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12.1  INTRODUCTION

Since	 its	 deployment,	 the	 precipitation	 estimates	 from	 the	 network	 of	 National	
Weather	 Service	 (NWS)	 Weather	 Surveillance	 Radars-1988	 Doppler	 (WSR-88D)	
have	become	widely	used.	These	precipitation	estimates	are	used	for	the	flash	flood	
warning	program	at	NWS	Weather	Forecast	Offices	(WFOs)	and	the	hydrologic	pro-
gram	at	NWS	River	Forecast	Centers	(RFCs),	and	 they	also	show	potential	as	an	
input	data	set	for	drought	monitoring.	However,	radar-based	precipitation	estimates	
can	 contain	 considerable	 error	 because	 of	 radar	 limitations	 such	 as	 range	 degra-
dation	 and	 radar	 beam	 blockage	 or	 false	 precipitation	 estimates	 from	 anomalous	
propagation	(AP)	of	the	radar	beam	itself.	Because	of	these	errors,	for	operational	
applications,	the	RFCs	adjust	the	WSR-88D	precipitation	estimates	using	a	multisen-
sor	approach.	The	primary	goal	of	this	approach	is	to	reduce	both	areal-mean	and	
local	bias	errors	in	radar-derived	precipitation	by	using	rain	gauge	data	so	that	the	
final	estimate	of	rainfall	is	better	than	an	estimate	from	a	single	sensor.

This	chapter	briefly	discusses	the	past	efforts	for	estimating	mean	areal	precipita-
tion	(MAP).	Although	there	are	currently	several	radar	and	rain	gauge	estimation	
techniques,	such	as	Process	3,	Mountain	Mapper,	and	Daily	Quality	Control	(QC),	this	
chapter	will	emphasize	the	Multisensor	Precipitation	Estimator	(MPE)	Precipitation	
Processing	System	(PPS).	The	challenges	faced	by	the	Hydrometeorological	Analysis	
and	Support	(HAS)	forecasters	at	RFCs	to	quality	control	all	sources	of	precipita-
tion	data	in	the	MPE	program,	including	the	WSR-88D	estimates,	will	be	discussed.	
The	HAS	forecaster	must	determine	 in	 real	 time	 if	a	particular	 radar	 is	correctly	
estimating,	overestimating,	or	underestimating	precipitation	and	make	adjustments	
within	the	MPE	program	so	the	proper	amount	of	precipitation	is	determined.	In	this	
chapter,	we	discuss	procedures	used	by	the	HAS	forecasters	to	improve	initial	best	
estimates	of	precipitation	using	24	h	rain	gauge	data,	achieving	correlation	coeffi-
cients	greater	than	0.85.	Finally,	since	several	organizations	are	now	using	the	output	
of	MPE	for	deriving	short-	and	long-term	Standardized	Precipitation	Indices	(SPIs),	
this	chapter	will	discuss	how	spatially	distributed	estimates	of	precipitation	can	be	
used	for	drought	monitoring.

The	 U.S.	 Drought	 Monitor	 (USDM),	 which	 is	 considered	 the	 current	 state-of-
the-art	drought	monitoring	tool	for	 the	United	States,	 is	presently	not	designed	for	
county-scale	representations,	yet	its	output	is	used	by	customers	for	critical	decision	
making	at	this	spatial	scale.	Thus,	drought	indicators	are	needed	at	the	county	and	
subcounty	scale.	The	MPE	estimates	can	be	used	as	a	“gold	standard”	precipitation	
product	to	compare	with	or	validate	other	remote-sensing	drought	products,	as	long	
as	 the	user	understands	 the	weaknesses	of	MPE.	In	 the	hands	of	a	knowledgeable	
user,	MPE	provides	information	that	no	other	existing	drought	tool	can	provide.	With	
these	products,	we	can	look	at	detailed	rainfall	patterns	and	see	how	they	correlate	
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with	evapotranspiration	(ET)	products	across	large	areas,	as	well	as	identify	localized	
areas	of	rainfall	deficits	over	time.	These	data	could	also	provide	higher-resolution	
inputs	for	remote-sensing	drought	index	formulations	such	as	the	Vegetation	Drought	
Response	 Index	 (VegDRI)	 (Brown	 et	 al.,	 2008).	 VegDRI	 currently	 integrates	 SPI	
grids	spatially	interpolated	from	Applied	Climate	Information	System	(ACIS)	gauge	
data,	which	characterize	broadscale	precipitation	patterns	but	are	often	unrepresenta-
tive	of	county-scale	level	precipitation	variations.	Higher-spatial-resolution	4	km	MPE	
observations	are	now	available	to	enhance	these	types	of	tools	and	support	local-scale	
drought	monitoring	and	early	warning	activities	that	have	been	identified	as	a	priority	
by	the	recently	established	National	Integrated	Drought	Information	System	(NIDIS).

12.2   PAST EFFORTS IN DETERMINING MEAN AREAL 
PRECIPITATION

This	chapter	briefly	discusses	some	of	the	reasons	why	the	WSR-88D	does	not	always	
estimate	precipitation	accurately	and	explain	how	HAS	forecasters	use	the	MPE	PPS	
to	determine	the	accuracy	of	radar	precipitation	estimates,	as	well	as	highlight	some	
known	issues	with	traditional	rain	gauge	data.	But	before	we	look	at	the	current	state	
of	ground-based	radar	rainfall	estimation,	an	examination	of	past	estimation	tech-
niques	will	be	presented	to	gain	an	appreciation	of	the	current	algorithms.

12.2.1  Rain GauGe–Only estimatiOn

Before	MPE,	the	RFCs	only	used	rain	gauge	data	to	calculate	basin-averaged	MAP,	
which	 is	 the	 average	 depth	 of	 precipitation	 over	 a	 specific	 area	 for	 a	 given	 time	
period.	This	led	to	timing	and	location	errors	in	the	identification	of	heavy	rainfall	
events,	especially	in	a	highly	convective	environment	where	intense	rainfall	often	
occurs	over	small	core	areas.	Precipitation	estimates	were	generated	from	discrete	
rain	gauge	observations	using	the	Thiessen	polygon	method.	This	method	attempted	
to	calculate	MAP,	allowing	for	a	nonuniform	distribution	of	gauges	by	providing	a	
weighting	factor	for	each	gauge.	In	basins	where	no	rain	gauges	existed,	this	method	
was	forced	to	use	rain	gauges	that	were	outside	the	basin	in	question	for	its	calcula-
tion.	Although	gauge-only	analyses	exist	for	drought	monitoring	in	the	United	States	
at	the	climate	division	scale	(e.g.,	the	1	month	accumulated	precipitation	product	at	
http://www.wrcc.dri.edu/spi/spi.html),	 these	 products	 are	 noisy,	 particularly	 in	 the	
western	United	States	where	gauge	density	is	sparse	with	only	a	few	observations	per	
climate	division.	And	since	older	radar	systems	described	in	the	next	section	did	not	
have	the	computer	algorithms	necessary	to	produce	MAP,	RFCs	had	no	choice	but	
to	use	a	rain	gauge–only	methodology.

12.2.2  RadaR Rainfall estimatiOn befORe the WsR-88d

Early	radar	systems	(WSR-57,	WSR-74S,	and	WSR-74C)	came	on	line	in	1973	and	
were	used	through	1993,	but	meteorologists	at	that	time	used	a	very	crude	technique	
for	determining	rainfall	rates.	These	early	radar	networks	would	show	rainfall	and	
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storm	 intensities	 using	 digital	 video	 integrator	 and	 processor	 (D/VIP)	 levels.	 The	
D/VIP	 levels	 were	 based	 on	 a	 predetermined	 value	 of	 returned	 power	 called	 the	
equivalent	reflectivity,	Z.	A	lookup	table	was	used	to	establish	rainfall	rates	for	each	
D/VIP	 level.	Radar	operators	would	place	a	digital	grid	over	 the	planned	position	
indicator	(PPI)	radar	scope	and	manually	write	in	a	value	ranging	from	0	to	6	that	
represented	the	maximum	D/VIP	level	in	each	grid	cell.	The	rectangular	grid	cells	
are	known	as	manually	digitized	radar	(MDR)	boxes,	which	are	based	on	a	subgrid	of	
the	Limited	Fine	Mesh	(LFM)	model.	The	spatial	resolution	of	the	MDR	grid	cell	was	
approximately	40	km.	By	contrast,	the	Hydrologic	Rainfall	Analysis	Project	(HRAP)	
grid	now	used	by	the	WSR-88D	has	further	improved	the	spatial	resolution	to	∼4	km.

After	 the	radar	operators	determined	the	maximum	D/VIP	level	 in	each	MDR	
box,	 they	 would	 transfer	 these	 values	 onto	 a	 paper	 overlay,	 which	 was	 usually	 a	
county	boundary	map.	As	an	example,	a	D/VIP	level	of	5	meant	the	returned	power	
from	the	echo	had	an	equivalent	reflectivity	Z	of	between	50	and	57	decibels	(dBZ).	
Next	 the	operators	would	 attempt	 to	determine	how	much	 rain	had	 accumulated.	
Using	a	reflectivity	rainfall	rate	table,	the	hourly	rainfall	rate	for	this	value	would	
be	found	to	be	4.5–7.1	in./h	in	a	convective	environment.	They	would	then	visually	
inspect	the	D/VIP	levels	over	the	past	few	hours	and	add	the	D/VIP	levels	together	
for	longer-term	rainfall	estimates	for	specific	counties.	Using	these	early	methods,	
considerable	guesswork	and	manual	analysis	was	involved	in	using	radar	to	deter-
mine	the	amount	of	rainfall.

