particular methods for this particular problem.

We do see that when a smaller error metric is required, the higher order methods Algorithm

5 w/ Base Method 4.17 and Algorithm 6 w/ Base Method 4.17 are more efficient.
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Figure 5.10. Method efficiency for this problem is dependent on both the order of accuracy

and on the constant multiplier on the error terms

In general, our numerical tests suggest that the methods tested perform at least as well as

the theoretical order of accuracy. Algorithm 5 w/ Base Method 4.17 is consistently efficient

for all test problems, except for the Brusselator test problem for large values of RMSerror.
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Chapter 6

Stability Results: Theoretical & Numerical

In this chapter, we consider the linear stability of our proposed set of numerical methods.

We first derive a stability recursion for GARK methods by applying existing stability theory.

We then consider two different approaches to investigating the stability properties of our new

methods by comparing them to the technique represented by Algorithm 3. The first approach

will compare the two base methods for which Algorithm 3 gives a 3rd order method and

Algorithm 5 gives a 4th order method. The second approach optimizes over 4-stage methods

for which Algorithm 5 gives a 4th order method and for which Algorithm 3 gives a 3rd order

method. The “largest” stability area for the highest possible order is then compared.

6.1. Deriving a Stability Concept for GARK methods based on Kværno’s sta-

bility

As mentioned in Chapter 2, we derive a stability function for 2×2 GARK methods based

on the stability concept first proposed by Kværno, and later reintroduced by Savcenco and

by Constantinescu [33, 47, 45, 9]. Recall the 2× 2 linear stability test problem:
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Savcenco assumes a partitioned splitting when deriving his stability concept, which we

rewrite as an additive splitting [45]. Let us first define
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and write the additively-split right hand side functions as
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Combining the fast stage updates,
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So the fast stages for this test problem have the following update:
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





∑s{f}

l=1 h ∗ a{f,f}jl ∗
(

g11k
{f}
f,l + g12k

{f}
s,l

)

∑s{s}

l=1 h ∗ a{f,s}jl ∗
(

g21k
{s}
f,l + g22k

{s}
s,l

)









=









yf,n +
∑s{f}

l=1 h ∗ a{f,f}jl ∗
(

g11k
{f}
f,l + g12k

{f}
s,l

)

ys,n +
∑s{s}

l=1 h ∗ a{f,s}jl ∗
(

g21k
{s}
f,l + g22k

{s}
s,l

)









Similarly for the slow stage updates:

k
{s}
j = 12s{s} ⊗









yf,n

ys,n









+

s{f}
∑

l=1

h ∗ a{s,f}jl ∗









g11k
{f}
f,l + g12k

{f}
s,l

0









+

s{s}
∑

l=1

h ∗ a{s,s}jl ∗









0

g21k
{s}
f,l + g22k

{s}
s,l ,









or equivalently,









k
{s}
f,j

k
{s}
s,j









=









yf,n

ys,n









+









∑s{f}

l=1 h ∗ a{s,f}jl ∗
(

g11k
{f}
f,l + g12k

{f}
s,l

)

∑s{s}

l=1 h ∗ a{s,s}jl ∗
(

g21k
{s}
f,l + g22k

{s}
s,l

)









=









yf,n +
∑s{f}

l=1 h ∗ a{s,f}jl ∗
(

g11k
{f}
f,l + g12k

{f}
s,l

)

ys,n +
∑s{s}

l=1 h ∗ a{s,s}jl ∗
(

g21k
{s}
f,l + g22k

{s}
s,l

)








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So the solution variable y for this test problem has the following update:

yn+1 = yn +
s{f}
∑

l=1

h ∗ b{f}l ∗ f {f}
(

t + c
{f}
l h,k

{f}
l

)

+
s{s}
∑

l=1

h ∗ b{s}l ∗ f {s}
(

t+ c
{s}
l h,k

{s}
l

)

