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Abstract
System modeling is one of the fundamental issues in practical applications where

dynamic characteristics are required for system design and analysis. Sometimes the

system dynamics vary rapidly with time. Sometimes sufficient information such as the

model structure, time difference, cannot be extracted from the uninformative experi-

mental data by the conventional methods. Therefore, effective system modeling should

work well under these complicated conditions to satisfy the practical requirements. This

work focuses on the new approaches to deal with such system modeling problems based

on information in time and frequency domains, and illustrates their applications in time-

varying channel identification and localization system.

In the time-varying system, if the variation is too fast, most of the conventional methods

fail to track the variation satisfactorily unless the prior information is available. It

requires an efficient approximation of the fast varying parameters under less variation

information, for example, a sum of cosines of various frequencies. Moreover, the

insufficient frequency components of band-limited signals will lead to ambiguities in

parameter estimation. As a result, the accuracy of the localization system for band-

limited signals degrades largely.

This thesis illustrates how to solve the identification problem of insufficient information

in system models. For the rapid time-varying system with less variation information,

using the orthogonality of the trigonometric functions, more time-domain variation

information can be obtained by estimating the coefficients of the cosine series with

respect to each degree of the cosine harmonic term in a recursive manner. For

the localization system with insufficient frequency components, both the spectral

characteristics including phase information in frequency domain and the information

evaluation in time domain are applied to improve the convergence performance.

The thesis contains the following six chapters as follows.

Chapter 1 first introduces the significance of system modeling and gives the general

account of the system identification and its applications, respectively. Then, the existing

methods for system identification and their methods under insufficient information

conditions are summarized. At last, challenges are listed from the modeling perspective.

Chapter 2 gives some basic mathematical formulas and reviews the main preliminaries

for time-varying model, parameter approximation based on cosine series, Gibbs effect

at the rapid changing points, multi-path model, and multi-path interference.
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Chapter 3 proposes a new recursive algorithm for the system with rapid variation

but less variation information. The recursive identification using cosine series based

approximation is introduced to remove the discontinuity of the model parameters by

expanding the varying parameters into even periodic functions to remove the Gibbs

effect at the time window edges. Numerical experiments exhibit the effectiveness of the

proposed method, and it has a higher convergence rate than the conventional methods.

Chapter 4 proposes the extension of identification system using time-varying model.

Some efficient approximation is used to reduce the computational complexity. The

weight factor is imposed on the output and parameters to reduce the series degree.

And a smoothing technique is considered to reduce the influence of the noise term.

Moreover, to mitigate the fluctuation caused by Gibbs effect in the parameter estimates,

the compensation of time-domain variation information through detecting the rapid

changing is introduced. The experimental results validate the effectiveness of the

proposed method, and it can track the true time-varying parameters faster than the

conventional methods.

Chapter 5 proposes a localization system using multi-path model for band-limited

signals. The function defined by following the signal band limitation is designed.

Moreover, a time-domain information evaluation based genetic algorithm is introduced

to avoid ill-conditioned numerical optimization. Simulation results confirm that

the proposed algorithm performs with some advantages over the other conventional

algorithms.

Chapter 6 concludes the thesis and gives future works. To conclude, this thesis

shows the system models for the problem of insufficient information and proposes new

approaches based on information in time and frequency domain. Numerical simulation

results demonstrate the effectiveness of the new approaches. In future work, sparse

identification will be considered to deal with the problem of insufficient data.



Preface

The general theme of this thesis is to show the system models under insufficient

information conditions and elaborate on the process of system modeling through

leveraging information from the time and frequency domains. This thesis is organized

into six chapters. Most of the materials have been published in the following listed

journal papers and conference papers.

The material in Chapter 3 is related to

• [P4] X. Liu and L. Sun, “Recursive Identification of Time-varying Systems with

Rapid Changing”, in Proceedings of 13th International Conference on Innovative

Computing, Information and Control, August, 2018.

which has been extended into a journal paper and formulated the major content of this

chapter

• [J3] X. Liu and L. Sun, “Recursive Identification Algorithm based on Cosine

Basis for Rapid Time-varying Systems”, International Journal of Innovative

Computing, Information and Control, Vol.15, No.2, pp.617-628, April, 2019.

The material in Chapter 4 are related to

• [P3] X. Liu, L. Sun and J. Liu, “Trigonometric Basis Functions based Time-

Varying Identification Algorithm with Output Weight Factor”, in Proceedings of

2019 12th Asian Control Conference (ASCC), pp.1072-1077, June, 2019.

• [P1] L. Sun, X. Liu and J. Zeng, “Recursive Identification of Time-varying

Systems with Rapid Changing”, in Proceedings of 15th International Conference

on Innovative Computing, Information and Control, September, 2021.

which formulate the major content of this chapter.

The material in Chapter 5 is related to one research about a localization system for

band-limited signals.
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Chapter 1

Introduction

1.1 System Modeling and its Application

System modeling is generally accepted as an executable system description that allows

the analysis and measurement of system behavior. In scientific research, in order to

simulate, predict and control the system, the object to be studied is usually abstracted

into a certain mathematical model and then, according to certain experiment and

analysis means, the relationship between internal and external factors of the system is

obtained by testing the observed input and output information. That is, the input-output

relationship described by the mathematical relationship reflects the characteristics of

the system model, which is shown in Fig.1.1.

FIGURE 1.1: The schematic chart of system model

System identification is an important data-driven approach to constructing a mathemat-

ical model for the practical system. Mathematical models can be divided into static

and dynamic mathematical models according to time factors. System identification

is mainly to study the modeling method of the dynamic mathematical model. The

mathematical model of the dynamic system can be divided into a time-varying system

1



Chapter 1. Introduction 2

and a time-invariant system according to whether the parameters vary with time. A

time-varying system is a system whose parameters change with time. Compared with

the estimation of constant parameters, time-varying parameters are much more difficult

to be estimated.

In many practical systems, due to the various internal and external forces, the

system model parameters are difficult to remain unchanged and often vary with

time. Sometimes the impact of such changes cannot be ignored. The time-varying

characteristics of parameters often make the dynamic and static characteristics of

the system change significantly and even threaten the stability of the whole system.

Or due to large uncertainty such as system noise, incomplete test information, and

missing benchmark models, system models often encounter problems of insufficient

information, which will lead to ambiguities in parameter estimation. As a result,

system model identification faces significant challenges. Consequently, how to obtain

a relatively accurate system model under these complicated conditions will be a

considerable research direction.

This thesis focuses on the new approaches based on information in time and frequency

domains to deal with the above system modeling problems, and their applications in

time-varying channel identification and localization system in system identification.

1.1.1 System identification

System identification has been successfully applied in many practical applications,

which are mainly reflected in the following aspects:

(1) For the design and analysis of the control system [1]. After the mathematical

model of the controlled process is obtained by using the identification method, a more

reasonable control system can be designed based on this model or used to analyze the

performance of the original control system in order to put forward an improvement

scheme.

(2) For online control [2]. In engineering practice, a large number of systems are

time-varying systems. Through system identification, the mathematical model of
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the controlled object is established online, and the parameters of the controller are

continuously adjusted to implement adaptive control of the controlled object so as to

obtain a better control effect.

(3) For monitoring process parameters [3] and realizing fault diagnosis [4]. Many

practical processes, such as aircraft, missiles, nuclear reactors, mechanical engineering,

large metallurgical equipment, etc., hope that possible faults can be monitored and

detected frequently in order to eliminate them in time and avoid faults. This means

that it is necessary to continuously collect information from the process, and infer the

changes in the dynamic characteristics of the process, and then determine whether the

fault has occurred, when it occurred, the size of the fault, the location of the fault, and

so on based on the changes in the process characteristics [5].

(4) For forecasting weather, population, energy, and passenger flow [6–8]. When the

model structure is determined, a time-varying model is established, and time-varying

model parameters are estimated. Then the process is forecasted on this basis.

1.1.2 Localization system

Localization systems has been successfully applied in many practical applications,

which are mainly reflected in the following aspects:

(1) For the military field. In maritime affairs, submarines use sonar systems to search,

track, locate and identify targets [9, 10]. In the army and air force, localization

technology can be used in artillery location, airspace enemy aircraft monitoring, and

other scenes [11, 12].

(2) For noise detection and health monitoring of mechanical equipment [13]. Because

some industrial equipment is not allowed to stop or perform offline diagnosis, the

localization technology can identify the fixed frequency of noise for noise spectrum

analysis or noise feature identification, so as to realize online detection and real-time

health monitoring.
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(3) For large-scale meetings, intelligent robots, security monitoring, and other scenes.

In large-scale audio and video conference scenes, sound source tracking and speech

enhancement can achieve a better conference pickup [14]. In the field of intelligent

mobile robots, localization technology can help robots obtain more external information

and respond to the changes of the external environment [15]. In the field of intelligent

security monitoring, When the visual monitoring equipment cannot normally work due

to insufficient light or obstruction by obstacles, sound source localization can realize

acoustic monitoring of the target area [16].

The taxonomy of localization system is visualized in Fig.1.2.

FIGURE 1.2: Localization system taxonomy

A large number of efforts have been made to improve the localization performance

under various practical conditions. The location of the target signal can be realized

by the Direct Position Determination (DPD) [17] or the Two-step Positioning Method

(TPM) [18], in which the DPD is to directly solve the location of the target signal

through the received signal. The TPM is to estimate the parameters first and then

combine these parameters to solve the location effectively. Based on the Maximum

Likelihood (ML) criterion, the direct location method directly estimates the location

according to the received signal to avoid the loss of location information, and the

localization performance is relatively better [19, 20]. However, compared with the

DPD, the TMP has the obvious advantage of low computation and has more practical

applications.



Chapter 1. Introduction 5

The well-known existing TPMs include the Time of Arrival (TOA) method [21], the

Time Difference of Arrival (TDoA) method [22, 23], and the Angle of Arrival (AOA)

method [24, 25]. they can be mainly divided into two categories: time delay estimation

and direction estimation.

• Time delay estimation

Knapp and Carter [26] first proposed the generalized cross-correlation method, which

marks the time delay estimation algorithm entering a new era. Soon, a large number of

methods, such as cross-bispectrum delay estimation [27], high-order statistics delay

estimation [28], and adaptive delay estimation [29], etc., have successively been

proposed. Especially under multi-path conditions, the complexity of the localization

system increases further. Generally speaking, time delay estimation can be divided into

three categories: Cross-correlation method, Cost Function based method, and Subspace

delay estimation method.

(1) Cross-correlation method

Cross-correlation methods, such as the classical basic correlation method and matched

filtering method [30, 31], is to estimate the time delay by maximizing the correlation

functions of the measured signal waves. However, these methods are easily limited

by the influence of signal bandwidth and multi-path interference, and estimation

performance degrades largely [32, 33]. In order to deal with the multi-path problem,

Sun and Liu [34] introduced time refinement for delay estimation to reduce the influence

of sidelobe in the correlation function by improving the resolution method. In addition,

Ni et al. [35] used the phase correction factor to solve the fractional part of the delay,

thereby suppressing multi-path interference by compensating the delay. The above

methods have the advantages of low computational complexity and good real-time

performance. However, in the severe multi-path environment, the delay estimation

performance of these methods will decrease significantly. When the delay difference

of multi-path components is tiny, they cannot even distinguish multi-path delay.

