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Abstract 

Radar emitter identification is state-of-the-art in modern electronic warfare. 

Presently multistatic architecture is adapted by almost all the radar systems for 

better tracking performance and accuracy in target detection. Hence, 

identification and classification of radar emitters operating in the surveillance 

region are the major problems. To deal with the difficulty of identification of 

radar emitters in a complex electromagnetic environment, in this work entropy 

maximization method of Independent Component Analysis (ICA) based on 

gradient ascent algorithm is proposed. This algorithm separates unknown source 

signals from the interleaved multi-component radar signals. The discrete source 

signals are extracted from the multi-component signal by optimizing the entropy 

where maximum entropy is achieved using a gradient ascent approach through 

unsupervised learning. As better detection capability and range resolution are 

achieved by Linear Frequency Modulated (LFM) signals for radar systems here, 

multicomponent LFM signals with low SNR are considered as the signal mixture 

from which, the independent sources separated. A mathematical model of the 

algorithm for entropy maximization is illustrated in this paper. Simulation result 

validates the effectiveness of the algorithm in terms of time domain separation of 

the signal, and time-frequency analysis. 

Keywords: Ambiguity function, Entropy maximization, Multicomponent signal, 

Multistatic radar. 
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1.  Introduction 

Radar emitter identification is a key problem in modern electronic reconnaissance 

system due to the current proliferation and waveform design complexity of 

electromagnetic signals [1]. Most of the radar system presently exploits multistatic 

architecture where the number of transmitter and receivers are more than one to 

improve the detection and tracking performance. As a result of this, a mixture of 

transmitting signal from all the transmitters is received by the receiver, which 

complicates the process of identifying the number of emitters operating in the 

surveillance region. It is also an important function of Electronic Countermeasures 

(ECM) of the modern electronic warfare to identify and locate the source of hostile 

radiations, based on analysing the intercepted radar signals. The conventional 

methods of emitter identification based on the received pulse parameter 

characteristics that is Time of Arrival (TOA), transmitted frequency of the signal, 

pulse duration, angle of arrival, pulse amplitude [2] and some parameters that are 

derived from the received pulse parameters like Pulse Repetition Interval (PRI) [3]. 

However, these algorithms became inefficient and time-consuming for solving 

emitter identification problems as they often fail to identify signals under high 

signal density environment, especially, in real time scenario [4].  

Some of the researchers used in-pulse characteristics such as resemblance 

coefficient, wavelet package characteristic and complexity characteristic to 

recognising radar emitter. When signals have the same modulation type and 

different modulation parameters, these techniques cannot perform well. The 

modulating methods of intrapulse, inter-pulse are diverse and complicated [1]. 

Numerous pattern classification algorithms have been effectively implemented, 

like fuzzy functions [5], support vector machines [6], neural networks [7], and 

data association [8] by various authors. However, most of the available methods 

can accept only scalar input data and resolve the classification problem affected 

by the measurement ambiguity of the source feature parameters up to some level 

[9]. When the signal transmitted by multiple transmitters, the resultant echoes are 

a weighted sum of transmitted signals, which follow some type of distributions. 

In short, observation interval to classify the active emitters is one of the important 

task [10].  

Radar emitter identification is a subclass of the broader data clustering problem, 

which aims to determine the unknown structure in a data set. However, compared to 

the common clustering problem, radar emitter identification has some distinctive 

challenges. Initially, radar data samples are of a large and irregular dimension may 

be of several hundreds of samples at a single scan and the other is that most of the 

pulses are very similar characteristics. Zhou and Lee [10] implemented offline 

clustering algorithms as a solution to the emitter classification problem. As stated by 

Liu et al. [11], these methods are effective, but in a practical scenario, online 

clustering algorithms are valuable, which is further considered, but it requires 

frequent training for satisfactory performance. Comon [12] firstly introduced the 

Independent Component Analysis (ICA) algorithm, intended for the blind source 

separation, for the application of radar emitter identification, which is presently 

reintroduced by researchers. Guo et al. [13] proposed a new emitter signal analysis 

method based on the complex ICA for multi-component LFM signal separation, 

which is a fixed-point algorithm with batch processing. A learning method based on 

Kernel Principal Component Analysis (KPCA) for emitter identification application 

consists of a symmetrical decomposition of the kernel matrix presented in [14]. As 
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discussed by Yu et al. [15], identification of phase-coded radar sequence of the binary 

phase-coded radar signal is based on experimental model decomposition. 