12.3  CURRENT ESTIMATION OF PRECIPITATION

12.3.1  RadaR: the WsR-88d PReciPitatiOn estimatiOn alGORithm

Estimates	from	radar	have	become	the	base	product	for	deriving	mean	areal,	basin-
averaged	precipitation	within	the	NWS.	A	photograph	of	a	typical	WSR-88D	station	
is	shown	in	Figure	12.1.	The	precipitation	algorithm	in	the	WSR-88D	radar	product	
generator	(RPG)	is	complex,	and	given	all	the	factors	involved	in	radar	sampling	and	
performance,	such	as	proper	radar	calibration	and	assumptions	regarding	radio	wave	
propagation	 through	 the	 atmosphere,	 errors	 in	 radar	 precipitation	 estimates	 often	
occur.	The	precipitation	algorithm	contains	dozens	of	adaptable	parameters	that	con-
trol	its	performance	(Fulton	et	al.,	1998),	improving	accuracy	over	earlier	radar	esti-
mation	methods	(Pereira	Fo	et	al.,	1988).	The	algorithm	itself	consists	of	five	main	
scientific	 processing	 components	 (or	 subalgorithms)	 and	 an	 external	 independent	
support	function	called	the	precipitation	detection	function	(NWS/ROC,	1999).	The	
five	scientific	subalgorithms	are	(1)	preprocessing,	(2)	determination	of	rainfall	rate,	
(3)	determination	of	rainfall	accumulation,	(4)	rainfall	adjustment,	and	(5)	generation	
of	precipitation	products.	The	five	subalgorithms	are	executed	in	sequence	as	long	
as	the	precipitation	detection	function	determines	that	rain	is	occurring	anywhere	
within	a	230	km	radius	of	the	radar,	which	is	referred	to	as	the	radar	umbrella.

Once	precipitation	is	detected,	the	first	subalgorithm	is	executed:	The	base	reflec-
tivity	data	go	through	the	preprocessing	stage,	which	includes	a	quality	control	step	
that	corrects	for	beam	blockage	using	a	terrain-based	hybrid	scan	(O’Bannon,	1997)	
and	checks	for	AP	and	biscan	maximization	(see	Fulton	et	al.,	1998	for	more	details).	
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The	 reflected	power	 returned	 to	 the	 radar	 (Z)	 is	 then	assigned	a	 rainfall	 rate	 (R)	
using	a	conversion	known	as	a	Z/R	 relationship.	As	 the	value	Z	 increases,	 the	R	
estimate	 in	 inches	 per	 hour	 increases	 exponentially	 based	 on	 the	 Z/R	 equation	
employed.	Within	this	precipitation	rate	subalgorithm,	more	quality	control	is	per-
formed	using	a	time	continuity	test,	as	well	as	corrections	for	hail	and	range	degra-
dation.	Next,	precipitation	accumulations	are	determined	 through	 interpolation	of	
scan-to-scan	rain	accumulation	while	simultaneously	running	clock-hour	accumula-
tions.	Precipitation	products	are	then	generated	and	updated	with	each	volume	scan	
(NWS/ROC,	1999).	An	 important	 end	product	 is	 the	hourly	Digital	Precipitation	
Array	(DPA)	product	that	provides	1	h	estimates	of	rainfall	on	the	4	km	HRAP	grid	
discussed	earlier.	These	DPAs	are	the	one	of	four	primary	inputs	to	the	MPE	PPS	
program,	 a	 tool	 primarily	 used	 east	 of	 the	 Rocky	 Mountains,	 which	 will	 be	 dis-
cussed	later	in	Section	12.4.

12.3.1.1  Problems with Radar-Based Precipitation Estimates
The	WSR-88D	precipitation	algorithm	 is	not	without	deficiencies	and	 limitations,	
which	all	operational	radars	experience	when	attempting	to	estimate	rainfall.	Many	
factors	that	make	accurate	radar	precipitation	estimates	difficult	have	been	well	doc-
umented	 (Wilson	and	Brandes,	1979;	Hunter,	1996).	The	 following	 text	 is	a	brief	
description	of	some	of	these	factors	and	how	they	affect	precipitation	estimates.

12.3.1.1.1 Radar Reflectivity Calibration
Precipitation	estimates	can	experience	significant	error	if	the	reflectivity	(i.e.,	value	
of	returned	power)	from	a	rainfall	 target	 is	 too	large	or	 too	small	(Chrisman	and	
Chrisman,	1999).	The	WSR-88D	calibrates	 reflectivity	before	 every	volume	 scan	
using	internally	generated	test	signals.	These	calibration	checks	should	maintain	an	
accuracy	of	1	dBZ,	which	translates	to	an	accuracy	of	17%	in	rainfall	rates	when	the	
default	Z/R	relationship	 (Z	=	300R1.4)	 is	employed.	However,	hardware	problems	

FIGURE 12.1  A	WSR-88D	radar.	(Photo	courtesy	of	NOAA,	Washington,	DC.)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11863-17&iName=master.img-000.jpg&w=239&h=179
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(such	as	a	change	in	actual	transmitted	power,	or	path	loss	of	the	returned	power	
before	reaching	the	receiver	signal	processor	since	the	last	off-line	calibration)	can	
cause	 significant	 changes	 in	 absolute	 calibration	 over	 time.	 Absolute	 calibration	
needs	 to	be	maintained	because	a	change	 in	Z	of	±4	dBZ	will	 result	 in	doubling	
(or	halving)	the	estimated	R	when	the	default	Z/R	relationship	is	used.	Therefore,	
the	WSR-88D	Radar	Operations	Center	(ROC)	has	developed	absolute	calibration	
procedures	that	are	designed	to	ensure	that	reflectivity	data	are	accurate	to	within	
±1	dBZ.

12.3.1.1.2 Proper Use of Adaptable Parameters
As	mentioned	earlier,	several	adaptable	parameters	have	a	bearing	on	the	precipita-
tion	algorithm,	 including	parameters	defining	 the	Z/R	 relationship	and	 the	maxi-
mum	precipitation	 rate	 (MXPRA).	 In	 the	WSR-88D,	 the	default	Z/R	 relationship	
is	 the	 convective	 Z	 =	 300R1.4,	 and	 the	 default	 MXPRA	 is	 established	 at	 53	dBZ,	
which	equates	 to	a	maximum	rainfall	 rate	of	∼104	mm/h	 (4	 in./h)	when	 the	con-
vective	Z/R	is	employed.	This	value	of	MXPRA	was	established	to	eliminate	the	
effects	 of	 hail	 contamination	 on	 rainfall	 estimates,	 as	 water-coated	 ice	 in	 clouds	
returns	larger	reflectivity	values	than	liquid	water	alone	would	produce.	However,	
extreme	rainfall	rates	above	the	default	MXPRA	have	been	shown	to	occur	when	
a	 deep	 warm	 cloud	 layer	 exists	 and	 warm	 rain	 processes	 prevail,	 which	 is	 most	
prevalent	in	tropical	rainfall	regimes	where	larger	water	drop	size	diameters	exist	
(Baeck	and	Smith,	1998)	and	hail	is	absent.	To	compensate	for	this,	radar	operators	
have	the	option	of	using	a	different	Z/R	relationship	called	the	Rosenfeld	tropical	
Z/R	 (Z	 =	 250R1.2).	 When	 the	 tropical	 Z/R	 relationship	 is	 employed,	 significantly	
more	rainfall	is	estimated	for	reflectivities	higher	than	35	dBZ	(Vieux	and	Bedient,	
1998).	For	example,	the	convective	Z/R	relationship	yields	a	rainfall	rate	of	28	mm/h	
(1.10	in./h)	when	Z	=	45	dBZ,	while	the	tropical	Z/R	yields	double	the	rainfall	rate	
of	56	mm/h	(2.22	in./h).	Three	additional	Z/R	relationships	have	been	approved	for	
use	by	the	ROC:	the	Marshall–Palmer	relationship	(Z	=	200R1.6)	for	warm	or	arid	
climates	where	rainfall	events	are	mostly	stratiform	in	nature	and	two	cool-season	
stratiform	 relationships	 (East	Z	=	200R2.0	 and	West	Z	=	75R2.0).	Radar	operators	
may	also	change	the	MXPRA	parameter	so	that	a	higher	rainfall	rate	will	be	used	in	
the	precipitation	accumulation	function	to	a	maximum	of	152	mm/h	(6.00	in./h).	In	
general,	changes	in	the	Z/R	relationship	have	been	shown	to	be	extremely	important	
in	radar	precipitation	estimation	(Fournier,	1999),	while	changes	in	MXPRA	have	
far	less	impact.

Two	other	important	adaptable	parameters	(RAINA	and	RAINZ)	control	when	
rainfall	 accumulations	 start	 and	 stop	 (Boettcher,	 2006).	 Rainfall	 underestimation	
can	occur	if	these	parameters	are	set	such	that	accumulations	begin	too	late	and/or	
end	 too	 early.	 RAINA	 is	 the	 minimum	 areal	 coverage	 of	 significant	 rain	 with	 a	
default	 setting	of	80	km2.	RAINZ	 is	 the	dBZ	 threshold	 that	 represents	 significant	
rain	 (i.e.,	 the	 level	of	 returned	power	 for	which	you	desire	 to	begin	 radar	 rainfall	
accumulation)	with	a	default	setting	of	20	dBZ.	When	the	reflectivities	of	echoes	are	
at	or	above	RAINZ	and	the	total	areal	coverage	of	returns	meets	or	exceeds	RAINA,	
the	 precipitation	 algorithm	 will	 accumulate	 rainfall.	 If	 these	 parameters	 are	 not	
adjusted	for	the	rainfall	type	noted	on	any	given	day,	this	would	have	implications	
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for	drought	monitoring.	If	a	rain	event	is	isolated	(covering	less	than	80	km2)	or	if	the	
dBZ	detected	is	less	than	the	minimum	defined	level,	then	rainfall	will	not	be	accu-
mulated.	This	could	introduce	a	“dry	bias”	such	that,	if	it	is	consistent	over	a	period	
of	time,	it	would	indicate	a	signal	drier	than	the	rainfall	that	is	actually	received.