= yn +
s{f}
∑

l=1

h ∗ b{f}l ∗









g11k
{f}
f,l + g12k

{f}
s,l

0









+
s{s}
∑

l=1

h ∗ b{s}l ∗









0

g21k
{s}
f,l + g22k

{s}
s,l









Given these equations, we can formulate the linear stability of this test problem in a

similar way to how the original Runge Kutta stability problem is formulated:









k
{f}
f,j

k
{f}
s,j









=









yf,n +
∑s{f}

l=1 h ∗ a{f,f}jl ∗
(

g11k
{f}
f,l + g12k

{f}
s,l

)

ys,n +
∑s{s}

l=1 h ∗ a{f,s}jl ∗
(

g21k
{s}
f,l + g22k

{s}
s,l

)

















k
{s}
f,j

k
{s}
s,j









=









yf,n +
∑s{f}

l=1 h ∗ a{s,f}jl ∗
(

g11k
{f}
f,l + g12k

{f}
s,l

)

ys,n +
∑s{s}

l=1 h ∗ a{s,s}jl ∗
(

g21k
{s}
f,l + g22k

{s}
s,l

)

















yf,n+1

ys,n+1









=









yf,n

ys,n









+
s{f}
∑

l=1

h ∗ b{f}l ∗









g11k
{f}
f,l + g12k

{f}
s,l

0









+
s{s}
∑

l=1

h ∗ b{s}l ∗









0

g21k
{s}
f,l + g22k

{s}
s,l









.

Converting these to use the matrix and vector form for the coefficients, we have









k
{f}
f

k
{f}
s









=









yf,n1s{f} + hA{f,f}
(

g11k
{f}
f + g12k

{f}
s

)

ys,n1s{f} + hA{f,s}
(

g21k
{s}
f + g22k

{s}
s

)

















k
{s}
f

k
{s}
s









=









yf,n1s{s} + hA{s,f}
(

g11k
{f}
f + g12k

{f}
s

)

ys,n1s{s} + hA{s,s}
(

g21k
{s}
f + g22k

{s}
s

)

















yf,n+1

ys,n+1









=









yf,n + hb{f}
(

g11k
{f}
f + g12k

{f}
s

)

ys,n + hb{s}
(

g21k
{s}
f + g22k

{s}
s

)









.
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We then substitute Z = hG =









hg11 hg12

hg21 hg22









into the above result,









k
{f}
f

k
{f}
s









=









yf,n1s{f} + A{f,f}
(

z11k
{f}
f + z12k

{f}
s

)

ys,n1s{f} + A{f,s}
(

z21k
{s}
f + z22k

{s}
s

)

















k
{s}
f

k
{s}
s









=









yf,n1s{s} + A{s,f}
(

z11k
{f}
f + z12k

{f}
s

)

ys,n1s{s} + A{s,s}
(

z21k
{s}
f + z22k

{s}
s

)

















yf,n+1

ys,n+1









=









yf,n + b{f}
(

z11k
{f}
f + z12k

{f}
s

)

ys,n + b{s}
(

z21k
{s}
f + z22k

{s}
s

)









.

We then rearrange this result in order to solve for k:



























k
{f}
f

k
{f}
s

k
{s}
f

k
{s}
s



























=



























yf,n1s{f} + A{f,f}
(

z11k
{f}
f + z12k

{f}
s

)

ys,n1s{f} + A{f,s}
(

z21k
{s}
f + z22k

{s}
s

)

yf,n1s{s} + A{s,f}
(

z11k
{f}
f + z12k

{f}
s

)

ys,n1s{s} + A{s,s}
(

z21k
{s}
f + z22k

{s}
s

)



























,

or equivalently



























yf,n1s{f}

ys,n1s{f}

yf,n1s{s}

ys,n1s{s}



























=





















































Is{f}

Is{f}

Is{s}

Is{s}



























−



























A{f,f}z11 A{f,f}z12

A{f,s}z21 A{f,s}z22

A{s,f}z11 A{s,f}z12

A{s,s}z21 A{s,s}z22















































































k
{f}
f

k
{f}
s

k
{s}
f

k
{s}
s



























.
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Solving this equation for the stage vectors, we have


























k
{f}
f

k
{f}
s

k
{s}
f

k
{s}
s



























=





















































Is{f}

Is{f}

Is{s}

Is{s}



























−



























A{f,f}z11 A{f,f}z12

A{f,s}z21 A{f,s}z22

A{s,f}z11 A{s,f}z12

A{s,s}z21 A{s,s}z22





















































−1

























yf,n1s{f}

ys,n1s{f}

yf,n1s{s}

ys,n1s{s}



























.