Unintentional modulation refers to the characteristics of the detailed structure of a 

pulse. A Sequential Iterative Least Square (SILS) method, where iterative least square 

technique is employed for estimation of features in the cyclostationary domain and 

zero frequency slice of cyclic spectrum is explored in [16]. 

In this paper entropy maximization method of ICA is used to discretise the 

mixture of multicomponent LFM signals using unsupervised learning. This 

technique isolates unknown source signals from numerous signal mixtures by 

maximizing the entropy of a transformed set of signal mixtures. Here the 

Information maximization algorithm attains maximum entropy of a signal using 

gradient ascension, an iterative process of taking a step in the direction of maximum 

gradient until a local maximum is obtained. If this process is repeated sufficiently, 

the global maximum will reach. When the global maximum of entropy is found 

using gradient ascent, entropy has been maximized, and the resulting signals are 

the source signals. The following sections are organized as follows. Section 2 

describes the multi-component signal modelling. Entropy maximization model is 

presented in Section 3. The gradient ascent approach is described in Section 4. 

Section 5 gives the simulation results and the conclusion is in Section 6. 

2.  Modelling of Multi-Component LFM Signal  

In multistatic radar systems receiver frequently intercepts pulses, which are 

transmitted from different sources at the same time. As the pulse density increases, 

the interleaved pulses forms a multi-component signal. The signal model for multi-

component LFM signal [17]: 

𝑠(𝑡) = ∑ 𝐴𝑖e
j2π(fit+(μit

2 2⁄ )) + 𝑛(𝑡)  𝑆−1
𝑖=0                                                                   (1) 

where 𝑆 is the number of transmitters, 𝐴𝑖 is the absolute magnitude of each signal, 

𝑓𝑖  is the initial frequency, 𝜇𝑖  is the chirp rate and 𝑛(𝑡) is the zero mean white 

Gaussian noise with variance 𝜎2. The mathematical representation of the signal 

mixture from which, the original signals has to extract is given by: 

𝑦 = 𝑊𝑥                                                                                                                    (2) 

where 𝑦 is a vector that contains 𝑀 number of extracted source signals, 𝑥 is the 

mixture of 𝑀 signals and 𝑊 is the uncorrelated matrix. In vector matrix notation, 

it is represented by: 

where 𝑦 is a vector that contains 𝑀 number of extracted source signals, 𝑥 is the 

mixture of 𝑀 signals and 𝑊 is the uncorrelated matrix. In vector matrix notation, 

it is represented by: 

[
 
 
 

𝑦1
1 𝑦1

2 ⋯𝑦1
𝑁

𝑦2
1 𝑦2

2 ⋯ 𝑦2
𝑁

⋮        …          ⋮
𝑦𝑀

1 𝑦𝑀
2  ⋯ 𝑦𝑀

𝑁]
 
 
 
= [

𝑊11 𝑊12 ⋯𝑊1𝑀

𝑊21 𝑊12 ⋯𝑊2𝑀

⋮          ⋮         ⋮
𝑊𝑀1  𝑊𝑀2 ⋯𝑊𝑀𝑀

]  [

𝑥1
1 𝑥1

2  ⋯ 𝑥1
𝑁

𝑥2
1 𝑥2

2  ⋯ 𝑥2
𝑁

⋮           ⋮           ⋮
𝑥𝑀

1 𝑥𝑀
2  ⋯ 𝑥𝑀

𝑁

]                              (3) 

The subscripts and superscripts of Eq. (3) indicate the signal number and the 

time index respectively. The extracted signal 𝑦 is obtained from the signal mixture 

𝑥 by optimizing the separation matrix 𝑊. 
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3.  Entropy Maximization Model 

Entropy is the degree of uncertainty associated with an indiscriminate variable. 