(2) Cost Function based method
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Time delay estimation methods based on the cost function, such as the classic Least

Squares (LS) method [36], ML method [37], etc. is to establish a cost function and

use the minimum average cost as the criterion to optimate the time delay estimation

by an iterative algorithm. These methods generally have no requirements for signal

statistical characteristics. Under the multi-path condition, the estimation accuracy can

reach the Cramér Rao Low Bound (CRLB) and realize super-resolution estimation of

time delay. Therefore, the Expectation Maximization (EM) algorithm based on the

ML criterion [38] and the Weighted Fourier Transform and RELAXation (WRELAX)

algorithm based on the LS criterion [39] have been successively applied to engineering

projects. Xie et al. [40] proposed a maximum likelihood delay estimation algorithm in a

multipath wireless propagation channel. By sampling the frequency domain response of

the multi-path channel, the joint probability density function of the multi-path channel

was obtained, thereby estimating the time delay of different paths according to the

ML criterion. Del Peral-Rosado et al. [41] combined the channel estimation model

based on equispaced taps with time delay estimation to produce a low-complexity

estimator. By introducing arbitrary taps with variable positions between the first two

equispaced taps, this model is enhanced with a novel channel parameterization that

can characterize close-in multipath. This new hybrid method is used in the Joint ML

(JML) delay estimator to improve the ranging performance in the presence of short-

delay multipath. However, these methods cannot avoid multi-dimensional optimization

problems. The iterative algorithms converge to the global maximum at the cost of

increased computational complexity, and their real-time performance is not strong.

(3) Subspace delay estimation method

Bruckstein et al. [42] first applied the MUltiple SIgnal Classification (MUSIC) [43]

method to multipath delay estimation. Still, due to its special requirements for the array

flow pattern, its estimation performance had not been greatly improved compared with

the conventional correlation method. Saarnisaari [44] introduced the Estimating Signal

Parameter via Rotational Invariance Techniques (ESPRIT) [45] method to estimate the

time delay, and this method deconvolved the frequency domain model to construct an

ESPRIT-like model to estimate the time delay by the total LS method. The subspace

delay estimation methods are essentially the application of a spatial spectrum algorithm
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with super-resolution characteristics in time delay estimation. Ge et al. [46] proposed

a new super-resolution time delay estimation method under multi-path conditions. The

received signal was first correlated and then transformed into the frequency domain,

and by the MUSIC algorithm, the time delay was estimated. This method had better

parameter estimation performance compared with the traditional MUSIC algorithm.

Shin et al. [47] developed a super-resolution time delay estimation method based on

ESPRIT for Real-Time Locating Systems (RTLS) and analyzed its performance in

the multi-path environment. The above methods may produce large errors under the

condition of narrow-band, especially at low Signal-to-Noise Ratio (SNR), and their

performance still has a certain distance compared with the CRLB boundary.

• Direction estimation

In recent years, the Direction of Arrival (DoA) method for estimating the signal has

become more perfect. The MUSIC method proposed by Schmidt [43] and the ESPRIT

method proposed by Roy et al. [45] are the most famous. The MUSIC method breaks

through the Rayleigh limit, marking that high-resolution direction-finding technology

and subspace methods have entered a new era.

The basic idea of the subspace method is to extract useful low-rank information from

the observation data of mixed noise. Usually, the eigenvalue decomposition of the

covariance matrix of the observation data is used to estimate the angle parameters by

constructing the signal or noise subspace method. ESPRIT method uses the rotation

invariance of signal subspace to estimate the parameters of the closed-form solution,

which avoids the spectral peak search required by the MUSIC method and greatly

reduces the amount of computation [48]. On this basis, a large number of methods,

such as the MUSIC method based on decoherence, Weighted ESPRIT method [49], and

Weighted Subspace Fitting (WSF), ML method [50], have been proposed successively.

Jiang et al. [51] used a MUSIC algorithm for multiple signal classification in feature

space based on forward-backward spatial smoothing. This algorithm first preprocessed

the coherent signal and then applied the eigenspace MUSIC algorithm for accurate DOA

estimation. Herzog and Habets [52] proposed a new Eigenbeam-ESPRIT method which
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uses three recurrence relations and a joint-diagonalization procedure to estimate the

unit-vectors pointing to the source DOAs. This method can estimate the source DOAs

with higher accuracy, and the estimation accuracy does not depend on the source DOAs.

Meng et al. [53] proposed a novel robust block sparse recovery algorithm by using the

WSF to deal with the DOA problem under the condition of unknown mutual coupling.

1.2 Related Works

1.2.1 Identification methods

With the development of science and technology, the research in parameter identifi-

cation has experienced from time-invariant systems to time-varying systems. Several

categories of identification methods for time-varying systems have been developed.

Some segmentation approaches separate a time-varying model into several local models

by detecting the variation [54, 55] or following the variation information in some

associated measurable variables of Linear Parameter Varying models (LPV) [56]. Some

existing adaptive algorithms [57–59] may track the varying dynamics. Several methods

explicitly approximate the parameter variation through the orthogonal basis functions.

These methods mainly consider two situations. The first case is that the change

of time-varying parameters is relatively slow, or the output process is weakly non-

stationary. Segmental identification using segmental time-invariant assumptions or

adaptive tracking algorithms for online identification is used. The second case is

that the signal has strong non-stationary characteristics. The model parameters are

approximated by the weighted sum of some basis functions. They can help approximate

dynamics at arbitrary rates when the signal has sufficient excitation. The following will

summarize the above methods respectively.

(1) Segmentation method

The segmentation method separates a time-varying model into several local models by

segmenting the observation data concerning the significant variation. Qin et al. [60]
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proposed a local approach for the LPV identification of an actuated beam using the

Frequency Response Functions (FRFs) of piezoelectric actuators and sensors and the

spatially-varying characteristics of the FRFs at various input and output locations were

explored. Steinbuch et al. [61] showed that an LPV model was derived by using

measured FRFs at different positions, fitting a parametric model on each measurement,

and combining these models by linking parameters via a fit as a function of the operating

point. Lin et al. [62] developed an identification method based on short-time invariant

assumption to identify timevarying system parameters for a multi-degreesoffreedom

degrading structure. Yu [63] made steady processing of each segment of the response

signal and used the local model to identify the structural parameters. The time segment

length of this method determines the identification accuracy and time resolution. Too

short a time segment will result in low identification accuracy, and too long a time

segment will also result in poor time resolution. Therefore, this method can only be

applied to problems with slowly varying parameters [64].

(2) Adaptive filtering method

In order to overcome the problems of low identification accuracy and selected time

segment length in the local stationary model, Several types of adaptive filtering

methods, such as the Recursive Least Squares (RLS) with a forgetting factor [65, 66],

the Least Mean Square (LMS) or the Normalized Least Mean Square (NLMS)

algorithms [67, 68], the Affine Projection algorithm (AP) [69], and Block Orthogonal

Projection (BOP) [70], Kalman filter [71], wavelets [72] are used to analyze or track the

varying dynamics for online identification.

• Recursive Least Squares with a forgetting factor

The forgetting factor can reduce the influence of past data on existing data. Like the

time segment length in the segmentation method, the forgetting factor determines the

accuracy of parameter identification and tracking ability. The smaller the forgetting

factor, the faster the old data is forgotten, and the stronger the estimated tracking ability.

However, estimation accuracy will decrease due to the increase of covariance matrix.

Therefore, compared with the segmentation method, the accuracy of the adaptive
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filtering method is improved to a certain extent. Still, it can only track slowly varying

parameters and is sensitive to initial values in identification [73]. Kulhav [74] proposed

a recursive identification method with an exponential forgetting factor for online real-

time identification. Cooper [75] studied online versions of seven time-domain system

identification algorithms and summarized the ability to track the time-varying frequency

and damping parameters. Afterward, Cooper and Worden [76] presented an online

parameter estimation scheme based on a physical model. Tracking of time-varying

physical parameters was achieved by using a forgetting factor.

• Least Mean Square algorithms

LMS algorithm estimates gradient vectors with instantaneous values. Its main features

include low computational complexity, easy convergence in the stationary environment,

and unbiased convergence to the Wiener solution. The convergence rate of the LMS

algorithm is inversely proportional to the step factor, and the steady-state error is

proportional to the step factor. That is, the convergence rate of the fixed-step LMS

algorithm and the steady-state error is contradictory [77, 78]. To overcome this problem,

many improved LMS algorithms have been proposed by changing the step size [79, 80].

The idea of these algorithms is to initialize a larger step size so that the algorithm has

a faster convergence speed and then gradually reduce the step size with the deepening

of the convergence to reduce the steady-state error. However, when tracking the time-

varying system, especially at the abrupt points, the tracking speed will become slower

as the system parameters jump more frequently. As a result, the tracking performance

of the algorithms is not satisfactory.

• Affine Projection algorithm

In order to overcome the limitations of the LMS and RLS algorithms, Ozeki and

Umeda [81] first proposed the AP algorithm. AP algorithm improves the performance

by reusing the past input signal, which can be regarded as a generalization of the NLMS

algorithm [82]. AP algorithm is a method based on increasing dimensions. When the

dimension of the input signal increases from a one-dimensional vector to a matrix, the
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convergence speed of the weight coefficient vector is accelerated. But this method also

comes with an increase in computational complexity and steady-state imbalance. Like

other algorithms, the AP algorithm also suffers from a contradiction between the steady-

state offset and the convergence speed [83].

(3) Basis function expansion methods

This method is to approximate the model parameters as the weighted sum of some

functional series. The parameter estimation problem of the time-varying system will

transform into the parameter estimation problem of the time-invariant system, and then

the weight of the functional series of the system is estimated by the time-invariant

method.

At present, a variety of basis functions, such as polynomial functions about time [84],

Legendre polynomials [85], Fourier series [86, 87], Chebyshev polynomials [88],

Jacobi polynomials [89], Walsh function [90], discrete oblate spheroid function [91],

B-spline [92], various wavelet basis functions [93, 94],etc., have been applied to the

approximation method based on Funcional Series. When using these methods to

identify the modal parameters, it is necessary to deal with the problems such as the

selection of model order, the solution of model coefficients, and the elimination of

false modes. The quality of its processing will directly affect the reliability of the

identification results [64].

Charbonnier [95] pointed out that the accuracy of model parameter estimation was

affected by the type of basis functions. However, it was difficult to find a suitable

criterion to select the type and dimension of the function family. Through numerical

experiments, Zou et al. [90] pointed out that the Legendre polynomial was suitable

for slowly varying time-varying coefficients, and the Walsh function was suitable for

piecewise stationary time-varying coefficients. Asutkar et al. [96] pointed out that the

Haar wavelet basis function had more advantages than the Fourier series and Legendre

polynomial in dealing with step time-varying coefficients. In addition, different types

of basis functions are combined to improve the tracking ability of basis functions for

time-varying coefficients of different forms and speeds. For example, Chon et al. [97]

proposed to use B-spline wavelet basis functions of various orders. Li et al. [98]
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proposed to use a combination of smooth Legendre polynomials, and abrupt Walsh

functions through Gram-Schmit orthogonalization. Walter and Shen [99] pointed out

that as long as a sufficient number of basis functions were used, any basis functions can

approximate any known curve with arbitrary precision.

1.2.2 Methods under insufficient information conditions

In the practical environment, observation data may suffer from insufficient information,

the system is disturbed by a complicated noise. As a result, sufficient information on the

model structure or parameter variation cannot be extracted from the observation data.

Consequently, for conventional methods, the stability of numerical computation cannot

be guaranteed [100], and large uncertainty remains in estimated models. The sensitivity

to noise and identification accuracy of existing methods should be further improved.

Some methods for the problem of insufficient information have been developed. For

example, some regularization terms [101–103] are introduced into the optimization

algorithm to stabilize the numerical computation. Sparse modeling methods can

efficiently recover high-dimensional unobserved signals from a limited number of mea-

surements. Compensation methods are proposed to mitigate the influence of insufficient

information. Output over-sampling scheme is applied to decrease the affection of the

noise. In addition, due to the effectiveness and robustness of intelligence algorithms

in coping with insufficient information and noise, some intelligence algorithms such

as Genetic Algorithms (GA), Ant Colony Optimization (ACO) [104], Particle Swarm

Optimization (PSO) [105], have been applied to the problem of system identification.