Finally, we insert this result into our solution update equation and rearrange to obtain the

equation:

S(Z) =



































1 0

0 1









+Bz ∗ (I− Az)
−1 ∗



























1s{f}

1s{f}

1s{s}

1s{s}





















































(6.1)

where

Bz =









b{f}z11 b{f}z12

b{s}z21 b{s}z22









,

Az =



























A{f,f}z11 A{f,f}z12

A{f,s}z21 A{f,s}z22

A{s,f}z11 A{s,f}z12

A{s,s}z21 A{s,s}z22



























, and

I =



























Is{f}

Is{f}

Is{s}

Is{s}



























.
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6.2. Comparing Stability for Base Methods with High Order

Figures 6.1–6.4 directly compare between the stability plots for the two different base

methods which satisfy both Equation (2.28) and Equation (2.51), and therefore make Algo-

rithm 3 3rd order and Algorithm 5 4th order. We are interested in studying all 4 of these sets

of stability plots in order to thoroughly investigate comparisons of stability for Algorithm 3

and Algorithm 5.

The following plots demonstrate the situation where the problem-based time-scale sep-

aration κ is the same as the method-based time-scale separation. Results are shown for

κ = m = 10 and κ = m = 100 to demonstrate the expected scaling relationship along the ξ

axis. Differences in where the methods are stable are also more easily observed in Figure 6.1

and Figure 6.3 where κ = m = 10. First, in Figure 6.1-6.2 we compare the stability plots

for the RMIS and the RFSMR using the 3/8− Rule from Section 5.2 as shown in Equation

(4.17). We recall that this base method has equally-spaced stage times c, and automatically

makes the RMIS 4th order and the RFSMR 3rd order. Figure 6.1 investigates κ = 10 and

this particular base method. We see that the location of the added stability is similar, and

the most negative ξ for −.4 < η < 1 where the multirate method will be stable is also similar.

Figure 6.2 investigates κ = 100 and this particular base method. We see that the location

of the added stability is similar, and the most negative ξ for −.6 < η < 1 where the multirate

method will be stable is also similar. The stability results for κ = 100 are shown in order

to demonstrate how relatively insignificant the extra stability is for ξ < −.03 as well as to

show stability properties for the methods tested in Chapter 5.

Next, in Figure 6.3-6.4 we compare the stability plots for our RMIS method and the

RFSMR method using the base method we found by a symbolic solve for the intersections of

the order graphs from Figure 4.3 which satisfies the conditions so that both the RMIS and

the RFSMR have their maximum order for a 4-stage method. The specific numerical values

for this base method are desribed by Equations (6.2)-(6.15).
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Figure 6.1. Linear stability plots for time-scale separation and multirate-method factors

κ = m = 10 using 3/8− Rule: our RMIS method is on the left and the RFSMR method is

on the right.
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Figure 6.2. Linear stability plots for time-scale separation and multirate-method factors

κ = m = 100, using 3/8− Rule: our RMIS method is on the left and the RFSMR method

is on the right.
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a2,1 =
2502984374488603