12.3.1.1.3 Hail Contamination, Bright Band, Snow, and Subcloud Evaporation
The	presence	of	frozen	or	wet	frozen	precipitation	can	cause	significantly	enhanced	
reflectivity	 values	 (Wilson	 and	 Brandes,	 1979).	 As	 hail	 stones	 grow	 in	 size,	 they	
become	 coated	 with	 water	 and	 reflect	 high	 amounts	 of	 power	 back	 to	 the	 radar,	
which	can	be	significantly	higher	than	the	power	returned	from	liquid	precipitation	
present	within	 the	storm.	The	hail-contaminated	higher	power	value	results	 in	an	
overestimation	of	the	precipitation	reaching	the	ground.	Similarly,	when	ice	crystals	
fall	through	the	freezing	level,	their	outer	surfaces	begin	to	melt.	These	water-coated	
ice	crystals	also	produce	abnormally	high	reflectivities,	which	lead	to	“bright	band”	
enhancement	(the	layer	of	the	atmosphere	where	snow	melts	to	rain)	and	an	overes-
timation	of	the	precipitation.

Snowflakes	are	sampled	fairly	well	by	radar,	but	improper	Z/R	relationships	can	
lead	to	an	underestimation	of	the	snowfall	by	the	WSR-88D.	A	snow	accumulation	
algorithm	(SAA)	has	been	added	using	a	more	representative	relationship	between	
reflectivity	and	frozen	precipitation	(Z/S	relationship,	identical	to	the	East	or	West	
cool	season	stratiform	Z/R	relationship)	 to	 improve	 the	water	equivalent	snowfall	
estimates.	Vasiloff	(2001)	and	Barker	et	al.	(2000)	provide	more	detailed	review	of	
the	SAA.

Subcloud	evaporation	below	the	radar	beam	will	also	cause	overestimation.	This	
occurs	when	the	rain	falls	into	a	dry	subcloud	layer	and	is	most	likely	to	occur	in	
locations	where	clouds	frequently	have	very	high	bases.	In	this	situation,	the	rainfall	
estimate	in	the	cloud	may	be	relatively	accurate,	but	the	estimate	will	be	too	high	
if	little	or	no	rainfall	reaches	the	ground.	A	prime	example	of	this	is	virga	(or	dry	
microbursts).

12.3.1.1.4 Range Degradation
At	far	ranges,	 rainfall	 rates	may	be	reduced	because	of	signal	degradation	from	
partial	beam	filling	that	occurs	when	the	radar	beam	widens	with	distance	from	
the	antenna	and	precipitation	fills	only	part	of	the	beam’s	field	of	view.	Although	
the	capability	exists	 for	range	correction,	 it	 is	currently	not	 implemented	on	 the	
WSR-88D	pending	scientific	data	to	support	accurate	parameterization.	Two	other	
range	degradation	problems	are	more	 significant	 compared	 to	partial	 beam	fill-
ing.	Certain	rainfall	 types,	such	as	stratiform	rains	(e.g.,	 rainfall	 from	clouds	of	
extensive	horizontal	development	 as	opposed	 to	vertically	developed	convective	
clouds),	show	strong	vertical	reflectivity	gradients.	The	stratiform	gradient	is	posi-
tive	until	you	get	past	the	“bright	band,”	and	then	it	decreases	sharply,	leading	to	
an	overestimation	of	precipitation	close	to	the	radar	and	an	underestimation	with	
greater	 range.	Orographic	rain	events	also	have	sharp	vertical	 reflectivity	gradi-
ents	as	can	certain	rainfall	events	associated	with	distinct	meteorological	lifting	
surfaces	such	as	a	warm	front.	A	rainfall	event	with	a	sharp	vertical	reflectivity	
gradient	will	show	fairly	strong	range	degradation.	The	reflectivity	values	decrease	
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so	rapidly	with	height	within	a	cloud	that	the	radar	will	have	a	higher	degree	of	
underestimation	as	the	radar	beam	increases	in	altitude.	In	such	rainfall	events,	the	
beam	height	becomes	the	largest	single	contributor	to	radar	rainfall	underestima-
tions.	Last,	in	stratiform	rain	events	and	with	rains	from	thunderstorms	that	have	
small	vertical	height	(usually	20,000	ft	or	less),	a	rainfall	underestimation	occurs	
due	to	the	radar	beam	overshooting	the	precipitation	at	far	ranges,	which	is	a	lack	
of	detection	problem.	To	compensate	for	this,	the	NWS	set	up	the	NEXRAD	radar	
network	with	a	spatial	distribution	of	roughly	300	km	apart.	Figure	12.2	shows	the	
WSR-88D	 radar	 coverage	 area	 for	 the	United	States.	Notice	 that	many	 sections	
of	 the	 western	 United	 States	 are	 without	 adequate	 radar	 coverage,	 which	 leads	
to	unrepresentative	precipitation	estimates.	Thus,	radar-	and	range-dependent	low	
precipitation	biases	can	accumulate	over	 time,	 leading	 to	an	underestimation	of	
precipitation	 and	 a	 depiction	 of	 drier	 conditions.	 Users	 should	 understand	 this	
issue	before	using	these	estimates	to	evaluate	drought	conditions	and	other	infor-
mational	products.

12.3.1.1.5 Anomalous Propagation and Clutter Suppression
The	 WSR-88D	 displays	 reflectivity	 returns	 at	 locations	 assuming	 the	 beam	 is	
refracting	normally	in	a	standard	atmosphere.	At	times,	severe	deviations	from	the	
standard	atmosphere	occur	in	layers	with	large	vertical	gradients	of	temperature	
and/or	 water	 vapor.	 When	 these	 deviations	 occur,	 super-refraction	 of	 the	 radar	
beam	 can	 result,	 and	 inaccurate	 calculations	 of	 actual	 beam	 height	 are	 made.	
These	changes	in	refraction	usually	occur	in	the	lower	troposphere	and	can	lead	
to	persistent	and	quasi-stationary	returns	of	high	reflectivity	either	from	ducting	
of	 the	 radar	 beam	 (where	 radio	 waves	 traveling	 through	 the	 lower	 atmosphere	
are	curved	to	a	value	greater	 than	the	curvature	of	 the	earth)	or	from	the	beam	
coming	in	contact	with	the	ground	(Chrisman	et	al.,	1995).	This	AP	can	lead	to	
extreme	precipitation	accumulation	estimates	from	false	echoes.	The	WSR-88D	
does	employ	a	clutter	mitigation	decision	algorithm,	which	allows	the	radar	opera-
tor	 to	 filter	 undesirable	 reflectivity	 returns,	 often	 from	 permanent	 targets	 near	
the	radar	(Maddox,	2010).	However,	this	capability	depends	on	the	radar	opera-
tor’s	ability	to	recognize	the	AP	and	invoke	the	algorithm.	Improper	or	excessive	
use	of	clutter	filtering	may	cause	real	meteorological	echoes	to	be	unnecessarily	
removed,	leading	to	rainfall	underestimation.	This	occurs	most	frequently	when	
real	rainfall	targets	are	embedded	in	or	near	areas	of	AP,	which	is	common	behind	
a	 line	of	 strong	 thunderstorms.	Also,	 precipitation	 estimates	 from	nonmeteoro-
logical	targets	(such	as	wind	farms)	are	still	observed	on	precipitation	products,	as	
certain	targets	that	exhibit	motion	are	not	removed	using	current	clutter	filtering	
techniques.	Figure	12.3	shows	an	example	of	AP	across	the	south-central	United	
States	caused	by	superrefraction	of	the	beams	of	several	radars.	Note	the	wide-
spread	light	rainfall	indicated	over	Oklahoma	and	central	and	deep	south	Texas	
and	heavy	rain	over	the	Gulf	of	Mexico.	No	rainfall	was	actually	occurring	at	this	
time.	For	hydrologic	applications,	this	false	rainfall	is	eliminated	by	conducting	
further	data	quality	control	external	to	the	WSR-88D	and	is	performed	within	the	
MPE	PPS	at	RFCs.
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FIGURE 12.2  Geographic	coverage	of	WSR-88D	radars	over	the	CONUS.	(Courtesy	of	NOAA,	Washington,	DC.)
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12.3.1.1.6 Beam Blockage
Beam	blockage	 is	a	major	problem	where	radars	are	situated	near	mountains	and	
is	unavoidable	in	many	western	U.S.	locations.	For	radials	(portions	of	the	circular	
scan	of	the	radar	at	a	set	elevation	angle)	with	a	blockage	of	no	more	than	60%	in	
the	vertical	and	2°	or	less	in	azimuth,	corrections	are	made	to	the	reflectivities	and	
are	increased	by	1–4	dBZ	in	the	range	bins	beyond	the	obstacle,	depending	on	the	
percentage	of	the	blockage.	Many	sites	have	beam	blockages	of	more	than	60%	and	
greater	than	2°	in	azimuth,	and	this	correction	cannot	be	applied.	Instead,	the	WSR-
88D	employs	a	terrain-based	hybrid	scan	(O’Bannon,	1997),	so	radials	that	experi-
ence	this	high	degree	of	beam	blockage	use	the	next	higher	elevation	slice	(complete	
scan	of	the	radar	at	a	set	elevation	angle)	for	the	PPS	for	that	radial	(up	to	a	maximum	
elevation	angle	of	3.4°,	which	is	the	fourth	elevation	slice	aboveground).	However,	
if	a	higher	elevation	slice	is	employed,	range	degradation	is	more	likely,	leading	to	
underestimation	 of	 the	 precipitation.	 As	 a	 result,	 precipitation	 underestimation	 is	
common	from	radars	 located	near	mountains.	The	problem	has	been	mitigated	at	
some	sites	by	installing	radars	on	a	peak.	However,	in	this	situation,	the	lowest	eleva-
tion	slices	are	so	high	above	valleys	that	near-surface	precipitation	is	not	detected,	
which	 leads	 to	 the	underestimation	of	 rainfall	 from	clouds	of	 low	vertical	extent.	
Figure	12.2	also	illustrates	the	gaps	in	radar	coverage	over	the	western	United	States	
due	to	the	mountainous	terrain.