• Regularization method

Tarantola [106] added a Tikhonov regularization to the data-matching term in the

objective function to be minimized. Chen [107] proposed an approach for detecting

local damage in large-scale frame structures by utilizing regularization methods for

ill-posed problems. Numerical examples for a building model structure showed that

structural damage could be correctly identified at a detailed level using only limited
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information on the measured noisy modal data for the damaged structure. Guo et

al. [108] presented a novel sparse-regularized minimum constitutive relation error

approach for structural damage identification with modal data in order to circumvent

the ill-posedness of the inverse problem caused by the use of the possibly insufficient

modal data and enhance the robustness of the identification process.

• Sparse modeling method

Mimasu et al. [109] utilized the optimal sensor groups decided by correlations between

sensors to reconstruct sparse-like system matrix for system identification. The validity

of the proposed approach was examined by utilizing the data both from simulations

and field experiments on a steel girder bridge. Mohammadi et al. [110] pointed out

Singularity Expansion Method (SEM) suffer from imposition of spurious poles on the

expansion of signals due to the lack of apriori information about the number of true

poles. Sparse Generalized Pencil-Of-Function (SGPOF) was proposed to address this

problem. The proposed method excluded the spurious poles through sparsity-based

regularization with ℓ1-norm.

• Compensation method

Li and Jun [111] put forward the concept of compound inversion, and on this basis, they

proposed representative compensation algorithms and statistical average algorithms.

Wang et al. [112] reviewed structural identification with incomplete input information,

and further studied the multiple inversion method based on the least square method. A

new weighted average approach was proposed for the multiple inversion method based

on the average statistical approach. Mayr et al. [113] studied optimal input design and

bias-compensating parameter estimation methods for continuous-time models applied

on a mechanical laboratory experiment in order to reduce the deviation caused by

insufficient incentive information.

• Output over-sampling scheme
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Sun et al. [114] applied an output over-sampling scheme to collect the experimental

data, and then more information on cyclo-stationarity could be detected from the

over-sampled data even under severe conditions. Sun et al. [115] applied the cyclo-

stationarity to deal with the numerical problems. The model structure was determined

by both the mean squared error and the cyclo-stationarity detection. The parameter

estimation was performed by optimizing both the criteria in both the time domain

and the cyclo-stationarity in the subspace. Sun et al. [116] introduced the output

over-sampling scheme to collect the experimental input-output data and extracted

the information in time and space domains to complement information criteria for

numerical optimization (more details can be found in published papers).

• Intelligent algorithm

Na et al. [117] introduced a new damage evaluation method in order to overcome

the problem of the lack of data provided by structural monitoring. The method

identified the structural damage in a shear building based on a GA using the structural

flexibility matrix with dynamic analyses. Tang et al. [118] proposed the Shuffled

Complex Evolution (SCE) algorithm to identify the parameters of the structural system.

Numerical examples, including incomplete output information, noise interference, and

no prior parameter information, demonstrated the effectiveness of the SCE algorithm

for structural system identification problems.

1.3 Goals of the Thesis

Considering the system modeling problems of fast variation or inadequate information,

effective system modeling should work well under these complicated conditions to

satisfy the practical requirements by extracting much information and applying it more

efficiently. This thesis proposes new approaches based on information in time and

frequency domains.
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1.3.1 New recursive algorithm using time-varying model

The purpose is to implement the cosine series based approximation into recursion of

parameter update for the rapid time-varying systems.

Through expanding the time-varying parameters into the virtual even periodic functions,

the parameters can explicitly be approximated by the orthogonal cosine series. By

making use of the orthogonality of the trigonometric functions, the parameter estimation

problem becomes the estimation problem of the series coefficients with respect to each

degree of the cosine harmonic term in the frequency domain in a recursive manner.

1.3.2 Extension of identification system

The purpose is to decrease the series degree without degrading the tracking perfor-

mance of the identification method, promptly detect the rapid changing points, and

further compensate for the fluctuation in parameter estimates in order to improve the

approximation performance.

By introducing a weight factor to the output and time-varying parameters, the weighted

parameters can be approximated by the cosine series with considerable low degree

cosine series through virtually expanding them into the even periodic functions.

Detection of abrupt variation points and parameter compensation are introduced into the

recursive identification algorithm for the time-varying systems with rapidly changing,

and more time-domain variation information can be obtained through parameter

compensation. Moreover, a smoothing technique is also considered to reduce the

influence of the noise term (Chapter 4).

1.3.3 Localization system for band-limited signal source

The purpose is to propose an information evaluation based genetic algorithm (IEGA) for

time difference estimation to avoid ill-conditioned numerical optimization in order to

tackle the challenge of insufficient frequency components caused by limited bandwidth.
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The originality of the proposed algorithm has two folds. Firstly, to reduce the influence

of noise outside the signal band, the fitness function defined by following the signal

band limitation is designed. The spectral characteristics including phase information in

frequency domain are used to analyze the characteristics of multiple paths. Secondly,

to avoid the local optimum, a time-domain information evaluation through cross-

evaluation within the multi-receivers is introduced in the selection operation (Chapter

5).

1.4 Challenges

1.4.1 Model structure selection problem

The basis function expansion method transforms the time-varying problem into a time-

invariant problem by introducing an explicit basis function, and it is suitable for rapidly

varying systems. By selecting an appropriate basis function, the identification accuracy

can be improved. However, the accompanying problems are: How to choose the model

structure, including basis function type and model order.

1.4.2 Online identification problem

With the continuous development of recursive algorithms, they have also been widely

used in time-varying parameter identification. In addition to recursive subspace

methods, adaptive filtering methods and segmentation methods can all be used in online

identification. However, there are not many studies on the online identification of the

basis function expansion methods. In order to make use of the high precision and the

ability to track different change speeds based on the basis function expansion method,

how to rewrite this method into a recursive form has become a focus issue.
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1.4.3 Gibbs effect

Gibbs effects that occur at the rapidly changing points, such as abrupt variation or

discontinuous points, cause the fluctuation in the parameter estimation. As a result,

the tracking performance of identification will degrade severely. In the recursive

identification algorithms based on the parameter approximation of basis function

expansion, how to improve the efficiency and accuracy of the algorithm is a crucial

issue.

1.4.4 Limited bandwidth

In the practical environment, the source signals, such as low-frequency seismograms,

vibration signals, some signals in instrumentation systems, often have severe band

limitation, while the frequency components outside the signal band will be dominated

by noise. As a result, the band-limited signals often yield significant errors in space

decomposition or parameter estimation, and hence deteriorated localization accuracy

leads to extensive degradation of localization performance, whereas few effective

methods can handle the problem with band-limited signals.

1.5 Thesis Outlines and Main Contributions

This thesis shows the cumulative works over my doctoral period through six chapters.

Chapter 1 lays the fundamental background that connects the whole thesis and shows

an outline. Chapter 2 gives some main preliminaries for the time-varying model and

multi-path model. Chapter 3 proposes a new recursive algorithm for the system with

rapid variation but less variation information. Chapter 4 proposes the extension of

identification system using time-varying model. Chapter 5 proposes a localization

system using multi-path model for band-limited signal source. Finally, Chapter 6

summarizes our findings and applications and discusses the future study. The outline of
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this thesis is depicted in Fig.1.3, in which the indexes represent the published paper in

Publication List.

FIGURE 1.3: Outline of this thesis

Chapter 2 gives the description of time-varying and multi-path models and illustrates

some main preliminaries for time-varying system and localization system.

Chapter 3 proposes a new recursive algorithm using time-varying model for insufficient

variation information. The parameters can be approximated by the cosine series through

virtually expanding into the even periodic functions. Then the parameter estimation can

be realized by estimating the coefficients of the cosine series with respect to each degree

of the cosine harmonic term in a recursive manner. Furthermore, in the virtual expansion

of even periodic functions, the Gibbs effect at the window edges can be reduced largely.

The main contributions related to this chapter are shown as follows:

• This thesis builds a linear time-varying model for the rapid time-varying system.

• The parameters can be approximated by the cosine series by virtually expanding

into the virtual even periodic functions.

• The virtual even periodic function can reduce the influence of the Gibbs effect at

the window edges.

• The orthogonality of the trigonometric functions is applied to effectively imple-

ment the recursion of the cosine basis.
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Chapter 4 proposes the extension of identification system based on time-varying model

of Chapter 3. A weight factor imposed on the output and parameters is introduced into

the recursive identification based on cosine series approximation to reduce the series

degree. A smoothing technique is considered to reduce the influence of the noise

term. Moreover, detection of abrupt variation points and parameter compensation is

introduced into the recursive identification algorithm for the time-varying systems with

rapidly changing to mitigate the fluctuation in the parameter estimation.

The main contributions related to this chapter are shown as follows:

• A weight factor is imposed on the output and parameters to decrease the degree

of cosine series and suppress the rapid variation.

• A smoothing technique is introduced to reduce the influence of the noise term.

• Detection of abrupt variation and the parameter compensation is introduced to

reduce the influence of the Gibbs effect.

Chapter 5 proposes a localization system using multi-path model for insufficient

frequency information. The cross power spectral ratio method from the phase

information is introduced to analyze multi-path characteristics. Moreover, weight

functions determined by the envelope variation are introduced to extract the spectrum

characteristics from the frequency domain, and the time difference is estimated by a

genetic algorithm based on information evaluation with time-domain information.

The main contributions related to this chapter are shown as follows:

• This thesis proposes a localization algorithm using band-limited measured data

under multi-path conditions.

• The information that relates to time difference can be extracted from the phase

information in the frequency domain.

• Spectrum characteristics are extracted from the frequency domain through detect-

ing the envelope variation to deal with band-limited signals.
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• An information evaluation based genetic algorithm for time difference estimation

is introduced to avoid the ill-conditioned numerical optimization.

Chapter 6 concludes the thesis and provides several suggestions for future research.

In conclusion, this thesis shows the system models under insufficient information

conditions and proposes new approaches based on both time and frequency information.

In future works, some meaningful issues, for example, the accuracy improvement

of changing points detection, implementation of the parameter compensation into

recursion of parameter update, will be considered in the time-varying system. The

algorithm for the more complex environment, such as multi-source or signal-dependent

noise, will be investigated in the localization system.



Chapter 2

Preliminaries

2.1 Time-varying Model

In many signal processing areas such as digital communication and acoustics, the

dynamics of a physical process are described by impulse response. Consider such a

propagation channel in the mobile digital communication or the acoustic process. When

it changes with time, it can be described by a time-varying FIR model as

y(k) = hk
0u(k)+hk

1u(k−1)+ · · ·+hk
nu(k−n)+ e(k) = ϕT (k)h(k)+ e(k), (2.1)

where n is the model order, u(k), y(k) and e(k) are the input signal, output signal and

noise terms at an discrete time k, respectively, while the superscript and subscript of

the parameter hk
i indicate the lag time i, the normalized sampling instant k, respectively.

ϕ(k) = [u(k), · · · , u(k − n)]T , h(k) = [hk
0, · · · , hk

n]T . u(k) is assumed as a wide-sense

stationary signal with persistent excitation for system identification, and is independent

of the noise e(k). It indicates that the model parameters hk
i vary with time k in (2.1), and

should be estimated promptly from the data of u(k), y(k).

This model is the model basis of recursive identification algorithm in Chapter 3 and

Chapter 4.