9007199254740992
, (6.2)

a3,1 = −
2049798293874988098690044461751131390159023391

7517271464469377352257191894615983679002902528
, (6.3)

a3,2 =
3018117031057894889503793574809

3338339144884628840629222376986
, (6.4)

a4,1 =
22765692084681232760997989792354552558780331504607913975583345

19998492846806357615697413355127699632803177178677941346341489
, (6.5)

a4,2 = −
94926537801716237058245396328766122453369223328055560635416576

67181335943891087403606309330764345048833854489406728444975161
, (6.6)

a4,3 =
32427491595433235837136108367314853114729405718844372760395776

25440922267341045412987192917951158593602244095128793560304173
, (6.7)

b1 =
527733938855414179796741258573

4744937406134690332764136798874
, (6.8)

b2 =
48009933710805118264642043178729372929801322496

155513464357343682343746756582997662207410178171
, (6.9)

b3 =
6762883003043953633003226591911056199068418048

15030509768155253218042489127098340903297421993
, (6.10)

b4 =
8429402175443019162849978345397

64783217009677962262953073299306
, (6.11)

c1 = 0, (6.12)

c2 =
2502984374488603

9007199254740992
≈ 0.27788708828342423285, (6.13)

c3 =
2843567935040037

4503599627370496
≈ 0.63139891871345210639, (6.14)

c4 = 1. (6.15)

Figure 6.4 investigates κ = 100 and this particular base method. We see that the location

of the added stability is similar, and the most negative ξ for −.8 < η < 1 where the multirate

method will be stable is also similar. The stability results for κ = 100 are shown in order

to demonstrate how relatively insignificant the extra stability is for ξ < −.03 as well as to

show stability properties for the methods tested in Chapter 5.

Recall that the intent of Figures 6.1–6.4 is to determine how our newly developed methods

compare in terms of stability to the existing method we compare to in our numerical order
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Figure 6.3. Linear stability plots for time-scale separation and multirate-method factors

κ = m = 10: our RMIS method is on the left and the RFSMR method is on the right. Note

that the stability areas are slightly larger than in Figure 6.1, although they have similar

shape, indicating that multirate problems can potentially take a larger time-step due to the

increased region of stability. The different placement of the region which is extended indicates

that some multirate problems which would be stable for κ = 10 using the 3/8− Rule would

not be stable for this method, and vice versa.
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Figure 6.4. Linear stability plots for time-scale separation and multirate-method factors

κ = m = 10: our RMIS method is on the left and the RFSMR method is on the right. Note

that the stability areas are slightly larger than in Figure 6.2, although they have similar

shape, indicating that multirate problems can potentially take a larger time-step due to the

increased region of stability. The different placement of the region which is extended indicates

that some multirate problems which would be stable for κ = 100 using the 3/8− Rule would

not be stable for this method, and vice versa.

tests in Chapter 5. Specifically, we wanted to compare the stability for multirate methods

which used the same base method. We chose base methods where the order of accuracy for

the RMIS was 4 and the order of accuracy for the RFSMR was 3. The result of this test

was that the RMIS method performed better than the RFSMR method.

6.3. Comparing Stability Optimization

We performed another set of tests to investigate the relative size of the stability area

for many different choices of base method. We chose to use κ = 10 and used c2 <= c3 for

base methods of the form described by Equations (4.2)-(4.11) which satisfy Equation (2.28)

for Algorithm 3 and which satisfy Equation (2.51) for Algorithm 5. These are preliminary

results which attempt to quantify what percentage of the stability region displayed is stable

by adding up the number of connected stable “boxes” and diving by the total number of

stable “boxes.” This can be shown in a basic way by making a heat map of the intensity of

the base methods tested. Figure 6.5 is a preliminary attempt to display this information.
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Figure 6.5. For most of the base methods tested, the RMIS methods had a stable area

around 35.5% of the plotted area. The RFSMR methods, on the other hand, had a more

varied percentage area, going from 35.2% to 35.8%. The total percentage area did not seem

to favor either the RMIS or the RFSMR in terms of stability. We used these sets of base

methods to pick a base method for both the RMIS and the RFSMR in order to compare the

largest area of stability.

In Figure 6.6-6.7 we compare our RMIS method with the largest stability area we found

against the RFSMR method with the largest stability area we found for κ = 10 and κ = 100

respectively. This is a slightly unfair comparison, since we’re considering 4-stage methods

here, and the RFSMR method cannot use the extra stage flexibility to increase beyond order

3.