FIGURE 12.3  (See color insert.)	Widespread	false	precipitation,	or	AP,	shown	on	the	MPE	
radar	mosaic.	(Photos	courtesy	NOAA/NWS,	Silver	Spring,	MD.)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11863-17&iName=master.img-002.jpg&w=239&h=258
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12.3.1.1.7 Attenuation
The	radar	corrects	for	gaseous	attenuation	of	the	microwave	radar	signal,	leaving	a	
wet	radar	dome	covering	the	antenna	and	intervening	precipitation	as	the	principal	
attenuators	of	energy	to	and	from	the	target.	Although	this	attenuation	for	S-band	
radars	(10	cm	wavelength)	is	considered	to	have	minimal	impacts	on	rainfall	estima-
tion,	Ryzhkov	and	Zrnic	(1995)	show	results	 indicating	that	attenuation	may	have	
a	greater	 impact	on	 rainfall	 estimates	 than	previously	 thought.	Signal	 attenuation	
could	be	one	reason	why	rainfall	 is	often	underestimated	during	extremely	heavy	
rain	events	due	to	reduced	reflectivity	returns,	but	it	is	difficult	to	quantify	exactly	
how	much	the	rainfall	rates	are	reduced.

12.3.1.1.8 Polarization
The	current	WSR-88D	is	a	single	horizontal	linear	polarized	radar.	Dual	polarization	
radar	measurements	of	a	specific	differential	phase	at	two	orthogonal	polarizations	
(horizontal	and	vertical)	have	shown	improved	skill	in	rainfall	estimation	compared	
to	 single	 polarization	 radars	 using	 Z/R	 relationships	 (Zrnic	 and	 Ryzhkov,	 1999).	
Additional	hydrometeor	microphysical	information	can	be	inferred	from	the	addi-
tion	of	vertical	polarization	measurements	to	obtain	differential	reflectivity,	which	
aids	in	determining	the	size	and	type	of	liquid	or	frozen	water	particles	(e.g.,	precipi-
tation	such	as	rain,	sleet,	hail,	or	snow),	which	would	lead	to	improved	precipitation	
estimation.	A	retrofit	for	the	WSR-88D	to	implement	dual	polarization	on	a	national	
scale	is	slated	for	2011–2013.	It	has	been	determined	that	adding	dual	polarization	
capability	to	the	WSR-88D	will	provide	improved	rainfall	estimation	for	floods	and	
drought	and	additional	benefits	that	include	improved	hail	detection	for	discriminat-
ing	between	 liquid	and	 frozen	hydrometeors,	 rain/snow	discrimination	 for	winter	
weather,	data	retrieval	from	areas	of	partial	beam	blockage	to	improve	services	in	
mountainous	terrain,	and	removal	of	nonweather	artifacts	such	as	birds	and	ground	
clutter	to	improve	overall	data	quality	for	the	precipitation	algorithm.

12.3.1.2  Benefits of Radar-Based Precipitation Estimates
In	spite	of	 the	 limitations	and	some	of	 the	 issues	related	 to	radar-based	precipita-
tion	estimates,	there	are	valid	reasons	for	using	them.	A	recent	study	by	Krajewski	
et	 al.	 (2010)	 summarized	 the	 operational	 capability	 of	 radar	 to	 provide	 quantita-
tive	rainfall	estimates	with	potential	applications	not	only	in	hydrology	but	also	in	
drought	monitoring	by	improving	gridded	standard	precipitation	indices.	Radar	has	
the	ability	to	show	the	spatial	and	temporal	distribution	of	rainfall	more	accurately	
than	other	traditional	sensors	such	as	rain	gauges.	The	timing	and	intensity	of	the	
rainfall	is	more	easily	determined	because	of	the	availability	of	hourly	and	subhourly	
estimates.	Radar	also	provides	a	more	accurate	determination	of	rainfall	 location,	
which	 is	 critical	 for	 providing	 more	 local-scale	 information	 to	 the	 drought	 com-
munity	 about	 spatial	 variations	 in	 rainfall	 patterns	 and	 the	 identification	of	more	
localized	areas	experiencing	precipitation	deficits.	This	is	far	superior	to	waiting	for	
24	h	rain	gauge	data	to	be	reported	and	performing	only	a	single	calculation	of	MAP	
over	a	predefined	geographic	area	(e.g.,	a	river	basin),	as	was	the	standard	operating	
procedure	in	the	past.
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12.3.2  Rain GauGe netWORks

Rain	gauge	networks	form	a	supplemental	source	of	precipitation	data	concurrent	
to	gridded	precipitation	estimates.	Two	basic	types	of	rain	gauge	networks	support	
NWS	hydrologic	operations.	One	network	has	the	ability	to	transmit	rainfall	data	in	
near	real	time,	while	the	other	stations	report	24	h	data	once	a	day.	These	two	types	
of	networks	will	be	discussed	separately	as	follows.

12.3.2.1  Near-Real-Time Gauges
Several	 near-real-time	 rain	 gauge	 networks	 with	 the	 ability	 to	 report	 precipita-
tion	hourly	or	even	at	15	min	intervals	exist.	These	include	the	Automated	Surface	
Observing	System	(ASOS)	rain	gauges	at	airports,	data	collection	platforms	oper-
ated	by	the	U.S.	Geological	Survey,	and	mesonet	alert	systems	maintained	by	vari-
ous	cities,	states,	and	river	authorities.	Although	these	gauges	are	part	of	different	
networks,	they	all	use	tipping	bucket	gauges	(Figure	12.4a)	to	automate	the	quantifi-
cation	of	precipitation	amounts.

Unfortunately,	 although	 these	 data	 are	 important,	 they	 are	 not	 without	 error,	
which	 can	 be	 introduced	 by	 wind,	 tipping	 bucket	 losses,	 poor	 siting	 (e.g.,	 block-
age	from	buildings,	trees,	and	other	tall	vegetation),	frozen	precipitation,	electronic	
signal	malfunctions,	mechanical	problems,	and	timing/coding	issues	related	to	the	
transmission	 of	 rainfall	 data.	 Linsley	 et	 al.	 (1982)	 showed	 that	 strong	 winds	 will	
cause	all	rain	gauges,	regardless	of	type,	to	undercatch	the	precipitation.	For	exam-
ple,	approximately	a	10%	loss	is	estimated	at	a	10	mph	wind	speed,	with	losses	often	
exceeding	50%	at	wind	speeds	over	39	mph.	To	help	compensate	for	losses,	ASOS	
tipping	 bucket	 gauges	 have	 a	 shield	 around	 them	 to	 disrupt	 the	 air	 flow	 over	 the	
top	of	the	gauge	(see	Figure	12.4b).	Tipping	bucket	gauges	also	tend	to	underreport	
intense	rainfall	when	the	rainfall	rate	exceeds	the	bucket’s	rate	to	discard	the	cap-
tured	rain	(∼1.5	s).	Thus,	they	cannot	be	calibrated	for	0.01	of	an	inch	precision	or	
well	calibrated	for	high	rainfall	rates.	Maintenance	is	also	an	issue	because	many	
gauges	are	located	in	remote	locations	and	frequent	site	visits	by	technicians	may	
not	be	possible.	In	general,	automated	gauges	provide	good	quality	rainfall	data	if	
the	 gauges	 have	 good	 exposure,	 are	 well	 maintained,	 are	 recording	 when	 the	 air	
temperature	is	above	freezing,	when	wind	conditions	are	relatively	light	(15	mph	or	
less),	and	the	rainfall	rate	is	not	in	excess	of	4	in/h.