Entropy (K) is the average information, which can be obtained for an arbitrary 

number of events 𝑖 by taking the expectation  

𝐾(𝐴) = −
1

𝑁
∑ 𝑙𝑛 𝑃(𝐴𝑡)𝑁

𝑡                                                                                              (4) 

The entropy of mapped signal Y, can be represented mathematically by the 

entropy of a continuous random variable using Eq. (5), which becomes: 

𝐾(𝑌) = −
1

𝑁
∑ ln𝑃𝑌(𝑌

𝑡) 𝑁
𝑡=1                                                                                        (5) 

Entropy maximization is one of the techniques of ICA, which aims to find the 

independent signals. The steps of the algorithm is described in Fig. 1. The entropy 

will be optimised by converting the mixed signals 𝑦 to another group of signals that 

is represented by: 

𝑌 = 𝑔(𝑦) = 𝑔(Wx)                                                                                                   (6) 

 

Fig. 1. Entropy maximization algorithm block diagram. 

3.1. Uniformity of distribution and maximum entropy 

Stone [17] describes entropy as a measure of uniformity of distribution such that 

complete uniformity equals maximum entropy. If  𝒚  is a signal with cumulative 

distribution function (CDF) 𝑔, then the signal 𝑌 = 𝑔(𝑦) has maximum entropy and 

the probability density function (PDF) of 𝑌 is uniform. Figure 2 shows how uniform 

distribution (A) is obtained after a signal (C) is transformed by its own CDF. 

 
Fig. 2. A uniform distribution (A) is obtained after a signal  

(C) is transformed by its own CDF [14]. 
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The PDF of the mapped signal 𝑌 is 𝑃𝑌(𝑌𝑡) and the PDF of the extracted signal 

𝑦 is 𝑃𝑦(𝑦𝑡). They are related as: 

𝑃𝑌(𝑌𝑡) 𝑑𝑌 = 𝑃𝑦(𝑦𝑡)𝑑𝑦                                                                                               (7) 

By removing the superscripts and rearranging the Eq. (7) yields: 

𝑃𝑌(𝑌) = 𝑃𝑦(𝑦) 
𝑑𝑦

𝑑𝑌
                                                                                                                   

𝑃𝑌(𝑌𝑡) =
𝑃𝑦(𝑦𝑡) 

𝑑𝑌

𝑑𝑦
 

=  
𝑃𝑦(𝑦𝑡)

𝑃𝑠(𝑦
𝑡)
                                                                                        (8) 

where 𝑃𝑠(𝑦
𝑡) PDF of the source is signal and represented by 𝑃𝑠(𝑦

𝑡) =
𝑑𝑌

𝑑𝑦
.  

Since  𝑌 = 𝑔(𝑦), where 𝑔(𝑦) is the model CDF of source signal then 
𝑑𝑌

𝑑𝑦
=

𝑔′(𝑦) and 𝑔′(𝑦) is the PDF of the source signal. By substituting Eqs. (8) in (6), 

the entropy of the univariate PDF can be obtained as: 

𝐻(𝑌) = −
1

𝑁
∑ 𝑙𝑛

𝑃𝑦(𝑦𝑡)

𝑃𝑠(𝑦
𝑡)

𝑁
𝑡=1                                                                                         (9) 

Equation (9) provides a measure of similarity between the PDFs 𝑃𝑦 and 𝑃𝑠. If 

each extracted signal is transformed by a function 𝑔, then the joint distribution of 

the signal y = g(y)  is uniform at which, entropy is maximum. If an optimal 

separation matrix 𝑤 exists such that the extracted signals y = W𝑥 have a joint PDF 

𝑃𝑦(𝑦)= 𝑃𝑠(𝑦). 

