77 research outputs found

    Radio frequency fingerprint collaborative intelligent identification using incremental learning

    Get PDF
    For distributed sensor systems using neural networks, each sub-network has a different electromagnetic environment, and these recognition accuracy is also different. In this paper, we propose a distributed sensor system using incremental learning to solve the problem of radio frequency fingerprint identification. First, the intelligent representation of the received signal is linearly fused into a four-channel image. Then, convolutional neural network is trained by using the existing data to obtain the preliminary model of the network, and decision fusion is used to solve the problem in the distributed system. Finally, using new data, instead of retraining the model, we employ incremental learning by fine-tuning the preliminary model. The proposed method can significantly reduce the training time and is adaptive to streaming data. Extensive experiments show that the proposed method is computationally efficient, and also has satisfactory recognition accuracy, especially at low signal-to-noise ratio (SNR) regime

    MULTISTATIC RADAR EMITTER IDENTIFICATION USING ENTROPY MAXIMIZATION BASED INDEPENDENT COMPONENT ANALYSIS

    Get PDF
    Radar emitter identification is state-of-the-art in modern electronic warfare. Presently multistatic architecture is adapted by almost all the radar systems for better tracking performance and accuracy in target detection. Hence, identification and classification of radar emitters operating in the surveillance region are the major problems. To deal with the difficulty of identification of radar emitters in a complex electromagnetic environment, in this work entropy maximization method of Independent Component Analysis (ICA) based on gradient ascent algorithm is proposed. This algorithm separates unknown source signals from the interleaved multi-component radar signals. The discrete source signals are extracted from the multi-component signal by optimizing the entropy where maximum entropy is achieved using a gradient ascent approach through unsupervised learning. As better detection capability and range resolution are achieved by Linear Frequency Modulated (LFM) signals for radar systems here, multicomponent LFM signals with low SNR are considered as the signal mixture from which, the independent sources separated. A mathematical model of the algorithm for entropy maximization is illustrated in this paper. Simulation result validates the effectiveness of the algorithm in terms of time domain separation of the signal, and time-frequency analysi

    Sensor Signal and Information Processing II

    Get PDF
    In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem solving. These algorithms have the capacity to generalize and discover knowledge for themselves and learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topic ranges from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspiring filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensors processing

    Insect-vision inspired collision warning vision processor for automobiles

    Get PDF
    Vision is expected to play important roles for car safety enhancement. Imaging systems can be used to enlarging the vision field of the driver. For instance capturing and displaying views of hidden areas around the car which the driver can analyze for safer decision-making. Vision systems go a step further. They can autonomously analyze the visual information, identify dangerous situations and prompt the delivery of warning signals. For instance in case of road lane departure, if an overtaking car is in the blind spot, if an object is approaching within collision course, etc. Processing capabilities are also needed for applications viewing the car interior such as >intelligent airbag systems> that base deployment decisions on passenger features. On-line processing of visual information for car safety involves multiple sensors and views, huge amount of data per view and large frame rates. The associated computational load may be prohibitive for conventional processing architectures. Dedicated systems with embedded local processing capabilities may be needed to confront the challenges. This paper describes a dedicated sensory-processing architecture for collision warning which is inspired by insect vision. Particularly, the paper relies on the exploitation of the knowledge about the behavior of Locusta Migratoria to develop dedicated chips and systems which are integrated into model cars as well as into a commercial car (Volvo XC90) and tested to deliver collision warnings in real traffic scenarios.Gobierno de España TEC2006-15722European Community IST:2001-3809

    A comparative study of signal processing methods for structural health monitoring

    Get PDF
    In this paper four non-parametric and five parametric signal processing techniques are reviewed and their performances are compared through application to a sample exponentially damped synthetic signal with closely-spaced frequencies representing the ambient response of structures. The non-parametric methods are Fourier transform, periodogram estimate of power spectral density, wavelet transform, and empirical mode decomposition with Hilbert spectral analysis (Hilbert-Huang transform). The parametric methods are pseudospectrum estimate using the multiple signal categorization (MUSIC), empirical wavelet transform, approximate Prony method, matrix pencil method, and the estimation of signal parameters by rotational invariance technique (ESPRIT) method. The performances of different methods are studied statistically using the Monte Carlo simulation and the results are presented in terms of average errors of multiple sample analyses

    Methods for Advanced Wind Turbine Condition Monitoring and Early Diagnosis: A Literature Review