12.3.2.2  Daily Reporting Gauges
Gauge	networks	that	report	daily,	24	h	rainfall	totals	are	usually	submitted	by	human	
observers	who	typically	use	a	nontipping	bucket	type	of	gauge.	Data	received	from	
these	networks	are	considered	to	be	of	higher	quality	than	the	data	received	from	
the	 hourly	 automated	 networks	 partially	 because	 of	 the	 standard	 4	 in	 rain	 gauge	
or	a	weighing	gauge	used	by	the	observers,	which	are	typically	free	from	some	of	
the	errors	commonly	encountered	with	tipping	bucket	gauges.	The	two	best	known	
daily	gauge	networks	are	the	NWS	Cooperative	Observer	(COOP)	network	and	the	
Community	Collaborative	Rain,	Hail	and	Snow	(CoCoRaHS)	network.	We	will	dis-
cuss	how	 these	data	 are	used	 to	 improve	precipitation	 estimates	 produced	by	 the	
RFC	later	in	Section	12.4.5.
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12.4   RADAR-BASED MULTISENSOR PRECIPITATION 
ESTIMATOR PRECIPITATION PROCESSING SYSTEM

The	main	purpose	of	the	MPE	PPS	is	to	take	the	raw	hourly	DPAs	from	the	WSR-88Ds	
and	perform	additional	quality	control	to	achieve	the	best	radar-based	precipitation	esti-
mates	possible	for	inclusion	into	the	NWS	River	Forecast	System	(NWSRFS)	for	the	
primary	purpose	of	river	streamflow	prediction.	These	estimates	also	hold	considerable	
potential	for	providing	both	spatially	and	temporally	explicit	information	about	precipita-
tion	patterns	and	deficits	over	an	extended	period	of	time,	which	would	greatly	enhance	
the	drought	community’s	monitoring	capabilities	beyond	the	spatially	interpolated	pre-
cipitation	grids	generated	from	station	observations	that	are	currently	used	in	operational	
monitoring	systems.	The	following	sections	are	a	brief	overview	of	the	three	PPS	stages.

(a)

(b)

FIGURE 12.4  Tipping	bucket	rain	gauge	(a)	and	ASOS	tipping	bucket	rain	gauge	with	wind	
shield	(b).	(Photos	courtesy	of	NOAA/NWS,	Silver	Spring,	MD.)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11863-17&iName=master.img-003.jpg&w=232&h=174
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11863-17&iName=master.img-004.jpg&w=232&h=153
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12.4.1  thRee staGes Of mPe PReciPitatiOn PROcessinG

12.4.1.1  Stage I of the MPE PPS
The	first	PPS	stage	ingests	the	hourly	4	km	DPA	data	that	are	generated	by	the	WSR-
88D,	selecting	the	DPA	that	is	timed	closest	to	the	top	of	each	hour.	The	only	quality	
control	applied	to	the	DPA	data	is	features	associated	with	the	WSR-88D	precipita-
tion	algorithm	itself.	Some	of	these	features	were	discussed	in	Section	12.3.1,	but	for	
a	more	detailed	discussion,	see	Story	(1996).

12.4.1.2  Stage II of the MPE PPS
The	second	PPS	stage	calculates	and	applies	a	bias	adjustment	factor	based	on	a	com-
parison	of	rain	gauge	readings	and	radar	precipitation	estimates	(Seo	et al.,	1999).	
Two	biasing	techniques	are	derived	in	the	PPS:	a	mean-field	bias	and	a	local	bias.	The	
mean-field	bias	represents	the	ratio	of	the	sum	of	all	positive	(nonzero)	rain	gauge	
data	over	the	radar	umbrella	from	the	previous	x	number	of	hours	to	the	sum	of	all	
nonzero	DPA	rainfall	estimates	at	the	corresponding	gauge	locations	over	the	same	
temporal	sampling	window.	The	size	of	the	temporal	window	x	is	specified	by	the	
adaptable	parameter	“mem-span”	(memory	span	in	hours,	determined	as	a	function	
of	how	widespread	the	rainfall	is,	how	many	gauges	are	available	for	sampling,	and	
how	long	ago	since	it	last	rained).	The	MPE	program	calculates	a	mean-field	bias	for	
10	memory	spans,	ranging	from	the	current	hour	(instantaneous	bias)	to	10,000,000	h	
(climatological	bias).	The	program	also	has	an	adaptable	parameter	that	tells	MPE	
which	bias	calculated	from	the	10	memory	spans	to	apply	to	the	DPA	file.	The	default	
for	this	adaptable	parameter	is	a	minimum	of	10	radar-rain	pairs	(called	N-Pairs)	for	
a	mean-field	bias	to	be	applied	to	the	“raw”	radar	rainfall	estimate.	If	there	are	10	or	
more	N-Pairs	for	mem-span	1,	the	program	uses	the	bias	calculated	from	the	radar-
gauge	pairs	from	the	current	hour.	If	there	are	no	10	N-Pairs	for	the	current	hour,	the	
program	goes	back	in	time	until	a	mem-span	is	found	where	10	radar-gauge	pairs	are	
achieved.	A	time-weighting	factor	is	applied	to	older	N-Pairs	so	that	the	most	recent	
data	carry	the	most	weight	in	these	calculations.	For	example,	if	the	bias	calculated	
from	mem-span	720	is	used,	the	program	had	to	go	back	between	168	(the	maximum	
number	of	hours	from	the	previous	mem-span)	and	720	h	to	find	enough	rain	events	
that	had	at	least	10	N-Pairs,	which	would	include	all	nonzero	radar-gauge	pairs	from	
the	past	30	days.	 In	general,	 the	denser	 the	rain	gauge	network	 is,	 the	shorter	 the	
mem-span,	 unless	 a	 drought	 is	 in	 progress	 or	 the	 radar	 samples	 an	 area	 in	 a	 dry	
climate.	In	times	of	drought,	the	mem-span	continues	to	increase	over	time	as	few	
N-Pairs	are	achieved,	leading	to	the	possibility	that	when	it	does	rain	again,	the	bias	
calculation	will	be	inappropriate.	The	goal	of	MPE	is	to	capture	the	temporal	vari-
ability	of	the	bias	for	different	rainfall	regimes	to	allow	for	the	variability	of	radar	
precipitation	estimates.	A	detailed	description	of	all	MPE	functionality	can	be	found	
in	the	MPE	Editor	User’s	Guide	(NWS/OHD/HL,	2010).

In	short,	 the	 larger	 the	number	of	 rain	gauges	 located	under	a	 radar	umbrella,	
the	better	chance	the	program	has	of	obtaining	nonzero	radar/rain	gauge	pairs	and	
calculating	a	mean-field	bias.	Under	 radar	umbrellas	 that	have	a	 large	number	of	
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hourly	rain	gauges	available,	the	calculated	MPE	mean-field	bias	adjustment	factor	
is	a	good	indicator	of	whether	a	radar	 is	over-	or	underestimating	rainfall.	A	bias	
of	1.00	means	that	the	MPE	program	has	accepted	the	radar	estimates	as	correct.	
If	the	mean-field	bias	adjustment	is	greater	than	1.00,	the	radar	is	underestimating	
compared	to	its	associated	gauges,	and	if	a	bias	is	less	than	1.00,	the	radar	is	overes-
timating	rainfall.	This	factor	is	used	to	either	increase	or	decrease	the	precipitation	
estimates	in	the	MPE	mean-field	bias	adjusted	analysis.

In	 addition	 to	 the	mean-field	bias	 (one	bias	 for	 each	 radar),	 a	 local	 bias	 tech-
nique	 is	 also	 calculated	 in	 the	 MPE	 program,	 assigning	 a	 bias	 correction	 factor	
for	each	HRAP	grid	box	(or	cell)	in	the	MPE	area.	Like	the	mean-field	bias,	local	
bias	values	are	computed	by	comparing	gauge	values	to	raw	radar	estimates.	They	
are	also	processed	over	10	memory	spans,	selecting	the	memory	span	whose	bias	
value	has	at	 least	10	contributing	gauge/radar	pairs	falling	within	a	40	km	radius	
circle	around	each	HRAP	grid	box	for	which	a	bias	factor	is	being	computed.	The	
resulting	grid	of	local	bias	values	is	then	applied	to	the	raw	radar	mosaic	(similar	
to	 how	 the	 mean-field	 bias	 is	 applied)	 to	 produce	 the	 local	 bias–corrected	 radar	
mosaic.	By	computing	 the	bias	 for	each	HRAP	grid	box,	 local	geographical	and	
microclimatological	effects	on	rainfall	can	be	accounted	for	(Seo	and	Breidenbach,	
2002).	Because	of	this	accounting,	the	chosen	default	MPE	field	at	many	RFCs	is	
the	local bias multisensor field	(i.e.,	the	combination	of	the	local	bias	radar	mosaic	
and	a	gauge-only	analysis).

In	 addition	 to	 the	 biased	 radar	 mosaics,	 a	 gauge-only	 gridded	 field	 is	 derived	
using	hourly	rain	gauge	observations,	which	must	be	quality	controlled	at	this	stage	
(Fulton	et	al.,	1998).	Tools	exist	within	MPE	(such	as	a	gauge	table)	that	allow	HAS	
forecasters	to	detect	rain	gauge	readings	that	subjectively	appear	to	be	inaccurate.	
Although	 rain	gauge	data	 are	often	 referred	 to	 as	 “ground	 truth,”	 these	data	 also	
have	known	deficiencies,	as	mentioned	in	the	previous	section.	However,	the	West	
Gulf	RFC	(WGRFC)	HAS	forecasters	have	found	that	most	rain	gauge	data	received	
are	of	acceptable	quality	and	can	be	used	(with	some	caution)	to	make	accurate	bias	
adjustments	during	most	events.	If	any	gauge	reading	appears	incorrect	(e.g.,	when	
radar	fields	are	nonzero	and	a	gauge	reads	zero),	it	is	removed	by	the	HAS	forecaster,	
and	all	the	MPE	fields	are	regenerated.	This	may	cause	a	change	in	the	bias	adjust-
ment	 factors	 for	 one	 or	 more	 radars	 and	 in	 the	 gauge-only	 fields.	 The	 end	 result	
of	this	second	stage	is	an	adjusted	radar	precipitation	estimate	for	each	WSR-88D	
defined	in	the	MPE	program.