𝑃𝑌(𝑌) =
𝑃𝑦(𝑦)

|
𝜕𝑌

𝜕𝑦
|

                                                                                                                              (10) 

The denominator term is the Jacobean, which is a scalar value and is the 

determinant of a 𝑀 × 𝑀 jacobian matrix of the partial derivatives. Alternatively, 

Eq. (10) can be written as:  

𝑃𝑌(𝑌) =
𝑃𝑦(𝑦)

𝑃𝑠(𝑦)
                                                                                                                (11) 

By substituting Eqs. (11) in (9), results in the multivariate expression of the 

entropy in form of both the source signal PDF 𝑃𝑠(𝑦) and extracted signal PDF 

𝑃𝑦(𝑦):  

𝐻(𝑌) = −
1

𝑁
∑ 𝑙𝑛

𝑃𝑦(𝑦𝑡)

𝑃𝑠(𝑦
𝑡)

𝑁
𝑡=1                                                                                              (12) 

W is the separation matrix exists that maximizes the entropy of the signal (𝑌) =
𝑔(𝑦), the PDF 𝑃𝑦  of each extracted signal in 𝑦 = 𝑊𝑥 will match to the PDF 𝑃𝑠. The 

function 𝑃𝑠 is used to specify the PDF of extracted signals because of the 𝑊, that 

maximizes the entropy. The mapping of 𝑦 = 𝑊𝑥 leads to: 

𝑃𝑌(𝑦) =
𝑃𝑥(𝑥)

|
𝜕𝑦

𝜕𝑥
|
 =

𝑃𝑥(𝑥)

|𝑊|
                                                                                                          (13) 

where  
𝜕𝑦

𝜕𝑥
= |𝑊|, and 𝑃𝑌(𝑦) is PDF of the extracted signal. 
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3.2. Information maximization for entropy 

On the substitution of Eqs. (13) in (12), the new expression for the multivariate 

entropy will be: 

𝐾(𝑌) = −
1

𝑁
∑ 𝑙𝑛

𝑃𝑥(𝑥𝑡)

|𝑊|𝑃𝑠(𝑦
𝑡)

𝑁
𝑡=1                                                                                   (14) 

By applying the logarithmic properties, Eq. (14) is drafted as: 

𝐾(𝑌) = −
1

𝑁
∑ (𝑙𝑛(𝑃𝑥(𝑥

𝑡) − 𝑙𝑛|𝑊| − 𝑙𝑛𝑃𝑠(𝑦
𝑡))𝑁

𝑡=1   

= −
1

𝑁
∑ 𝑙𝑛(𝑃𝑥(𝑥

𝑡)𝑁
𝑡=1 +

1

𝑁
∑ 𝑙𝑛|𝑊| + 𝑙𝑛𝑃𝑠(𝑦

𝑡) 𝑁
𝑡=1                                             (15) 

The first part of (15) is the entropy of the mixture signal 𝐾(𝑥). Equation (15) 

can be rewritten as: 

𝐾(𝑌) = 𝐾(𝑥) +
1

𝑁
∑ 𝑙𝑛𝑃𝑠(𝑦

𝑡) + 𝑙𝑛|𝑊|𝑁
𝑡=1                                                            (16) 

From Eq. (16), we can say that the separation matrix 𝑊 that maximizes the 

entropy 𝐾(𝑌)  having no effect on  𝐻(𝑥) . Therefore, in the next step, we can 

ignore 𝐾(𝑥). Then Eq. (16) can be modified as: 

𝑘(𝑌) =
1

𝑁
∑ 𝑙𝑛 𝑃𝑠(𝑦

𝑡) + 𝑙𝑛|𝑊|𝑁
𝑡=1                                                                         (17) 

In a modified form with 𝑀signal mixtures, it can be represented as: 

𝑘(𝑌) =
1

𝑁
∑ ∑ 𝑙𝑛 𝑃𝑠(𝑦𝑖

𝑡) + 𝑙𝑛|𝑊|𝑁
𝑡=1

𝑀
𝑖=1                                                                  (18) 

The parameter 𝑊 in Eq. (18) maximizes the entropy 𝑌. As 𝑦 is the reverse of 𝑌, 

that indicates the rows of 𝑦  are independent, which implies that 𝑊 is the separation 

matrix, which gives the original signals. 

