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Abstract. The uncertainty in radar precipitation esti-
mates is the superposition of errors of many different
error sources such as ground clutter, hardware instabil-
ity, beam shielding, beam broadening, variability in the
hydrometeor phase and size distribution, and signal at-
tenuation by water on the radome or in the atmosphere.
In the past decade MeteoSwiss developed and imple-
mented a series of sophisticated algorithms to correct
for several of the above errors. In spite of significant
improvements, for hydrological applications the resid-
ual uncertainty is still relatively large.

An elegant way to express this residual uncertainty
is the generation of an ensemble of radar precipita-
tion fields using stochastic simulation and knowledge
of errors. The ensemble represents the uncertainty in
radar precipitation estimates by introducing perturba-
tions with the correct space-time variances and auto-
covariances. The variance and auto-covariance of errors
strongly depend on the location, in particular in a moun-
tainous region such as Switzerland. This dependence on
location needs to be taken into account in the stochas-
tic simulation. The paper presents a prototype ensemble
generator that allows full flexibility with respect to the
radar error structure.

1 Introduction

A recent publication (Germann et al., 2006) presents the
Swiss approach for operational radar precipitation esti-
mation in a mountainous region and a systematic objec-
tive verification based on a 7-year radar-gauge compari-
son. The continous innovations in the precipitation esti-
mation algorithms resulted in a significant reduction of
radar errors. However, for hydrological applications the
residual uncertainty is still relatively large, and needs to
be taken into account when using radar measurements in
a routine manner.
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This paper explores the novel idea of generating en-
sembles of radar precipitation estimates. The radar
precipitation field is perturbed with correlated random
noise, which represents the residual space-time uncer-
tainty in the radar estimates. The perturbation fields
are generated by combining stochastic simulation tech-
niques with detailed knowledge on the space-time vari-
ance and auto-covariance of radar errors.

Principally, there are two different approaches to de-
termine the uncertainty of radar precipitation estimates:

1. Use an independent source of information such as
rain gauges as a reference, and take the difference
between the radar and the reference as an estimate
of total uncertainty in radar estimates (e.g. Ger-
mann et al., 2006).

2. Examine all relevant sources of uncertainty sep-
arately by simulating the errors with conceptual
physical models and/or experimental data (e.g. Bel-
lon et al., 2005; Lee and Zawadzki, 2005), and cal-
culate superposition of errors.

The advantage of the first approach lies in its simplic-
ity and the fact that it directly gives an estimate of the
total uncertainty in case we have several sources of er-
ror of the same order of magnitude. Of course, this can
not resolve variability at scales smaller than the spacing
between gauges. The second approach provides more
insight into the origin and characteristics of errors, but
may require a lot of work yet to be done. The focus of
this explorative study is on our prototype ensemble gen-
erator. We therefore decided to follow the first approach
and use radar-gauge agreeement as a first estimate of to-
tal residual uncertainty in radar precipitation estimates.
Section 2 summarises recent progress in operational
radar precipitation estimation in Switzerland. Section 3
provides a first look at the auto-correlation of residual
radar errors, which is mandatory input for the ensem-
ble generator. In section 4 we present our prototype en-
semble generator based on a stochastic simulation tech-
nique. First results for a 2’800 km? test catchment in the



Southern Alps are presented in Section 5. In section 6
we provide some preliminary conclusions.

2 Progress in radar precipitation estimation in a
mountainous region

This section briefly presents the results of an objective
large sample verification of operational radar precipita-
tion estimates in the Swiss Alps. For definitions and a
detailed description of both the approach and the long-
term verification the reader is referred to Germann et al.
(2006).

The verification is based on a comparison of daily pre-
cipitation as observed by a dense gauge network and cor-
responding radar estimates of a 7-year period. There is
no subjective selection of events or gauges. All days of
the whole period and gauges more or less evenly spread
over all of Switzerland were taken into account. We thus
get an honest overall assessment of radar estimates over
the whole territory including all types of precipitation.