    Get PDF
    Condition monitoring and early fault diagnosis for wind turbines have become essential industry practice as they help improve wind farm reliability, overall performance and productivity. If not detected and rectified at early stages, some faults can be catastrophic with significant loss or revenue along with interruption to the business relying mainly on wind energy. The failure of Wind turbine results in system downtime and repairing or replacement expenses that significantly reduce the annual income. Such failures call for more systematized operation and maintenance schemes to ensure the reliability of wind energy conversion systems. Condition monitoring and fault diagnosis systems of wind turbine play an important role in reducing maintenance and operational costs and increase system reliability. This paper is aimed at providing the reader with the overall feature for wind turbine condition monitoring and fault diagnosis which includes various potential fault types and locations along with the signals to be analyzed with different signal processing methods

    時間と周波数領域情報に基づいたシステムモデリングとその応用

    Get PDF
    System modeling is required to deal with the time-varying system dynamics or the experimental data with insufficient information. However, the existing methods cannot construct satisfactory models for rapidly varying systems or severely band-limited signals. This thesis focuses on the new approaches to solve such system modeling problems based on time and frequency-domain information and illustrates their applications in time-varying channel identification and localization system. For the rapid time-varying systems, parameters can be approximated by the cosine series using virtual even periodic functions. Following the orthogonality of the trigonometric functions, the parameter estimation is recursively implemented by estimating the coefficients of each degree of the cosine harmonic term. For the localization system with insufficient frequency components, the spectral characteristics including phase information in frequency domain and the information evaluation in time domain are applied to improve the convergence performance. Numerical simulations demonstrate the effectiveness of the new approaches.北九州市立大

    AI enabled RF sensing of Diversified Human-Centric Monitoring

    Get PDF
    This thesis delves into the application of various RF signaling techniques in HumanCentric Monitoring (HCM), specifically focusing on WiFi, LoRa, Ultra-wideband (UWB) radars, and Frequency Modulated Continuous Wave (FMCW) radars. Each of these technologies has unique properties suitable for different aspects of HCM. For instance, 77GHz FMCW radar signals demonstrate high sensitivity in detecting subtle human movements, such as heartbeat, contrasting with the capabilities of 2.4GHz/5GHz WiFi signals. The research extends to both large-scale and small-scale Human Activity Recognition (HAR), examining how ubiquitous communication signals like WiFi and LoRa can be utilized for large-scale HAR, while radar signals with higher central frequencies are more effective for small-scale motions, including heartbeat and mouth movements. The thesis also identifies several unresolved challenges in the field. These include the underutilization of spatial spectral information in existing WiFi sensing technologies, the untapped potential of LoRa technology in identity recognition, the sensitivity of millimeterwave radar in detecting breathing and heartbeat against minor movements, and the lack of comprehensive datasets for mouth motion detection in silent speech recognition. Addressing these challenges, the paper proposes several innovative solutions: • A comprehensive analysis of methodologies for RF-based HCM applications, discussing challenges and proposing potential solutions for broader healthcare applications using wireless sensing. • Exploration of communication signals in HCM systems, especially focusing on WiFi and LoRa sensing. It introduces the continuous AoA-ToF maps method to enhance HCM system performance and the LoGait system, which uses LoRa signals for human gait identification, extending the sensing range to 20 meters. • Development of a FMCW radar-based structure for respiration detection, incorporating an ellipse normalization method to adjust distorted IQ signals, reducing the root mean square error by 30% compared to baseline methods. • Collection and analysis of a large-scale multimodal dataset for silent speech recognition and speech enhancement, including designing experiments to validate the dataset’s utility in a multimodal-based speech recognition system

    Advanced Sensors for Real-Time Monitoring Applications

    Get PDF
    It is impossible to imagine the modern world without sensors, or without real-time information about almost everything—from local temperature to material composition and health parameters. We sense, measure, and process data and act accordingly all the time. In fact, real-time monitoring and information is key to a successful business, an assistant in life-saving decisions that healthcare professionals make, and a tool in research that could revolutionize the future. To ensure that sensors address the rapidly developing needs of various areas of our lives and activities, scientists, researchers, manufacturers, and end-users have established an efficient dialogue so that the newest technological achievements in all aspects of real-time sensing can be implemented for the benefit of the wider community. This book documents some of the results of such a dialogue and reports on advances in sensors and sensor systems for existing and emerging real-time monitoring applications
    corecore