21
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2.2 Variation Rate Decision

Analogous to [86], the variation rate of parameters is measured by

κ(k) =

√
tr
{
E{ϕ(k)}cov{h(k)−h(k−1)}}

σ2
e

, (2.2)

where σ2
e is the variance of the noise e(k). E{ϕ(k)}/σ2

e is the stationary part, and

cov{h(k)−h(k−1)} corresponds to the varying part. It is indicated as fast variation when

κ(k) > 0.0005
√

n empirically, where n is model order, and the conventional methods

may fail to sufficiently track the fast variation.

2.3 The Even Periodic Expansion

In the conventional method based on the Fourier series, for example, the parameters

hk
i within a window [0,N] are expanded into the virtual periodic functions, as shown

in Fig.2.1(a) where the period is the same as the window width N. It is noted that the

discontinuity at the window edge 0, ±N, ±2N, · · · causes the Gibbs effect. If the series

degree M is finite, the Gibbs effect on the series expansion often yields severe overshot

and fluctuation, which distort the prediction error signal. As a result, all the parameter

estimates at this point will be biased due to the distortion of the prediction error signal,

i.e., the algorithm performance degrades seriously.

Through expanding the virtual even periodic functions, the virtual functions are

continuous at the window edges. It implies that the parameter functions within the

window [0,N] are regarded as the right-half period of the expanded virtual even

functions, as illustrated in Fig.2.1(b). As a result, the virtual functions are the periodic

ones whose period is 2N, and can be approximated by a finite degree of the sine or

cosine series representation with a small bias.
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FIGURE 2.1: Illustration of the virtual expansion of time-varying parameters

2.4 Cosine Series Based Approximation

According to Section 2.3, It is seen that the even periodic functions can remove the

discontinuity of the model parameters, so as not to cause the Gibbs effect at the time

window edges.

Consider the parameters hk−N
i , hk−N+1

i , · · · , hk
i in the kth sliding time window [k−N,k].

If they are expanded into an even periodic functions with respect to [k−2N,k−N]

and [k−N,k], then hk0+k1
i can be approximated by the cosine series with period 2N

as follows.

hk0+k1
i ≈

M∑
m=0

ck
i,m cos

(
mωk1

)
, (2.3)

where k0 = k−N and k1 are the left and right edges of time window, 0≤ k1 ≤ N, ω= π/N,

M is the degree of the series, and the virtual parameters for −N ≤ k1 ≤ 0 can also be

calculated from (2.3). Within cosine series of time window [k−N,k], the coefficients

ck
i,m can be treated as constants. Correspondingly, the identification problem of the

time-varying model (2.1) becomes to the constant coefficients ck
i,m estimation problem

within the sliding data window. Furthermore, in the virtual expansion of even periodic



Chapter 2. Preliminaries 24

functions, the virtual parameter hk0+k1
i for k1 = 2K equals to hk

i at the window edges of

virtual functions, the Gibbs effect occurs at the window edges can be reduced largely.

2.5 System Output

Within the window [k0,k], the input-output relation can be written as follows:

y(k0+ k1) = y(k−N + k1) ∆ yk(k1)

≈
M∑

m=0

ck
0,m cos

(
mΩk1

)
u(k0+ k1)+

M∑
m=0

ck
1,m cos

(
mΩk1

)
u(k0+ k1−1)+ · · ·

+

M∑
m=0

ck
n,m cos

(
mΩk1

)
u(k0+ k1−n)+ e(k0+ k1)

= (ϕk
c,0(k1))Tθk

c,0+ (ϕk
c,1(k1))Tθk

c,1+ · · ·+ (ϕk
c,M(k1))Tθk

c,M + e(k0+ k1)

= (ϕk
c(k1))Tθk

c + e(k0+ k1), (2.4)

2.6 Definitions of Data and Parameter Vectors

The main regressions are as follows:

ϕk
c(k1) =



ϕk
c,0(k1)

ϕk
c,1(k1)
...

ϕk
c,M(k1)


, ϕk

s(k1) =


ϕk

s,1(k1)
...

ϕk
s,M(k1)

 ,
ϕk

c,0(k1) = [u(k0+ k1), u(k0+ k1−1), · · · , u(k0+ k1−n)]T

ϕk
c,m(k1) =Wk1

c,mϕ
k
c,0(k1), ϕk

s,m(k1) =Wk1
s,mϕ

k
c,0(k1),

Wk1
c,m = cos(mωk1)I, ϕk

s,m(k1) = sin(mωk1)I, (2.5)

while the coefficient vectors are

θk
c = [(θk

c,0)T , (θk
c,1)T , · · · , (θk

c,M)T ]T ,

θk
c,m =

[
ck

0,m, ck
1,m, · · · , ck

n,m

]T
. (2.6)
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Where I is the identity matrix with the appropriate dimension, Wk1
c,m and Wk1

s,m are the

diagonal matrices whose diagonal elements are cos(ωmk1), sin(ωmk1), respectively.

The approximation in (2.3) and (2.4) implies that the variation of model parameters can

be approximated by the linear combination of the known basis functions, whereas un-

known coefficients θk
c become an important issue. Therefore, the parameter estimation

problem of a time-varying model can be realized by estimating the coefficient vector θk
c

instead of the direct estimation of the varying model parameters. θk
c can be estimated by

minimizing the criterion function

θ̂k
c = arg min

θk
c

N∑
k1=0

(
yk(k1)− (ϕk

c(k1))Tθk
c

)2
. (2.7)

The minimization problem can be solved by some optimization algorithms such as the

LS algorithm

θ̂k
c =

 N∑
k1=0

ϕk
c(k1)(ϕk

c(k1))T


−1  N∑

k1=0

ϕk
c(k1)yk(k1)

 = (Φk
cc)−1ϕk

cy ∆ Pkϕk
cy, (2.8)

whereΦk
cc and Pk are the correlation matrix and its inverse, ϕk

cy is the correlation vector

of the regression and the process output in the window [k0,k].(2.8) turns the estimation

of varying parameter into the estimation problem of the series coefficients.

The window shifts forward to [k0 + 1,k+ 1] at the next instant k+ 1. Correspondingly,

the updated regression in the new window is

ϕk+1
c,0 (k1) =

[
u(k0+ k1+1), u(k0+ k1), · · · , u(k0+ k1+1−n)

]T
= ϕk

c,0(k1+1), (2.9)

and following Wk1
c,m =W1

c,mWk1+1
c,m +W1

s,mWk1+1
s,m , ϕk+1

c,m (k1) can be expressed by

ϕk+1
c,m (k1) =Wk1

c,mϕ
k+1
c,0 (k1) =

[
W1

c,m W1
s,m

]  ϕk
c,m(k1+1)

ϕk
s,m(k1+1)

 (2.10)
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It illustrates that besides the time-shift term W1
c,mϕ

k
c,m(k1+1), an extra term W1

s,mϕ
k
s,m(k1+

1) also appears in (2.10). Then, the correlation matrix Φk+1
cc is updated by

Φk+1
cc =

N∑
k1=0

ϕk+1
c (k1)(ϕk+1

c (k1))T

=
[

Wc Ws
] 

 ϕk
c(N +1)

0

 [ ϕk
c(N +1) 0

]
−

 ϕk
c(0)

0

 [ ϕk
c(0) 0

]
+

 Φ
k
cc Φ

k
cs

Φk
sc Φ

k
ss



 Wc

Ws


(2.11)

where Wc,m and Ws,m are the diagonal matrices with the diagonal blocks W1
c,m, W1

s,m,

m = 0,1, · · · ,M, respectively.

From (2.11), it is deduced that Φk+1
cc consists of the innovative term, the term beyond

the new window and the transition term. Let the inverse ofΦk+1
cc be denoted as Pk+1, the

coefficient vector can be obtained by θ̂k+1
c = Pk+1ϕk+1

cy , where the computation of Pk+1

suffers from the heavy computational load due to extra terms such as Φk
cs,Φ

k
sc and Φk

ss

in (2.11).

2.7 Inversion of Correlation Matrix

In the time window, u(k) is assumed as a stationary signal, the following property holds

for the data vectors.

1
N

 N∑
k1=0

ϕk
c,m1

(k1)(ϕk
c,m2

(k1))T


≈ E

{
ϕk

c(k1)(ϕk
c(k1))T

} 1
N

N∑
k1=0

cos(m1ωk1)cos(m2ωk1)

→

 , 0 (m1=m2)

0 (m1,m2)
. (2.12)
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By virtue of the stationarity assumption of u(k), and the regression ϕk
c,m(k1) does not

contain the weight factor, in the correlation matrix
1
N

N∑
k=1

ϕk
c(k1)(ϕk

c(k1))T , the non-

diagonal blocks are close to 0, while the diagonal blocks are positive definite matrices.

It implies that the inverse of (Φk
cc)−1 can be realized through the inverse of the diagonal

blocks.

2.8 Gibbs Effect

The trigonometric basis based approximation suffers from the Gibbs effect at the

rapid changing points such as abrupt variation or discontinuous points. As shown in

Fig.2.2, the parameter approximation has fluctuation caused by the Gibbs effect at a

discontinuous point around k = 700, and the fluctuation yields about 14% approximation

error with the data window for M = 20, whereas the approximation error yields a more

considerable bias round such points in the identification procedure. Therefore, it is

expected to promptly detect the rapid changing points and further compensate for the

fluctuation in parameter estimates to improve the approximation performance. This

thesis proposes a neural network based soft threshold function to be adaptive to the

various changing characteristics in detail in Chapter 4.

2.9 Multi-path Model in Time Domain

The localization scenario of multi-path propagation is depicted in Fig. 2.3. The signal

transmitted by the emitter is denoted as s(t) , which is reflected by M transponders and

intercepted by L receivers. Denote the positions of emitter as Pe, transponders as Pt,

receivers as Pr, where

Pt =
[
PT

t (1), PT
t (2), · · · , PT

t (M)
]
,

Pr =
[
PT

r (1), PT
r (2), · · · , PT

r (L)
]
, (2.13)
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FIGURE 2.2: Illustration of Gibbs effect at discontinuous point

FIGURE 2.3: Multiple-path localization problem with the transponders and receivers
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and Pt(m) =
[
Pt(m, x), Pt(m, y), Pt(m,z)

]T , Pr(l) =
[
Pr(l, x), Pr(l, y), Pr(l,z)

]T are the

position coordinates of the mth transponder, the lth receiver, respectively. Let the signal

measured by the lth receiver be denoted as r(l)(t), which is contaminated with the noise

term v(l)(t). Then, the relation of the received signal a(l)(t) and signal source s(t) can be

approximated by

a(l)(t)

= h(l)s(t−τ(l))+
M∑

m=1

h(l)
m s(t−τ(l)

m )+ v(l)(t), (2.14)

where τ(l) = 1
C ∥Pe−Pr(l)∥2 denotes the delay time related with the distance of emitter

and lth receiver, while τ(l)
m =

1
C ∥Pe−Pt(m)∥2 + 1

C ∥Pt(m)−Pr(l)∥2 denotes the denotes

the delay time between emitter and lth receiver through mth transponder, and C is the

propagation velocity of the signal wave. h(l) is the path attenuation coefficient from the

emitter to lth receiver, while h(l)
m is the path attenuation coefficient via mth transponder.

v(l)(t) is the noise term that is assumed as the zero-mean white Gaussian one independent

of s(t). Generally, the farther the receivers to each other are, the weaker the correlation

of noise signals. Correspondingly, the noise correlation can be reduced by choosing the

signals received by the receivers with far distance.