4.  Gradient Ascent Approach 

According to LeBlanc et al. [18], the gradient ascent method describes how to find 

the maximum point along a single curve that can be generalized to find the 

maximum point on a hill. The entropy of 𝑌 is maximized by the separation matrix 

and for the optimization Gradient ascent method is used. Basically, gradient ascent 

is an iterative process of taking a step in the direction of maximum gradient until it 

approaches to a confined maximum. 

4.1. Entropy gradient 

The gradient of the entropy can be rewritten by taking the expectation over time of 

Eq. (18), which results: 

𝑘(𝑌) = 𝐸{∑ 𝑙𝑛 𝑃𝑠(𝑦𝑖)
𝑀
𝑖=1 } + 𝑙𝑛|𝑊|                                                                       (19) 

By calculating the partial derivative of 𝑘 with respect to 𝑊 , the gradient is 

represented as: 

𝜕𝑘(𝑌)

𝜕𝑊𝑖𝑗
= 𝐸 {∑

𝜕 ln 𝑔′(𝑦𝑖)

𝜕𝑊𝑖𝑗

𝑀
𝑖=1 } +

𝜕𝑙𝑛|𝑊|

𝜕𝑊𝑖𝑗
                                                                        (20) 

𝜕 ln 𝑔′(𝑦𝑖)

𝜕𝑊𝑖𝑗
= 𝐸 {∑

𝑔′′(𝑦𝑖)

𝑔′(𝑦𝑖)

𝑀
𝑖=1 𝑥𝑗}                                                                                (21) 
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𝜕𝑙𝑛|𝑊|

𝜕𝑊𝑖𝑗
= [𝑊−𝑇]𝑖𝑗                                                                                                    (22) 

On simplification of the first term and the second term of the partial derivative 

of Eq. (20) is given in Eqs. (21) and (22) respectively. Let assume one variable 

𝛹(𝑦𝑖) for simplification, that is: 

 Ψ(𝑦𝑖) =
𝑔′′(𝑦𝑖)

𝑔′(𝑦𝑖)
       

Then the solution of the gradient of the entropy of Eq. (19) is given by: 

𝜕𝑘(𝑌)

𝜕𝑊𝑖𝑗
= 𝐸{∑ Ψ(𝑦𝑖)

𝑀
𝑖=1 𝑥𝑗} + [𝑊−𝑇]𝑖𝑗                                                                       (23) 

The gradient of entropy ∇ℎ for every element of the separation matrix 𝑊 is then: 

∇𝑘 = 𝑊−𝑇 + 𝐸{Ψ(𝑦)𝑥𝑇}                                                                                          (24) 

By generalizing the Eq. (24), the expression for the gradient of entropy ∇ℎ is 

given by: 

∇𝑘 = 𝑊−𝑇 +
1

𝑁
∑ Ψ(𝑦𝑡)[𝑥𝑡]𝑇𝑁

𝑡=1                                                                           (25) 

4.2. Gradient ascent technique for information maximization 

The optimal separation matrix 𝑊  is found by maximizing the entropy that is 

iteratively following the gradient 𝛻𝑘 until it touches the local maximum. This is 

accomplished by 

𝑊𝑢𝑝𝑑𝑡 = 𝑊𝑝𝑟𝑒𝑣 + 𝜂∇𝑘                                                                                             (26) 

where 𝜂 is a small positive constant. By putting the value of ∇𝑘 from Eq. (25) in Eq. 

(26), the updated weight value for which, the entropy is maximum is represented as: 

𝑊𝑢𝑝 = 𝑊𝑝𝑟𝑣 + 𝜂 (𝑊𝑝𝑟𝑣
−𝑇 +

1

𝑁
∑ Ψ(𝑦𝑡)[𝑥𝑡]𝑇)𝑁

𝑡=1 )                                                (27) 

5.  Simulation Results and Analysis 

In the simulation, signal mixture one component, two component and three 

component independent LFM signals with noise are considered. In order to verify 

the validation of the proposed algorithm the extracted signals are analysed in terms 

of time domain separation (correlation coefficient), kurtosis maximization and 

Ambiguity function. The noise included is considered to be Gaussian in nature.  