12.4.1.3  Stage III of the MPE PPS
In	stage	three	of	the	PPS,	the	adjusted	radar	fields	(those	derived	in	Stage	II,	which	
were	discussed	in	the	previous	section)	are	merged	with	the	derived	gauge-only	field	
to	calculate	the	final	multisensor	fields.	The	multisensor	field	of	the	specific	radar	site	
is	then	mosaicked	with	the	multisensor	fields	of	other	radar	sites	to	obtain	the	final	
multiradar	precipitation	map.	Two	primary	multisensor	fields	are	created	in	MPE,	
one	 for	 each	biasing	 technique	described	 in	 the	previous	 section.	The	HAS	 fore-
caster	makes	a	determination	of	which	multisensor	field	is	estimating	correctly	each	
hour	(to	use	as	our	best	estimate	field,	discussed	further	in	the	next	two	sections).	
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These	multisensor	fields	are	created	for	the	areal	extent	covered	by	each	RFC	and	
are	used	daily	by	the	National	Centers	for	Environmental	Prediction	(NCEP)	to	gen-
erate	a	national	Stage	IV	quantitative	precipitation	estimation	(QPE)	product.	The	
HAS	forecaster	has	other	quality	control	options	within	the	MPE	program,	such	as	
the	removal	of	AP.	For	a	more	detailed	discussion	of	precipitation	processing,	see	
Story	(2000).

12.4.2  Q2, the next-GeneRatiOn QPe

The	WGRFC	has	been	experimenting	with	a	new	precipitation	estimation	technique	
called	Q2,	which	is	the	second	technique	derived	by	research	meteorologists	at	the	
National	Severe	Storms	Laboratory	(NSSL).	The	National	Mosaic	and	Multisensor	
QPE	(NMQ)	project	is	a	joint	initiative	between	the	NSSL	and	other	entities	(such	
as	 the	 Federal	 Aviation	 Administration	 [FAA]	 and	 the	 University	 of	 Oklahoma).	
The	National	Mosaic	and	Q2	system	is	an	experimental	system	designed	to	improve	
QPE	and	eventually	very	short-term	Quantitative	Precipitation	Forecasts	(QPF).	For	
detailed	 information	 on	 the	 system,	 readers	 are	 referred	 to	 the	 NMQ	 web	 site	 at	
http://nmq.ou.edu.	The	NMQ	ingests	data	from	128	WSR-88D	stations	every	5	min,	
quality	controls	the	radar	data,	and	derives	a	vertical	profile	of	reflectivity	from	each	
radar.	Analyses	are	done	on	eight	tiles	of	radar	data	that	are	stitched	together	to	form	
a	continental	U.S.	(CONUS)	three-dimensional	(3-D)	grid.	Hybrid	scan	reflectivity	
and	other	products	(such	as	a	composite	reflectivity	map	and	precipitation	flag	prod-
uct)	are	then	derived	to	produce	the	experimental	Q2	products.	The	products	(such	
as	QPE	accumulations	for	the	current	hour	or	several	hours	of	up	to	72	h)	are	then	
translated	over	 to	 the	4	km	HRAP	grid.	The	Q2	products	hold	several	advantages	
over	traditional	radar-based	estimates,	with	two	primary	advantages	including	an	AP	
removal	technique	and	rainfall	estimates	beyond	the	nominal	230	km	range	of	the	
DPA	files	that	are	used	in	regions	where	radar	umbrellas	do	not	overlap.	Because	of	
these	advantages,	WGRFC	HAS	forecasters	have	the	option	of	implementing	Q2	as	
our	final	best	estimate	field.

12.4.3  satellite PReciPitatiOn estimates

The	 MPE	 also	 ingests	 satellite-derived	 precipitation	 estimates	 from	 the	 National	
Environmental	 Satellite,	 Data,	 and	 Information	 Service	 (NESDIS).	 The	
Hydroestimator	is	an	automated	technique,	initially	designed	for	large,	moist	thun-
derstorm	 systems,	 which	 uses	 Geostationary	 Operational	 Environmental	 Satellite	
(GOES)	 infrared	 (IR)	 imagery	 cloud	 top	 brightness	 temperatures	 (Scofield	 and	
Kuligowski,	2003).	Pixels	with	the	coldest	IR	temperatures	are	assigned	the	heavi-
est	 rainfall	 rates	 at	 the	 surface.	 Numerous	 other	 factors,	 including	 the	 cloud-top	
geometry,	 the	 available	 atmospheric	 moisture	 (precipitation	 efficiency),	 stability	
parameters	from	weather	models,	radar,	and	local	 topography,	are	used	to	further	
adjust	the	rain	rates.	Although	caution	should	be	used	in	drawing	conclusions	about	
radar	performance	based	on	satellite-derived	precipitation	estimates,	HAS	forecast-
ers	can	confirm	radar	performance	if	the	precipitation	estimates	from	both	sources	
are	 in	 close	agreement.	However,	 correlation	coefficients	 comparing	24	h	 satellite	
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precipitation	estimates	(SPEs)	to	24	h	rain	gauges	show	the	lowest	correlation	of	any	
of	the	remote-sensing	fields	(biased	radar	estimates	or	Q2)	used	by	HAS	forecasters.	
Therefore,	satellite-based	estimates	have	the	most	benefit	over	land	areas	where	no	
or	limited	observations	of	precipitation	(e.g.,	radar,	Q2,	or	rain	gauges)	are	available	
(e.g.,	border	area	of	Mexico).	SPEs	can	be	used	without	bias	correction,	or	can	be	
corrected	for	local	biases	using	the	techniques	described	earlier	for	radar.	And	like	
the	other	fields	previously	discussed,	the	option	exists	to	integrate	SPEs	into	our	final	
best	estimate	precipitation	field	by	performing	polygon	edits.	One	example	of	when	
SPEs	would	be	integrated	is	when	lightning	data	indicate	thunderstorm	activity	and	
SPEs	are	the	only	field	estimating	rainfall	in	this	location.	As	a	result,	the	final	best	
estimate	field	is	based	on	a	combination	of	radar-based	multisensor	fields	from	DPA	
files,	Q2,	and	SPEs.

12.4.4  final POstanalysis Quality cOntROl techniQue

Hundreds	of	24	h	COOP	rainfall	reports	and	CoCoRaHS	observations	are	available	
for	postanalysis	of	the	MPE	results.	Direct	comparisons	of	the	MPE	and	observer	
rainfall	 totals	 shortly	 after	 12	 Coordinated	 Universal	 Time	 (UTC)	 each	 morning	
allow	 HAS	 forecasters	 to	 determine	 areas	 where	 the	 MPE	 estimates	 may	 be	 too	
low	or	too	high.	Forecasters	can	raise	or	lower	estimates	in	specific	hours	in	order	
to	produce	a	24	h	estimate	that	is	more	consistent	with	24	h	gauge	reports.	The	goal	
is	 to	 achieve	 a	 “general”	 level	 of	 acceptable	 error	 in	 the	 estimates.	Programs	are	
run	that	show	the	correlation	coefficient	and	percent	bias	of	MPE	estimates,	which	
vary	by	time	and	location.	The	goal	is	to	modify	the	estimates	to	achieve	correlation	
coefficients	of	greater	 than	0.85.	Most	 initial	estimates	are	 low	(meaning	the	24	h	
gauge	reports	are	higher	 than	MPE)	and	have	correlation	coefficients	of	 less	 than	
0.85.	When	initial	MPE	estimates	are	raised	or	lowered,	the	inherent	error	of	most	
estimates	is	improved	to	the	desired	correlation.	Since	these	data	are	to	be	used	for	
improved	drought	monitoring,	removal	of	the	traditional	underestimation	is	crucial.	
If	these	biases	are	not	mitigated,	a	false	identification	of	the	onset	of	drought	might	
occur	over	time.

12.5   DROUGHT MONITORING: HOW THESE 
ESTIMATES CAN BE USED TO DETERMINE 
CURRENT LOCATIONS OF DROUGHT

12.5.1  nWs sOutheRn ReGiOn PReciPitatiOn analysis PROject

In	 the	 early	 and	 mid-2000s,	 NWS	 Southern	 Region	 offices	 began	 to	 display	
the	 gridded	 MPE	 output	 maps	 on	 the	 Internet,	 and	 the	 data	 became	 avail-
able	 for	download	a	 short	 time	 later.	 Initially,	 these	pages	graphically	 showed	
the	 short-term	 observed	 and	 climatic	 trends	 of	 precipitation	 across	 the	 south-
ern	 region	 (from	 New	 Mexico	 eastward	 to	 Tennessee,	 Georgia,	 and	 Florida).	
In	 2009,	 this	 project	 was	 expanded	 to	 include	 the	 entire	 CONUS	 and	 Puerto	
Rico.	 The	 national-level	 products	 can	 be	 found	 on	 the	 Advanced	 Hydrologic	
Prediction	 Service	 (AHPS)	 web	 site	 (http://water.weather.gov).	 Tools	 are	 also	
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available	 to	 compare	 MPE	 estimates	 to	 normal	 rainfall	 over	 different	 times-
cales	(http://water.weather.gov/precip/),	which	can	provide	valuable	insight	into	
detailed	 spatiotemporal	 patterns	 of	 precipitation	 deficits	 to	 characterize	 both	
short-	and	long-term	drought	conditions.