2.10 Time Difference Estimation in Time Domain

Let the Discrete Fourier Transform (DFT) of the measured signal in the ith time window

[ti, ti+N −1] be denoted as

A(l)
i (e jnω) =

N−1∑
k=0

a(l)(ti+ k)e− jnkω, (2.15)

where ti is the time offset of the ith window, k indicates a normalized instant of kts,

and ts is the sampling interval to sample the measured signals, N is the window length,

while ω is the frequency interval 2π/N. If N is chosen as a power of 2, the DFT can

be performed through Fast Fourier Transform (FFT) to reduce the computation load.

Furthermore, let the average periodogram of a(l1)(k) and a(l2)(k) be given by shifting the
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time window to t0, · · · , tI−1,

Ā(l1,l2)(e jnω) =
1
I

I−1∑
i=0

(
A(l1)

i (e jnω)
)∗

A(l2)
i (e jnω), (2.16)

where ∗ indicates the complex conjugate.

Correspondingly, the correlation function defined in the time domain

R(l1,l2)(τ) =
1
K

K∑
k=1

a(l1)(k0+ k)a(l2)(k0+ k+τ) (2.17)

can be approximated by

R(l1,l2)(τ) ≈ 1
N

N−1∑
n=0

Ā(l1,l2)(e jnω)e jnτω (2.18)

in the frequency domain. Then the initial time difference between a(l1)(k) and a(l2)(k)

can be given by

τ̂(l1,l2)
init,0 = arg max

τ
R(l1,l2)(τ) (2.19)

from the periodogram as in (2.18). If the distortion caused by multi-path interferences

can be neglected, the estimation in (2.19) might be a good estimation for τ(l1,l2)
0 = τ

(l2)
0 −

τ(l1)
0 . Nevertheless, the distortion may shift position of main-lobe of the correlation

functions so the estimation in (2.19) may have large errors, which should be reduced

further to guarantee the effectiveness of source localization.

2.11 Multi-path Interference

In the multi-path environment, a signal wave from an emitter to a receiver, which is

shown in Fig. 2.4, is generally described by a model that consists of the direct wave,

early reflections, and late reverberations. The signal wave is simply modelled by two

components, the main wave h(l)s(t− τ(l)) and the sub-waves
M∑

m=1
h(l)

m s(t−τ(l)
m ) (Section

2.9), where the latter includes both the early reflections and the late reverberations.
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FIGURE 2.4: Signal from emitter to receiver in the multi-path environment

These sub-waves will alter the waveforms and affect the estimation of the source

location. Moreover, in some practical applications such as low-frequency seismic

analysis and vibration signal processing, s(t) is a band-limited signal with no sufficient

frequency components to estimate time difference or direction of arrivals. As a result,

estimating the model parameters from the received data is not an easy task.

Many conventional methods attempt to estimate the time difference of the main wave

between the signal measured by multiple receivers. The estimation can be performed

through the correlation functions, the semblance of the signal waveforms, and the

difformity of waveforms. However, in the multi-path environment, the sub-waves

generate side lobes that primarily affect the main lobe’s peak value in the correlation

function, especially for band-limited signal [119]. The distortion of the main lobe

caused by the side lobe leads to considerable estimation errors that may yield a

significant mismatch of the source location. Consequently, the affection of the side

lobe should be reduced, and the estimation errors of time difference are also required to

be dealt with for high localization performance.

2.12 Multi-path Model in Frequency Domain

Let kth DFT coefficient of the lth receiver in the frequency-domain model be denoted

as
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A(l)(k)

= h(l)e− jωkτ
(l)

S (k)+
M∑

m=1

h(l)
m e− jωkτ

(l)
m S (k)+V (l)(k)

=

h(l)e− jωkτ
(l)
+

M∑
m=1

h(l)
m e− jωkτ

(l)
m

S (k)+V (l)(k)

= H(l)(k)S (k)+V (l)(k), (2.20)

where S (k) is the DFT coefficient of the signal source s(t), V (l)(k) is the corresponding

noise term, and is independent of S (k). ωk is the normalized frequency point 2kπ/N,

while N is the window length. h(l) and h(l)
m are the path attenuation coefficients from the

emitter to the lth receiver with regard to the direct wave and the reflection, respectively.



Chapter 3

New Recursive Algorithm

3.1 Background

Due to component aging, fast variation of the environment, the dynamic characteristics

of a physical process vary with time. When the process varies slowly, some existing

adaptive algorithms, such as the segmentation approach to separate a time-varying

model into several local models [56, 120], the Recursive Least Square (RLS) with a

forgetting factor [121], the Least Mean Square (LMS) or the Normalized Least Mean

Square (NLMS) algorithms [122, 123], the Affine Projection algorithm (AP) and Block

Orthogonal Projection (BOP) [124], may track the varying dynamics.

Identification of time-varying systems has been successfully applied in many practical

applications. For example, the identification of the time-varying system is used

to address the terminal control problem [125] in computer engineering and robotic

manipulator, the adaptive equalization of rapidly fading communication channels for

non-stationary signals [126], the linear parameter varying model in transportation

systems such as flight projectile and car steering [127, 128], the identification-based

fault diagnosis [129] and time-varying model for effective treatments for certain brain

diseases in biomedical engineering [130].

Nevertheless, if the variation is too fast, most of the existing algorithms fail to follow

the variation satisfactorily, unless the prior information of the variation is available

33
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[86]. For the systems with less prior information, several methods use an explicit

approximation of the parameter variation through some orthogonal basis functions such

as the trigonometric or Legendre basis. They help to approximate the dynamics at

an arbitrary rate when the signals have sufficient excitations, so that they have better

tracking performance than other existing methods. Since the trigonometric functions

have differentiability and computational stability, the varying parameters are often

approximated by the Fourier series in the conventional basis function methods, where

the parameters within a chosen time window are expanded into the virtual periodic

functions whose right and left window edges correspond to the newest, the oldest

information on the process variation, respectively. Nevertheless, the values of the virtual

periodic functions are generally different at the right and left edges. As a result, the

discontinuity causes the Gibbs effect in the series expansion and severely degrades the

tracking performance at the window edges [131]. On the other hand, when expanding

the varying parameters into the virtual even periodic functions that are approximated by

the cosine series [132], the virtual functions are continuous at the window edges when

the true parameters vary continuously.

On the other hand, it is expected to implement the algorithms recursively for the rapid

time-varying systems in many applications, where the recursive computability of the

basis functions is an essential issue in the recursive algorithms. Nevertheless, the

recursion of cosine series is more complicated than the standard Fourier series when

updating the data matrices, and their inversion, recursively, so most of the conventional

cosine basis based algorithms work in batches rather than the recursive processing. A

recursive identification algorithm with a forgetting factor for time-varying systems is

proposed [133]. The forgetting factor makes the time window shift easily since the

past data beyond the window decay to zero, and has high tracking performance in rapid

varying system. However, it will weaken the orthogonality of the basis functions, as a

result, the data matrix often has such large condition number that degrades the tracking

performance for the basis series with high degree.

In order to improve the tracking performance, a new recursive identification algorithm

based on the trigonometric functions is investigated for the rapid time-varying systems

in this chapter. In the proposed algorithm, the orthogonality of the trigonometric
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functions is applied to effectively implement the recursion of the cosine basis. In

contrast with the conventional methods based on the Fourier series expansion, the new

one holds the orthogonality for the high basis degree, and has less Gibbs effect at the

window edges. Consequently, the proposed algorithm has high tracking performance

even in the rapid varying processes.

The rest of the chapter is organized as follows. Section 3.2 shows the new recursive

identification algorithm. Section 3.3 demonstrates some numerical simulation examples

to show the effectiveness of the algorithm. Finally, the conclusions are given in Section

3.4.

3.2 New Recursive Identification Algorithm

Preliminaries as Section 2.1-Section 2.6. The mild assumptions in the proposed

algorithm are summarized as follows: the input signal u(k) has quasi-stationarity and

ergodicity, and is independent of the noise e(k); the window width N > (n+1)(M+1);

the varying parameters have at most a finite number of discontinuous points in the

window. Then, following the expansion theorem of cosine series, the approximation

in (2.3) is guaranteed for the parameter estimation if these assumptions hold.

3.2.1 Properties of data matrices

In order to illustrate the update of the matrices in the recursive algorithm, their

properties are investigated. Let the matrices Φ1, Φ2 be denoted as

Φ1 = ϕ
k
c(N +1)(ϕk

c(N +1))T −ϕk
c(0)(ϕk

c(0))T +Φk
cc =Ψ

k+1+Φk
cc,

Φ2 =W−1
csΦ

k
sc+Φ

k
csW

−1
cs +W−1

csΦ
k
ssW

−1
cs , (3.1)

ψk+1 =

[
ϕk

c(N +1), ϕk
c(0)

]
, ψ̄k+1 =

[
ϕk

c(N +1), −ϕk
c(0)

]
,

ȳk+1 =

[
yk(N +1), −yk(0)

]T
,
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where W−1
cs =W−1

c Ws then Φk+1
cc in (2.11) can be expressed by

Φk+1
cc =Wc

(
Φ1+Φ2

)
Wc. (3.2)

It is seen that the extra matrices in Φ2 make the inverse of Φk+1
cc be very complicated.

The matrix inverse will be simplified by using the properties of data matrices in the new

recursive algorithm.

According to the properties of quasi-stationarity and orthogonality, ∥Φ1∥ >> ∥Φ2∥

holds for N >>M, and
∥∥∥Φ1

−1Φ2
∥∥∥ <<1. Consequently, the following inversion can be

approximated by

(I+Φ−1
1 Φ2)−1 = I−Φ−1

1 Φ2+ (Φ−1
1 Φ2)2− · · · ≈ I−Φ−1

1 Φ2, (3.3)

and it yields the approximation of inverse of Pk+1, i.e., the inverse of Φk+1
cc as follows

Pk+1 = (Φk+1
cc )−1 =W−1

c (Φ1+Φ2)−1W−1
c ≈W−1

c (I−Φ−1
1 Φ2)Φ−1

1 W−1
c , (3.4)

where Φ−1
1 can be updated following matrix inversion lemma

Φ−1
1 =

(
I−gk+1(ψ̄k+1)T )

Pk, (3.5)

whereas gk+1 is a gain vector given by

gk+1=Pkψk+1(I2+ (ψ̄k+1)T Pkψk+1)−1. (3.6)

In (3.6), I2 is a (2× 2) identity matrix, so the calculation of
(
I2 + (ψ̄k+1)T Pkψk+1)−1 is

very easy in the recursive algorithm.

Similarly as Φk+1
cc , the correlation vectors ϕk+1

cy and ϕk+1
sy can be updated by

ϕk+1
cy =Wc(ψk+1ȳk+1+ϕk

cy+W−1
cs ϕ

k
sy),

ϕk+1
sy = −Ws(ψk+1ȳk+1+ϕk

cy)+Wcϕ
k
sy. (3.7)
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From (3.7), the extra term ϕk
sy can be expressed by the past data

ϕk
sy = −Ws(ψkȳk +ϕk−1

cy )+Wcϕ
k−1
sy , (3.8)

Since the matrices Wc,Ws and W−1
cs are diagonal, ϕk

sy can be rewritten as

ϕk
sy =Wc(I+W−2

cs )ϕk−1
sy −W−1

cs ϕ
k
cy. (3.9)

3.2.2 Update of parameter estimation

Now substitute the approximated formulae of Pk+1 and ϕk+1
cy to deduce the recursive

estimation θ̂k+1
c = Pk+1ϕk+1

c in the new window [k0+1,k+1], where ϕk+1
cy in (3.7) is split

into two parts: Wc
(
ψk+1ȳk+1+ϕk

cy
)

and Wsϕ
k
sy.