Recall that the intent of Figures 6.6–6.7 is to determine how our newly developed RMIS

methods compare in terms of stability to the existing RFSMR methods. Specifically, we

wanted to compare the stability for multirate methods which have an optimized stability

region by selecting the largest stability region from the set tested. We chose base methods

where the order of accuracy for the RMIS was 4 and the order of accuracy for the RFSMR

was 3. The result of this test was that the RMIS method performed more consistently than

the RFSMR method, although for some specific base methods the RFSMR method could

have a larger stability area.
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Figure 6.6. Same κ = m = 10, best stability area RMIS on the left and best stability area

RFSMR on the right
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Figure 6.7. Same κ = m = 100, best stability area RMIS on the left and best stability area

RFSMR on the right

107



From these stability studies, the RFSMR method and the RMIS method have similar

stability regions, although not exactly the same. They also scale their stability regions in

similar ways when the time-scale separation is increased. We have shown here that the

improved order of accuracy obtained from RMIS over RFSMR does not hinder stability

whatsoever.
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Chapter 7

Conclusions

In conclusion, this dissertation demonstrates our newly developed fourth order multirate

methods. These methods are based on Multirate Infinitesimal Step Methods. In Chapter 1,

we introduce basic multirate concepts and basic historical content. In Chapter 2, we discuss

more detailed background on the existing methods and existing Runge-Kutta theory which

these new methods extend from. In Chapter 3 we describe the structure we developed for

Flexible Multirate GARK methods, and give some related proofs. In Chapter 4 we discuss

particular fourth-order implementations of that structure, including our development of the

Relaxed Multirate Infinitesimal Step Methods. In Chapter 5 we investigated the numerical

order properties of our methods. In Chapter 6 we investigate the stability properties of

our newly developed methods compared to what we found was the most efficient multirate

method tested on our test problems.

More specifically, in Chapter 1, we described the broad context of multirate methods for

time integration. Multirate methods aim to more efficiently solve problems which have func-

tions or processes that have differing characteristic time scales yet still have meaningful cou-

pling between them. The first recorded example of the simplest multirate method is a 1980

preprint by Gear [15]. Advances in multirate integrators in the 1990s which remain commonly

cited today mostly focused on examining multirate stability, and restrict discussions on the

order of accuracy to specific problem and method contexts [30, 53, 58]. More complicated and

higher order multirate integrators began to be developed in the early 2000s, specifically focus-

ing on order of accuracy and addressing coupling error through interpolation [11, 34, 33, 18].

Most advances in the field of multirate integrators in the last decade have been in increasing

efficiency by increasing the overall method order [7, 8, 9, 14, 21, 44, 47, 46, 50, 51, 57].
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More specifically, in Chapter 2, we discussed the GARK framework which Sandu and

Günther first introduced in 2013, as well as the more thoroughly developed Runge-Kutta

based Multirate Infinitesimal Step and Recursive Flux-Splitting Multirate methods. MIS

methods have been interpreted as exponential integrators and as ARK methods, and the

Mulitrate GARK paper by Sandu and Günther uses GARK theory to account for order of

accuracy, including coupling error [20]. The GARK framework has robust theory regarding

order of accuracy conditions, and allows for more straightforward linear stability analysis

for multirate methods. One benefit of developing multirate methods using GARK theory

is the standardization in approach towards interpolation between the fast process and the

slow process. Another benefit is the strong basis in Runge-Kutta theory this brings to

the coupling error conditions. Finally, using GARK theory reduces the extra initial work to

implement multirate methods which rely on base Runge Kutta methods. Multirate Infinites-

imal Step methods were extended with a specific splitting or partitioning concept by Schlegel

as Recursive-Flux Splitting Multirate methods. These methods are telescopic, and have at

best third order and at worst second order accuracy. In order for RFSMR methods to be

third-order, a specific condition based on the slow base method must be satisfied. These

methods can be implemented so that the time-scale separation is a parameter of the method

which can be changed to suit a particular problem’s time-scale separation or be changed

dynamically between macro-steps during integration. These methods are constructed from

base Runge Kutta methods, and can be subcycled as described by Schlegel [49].

