101 research outputs found

    Ensemble radar precipitation estimation for nowcasting and hydrology in the Alps

    Get PDF
    This paper explores the novel idea of generating ensables of radar precipitation estimates.Peer ReviewedPostprint (author’s final draft

    Quantifying radar-rainfall uncertainties in urban drainage flow modelling

    Get PDF
    AbstractThis work presents the results of the implementation of a probabilistic system to model the uncertainty associated to radar rainfall (RR) estimates and the way this uncertainty propagates through the sewer system of an urban area located in the North of England. The spatial and temporal correlations of the RR errors as well as the error covariance matrix were computed to build a RR error model able to generate RR ensembles that reproduce the uncertainty associated with the measured rainfall. The results showed that the RR ensembles provide important information about the uncertainty in the rainfall measurement that can be propagated in the urban sewer system. The results showed that the measured flow peaks and flow volumes are often bounded within the uncertainty area produced by the RR ensembles. In 55% of the simulated events, the uncertainties in RR measurements can explain the uncertainties observed in the simulated flow volumes. However, there are also some events where the RR uncertainty cannot explain the whole uncertainty observed in the simulated flow volumes indicating that there are additional sources of uncertainty that must be considered such as the uncertainty in the urban drainage model structure, the uncertainty in the urban drainage model calibrated parameters, and the uncertainty in the measured sewer flows

    Analysis of the radar distance error structure through a simulation approach

    Get PDF
    Radar precipitation estimates are affected by inherent errors of different sources. Although sophisticated algorithms have been developed to correct several errors, final precipitation products are not free of errors. The study of the remaining errors affecting radar rainfall estimates is becoming as important as the retrieval estimates themselves.Peer ReviewedPostprint (author’s final draft

    Estimating Precipitation from WSR-88D Observations and Rain Gauge Data: Potential for Drought Monitoring

    Get PDF
    Since its deployment, the precipitation estimates from the network of National Weather Service (NWS) Weather Surveillance Radars-1988 Doppler (WSR-88D) have become widely used. These precipitation estimates are used for the flash flood warning program at NWS Weather Forecast Offices (WFOs) and the hydrologic program at NWS River Forecast Centers (RFCs), and they also show potential as an input data set for drought monitoring. However, radar-based precipitation estimates can contain considerable error because of radar limitations such as range degradation and radar beam blockage or false precipitation estimates from anomalous propagation (AP) of the radar beam itself. Because of these errors, for operational applications, the RFCs adjust the WSR-88D precipitation estimates using a multisensor approach. The primary goal of this approach is to reduce both areal-mean and local bias errors in radar-derived precipitation by using rain gauge data so that the final estimate of rainfall is better than an estimate from a single sensor. This chapter briefly discusses the past efforts for estimating mean areal precipitation (MAP). Although there are currently several radar and rain gauge estimation techniques, such as Process 3, Mountain Mapper, and Daily Quality Control (QC), this chapter will emphasize the Multisensor Precipitation Estimator (MPE) Precipitation Processing System (PPS). The challenges faced by the Hydrometeorological Analysis and Support (HAS) forecasters at RFCs to quality control all sources of precipitation data in the MPE program, including the WSR-88D estimates, will be discussed. The HAS forecaster must determine in real time if a particular radar is correctly estimating, overestimating, or underestimating precipitation and make adjustments within the MPE program so the proper amount of precipitation is determined. In this chapter, we discuss procedures used by the HAS forecasters to improve initial best estimates of precipitation using 24 h rain gauge data, achieving correlation coefficients greater than 0.85. Finally, since several organizations are now using the output of MPE for deriving short- and long-term Standardized Precipitation Indices (SPIs), this chapter will discuss how spatially distributed estimates of precipitation can be used for drought monitoring

    Estimating Precipitation from WSR-88D Observations and Rain Gauge Data: Potential for Drought Monitoring

    Get PDF
    Since its deployment, the precipitation estimates from the network of National Weather Service (NWS) Weather Surveillance Radars-1988 Doppler (WSR-88D) have become widely used. These precipitation estimates are used for the flash flood warning program at NWS Weather Forecast Offices (WFOs) and the hydrologic program at NWS River Forecast Centers (RFCs), and they also show potential as an input data set for drought monitoring. However, radar-based precipitation estimates can contain considerable error because of radar limitations such as range degradation and radar beam blockage or false precipitation estimates from anomalous propagation (AP) of the radar beam itself. Because of these errors, for operational applications, the RFCs adjust the WSR-88D precipitation estimates using a multisensor approach. The primary goal of this approach is to reduce both areal-mean and local bias errors in radar-derived precipitation by using rain gauge data so that the final estimate of rainfall is better than an estimate from a single sensor. This chapter briefly discusses the past efforts for estimating mean areal precipitation (MAP). Although there are currently several radar and rain gauge estimation techniques, such as Process 3, Mountain Mapper, and Daily Quality Control (QC), this chapter will emphasize the Multisensor Precipitation Estimator (MPE) Precipitation Processing System (PPS). The challenges faced by the Hydrometeorological Analysis and Support (HAS) forecasters at RFCs to quality control all sources of precipitation data in the MPE program, including the WSR-88D estimates, will be discussed. The HAS forecaster must determine in real time if a particular radar is correctly estimating, overestimating, or underestimating precipitation and make adjustments within the MPE program so the proper amount of precipitation is determined. In this chapter, we discuss procedures used by the HAS forecasters to improve initial best estimates of precipitation using 24 h rain gauge data, achieving correlation coefficients greater than 0.85. Finally, since several organizations are now using the output of MPE for deriving short- and long-term Standardized Precipitation Indices (SPIs), this chapter will discuss how spatially distributed estimates of precipitation can be used for drought monitoring

    ReAFFIRM: Real-time Assessment of Flash Flood Impacts: a Regional high-resolution Method

    Get PDF
    Flash floods evolve rapidly in time, which poses particular challenges to emergency managers. One way to support decision-making is to complement models that estimate the flash flood hazard (e.g. discharge or return period) with tools that directly translate the hazard into the expected socio-economic impacts. This paper presents a method named ReAFFIRM that uses gridded rainfall estimates to assess in real time the flash flood hazard and translate it into the corresponding impacts. In contrast to other studies that mainly focus on in- dividual river catchments, the approach allows for monitoring entire regions at high resolution. The method consists of the following three components: (i) an already existing hazard module that processes the rainfall into values of exceeded return period in the drainage network, (ii) a flood map module that employs the flood maps created within the EU Floods Directive to convert the return periods into the expected flooded areas and flood depths, and (iii) an impact assessment module that combines the flood depths with several layers of socio- economic exposure and vulnerability. Impacts are estimated in three quantitative categories: population in the flooded area, economic losses, and affected critical infrastructures. The performance of ReAFFIRM is shown by applying it in the region of Catalonia (NE Spain) for three significant flash flood events. The results show that the method is capable of identifying areas where the flash floods caused the highest impacts, while some locations affected by less significant impacts were missed. In the locations where the flood extent corresponded to flood observations, the assessments of the population in the flooded area and affected critical infrastructures seemed to perform reasonably well, whereas the economic losses were systematically overestimated. The effects of different sources of uncertainty have been discussed: from the estimation of the hazard to its translation into impacts, which highly depends on the quality of the employed datasets, and in particular on the quality of the rainfall inputs and the comprehensiveness of the flood maps.Peer ReviewedPostprint (published version
    • …
    corecore