Multiplying Φ−1
1 W−1

c by the first part of ϕk+1
cy yields that

Φ−1
1 W−1

c Wc
(
ψk+1ȳk+1+ϕk

cy

)
=

(
ψk+1(ψ̄k+1)T +Φk

cc

)−1(
ψk+1ȳk+1+ϕk

cy

)
. (3.10)

Similarly as the standard recursive formula in [134], (3.10) can be compactly rewritten

as

Pkϕk
cy+gk+1εk+1 = θ̂k

c +gk+1εk+1, (3.11)

where the prediction error εk+1 is defined by

εk+1 = ȳk+1− (ψ̄k+1)T θ̂k
c. (3.12)

For the second part of ϕk+1
cy , substituting (3.8) into the multiplication of Pk+1 and Wsϕ

k
sy

yields that

Φ−1
1 W−1

c Wsϕ
k
sy ≈ (I−gk+1(ψ̄k+1)T )(I+W−2

cs )θ̄k
s − (I−gk+1(ψ̄k+1)T )W−2

cs )θ̄k
c. (3.13)
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Now, we complement the rest terms in the update of Pk+1 and θ̂k+1
c . Denote the following

gain matrices to simplify the recursive formulae

Ωk = Pk(W−1
cs ϕ

k
cs+ (ϕk

cs)
T W−1

cs +W−1
cs ϕ

k
ssW

−1
cs ),

Gk+1 =W−1
c (I− (I−gk+1(ψ̄k+1)T )Ωk), Gk+1

s =Gk+1(I−gk+1(ψ̄k+1)T ).(3.14)

Then, by combining (3.11) with (3.13), the new parameter vector and the inverse of the

correlation matrix can be concluded as follows:

θ̂k+1
c = Pk+1ϕk+1

cy =Gk+1(θ̂k
c +gk+1εk+1)+ θ̂k+1

s , (3.15)

Pk+1 =Gk+1Φ−1
1 W−1

c =Gk+1(I−gk+1(ψ̄k)T )PkW−1
c . (3.16)

The estimate in (3.15) is composed of 2 parts: the first part projects the term

θ̂k
c + gk+1εk+1 onto the cosine basis in the new window, while the second part θ̂k+1

s

corresponds to transition effect on the sliding window with respect to the extra terms

ϕk
s, ϕ

k
sy appeared in the update of ϕk+1

c and ϕk+1
cy .

Moreover, the correlation matrix and vector are updated as follows:

 Φk+1
cc Φk+1

cs

Φk+1
sc Φk+1

ss

 =
 Wc Ws

−Ws Wc


 Φ

k
cc+Ψ

k+1 Φk
cs

Φk
sc Φk

ss


 Wc −Ws

Ws Wc

 . (3.17)

3.3 Numerical Examples

A time-varying digital communication channel is considered in the numerical examples.

Assume that the true channel model is described by (2.1) where u(k) and y(k) are the

transmitted training signal, received signal, respectively, e(k) is a white additive noise

that is independent of u(k), the parameter hk
i varies with the instant k, and the variation

rate in (2.2) is κ(k) > 0.1 >> 0.0005
√

n, where n is model order. So the processes are

the fast time-varying ones and their parameter estimation is not an easy task.
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3.3.1 Estimation of time-varying channel

Let the model order n = 5 and the time varying parameters of the channel model be the

time functions. The following are the examples of hk
0 and hk

2 given by:

hk
0 =


−1, for k ∈ [1,1204], or [3072,3372],

0.35sin
( kπ
150
+
π

6

)
, for k ∈ [2561,2880],

1+0.35sin
( kπ
150
+
π

6

)
, otherwise,

(3.18)

hk
2 =


−0.75, for k ∈ [1,1204], or [3072,3372],

−1
4

(
1−sin

( kπ
100
+
π

3

))
, for k ∈ [2561,2880],

0.5+0.25sin
( kπ
100
+
π

3

)
, otherwise.

As shown in Figure 3.1, it is seen that there are significant jump points at k = 2561,2880,

3072, 3372. Assume that the SNR is 10dB.

Generally, the more rapid variations arise in the time window, the higher series degree

is necessary. On the other hand, the approximation with high series degree is easily

influenced by the noise, and a long time window is often required to reduce the noise

influence. Therefore, both the parameter variation velocity and the noise level should

be considered when choosing the time window length N and series degree M. In the

simulation, the window width is chosen as N = 1024, and the series degree M = 3. The

mean values of the estimated parameters ĥ0,k and ĥ2,k for 50 simulation runs are plotted

in Figure 3.1. As a comparison, the results of RLS with the forgetting factor 0.95, and

NLMS with the updating step size 0.15 are also shown in the figure. It illustrates that the

proposed algorithm tracks the variation more promptly than RLS and NLMS, especially

at the sharp jump points.

Define the Mean Square Error (MSE) σ2 of the estimated parameters as follows:

σ2 =
1

LK

L∑
l=1

K∑
k1=1

( n∑
i=0

(
ĥk0+k1

i −hk0+k1
i

)2
)

(3.19)
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FIGURE 3.1: Estimation of time-varying channel

where L and K are the number of simulation runs, the number of recursions, respec-

tively. The values of σ2 for k ∈ [2400,3600] in the proposed algorithm, the standard

RLS and NLMS algorithms are 0.0844, 0.1584, 0.1475, respectively. It is seen that the

proposed algorithm has a smaller mean square error than the other two methods under

the same simulation conditions, especially around the rapid varying points, due to the

high degree cosine series approximation.

3.3.2 Estimation errors versus series degree

Let the series degree M be chosen from 1 to 6. The values of σ2 under various noise

environments are shown in Figure 3.2. It is seen that σ2 decreases with increasing

M under the low noise environment, whereas it becomes large for the high degree M

under the strong noise environment due to the fluctuation in the estimation of θk+1
c,m .

These results imply that the optimal identification performance can be obtained through

selecting an appropriate M with respect to the noise level and the variation velocity of
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FIGURE 3.2: Estimation errors vs. series degree M and SNR

the model parameters at the present instant, which may be detected by combining the

algorithm with some detection methods for the rapid variations.

3.3.3 Comparison of estimation performance

Consider the channel model has long lag time of n = 60. The window width and

the series degree are chosen as N = 3072, M = 30, respectively. The value of σ2 is

0.1237, and the estimates’ mean values of ĥ0,k and ĥ2,k are plotted in Figure 3.3. As a

comparison, the parameters are also estimated by AP, BOP, RLS and NLMS, and the

values of σ2 are 0.2498, 0.2748, 0.2751, 0.2778, respectively, which are more than 2

times of that in the proposed algorithm. Though the orthogonal projection of input data

can improve the convergence performance when the input signal is colored, the AP and

BOP methods also have lower convergence rate than the proposed algorithm since they

do not use the explicit projection of the parameter variation. Moreover, the estimation

error σ2 of the algorithm [133] where the forgetting factor is chosen as 0.96 is 0.1934,



Chapter 3. New Recursive Algorithm 42

3,300 3,400 3,500 3,600 3,700

0

0.5

1

1.5

h
0

 

 

True

Proposed algorithm

BOP

AP

3200 3250 3300 3350 3400 3450 3500 3550 3600

0

0.2

0.4

0.6

0.8

k

h
2

FIGURE 3.3: Estimation of h0 and h2 in Example 4

which is larger than that of the proposed algorithm since the noise influences become

relatively large for high degree M.

3.4 Summary

The recursive identification algorithm based on the trigonometric functions has been

developed for the linear time-varying systems. When the parameters of the process

model have at most finite discontinuous points in the data window, they can be approx-

imated by the cosine series through virtually expanding them into the even periodic

functions, and then the parameter estimation can be obtained through estimating the

coefficients of the cosine series. By making use of the orthogonality of the basis

functions, the recursive identification algorithm has been proposed. The simulation

results demonstrate that the proposed algorithm has a higher convergence rate than the

conventional methods.



Chapter 4

Extension of Identification System

Using Time-varying Model

4.1 Background

Due to the aging of components, variation of environment, fault or malfunction in

the system operation, the dynamic process characteristics of a physical system often

vary with time. The time-varying system examples can be found in many industrial

applications, where the practical process manipulation often depends on the operating

point and the workload [125, 130], the rapidly fading communication channels in

remote sensing or mobile communication systems [126], the robotic manipulator and

car steering in automatic driving [127, 128], and the applications in fault detection

and diagnosis [129], etc. When the influence on the operating performance caused by

such variation cannot be ignored, the system characteristics must be described by time-

varying models and should be identified in real-time through some adaptive algorithms.

Several categories of identification methods for time-varying systems have been devel-

oped. (1) The Linear Parameter Varying model (LPV) detects the variation information

from some special measurable variables that determine the process characteristics [56].

(2) The segmentation methods separate a time-varying model into several local models

by segmenting the observation data with respect to the large variation [120, 135]. (3)

43
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Several types of adaptive algorithms, such as the Recursive Least Square (RLS) with

a forgetting factor [121, 134], the least mean square(LMS) or the Normalized Least

Mean Square (NLMS) algorithms [122, 123], the Affine Projection algorithm (AP)

and Block Orthogonal Projection (BOP) [124], Kalman filter, wavelets are used to

analyze or track the varying dynamics [131]. (4) The explicit approximation of the

parameter variation through the orthogonal basis functions such as the trigonometric or

Legendre functions [86, 132, 136]. It has been illustrated that the approximation based

on orthogonal basis help to approximate the dynamics at an arbitrary rate if the series

have sufficiently high degree, consequently, the approximation may have better-tracking

performance than the conventional adaptive algorithms or the segmentation approaches

under the situation with rapid variation but less variation information [137].

Commonly, high approximation rate requires high series degree. Nevertheless, the

estimation of the series coefficients for the high degree series becomes fragile to

the noise term and the numerical conditions may become very poor in numerical

computations. As a result, the estimation error easily occurs in the coefficient

estimation of high degree cosine terms in the cosine series, and deteriorates the tracking

performance. Correspondingly, it is expected to decrease the series degree without

degrading the tracking performance of the identification method. Moreover, in the low

degree of approximation, Gibbs effects that occur at the discontinuous points or the

abrupt variation may cause the fluctuation in parameter estimates and deteriorate the

identification performance. Cosine series based (CS) approximation is considered in the

Recursive identification based on CS approximation (RCS) to remove the discontinuity

at the data window edges [137]. However, at the discontinuous points or abrupt

changing points inside the data window, Gibbs effects still influence the identification

performance, and should be detected and compensated in order to guarantee the

identification performance for rapidly varying systems.

In order to decrease the series degree and suppress the approximation error, a recursive

identification algorithm with output Weighted Cosine Series (WCS) is investigated

for the time-varying systems in this chapter. The weighted parameters effectively

implement the recursion of the cosine basis, and some efficient approximation is used

by the orthogonality of the trigonometric functions to decrease the computational
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complexity, which is different from the ordinary forgetting factor imposed on the input

and output regressions in RLS, the weight factor is imposed on the output and the

time-varying parameters. And, a smoothing technique is considered to further reduce

the influence of the noise term. Moreover, in order to reduce the influence of Gibbs

effect, a soft threshold determined by neural network is also considered to detect the

abrupt variation. In contrast with the conventional methods based on the Fourier series

expansion, the new one effectively reduces the series degree and Gibbs effect, and it

has high tracking performance with considerable low degree trigonometric series even

in the rapid varying processes.

The rest of the chapter is organized as follows. In Section 4.2, the recursive algorithm of

RCS with output weight factor is discussed. Then some simplifications and a smoothing

technique are given in Section 4.3 and Section 4.4, respectively. The neural network

based approach to detect the abrupt variation, and the compensation approach to reduce

the Gibbs effect are investigated in Section 4.5. Section 4.6 illustrates the numerical

example. Finally, the conclusions are given in Section 4.7.