The modifications in the radar precipitation estima-
tion procedures are made one at a time, usually during
the winter months. Comparison of the accuracy of radar
estimates in the summer half year thus allows to evaluate
step by step the improvements achieved by the individ-
ual algorithm changes. Particular attention was paid to
the definition of robust and meaningful quality param-
eters. The probability of detection (POD), false alarm
ratio (FAR), critical success index (CSI), and equitable
threat score (ETS) for a threshold of 0.3 mm per day de-
scribe the ability of the radar to distinguish between pre-
cipitation and no precipitation. To assess the ability of
the radar to get the correct precipitation amounts we use
the overall radar-gauge ratio (bias), a robust estimator
of the standard deviation expressed in dB or as a factor
(scatter), the amount of totally missed precipitation as a
fraction of total precipitation (mP), and, the amount of
falsely detected precipitation as a fraction of total pre-
cipitation (fP).

For the summer half year 2004 we get a negligible
overall bias of -1.3%, and a scatter of 2.3dB which
corresponds to a factor of 1.7. The POD, FAR, CSI
and ETS are 90, 15, 78 and 63%., respectively. The
somewhat low POD and high FAR look less dramatic
if we determine the corresponding amount of precipita-
tion as a fraction of total precipitation: mP and fP, which
are 2 and 0.1%, respectively. The results for 2004 in-
clude the local bias correction procedure developed in
the VOLTAIRE project. The same numbers for sum-
mer 1997 are -43% bias, 4.0 dB scatter, 84% POD, 34%
FAR, 59% CSI, 40% ETS, 5% mP, and 0.1% fP.

Figure 1 depicts scatter, POD, FAR, mP and fP for 9
subregions. The figure clearly reveals the strong depen-
dence of radar uncertainty on the geographic location.
The bias for these 9 subregions ranges between -19%
and 13% (not shown).
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Fig. 1. Geographic dependence of uncertainty of radar pre-
cipitation estimates over Switzerland for summer 2004 after
correction of local bias. Values are based on radar-gauge com-
parison at 58 gauge locations (triangles).

3 A glimpse on the auto-correlation of radar uncer-
tainty

The systematic geographic dependence shown in Fig. 1
reflects the strong relation between radar errors and fac-
tors such as distance from the antenna, radar horizon
and precipitation regimes. In other words, the uncer-
tainty in radar precipitation estimates strongly varies as
a function of location. This space-dependence needs to
be taken into account when generating an ensemble of
radar precipitation fields.

The next question is, to what extent is an error at a
given location and time correlated with the error at a dif-

ferent location and time. Hydrologic applications typi-

cally combine many radar pixels such as a time series of
all measurements over a given catchment. The sensitiv-
ity of the hydrologic model to radar errors then strongly
depends on the auto-covariance of radar errors. If radar
errors are completely uncorrelated in space and time the
impact on the output of the hydrologic model will be
relatively small, as errors average out when integrated
in time and space. If, however, radar errors exhibit high
auto-correlation we have to expect a large impact on the
hydrologic simulation.

To get a first idea of the auto-correlation we pool
hourly radar-gauge pairs of summer half year of 2003-
2005, and calculate correlation between errors at a given
gauge location with errors at all other gauge locations.
Errors are weighted with the amount of precipitation.
This analysis is limited to auto-correlation in space. Ina
next step we will also look at auto-correlation in time,
and how this depends on location. Figures 2 and 3
show the results for two gauge locations, one in a val-
ley in the Alps (Chur) and one in the flat Swiss plateau
close to Zurich (Reckenholz).  The location in the
Alps exhibits high correlation with many locations in the
Alpine bow and the Jura mountains in western Switzer-
land, while the correlation for the location in the Swiss
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Fig. 2. Auto-correlation of radar errors for gauge location
Chur in a valley in the eastern Swiss Alps. The grey-shaded
circles show the correlation of radar errors over Chur with er-
rors at all other gauge locations in whole Switzerland. Radar
errors are evaluated for hourly time steps of whole summer
half year of 2003-2005. The rings indicate distance from Chur
in 20 km intervals up to 100 km.

Fig. 3. Same as Fig. 2 for gauge location Reckenholz, close to
Zurich in the relatively flat Swiss plateau.

plateau rapidly decreases with distance and shows no re-
mote correlation at all. This again illustrates the strong
relation between radar errors and “geographic” factors
such as distance from the antenna, radar horizon and
precipitation regimes. To model the correlation pat-
tern of Chur with a simple distance-dependent isotropic
or anisotropic variogram approach would be unsatisfac-
tory.