As expressed by Tsao et al. [19], Kurtosis, the fourth-order cumulant, can be 

considered as a measure indicating non-Gaussianity of a zero-mean random variable. 

𝑘𝑢𝑟𝑡(𝑋) =
𝐸{𝑋4}

(𝐸{𝑋2})
− 3                                                                                            (28) 

5.1. Time domain separation of a multi-component LFM signal 

The time domain separation of the noise-corrupted multicomponent received 

radar signal is shown in this section. The original source signal, signal mixtures 

and the separated source signals are shown in a first, second and third row 

respectively in figures. 
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The signal extraction in an SNR of 10 dB of the one component, two component 

and multicomponent LFM signals with different mixing models are shown. Figure 

3 represents the time domain separation of a single component LFM signal 

extracted from the mixture of Gaussian noise and the source signal and Table 1 

gives the correlation coefficient values by correlating the source and extracted 

signal and the kurtosis values of the source and extracted signals are compared. 

Fig. 3. Single LFM signal separation from noise. 

Table 1. Correlation coefficient and kurtosis of two signal mixture. 

 Correlation coefficient Kurtosis 

 Extracted 

signal 1 

Extracted 

signal 2 

Source 

signal 

15.10 3.242 

Source 

signal 1 

0.02 0.92 Observed 

signal 

4.011 3.627 

Source 

signal 2 

0.86 0.018 Extracted 

Signal 

15.01 3.261 

Separation of the two components LFM with a convolutive mixture model and 

random mixing model are shown in Figs. 4 and 5 respectively. In the convolutive 

mixture model two source LFM signals are mixed with Gaussian noise and in the 

random mixing matrix model, two independent source LFM signals are mixed for 

the interleaved signal. The extracted signals are compared in terms of correlation 

coefficient and kurtosis is given in Tables 2 and 3. 
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Fig. 4. Multicomponent LFM signal  

separation from noise (convolutive mixture). 

 
Fig. 5. Multicomponent LFM signal  

separation from noise (random mixture). 

Table 2. Correlation and Kurtosis of three signal mixture with noise. 

 Correlation coefficient (𝝆)  Kurtosis 

Extracted 

signal 1 

Extracted 

signal 2 

Extracted 

signal 3 

 Signal 

1 

Signal 

2 

Signal 

3 

Source 

signal 1 

0.04 0.25 0.92 Source 

signal 

15.20 17.40 3.012 

Source 

signal 2 

0.06 0.90 0.28 Observed 

signal 

4.991 3.789 5.211 

Source 

signal 3 

0.84 0.02 0.17 Extracted 

signal 

3.112 15.36 16.98 
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Table 3. Correlation and Kurtosis of three signal mixture without noise. 

 Correlation coefficient (𝝆)  Kurtosis 

Extracted 

signal 1 

Extracted 

signal 2 

Extracted 

signal 3 

 Signal 

1 

Signal 

2 

Signal 

3 

Source 

signal 1 

0.94 0.32 0.34 Source 

signal 

15.86 16.27 15.65 

Source 

signal 2 

0.26 0.93 0.36 Observed 

signal 

2.961 2.748 2.821 

Source 

signal 3 

0.29 0.29 0.91 Extracted 

signal 

15.84 16.12 15.61 

Three component LFM signal time domain separation is shown in Fig. 6, where 

the three independent LFM signals are mixed by random mixing matrix. Based on 

the entropy maximization criteria of the proposed algorithm, the three LFM signals 

are separated. The independence of the extracted signals is achieved by comparing 

the kurtosis of the source and extracted signals and in terms of the correlation 

coefficient, which is given in Table 4. 

As entropy maximized, the gradient of entropy reduces and the plot of step size 

changes signifies the learning of gradient ascent algorithm. The parameter values 

assumed in this simulation are given in Table 5. The gradient ascent function values 

for the entropy, gradient of entropy and the step size are shown in first, second and 

third plots of Fig. 7. The entropy value converges after approximately 20 iterations. 