4.2 Recursive Identification

4.2.1 Output weight factor

Preliminaries as Section 2.1-Section 2.4. In order to reduce the series degree M, a

weight factor λ,0 < λ < 1 is introduced into the system output y(k−K), · · · , y(k), then

multiplying a weight factor λK−k1 to the output in the time window [k−K,k] yields that

λK−k1y(k0+ k1)

= (λK−k1hk0+k1
0 )u(k0+ k1)+ (λK−k1hk0+k1

1 )u(k0+ k1−1)+ · · ·

+(λK−k1hk0+k1
n )u(k0+ k1−n)+λK−k1e(k0+ k1)

= h
k0+k1
0 u(k0+ k1)+h

k0+k1
1 u(k0+ k1−1)+ · · ·

h
k0+k1
n u(k0+ k1−n)+ e(k0+ k1) (4.1)
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Unlike the weight factor or the forgetting factor imposed on the input-output data,

as shown in (4.1), the weight factor is imposed on the output and the time-varying

parameters. Fig. 4.1 illustrates the weighted parameters in time window [0,4096].

It shows that even the original parameters hk0+k1
i vary largely at the past time, eg.

0≤ k1 < 3000, the weighted ones h
k0+k1
i are close to 0. Consequently, the high frequency

components are reduced in weighted parameters.

FIGURE 4.1: Example of a weighted parameter

Commonly it is expected to identify the time-varying models from the observation data

recursively.

4.2.2 Definition of data matrices and vectors

Let the regression vectors and trigonometric function matrices be defined as preliminar-

ies in Section 2.6. Then the model in (4.1) can be approximated as a compact formula

λK−k1y(k0+ k1) = (ϕk
c(k1))Tθk

c + e(k0+ k1) (4.2)
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Furthermore, define the correlation vector, correlation matrix and its inverse as

ϕk
cy =

∑K
k1=0λ

K−k1ϕk
c(k1)yk(k1),

Φk
cc =

∑K
k1=0ϕ

k
c(k1)(ϕk

c(k1))T ,Pk = (Φk
cc)−1.

Then the estimation of the coefficient vector θk
c of the CS approximation can be given

by

θ̂k
c = (Φk

cc)−1ϕk
cy = Pkϕk

cy (4.3)

4.2.3 Update of data matrices and vectors

It is desired to implement (4.3) recursively. When the sliding data window shifts from

[k−K,k] forward to [k+ 1−K,k+ 1] at thenext instant k+ 1, the updated correlation

matrix Φk+1
cc in the new data window is

Φk+1
cc =

K∑
k1=0

ϕk+1
c (k1)(ϕk+1

c (k1))T

= [Wc Ws](

W−1
c ϕk

c(K +1)

0

 [(ϕk
c(K +1)T W−1

c 0T )]

−

ϕk
c(0)

0

 [(ϕk
c(0))T 0T ]+

Φk
cc Φ

k
cs

Φk
sc Φ

k
ss

)
Wc

Ws

 (4.4)

where Wc and Ws are the diagonal matrices with the diagonal blocks W1
c,m,W1

s,m for

m = 0,1, · · · respectively.

From (4.4), the inverse of Φk+1
cc is difficult to be updated due to extra terms such as

Φk
cs,Φ

k
sc and Φk

ss. Therefore, The updating should be simplified in the recursion to

guarantee the recursive computability. Let the matrices Φ1,Φ2 be denoted as

Φ1 =W−1
c ϕk

c(K +1)(ϕk
c(K +1))T W−1

c −ϕk
c(0)(ϕk

c(0))T +Φk
cc = ψ

k+1+Φk
cc,

Φ2 =W−1
csΦ

k
sc+Φ

k
scW−1

cs +W−1
csΦ

k
ssW

−1
cs , (4.5)

ψk+1 =

[
W−1

c ϕk
c(K +1), ϕk

c(0)
]
, ψ̄k+1 =

[
W−1

c ϕk
c(K +1), −ϕk

c(0)
]
,

ȳk+1 =

[
yk(K +1), −λK+1yk(0)

]T
,
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where W−1
cs =W−1

c Ws, thenΦk+1
cc in (4.4) can be expressed byΦk+1

cc =Wc(Φ1+Φ2)Wc.

It implies that the extra matrices in Φ2 make the inverse of Φk+1
cc be very complicated.

On the other hand, generally ||Φ1|| >> ||Φ2|| holds when the data window length K is

much larger than the series degree M, and the entries of Φ−1
1 Φ2 are much smaller than

1. Consequently, the following inversion can be approximated by

(I+Φ−1
1 Φ2)−1 = I−Φ−1

1 Φ2+ (Φ−1
1 Φ2)2− · · · ≈ I−Φ−1

1 Φ2 (4.6)

and it yields the approximation of inverse of Pk+1, i.e., the inverse ofΦk+1
cc cc as follows

Pk+1 = (Φk+1
cc )k−1

=W−1
c (Φ1+Φ2)−1W−1

c

≈W−1
c (1−Φ−1

1 Φ2)Φ−1
1 W−1

c (4.7)

where Φ−1
1 can be updated following matrix inversion lemma [11]

Φ−1
1 = (I−gk+1(ψ

k+1
)T )Pk (4.8)

where gk+1 is a gain vector given by

gk+1 = Pkψk+1(I2+ (ψ
k+1

)T Pkψk+1)−1 (4.9)

In (4.9), I2 is a (2× 2) identity matrix, so the calculation of (I2 + (ψ
k+1

)T Pkψk+1)−1 is

very easy in the recursive algorithm.

Similarly as Φk+1
cc , the correlation vectors ϕk+1

cy and ϕk+1
sy can be updated by

ϕk+1
cy =Wc(ψk+1yk+1+λϕk

cy+W−1
cs λϕ

k
sy),

ϕk+1
sy = −Ws(ψk+1yk+1+λϕk

cy)+Wcλϕ
k
sy. (4.10)

From (4.10), the extra term ϕk
sy can be expressed by the past data

ϕk
sy = −Ws(ψkyk +λϕk−1

cy )+Wcλϕ
k−1
cy (4.11)
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Since Since the matrices Wc,Ws and W−1
cs are diagonal, ϕk

sy can be rewritten as

ϕk
sy =Wc(I+W−2

cs )λϕk−1
cy −W−1

cs λϕ
k
cy (4.12)

4.2.4 Update of parameter estimation

Now substitute the approximated formulae of Pk+1 and ϕk+1
cy to deduce the recursive

estimation θ̂k+1
c = Pk+1ϕk+1

c in the new window [k+ 1−K,k+ 1], where ϕk+1
cy in (4.10)

is split into two parts: Wc(ψk+1yk+1 +λϕk
cy) and Wsλϕ

k
sy. Multiplying Φ−1

1 W−1
c by the

first part of ϕk+1
cy yields that

Φ−1
1 W−1

c Wc(ψk+1yk+1+λϕk
cy)

= (ψk+1(ψ
k+1

)T +Φk
cc)−1(ψk+1yk+1+λϕk

cy) (4.13)

Similarly as the standard recursive formula in [134], (4.13) can be compactly rewritten

as

λPkϕk
cy+gk+1εk+1 = λθ̂k

c +gk+1εk+1 (4.14)

where the prediction error εk+1 is defined by

εk+1 = yk+1− (ψ
k+1

)Tλθ̂k
c (4.15)

For the second part of ϕk+1
cy , substituting (4.11) into the multiplication of Pk+1 and

Wsλϕ
k
sy yields that

Φ−1
1 W−1

c Wsλϕ
k
cy ≈

(I−gk+1(ψ
k+1

)T )(I+W−2
cs )λθ

k
s − (I−gk+1(ψ

k+1
)T )W−2

cs λθ
k
c (4.16)

Furthermore, the rest terms in the update of Pk+1 and θ̂k+1
c are defined. Denote the

following gain matrices to simplify the recursive formulae

Ωk = Pk(W−1
cs ϕ

k
cs+ (ϕk

cs)
T W−1

cs +W−1
cs ϕ

k
ssW

−1
cs ),
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Gk+1 =W−1
c (I− (I−gk+1(ψ

k+1
)T )Ωk),

Gk+1
s =Gk+1(I−gk+1(ψ

k+1
)T ). (4.17)

Then, by combining (4.14) with (4.16), the new parameter vector and the inverse of the

correlation matrix can be concluded as follows

θ̂k+1
c = Pk+1ϕk+1

cy =Gk+1(λθ̂k
c +gk+1εk+1)+ θ̂k+1

s (4.18)

Pk+1 =Gk+1Φ−1
1 W−1

c =Gk+1(I−gk+1(ψ
k
)T )PkW−1

c . (4.19)

The estimate in (4.18) is composed of two parts: the first part projects the term

λθ̂k
c + gk+1εk+1 onto the cosine basis in the new window, while the second part θ̂k+1

s

corresponds to transition effect on the sliding window with respect to the extra terms

ϕk
s,ϕ

k
sy appeared in the update of ϕk+1

c and ϕk+1
cy .

Moreover, the correlation matrix and vector are updated as follows:

Φk+1
cc Φk+1

cs

Φk+1
sc Φk+1

ss

 =
 Wc Ws

−Ws Wc


Φk

cc+Ψ
k+1 Φk

cs

Φk
sc Φk

ss


Wc −Ws

Ws Wc

 (4.20)

4.3 Simplification of Recursive Computation

It is seen that in (4.18) the matrix size (M+1)(n+1) makes the computation of matrix

multiplication complicated for the high order model approximated by the high degree

cosine series. In order to reduce the computational complexity, the implementation

of the parameters and matrices’ update is divided into (M + 1) sub-blocks for each of

the basis function cos(mωk1), with respect to the orthogonality of the trigonometric

functions.

Preliminaries as Section 2.7. Therefore, following the structure of ϕk
c,m(k1) and ϕk

c(k1)

defined in (2.5), it is seen that Φk
cc is composed of the following sub-blocks

Φk
cc,m1m2

=

N∑
k1=0

ϕk
c,m1

(k1)(ϕk
c,m2

(k1))T . (4.21)
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Similar definitions are given for the blocks of Φk
cs,m1m2

, Φk
sc,m1m2

and Φk
ss,m1m2

. For the

simplicity of notation, the blocks for m1 = m2 = m are abbreviated as Φk
cc,m, Φk

ss,m.