4 Ensemble generator
The idea of the radar ensemble is to generate perturba-

tion fields by means of stochastic simulation, and to add
the perturbation to the original radar precipitation fields.

As most of the radar errors are multiplicative we decided
to generate and add perturbations in the logarithmic do-
main, that is dB(R), the logarithm of precipitation rates

log R} = logRg + §; (D

where R is radar precipitation ensemble member i, R
is original radar precipitation field, and, &; is perturba-
tion vector for ensemble member i.

Errors are auto-correlated both in time and space. In
order to limit complexity and size of this explorative
study we only model perturbation in space and ignore
time. That is, we produce ensembles for a single given
time step. The design of the presented ensemble gener-
ator, however, is such that it can easily be extended to
whole time series of images.

How do we generate a number of perturbation vectors
d; with given mean, variance and auto-covariance? If
the spatial decorrelation of errors does not depend on lo-
cation we can produce white gaussian random noise and
introduce the desired correlation structure by imposing
a given slope in the power spectrum using Fourier trans-
form. The preliminary results presented in the previous
sections, however, show a strong dependence of error
structure on the geographic location. The simple ap-
proach via the power spectrum would impose the same
error structure independently of location, and is thus not
much convincing in a mountainous context. Future work
has to show to what extent the power spectrum approach
may be relaxed to be more fiexible.

We decided to test a different technique which pro-
vides full flexibility with respect to the space-time de-
pendence of the mean, variance and auto-covariance.
It is based on the Cholesky decomposition (e.g. Press
etal., 1992)

C=LL" (2)

of a positive-definite symmetric matrix C, see e.g. Rip-
ley (1987). For better numerical stability we use the
modified Cholesky algorithm proposed by Gill and Mur-
ray in 1974 (see Gill et al., 1981). The perturbation vec-
tor d is generated as follows

0 =p+Le )

where g is mean error vector, L is the lower-triangular
matrix as obtained by Cholesky decomposition of C (the
variance-covariance matrix of radar errors), and €; is
random white noise.

5 First results

For a proof of concept of the approach outlined in the
previous section we selected a 2°800km? catchment in
the southern Alps (Fig. 4). Radar-gauge data pairs for
daily precipitation during summer half year 2005 at 31
gauge locations in or close to the catchment is used
to determine the mean error g, and the error variance-
covariance matrix C. The resulting g and C are in good
agreement with the experience from previous analyses



Fig. 4. Testbed with 2’800 km? catchment to the north of Me-
teoSwiss radar on Monte Lema (1625 m). The small crosses
show the 697 radar pixels within the catchment, and the boxes
indicate the locations of the 31 gauges used to determine the
mean error vector and the error variance-covariance matrix.
Grey shades show terrain height. The catchment includes sev-
eral mountain peaks above 3000 m above sea level. The lake
at the outlet of the catchment is at 200 m above sea level.

Fig. 5. Example of perturbation vector 4. Grey shades indicate
4 ranging from “adding 4 dB” (white) to “subtracting 2 dB”
(black). Same domain as Fig. 4.

(e.g. Germann et al., 2006). An example of the pertur-
bation vector § of a single ensemble member is depicted
in Fig. 5.

6 Conclusions

The preliminary results of this study proof the feasibil-
ity of the presented approach. The ensemble generator
based on Cholesky decomposition provides full flexi-
bility regarding the mean error and the error variance-
covariance matrix, a clear advantage in complex terrain
where radar errors exhibit strong dependence on the ge-
ographic location.

Future steps are 1) to generate ensembles for periods
shorter than 24 hours, 2) to extend the ensemble gen-
erator to time including error auto-covariance in time,
3) to replace Cholesky decomposition by the more sta-
ble singular value decomposition (SVD), 4) condition-
ing of the stochastic generation of perturbations, 5) to
develop a technique to select relevant members from a
large ensemble (this depends on the sensitivity of the
application to radar errors), and 6) make first real tests
in a hydrological context in the WMO-WWRP forecast
demonstration project MAP D-PHASE of the Mesoscale
Alpine Programme (MAP), see Rotach (2004), a target
area of which is the Lago Maggiore region next to the
MeteoSwiss radar Monte Lema.
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