 
Fig. 6. Multicomponent LFM signal separation from noise. 

 

Table 4. Correlation and Kurtosis of two signal convolutive mixture with noise. 

 Correlation coefficient Kurtosis 

 Extracted 

signal 1 

Extracted 

signal 2 

Source 

signal 

14.82 16.01 

Source 

signal 1 

0.32 0.93 Observed 

signal 

2.201 2.401 

Source 

signal 2 

0.92 0.34 Extracted 

signal 

15.86 14.85 
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Table 5. Parameter values. 

Number of repetitions 100 

Initial step size 0.2 

Step size increment factor 1.4 

Step size decrement factor 0.1 

Gradient ascent iterations 5 

 
Fig. 7. Entropy value, gradient magnitude  

and step size for gradient ascent repetitions. 

5.2. Time-frequency domain representation (ambiguity function) 

In this section, the extracted signals from the signal mixtures are analysed in terms 

of the time-frequency domain, i.e., ambiguity functions. The ambiguity function 

plays an important role in radar waveform design and analysis. Basically, in radar 

applications AF |𝜒(𝜏, 𝑣)| is the represention of resultant of the matched filter when 

the signal receives with a time delay (𝜏) and Doppler shift (𝑣) relative to the 

nominal values [16]. In mathematical form, it is represented by: 

|𝜒(𝜏, 𝑣)| = |∫ 𝑟(𝑡)𝑟∗(𝑡 + 𝜏)𝑒𝑗2𝜋𝑣𝑡∞

−∞
 𝑑𝑡|                                                              (29) 

where 𝑟(𝑡) is the transmitted signal, 𝑟∗(𝑡 + 𝜏) is conjugate of the received signal 

with delay 𝜏  and Doppler shift  𝑣 . The ambiguity function of the LFM signal 

represents a central peak and the remaining energy distributed through the delay 

Doppler plane. The lack of any secondary peak in the ambiguity diagram signifies 

there is no range or Doppler ambiguity.  

The matched filter response of the original LFM and extracted LFM signals are 

shown in Figs. 8 and 9. In this simulation, the LFM signal frequency and Doppler are 

considered as 20 MHz and 3 milliseconds respectively. It has been observed from the 

figure that the extracted signal response is having approximately similar parameters 

as compared to the original signal with energy concentrated in the single central peak. 
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Fig. 8. Ambiguity function of original and extracted LFM signal. 

 
Fig. 9. Ambiguity (contour) of the original and extracted LFM signal. 

6.  Conclusion 

In this paper, a classification technique based on independent component analysis 

for multi-component radar emitter signals in a multistatic radar system is proposed. 

The entropy of the signal is maximized through multiple iterations of the gradient 

ascent algorithm using an unsupervised learning rule. The time domain 

decomposition of the multi-component LFM signals from the various signal 

mixture are shown for different models and the extracted signals from the mixture 

are analysed in the time-frequency domain. This technique is quite effective to take 

out a trivial number of the separated signals from the equal number of signal 

combinations, but complex ground clutter does not consider in the signal 

transmission model. The impact of ground clutter and number of transmitters with 

complex models on the multicomponent LFM signal should be researched further. 
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Nomenclatures 
 

  

E{} Expectation operation 

kurt Kurtosis 

n(t) Gaussian noise 

Ps PDF of the source signal 

Py PDF of the extracted signal 

r(t) Received signal 

S Source signal 

W Separation matrix 

𝜒(𝜏, 𝑣)  Ambiguity function 
 

Greek Symbols 

∇𝑘  Gradient 

 Constant  

𝜇𝑖  Chirp rate of the LFM signal 

𝜏 Delay of the received signal 

𝜐 Doppler shift 
 

Abbreviations 

ECM Electronic Counter Measure 

LFM Linear Frequency Modulation 

TDOA Time Difference of Arrival 

TOA Time of Arrival 
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