More specifically, in Chapter 3 we develop a structure based on GARK and on MIS

methods called fmGARK. fmGARK methods can be specifically determined depending on

which base methods are chosen, on the number of subcycles, and on the final fast solution

weighting vector b{f}. We show that the RFSMR is an example of an fmGARK method. We

discuss pseudocode and implementation details for fmGARK methods, as well as memory-

efficiency. Specifically, in order to avoid recomputing fast and slow function calls, fmGARK

methods require at most s{I}+ s{O}+2 vectors stored of size y. The algorithm which allows

this efficiency-saving measure is described in the pseudocode, which include subcyling. We
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also discuss how the fmGARK structure satisfies the slow order conditions up to order four

given base methods of at least third order, and a specific condition based on the slow base

method must be satisfied. We also discuss briefly how the fast order conditions up to order

three apply to the fmGARK structure in general, and the RFSMR in particular.

In Chapter 4 we discuss two specific families of fmGARK methods we have developed,

and their associated order conditions. The Relaxed Multirate Infinitesimal Step methods are

based on the MIS methods, but relax the assumption about how b{f} is constructed. The

same weights b{f} are used as b{s} at the same stage times, but the stage vectors are linear

combinations of the fast function values at all preceding stage times and linear combinations

of the slow function values at all preceding stage times respectively. RMIS methods have the

benefits RFSMR and MIS methods have which were passed on to the fmGARK structure.

In addition, RMIS methods have the benefit that each fast coupling order conditions is

satisfied when the corresponding slow coupling order condition is satisfied. The structure of

the fmGARK forces the slow order conditions (including the slow coupling order conditions)

up to third order to be automatically satisfied if the base methods are at least third order. So

RMIS methods are at worst third order with third order base methods. If a specific condition

based on the slow base method is satisfied, the only slow coupling condition at order four

which is not automatically satisfied by the fmGARK structure will be satisfied. This then

forces the corresponding fast coupling conditions up to fourth order to be satisfied, and

therefore given this condition, the RMIS method will be fourth order. We include equations

and plots for coefficient choices based on the minimal number of base method stages while

getting third order RFSMR or fourth order RMIS. Another possible family of fmGARK

methods are methods which are optimized for a particular target objective. We develop

methods optimized for a specific time-scale separation which minimize the fifth-order error

coefficients. Other optimization goals are possible. Since a RFSMR is a specific instance

of an fmGARK, we can define an embedded solution for any fmGARK method based on

the RFSMR solution. The RFSMR solution is automatically generated while progressing

through the fmGARK step.
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In Chapter 5 we introduce three test problems and our testing methodology. We have

a nonlinear coupled multirate problem, a linear strongly coupled multirate problem, and a

linear weakly couple multirate problem. We show convergence plots which suggest that the

numerical order calculated based on our implementation of the multirate methods tested

matches the theoretical order predicted. We show efficiency plots which suggest that the

higher order methods are more efficient for tighter error tolerances. We see more benefit from

higher-order methods when taking smaller step-sizes (for smaller h values) partly because of

the asymptotic nature of order of convergence. In Chapter 6 we performed a linear stability

study by leveraging GARK theory and using a 2 by 2 linear system stability test problem

which has been used for examining multirate stability since it was first introduced by Kvaerno

in 2000 [33]. These tests showed that our newly created methods performed no worse than

the RFSMR methods which are already in use that we use for comparison.

Possible future directions of inquiry include using embedded solutions to create an adap-

tive time-step size strategy. Another possible future direction is to consider using a fast base

method which is implicit, but has an explicit first stage. Another possible future direction is

to investigate numerical results for methods with more than two time-scales. Another possi-

ble future direction may include developing multirate methods in which the fast base method

changes within an integration step, and multirate methods which substantially change the

initial condition for each fast sub-step.
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