“Departure	from	Normal”	and	“Percentage	of	Normal”	products	are	generated	
by	using	simple	grid	mathematics,	where	the	“Normal”	data	set	is	respectively	sub-
tracted	from	or	divided	into	the	“Observed”	data	set.	“Observed”	data	are	derived	
from	output	(e.g.,	from	MPE	or	similar	PPSs)	from	12	NWS	RFCs.	“Normal”	pre-
cipitation	 is	derived	from	Parameter-elevation	Regressions	on	 Independent	Slopes	
Model	(PRISM)	climate	data	(Gibson	et	al.,	2002),	which	represent	a	30	year	period	
of	 record	 (1971–2000).	 The	 data	 sets	 were	 created	 as	 a	 unique	 knowledge-based	
system	 that	 uses	 point	 measurements	 of	 precipitation,	 temperature,	 and	other	 cli-
matic	factors	to	produce	continuous,	digital	grid	estimates	of	monthly,	yearly,	and	
event-based	 climatic	 parameters.	 This	 unique	 analytical	 tool	 incorporates	 point	
data,	a	digital	elevation	model,	and	expert	knowledge	of	complex	climatic	extremes,	
including	rain	shadows,	coastal	effects,	and	temperature	inversions.	In	order	to	fill	
in	areas	 that	have	radar-coverage	gaps	 in	 the	mountainous	western	United	States,	
gauge	reports	are	plotted	against	long-term	climatic	PRISM	precipitation	data,	and	
amounts	between	gauge	locations	are	spatially	interpolated	(more	information	about	
this	 method	 is	 available	 at	 http://www.cnrfc.noaa.gov/products/rfcprismuse.pdf).	
The	 derived	 precipitation	 products	 (specifically,	 “Departure	 from	 Normal”	 and	
“Percentage	of	Normal”	products)	can	provide	useful	contextual	information	to	iden-
tify	the	amount	and	magnitude	of	precipitation	deficits	that	can	be	used	for	drought	
monitoring.

Figure	 12.5	 shows	 an	 example	 of	 a	 percent	 of	 normal	 rainfall	 graphic	 from	
December	 2010	 across	 the	 southern	 United	 States.	 This	 month	 was	 exception-
ally	dry,	and	this	graphic	depicts	few	areas	where	percent	of	normal	precipitation	

FIGURE 12.5  (See color insert.)	Percent	of	normal	rainfall	for	the	southern	United	States	
from	the	AHPS	precipitation	analysis	page	for	December	2010.	(Image	courtesy	of	NOAA/
NWS,	Silver	Spring,	MD.)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11863-17&iName=master.img-005.jpg&w=276&h=167
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exceeded	100%	(the	upper	Texas	Gulf	coast	near	Houston	was	one	area).	Of	note	
are	the	large	regions	where	the	percent	of	normal	precipitation	was	less	than	50%	
of	normal,	specifically	from	northern	Louisiana	into	east-central	Texas,	and	across	
the	Texas/Mexican	border	to	western	Texas.	This	indicates	a	strong	dry	signal,	col-
located	with	an	extreme	drought	category	designated	on	the	USDM	(not	shown)	for	
these	locations.

12.5.2  advanced hydROlOGic PRedictiOn seRvice

Before	 2009,	 all	 radar-based	 product	 data	 displayed	 by	 the	 Southern	 Region	
Precipitation	 Analysis	 Project	 were	 considered	 to	 be	 “experimental.”	 To	 make	
these	data	“operational,”	the	data	pages	were	packaged	into	a	nationwide	program	
known	as	the	AHPS,	a	new	and	essential	component	of	the	NWS	Climate,	Water,	
and	Weather	Services.	AHPS	is	a	web-based	suite	of	products	that	display	drought	
magnitude	and	uncertainty	of	occurrence,	based	on	the	range	of	potential	outcomes	
computed	from	historical	hydrometeorological	data	and	current	conditions	using	an	
ensemble	streamflow	prediction	model.	These	new	products	are	enabling	the	USDM,	
National	Drought	Mitigation	Center	(NDMC),	government	agencies,	private	institu-
tions,	 and	 individuals	 to	make	more	 informed	decisions	about	 risk-based	policies	
and	actions	to	mitigate	the	dangers	posed	by	droughts.	Although	these	products	were	
not	designed	specifically	for	drought	monitoring,	the	high-spatial-resolution	precip-
itation	 information	 they	 provide	 has	 substantial	 potential	 to	 support	 this	 applica-
tion.	For	example,	the	office	of	the	Texas	State	Climatologist	creates	a	gridded	4	km	
resolution	and	a	county-scale	resolution	SPI	from	the	AHPS	precipitation	analyses	
data	(http://atmo.tamu.edu/osc/drought/).	A	more	detailed	description	of	the	SPI	grid	
generation	using	the	AHPS	is	provided	by	Nielsen-Gammon	and	McRoberts	(2009).

Traditionally,	 coarse	 resolution	SPI	maps	derived	 from	spatial	 interpolations	
of	 point-based	gauge	data	have	been	used	 for	 drought	monitoring,	 as	 shown	 in	
Figure	12.6a.	In	Figure	12.6b,	the	4	km	SPI	maps	generated	from	radar-based	pre-
cipitation	data	depict	considerably	more	spatially	detailed	precipitation	variations,	
which	provide	considerably	more	local-scale	information	about	precipitation	defi-
cits	that	is	more	appropriate	for	county	to	subcounty	decision	making	related	to	
drought.	 In	 brief,	 the	 SPI	 map	 generated	 from	 AHPS	 precipitation	 analyses	 is	
created	using	 the	 following	process.	 Initially,	a	cluster	analysis	 is	performed	 to	
determine	Texas	precipitation	normals	by	location	and	season.	A	frequency	distri-
bution	is	then	calculated	for	each	location	and	season,	from	which	high-resolution	
gridded	frequency	distributions	are	produced	(using	PRISM	data	over	higher	ter-
rain	 of	 west	 Texas	 and	 roughly	 1500	 COOP	 stations	 in	 Texas	 and	 surrounding	
states).	Finally,	accumulations	of	precipitation	are	computed,	creating	4	km	and	
county-aggregated	SPI	for	various	time	periods	from	2	to	24	months,	and	related	
products	such	as	an	SPI	blend,	an	SPI	blend	1	week	change	map,	and	a	percent	of	
normal	precipitation	map.

The	primary	motivation	for	using	AHPS	precipitation	data	in	this	project	was	to	
facilitate	local-scale	drought	monitoring	for	Texas.	Climate	division-scale	drought	
monitoring	tools	are	wholly	inadequate	for	the	state,	and	even	ACIS	gauge	data	are	
too	coarse	and	unrepresentative	in	many	areas.	For	example,	the	USDA	applies	the	
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FIGURE  12.6  (See color insert.)	 An	 8	 week	 SPI	 map	 interpolated	 from	 station-based	
precipitation	 data	 (a)	 and	 an	8	week	SPI	map	derived	 from	4	km	precipitation	 from	MPE	
(b)	 (Image	 courtesy	 of	 Dr.	 John	 Nielsen-Gammon)	 for	 early	 September	 2009	 during	 the	
severe	drought	 in	southern	Texas,	as	shown	by	 the	USDM	map	on	September	7,	2009	(c).	
The	circle	highlights	an	area	of	exceptional	drought	in	the	USDM	that	is	shown	to	have	near-
normal	conditions	in	the	interpolated	SPI	map	(a)	but	clearly	had	localized	areas	of	severe	
drought	conditions	that	were	detected	in	the	SPI	map	based	on	higher-resolution,	radar-based	
precipitation	observations	(b).
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USDM	map	on	a	county	scale	for	 its	drought	 relief	decisions,	yet	 the	USDM	and	
other	 existing	 drought	 index	 tools	 do	 not	 have	 the	 sufficient	 spatial	 resolution	 to	
enable	estimation	of	drought	at	this	spatial	scale	within	Texas.	An	example	of	the	
SPI	blend	for	Texas	during	the	2009	drought	can	be	seen	in	Figure	12.6b.	During	
this	drought,	the	MPE-based	SPI	blend	was	able	to	accurately	highlight	the	locations	
of	most	severe	drought	in	Texas.	Gauges	within	these	hardest-hit	areas,	as	indicated	
by	our	MPE	products,	were	indeed	experiencing	historic	drought	severity	based	on	
an	analysis	of	the	period-of-record	data,	while	stations	adjacent	to	these	areas	were	
not.	Nine	counties	(Nueces,	San	Patricio,	Aransas,	Refugio,	Jackson,	Calhoun,	Bee,	
Brazoria,	and	Goliad)	experiencing	unprecedented	drought	severity	were	identified	
in	southern	Texas	along	the	Gulf	coast	using	MPE	data,	even	though	most	of	those	
counties	did	not	have	long-term	precipitation	records	because	of	the	sparse	number	
of	COOP	stations	that	had	a	long	history	in	that	region	(Nielsen-Gammon,	August	
2010,	 personal	 communication).	 Without	 the	 long-term	 precipitation	 records,	 SPI	
blends	based	on	MPE	data	provided	information	that	improved	the	assessment	of	the	
severity	of	the	local	drought	situation.

In	contrast,	Figure	12.6a	shows	a	station-based	SPI	map	with	data	taken	from	
the	NDMC’s	Drought	Atlas	for	the	same	time	period	as	Figure	12.6b.	Eight-week	
SPI	data	from	475	weather	stations	(226	stations	in	Texas	and	249	stations	from	
the	surrounding	states	 to	minimize	edge	effects	during	 the	spatial	 interpolation	
of	the	SPI	point	data)	were	used	to	generate	the	map	in	Figure	12.6a.	The	station-
based	SPI	 shows	 the	overall	 location	of	 exceptionally	wet	 conditions	 (northeast	
Texas	and	 the	eastern	Texas	panhandle)	 and	exceptional	drought	 (middle	Texas	
Gulf	Coastal	region).	But	it	is	clear	that	the	station-based	SPI	missed	how	wide-
spread	the	extreme	and	exceptional	drought	conditions	were	across	south-central	
Texas.	For	example,	in	several	counties	in	south-central	Texas	where	the	station-
based	SPI	showed	normal	conditions	to	abnormally	dry	conditions	(Comal	County	

D0 abnormally dry
(c)

D1 drought-moderate
D2 drought-severe
D3 drought-extreme
D4 drought-exceptional

FIGURE 12.6 (continued)  (See color insert.)
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eastward	 to	 Gonzales	 County),	 the	 MPE-based	 blended	 SPI	 showed	 severe	 to	
extreme	 drought	 conditions.	 Since	 hourly	 gauge	 data	 are	 incorporated	 into	 the	
final	multisensor	MPE,	the	drought	features	that	appear	over	this	area	in	Figure	
12.6b	should	be	representative	of	relative	precipitation	patterns	(and	deficits)	at	a	
local	 subcounty	scale	because	ground-based	precipitation	observations	are	con-
sidered	in	the	adjusted,	radar-based	precipitation	fields.	Across	this	area	of	Texas,	
notable	rainfall	discrepancies	among	stations	during	the	defined	SPI	interval	were	
likely	due	to	the	convective	nature	of	the	rainfall	in	this	region,	with	the	intersta-
tion	 variations	 being	 relatively	 consistent	 with	 the	 drought/nondrought	 patterns	
depicted	in	Figure	12.6b.	The	USDM	map	for	September	8,	2009	(Figure	12.6c),	
reaffirms	the	severe	drought	conditions	over	this	area,	classifying	these	counties	
in	the	most	severe	drought	class	(D4,	an	exceptional	drought	that	is	defined	as	a	
one	in	50	year	event).	Further	visual	analysis	of	the	MPE-derived	SPI	map	of	the	
area	 reveals	 many	 subtle	 subcounty	 variations	 in	 dryness	 that	 are	 not	 detected	
in	 the	station-based	SPI	map.	Many	counties	 in	southern	Texas	have	pockets	of	
both	drought	and	nondrought	conditions	in	the	radar-generated	SPI	map	that	can-
not	be	 spatially	 resolved	using	 traditional	 interpolated	maps	 from	station-based	
observations.

The	 use	 of	 4	km	 precipitation	 data	 provides	 a	 more	 accurate	 depiction	 of	 the	
breadth	and	scope	of	the	Texas	drought	conditions	in	2009.	This	result	suggests	that	
the	improved	spatial	resolution	of	this	information	will	be	a	tremendous	benefit	for	
local-scale	drought	monitoring	activities	by	characterizing	detailed	subcounty	spa-
tial	variations	in	precipitation	deficits.	The	4	km	precipitation	and	other	derivative	
products	such	as	the	SPI	will	also	be	extremely	valuable	in	areas	with	sparse	weather	
station	networks	and	for	counties	with	large	areas	that	commonly	experience	consid-
erable	within-county	climate	variations.

12.6  CONCLUSIONS

Over	 the	 past	 several	 years,	 advancements	 have	 been	 made	 in	 both	 radar-based	
precipitation	 sensing	 and	 multisensor	 estimation	 processing	 techniques.	 Further	
improvements	will	be	made	in	radar	precipitation	estimation	with	the	implementa-
tion	of	dual	polarization	in	the	next	few	years.	New	rainfall	rate	algorithms	such	as	
Q2	have	also	been	implemented	within	the	MPE	PPS.	This	chapter	has	discussed	the	
benefit	that	improved,	quality-controlled,	and	finer-scale	precipitation	data	can	have	
in	drought	monitoring	by	detailing	deficits	in	rainfall	with	greater	spatial	resolution	
that	is	not	available	using	gauge-based	SPI	data	alone.

East	of	the	Continental	Divide,	RFCs	derive	estimates	of	precipitation	using	a	
multisensor	approach.	Hourly	precipitation	estimates	from	WSR-88D	radars	are	
compared	to	ground	rainfall	gauge	reports,	and	a	bias	(correction	factor)	 is	cal-
culated	and	applied	 to	 the	 radar	field.	The	radar	and	gauge	fields	are	combined	
into	a	“multisensor	field,”	which	is	quality	controlled	on	an	hourly	basis.	In	areas	
with	limited	or	no	radar	coverage,	SPE	can	be	incorporated	into	this	multisensor	
field,	and	the	SPE	can	also	be	biased	against	rain	gauge	reports.	In	mountainous	
areas	 west	 of	 the	 Continental	 Divide,	 a	 different	 method	 is	 used	 to	 derive	 the	
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estimates	of	precipitation.	Gauge	 reports	 are	plotted	against	 long-term	climato-
logical	precipitation	(PRISM	data),	and	derived	amounts	are	interpolated	between	
gauge	locations.

Studies	have	shown	(Seo,	1999;	Seo	and	Breidenbach,	2002)	that	algorithms	that	
combine	sensor	inputs—radar,	gauge,	and	satellite—yield	more	accurate	precipita-
tion	estimates	 than	 those	 that	 rely	on	a	single	sensor	 (i.e.,	 radar	only,	gauge	only,	
and	satellite	only).	Although	it	 is	not	perfect,	 the	MPE	data	set	 is	one	of	 the	best	
sources	 of	 timely,	 high-resolution	 precipitation	 information	 available.	 Still,	 users	
should	understand	the	inherent	weaknesses	of	this	data	set	before	using	it	in	drought	
monitoring	applications,	especially	those	that	require	a	high	degree	of	accuracy.

Many	quantitative	measures	of	drought	have	been	developed	in	the	United	States,	
depending	on	the	sector	impacted,	the	region	being	considered,	and	the	particular	
application.	Although	different	definitions	and	measures	of	drought	exist,	 they	all	
originate	from	a	deficiency	of	precipitation	resulting	from	an	unusual	weather	pat-
tern.	Therefore,	using	an	improved	source	of	precipitation	data	such	as	MPE	4	km	
products	would	lead	to	a	better	determination	of	the	onset,	intensity,	and	geographic	
and	temporal	evolution	of	drought.

Several	of	the	Palmer	indices	and	the	SPI	are	useful	for	describing	drought	on	
varying	temporal	scales	(i.e.,	weeks,	months,	or	years).	On	a	climate-division	scale,	a	
standard	suite	of	products	including	the	NCDC’s	SPI,	the	CPC’s	soil	moisture–related	
drought	severity	index,	and	the	Western	Region	Climate	Center’s	SPI	exist.	On	a	sta-
tion	scale,	the	U.S.	Geological	Survey	provides	gauge-based	streamflow	data,	and	
the	High	Plains	Regional	Climate	Center	produces	a	30	day	SPI	using	daily	data	
from	ACIS	that	incorporates	COOP	observer	and	automated	weather	data.	Satellite-
based	tools	such	as	VegDRI	(Brown	et	al.,	2008)	that	assist	in	agricultural-related	
drought	monitoring	also	rely	on	precipitation	data	as	a	primary	input.	Collectively,	
these	drought	indices	have	relied	on	gauge-based	data	and	have	not	provided	indi-
ces	 representative	 of	 county-	 to	 subcounty-scale	 drought	 information	 because	 of	
the	 coarse	 spatial	 resolution	 inputs.	 The	 higher-resolution	 4	km	 precipitation	 data	
produced	by	MPE	can	be	used	to	replace	the	traditional	point	or	interpolated	pre-
cipitation	products	in	the	development	of	these	indices	to	provide	a	more	detailed	
characterization	of	drought	patterns.	This	holds	the	potential	to	advance	local-scale	
drought	monitoring	activities	as	prioritized	by	NIDIS,	as	well	as	 improve	current	
state-of-the-art	monitoring	 tools	such	as	 the	USDM,	which	was	 initially	designed	
to	classify	broadscale,	national	drought	patterns	but	is	increased	being	relied	upon	
for	county	and	subcounty	drought	information.	With	the	goal	of	improved	drought	
monitoring,	Texas	A&M	University,	North	Carolina	State	University,	 and	Purdue	
University	received	a	USDA	award	to	improve	the	long-term	calibration	of	the	AHPS	
MPE	analyses,	and	take	the	SPI	products	beyond	Texas	to	include	at	least	the	eastern	
parts	of	the	United	States	(i.e.,	south-central	and	eastern	sections).	The	project	began	
in	January	2011,	with	tangible	results	expected	a	few	months	after	that.
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FIGURE 12.3 Widespread false precipitation, or AP, shown on the MPE radar mosaic. 
(Photos courtesy NOAA/NWS, Silver Spring, MD.)

FIGURE 12.5 Percent of normal rainfall for the southern United States from the AHPS 
 precipitation analysis page for December 2010. (Image courtesy of NOAA/NWS, Silver 
Spring, MD.)
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FIGURE 12.6 An 8 week SPI map interpolated from station-based precipitation data (a) and 
an 8 week SPI map derived from 4 km precipitation from MPE (b) (Image courtesy of Dr. John 
Nielsen-Gammon) for early September 2009 during the severe drought in southern Texas, as 
shown by the USDM map on September 7, 2009 (c). The circle highlights an area of excep-
tional drought in the USDM that is shown to have near-normal conditions in the interpolated 
SPI map (a) but clearly had localized areas of severe drought conditions that were detected in 
the SPI map based on higher-resolution, radar-based precipitation observations (b).
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