The updates are just given by replacing the counterparts with the sub-blocks correspond-

ing to mth degree of the basis function. For example, the gain vector gk+1
m is calculated

as follows:

gk+1
m =Pk

m ψk+1
m

(
I2+ (ψ̄k+1

m )T Pk
mψ

k+1
m

)−1. (4.22)

Furthermore, the matrices Gk+1
m , Gk+1

s,m are given by

Gk+1
m =W−1

c,m(I− (I−gk+1
m (ϕ̄k+1

m )T )Ωk
m), (4.23)

Gk+1
s,m =Gk+1

m (I−gk+1
m (ϕ̄k+1

m )T ). (4.24)

Then θ̂k+1
s,m and θ̂k+1

c,m can be given by

εk+1
m = ȳk+1

m − (ψ̄k+1
m )Tλθ̂k

c,m, (4.25)

θ̂k+1
s,m =Gk+1

s,m ((I+W−2
cs,m)λθ̄k

s,m−W−2
cs,mλθ̄

k
c,m), (4.26)

θ̂k+1
c,m =Gk+1

m (λθ̄k
c,m+gk+1

m εk+1
m )+ θ̄k+1

s,m . (4.27)

Moreover, the correlation matrix and its inverse are updated as follows:

Pk+1
m =Gk+1

m (Pk
m−gk+1

m (ψ̄k+1
m )T Pk

m)W−1
c,m, (4.28) Φk+1

cc,m Φk+1
cs,m

Φk+1
sc,m Φk+1

ss,m

 =
 Wc,m Ws,m

−Ws,m Wc,m

 Φk
cc,m+Ψ

k+1
m Φk

cs,m

Φk
sc,m Φk

ss,m


 Wc,m −Ws,m

Ws,m Wc,m

 . (4.29)

It is obvious that Wc,0 is an identity matrix, and all the elements of Ws,0, ϕs,0(k1) are

zero, thenΩk
0 = 0, θk

s,0 = θ
k+1
s,0 = 0. Therefore, the update for m = 0 is almost the same as

the standard RLS algorithm. The simplified algorithm can be regarded as an extension

of RLS algorithm into the high degree of the basis series to track the rapid variations.
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4.4 Smoothing of Parameter Estimates

In the time window [k − N,k], not only the parameters h
k
i defined in (4.1) can be

calculated from the cosine series, but the past weighted parameters h
k0+k1
i , 0 ≤ k1 < N,

can also be given by the same series. With the time window sliding to the next one,

the weighted parameters h
k0+k1+1
i are estimated in the new window, and the redundant

estimates overlap with the adjacent time windows. Consequently, the simple smoothing

way is to smooth the estimated parameters by using the overlapped parameters. For

example, the parameters of ĥk0+k1
i can be smoothed by using the cosine expansion with

θ̂k0+1
c,m , · · · , θ̂k+1

c,m at point k0+ k1 as follows:

ĥk0+k1
i =

n0∑
n1=0

( M∑
m=0

ĉk0+k1+n1
i,m cos

(
mω(k1−n1)

))
n0∑

n1=0
λn1

. (4.30)

Moreover, by using some methods to estimate the jump points [135], the Gibbs effect

inside the window can be further mitigated at the discontinuous points, and can improve

the approximation accuracy of the cosine series.

4.5 Detection of Rapid Changing Points

Preliminaries as Section 2.8. In order to reduce the influence of Gibbs effect, the

detection of abrupt variation is considered. Using the estimated parameters ĥk
i and

the prediction errors εk within a sliding parameter window [k−Kp,k], soft thresholds

∆0, · · · ,∆k−Kp at the instants k,k−1, · · · ,k−Kp are determined by neural network.

FIGURE 4.2: Detection of abrupt variation point
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As illustrated in Figure 4.2, the input data to the neural network are the estimated

parameters ĥk
i , · · · , ĥ

k−Kp
i for i= 0, · · · ,n, the prediction error εk, · · · , εk−Kp , and the neural

network can be trained by using the simulation data.

When the neural network detects the rapid changing at point k2, a compensation

function ηk
i (k1)

ηk
i (k1) =

 ∆̂ie−α(k2−k1), k1 < k2

∆̂ie−α(k1−k2), k1 ≥ k2

(4.31)

is used to compensate h
k0+k1
i − ηk

i (k1) to mitigate the variation of parameters, where α

and β are positive constants and α > β, and the estimates ĥk0+k1
i is calculated by the sum

of estimated CS approximation and ηk
i (k1).

4.6 Numerical Examples

A digital communication system with time-varying fading channel is considered in the

numerical examples. It is assumed that the dominant dynamic properties are described

as the model in (2.1), where u(k) and y(k) are the transmitted training signal, received

signal, respectively, e(k) is a white additive noise that is independent of u(k) and the

signal to noise rate (SNR) is 15dB. In the examples, the channel has rapid variation,

whose variation index is much larger than the common rapid varying index given in

[136], so it is difficult to promptly track the fast variation by the conventional methods.

4.6.1 Errors versus series degree

The longest lag time of the channel model is n = 40. The time window length is

chosen as N = 3072. The approximation accuracy is investigated in the simulation

first. The true model parameters are approximated by an M-degree cosine series within

one time window and the squares error are calculated. Fig. 4.3 shows the parameters

approximated by a 30-degree cosine series. It can be seen that the approximation errors

arise explicitly around k = 1700, 2200 and k = 2600. After introducing a output weight
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λ = 0.998, the approximation error is decreased largely by the cosine series with the

same degree of M = 30.

FIGURE 4.3: Approximation of weighted parameter

The illustration of approximation errors vs. series degree is plotted in Fig. 4.4. It is

obvious that the approximation with output weight has less error than the conventional

cosine series with considerable low series degree.

4.6.2 Cosine series versus weighted cosine series

Select the series degree M = 20. The mean square error (MSE) σ2 of the estimated

parameters is defined in (3.19).

Let the simulation conditions be the same as example 1. The estimates’ mean values of

ĥk
0 and ĥk

2 obtained by the proposed WCS algorithm and the CS algorithm [138] without

weight factor are illustrated in Fig. 4.5. The estimation error σ2 of WCS and CS is

0.0928, 0.1887 respectively. The MSE σ2 of WCS is smaller than that of CS since the

weight factor reduces the components for high degree M.
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FIGURE 4.4: Errors vs. series degree M

FIGURE 4.5: Estimation of h0 and h2

4.6.3 Comparison of estimation performance

The simulation conditions are the same as Example 1.The estimates’ mean values of

ĥk
0 and ĥk

2 are plotted in Fig. 4.6. The value of σ2 for k ∈ [5300,5900] is 0.0718 in the

proposed algorithm, as a comparison, the parameters are also estimated by RLS, NLMS,
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BOP and AP, and the values of σ2 are 0.2331, 0.2924, 0.3273, 0.3767, respectively, It

is seen that the proposed algorithm (WCS) has better tracking performance than the

conventional methods.

FIGURE 4.6: Estimation of h0 and h2

4.6.4 Performance of parameter estimation

Let SNR be from 0dB to 15dB. The other simulation conditions are the same as example

1. The mean squares errors σ2 obtained by estimating with 5 points, 10 points in 50

simulation runs are shown in Figure 4.7. It is shown that the MSE can be decreased by

applying the smoothing technique.

4.6.5 Detection and compensation

A simple 3rd order linear model is considered in the numerical example, where the

model parameters vary with time and there are 2 abrupt variation points. The CS

approximation with M = 50 is used for the time-varying parameters. The identification

result of hk
2 around one discontinuous point is shown in the left of Figure 4.8, while



Chapter 4. Extension of Identification System Using Time-varying Model 57

5 10 15

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

SNR (dB)

M
S

E
 σ

2

 

 

 Without smoothing

 With 5 points smoothing

 With 10 points smoothing

RLS

FIGURE 4.7: Performance of parameter estimation

the estimate obtained by the proposed RCS algorithm tracks the true time-varying

parameters faster than RLS, but there is fluctuation around the discontinuous point.

FIGURE 4.8: Example of identification result for hk
2

By using the detection of abrupt variation point shown in Figure 4.9, the parameter

estimation is compensated and the fluctuation is mitigated, as shown in the right of

Figure 4.8.
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FIGURE 4.9: Detection example of abrupt variation

4.7 Summary

The recursive identification algorithm is presented for rapid time-varying systems using

the cosine series approximation. The weight factor on the system output and detecting

rapid changing are introduced in the proposed algorithm. By using the orthogonality

of the basis functions, the recursive identification algorithm has been proposed where

recursive computability is guaranteed. The compensation of the parameter estimates

through detecting the rapid changing can mitigate the fluctuation in the parameter

estimates. Therefore, the identification performance can be improved for the rapidly

changing systems. The simulation results demonstrate that the proposed algorithm has

a tracking performance than the conventional methods.



Chapter 5

Localization System for Band-limited

Signal Source

5.1 Background

Localization has been utilized in many applications to exploit target’s location infor-

mation, such as the radar or ultrasonic wave recognition through combining sensory

information to identify appropriate navigation paths or obstacles in the instrumentation

unit of autonomous vehicles, autonomous robots [139–141], the location information

of the epicenter in seismic analysis and early warning system [142–145], and the fault

detection to pinpoint the fault type and location for system monitoring [146]. Moreover,

plenty of efforts have been made to improve the localization performance under various

practical conditions.

The well-known existing methods deal with the localization problem through estimating

the Time Difference of Arrival (TDoA), Received Signal Strength (RSS), and Direction

of Arrival (DoA) of the signal wave gathered by multiple receivers [147–150]. The

time difference can be obtained by maximizing the correlation functions of the

measured signal waves, or the distances are detected through analyzing the energy

of signal waves, or the arrival angles are estimated through some subspace-based

algorithms and the Maximum Likelihood (ML) algorithms based on array signal

59
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processing techniques [151, 152]. The common subspace-based algorithms involve

the estimation of the covariance matrix and eigendecomposition, such as MUltiple

SIgnal Classification (MUSIC) algorithm [153], Estimating Signal Parameter via

Rotational Invariance Techniques (ESPRIT) algorithm [154] and Weighted Subspace

Fitting (WSF) algorithm [155]. They decompose the observation space into signal

subspace and noise subspace by optimizing the projection of the array manifold vectors

onto the subspace to achieve the optimal emitter position estimations. On the other

hand, localization based on the ML algorithms [156, 157], including the Alternation

Projection Maximum Likelihood (AP-ML) [158] and the Refined Maximum Likelihood

(RML) algorithms [159], which establish a likelihood function of the received signals

determined by emitter position, and then obtain the position’s maximum likelihood

estimate.

The existing methods work well when the signal waves propagate to the receivers

through a single path directly. For multi-path interference in buildings, canyons,

and urban areas, some instinctive characteristics such as space diversity, principal

component analysis are used to reduce the affection of multi-path [160]. However, if

the emitted source signals, such as low-frequency seismograms, vibration signals, some

signals in instrumentation systems, often have severe band limitations. In that case,

the noise will largely influence the property of the received signal outside the signal

band. For subspace-based algorithms, it is difficult to separate the signal subspace

from the space, especially at a low SNR, regularization becomes an ill-conditioned

problem [161]. The localization performance of these algorithms that depend on

spectral decomposition of the covariance matrix degrades severely in the case of few

snapshots caused by limited observation time or large noise eigenvalues spread [162],

and even fails to work due to the rank deficiency [163]. For ML algorithms, the Hessian

matrix is very likely ill-conditioned, so the algorithm cannot guarantee convergence to

the global optimal solution. Furthermore, a direct implementation of the ML criterion

requires a multi-dimensional search which may be impractical since its complexity

increases exponentially with the number of unknown parameters. As a result, the multi-

path signals often yield large errors in space decomposition or parameter estimation, and

hence deteriorated localization accuracy leads to extensive degradation of localization
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performance, whereas few effective methods can handle the problem with band-limited

signals. Due to insufficient frequency components of the band-limited signal, gradient-

based search [164] will be greatly affected by noise, and the parameters are hard to

be optimized by gradient-based search in the neural network. Therefore, numerical

optimization through gradient-based search or neural network is very likely an ill-

conditioned problem and cannot even guarantee convergence. In contrast, the update of

Genetic Algorithm (GA) depends on the genetic operations rather than gradient-based

search, and conventional GA can handle constraints well. However, for band-limited

signals, the insufficient frequency components will lead to no explicit difference in

the main lobe and side lobes in the fitness function, so conventional GA is difficult

to distinguish between good individuals and those that are not good enough. How to

deal with the localization problem under severe conditions is a challenging task.

In this chapter, we investigate the effective techniques to work for band-limited signals

in the multi-path environment using the insufficient frequency data measured by the

multiple receivers. For the multi-path problem, an explicit approximation of cross

power spectral ratio is introduced in the new algorithm to analyze the characteristics of

the different propagation paths from the emitter to the receivers; For limited bandwidth

problem, weight functions determined by the spectral property of signal are considered

for the optimization of the time difference, and the time difference is estimated through

a new Information Evaluation based Genetic Algorithm (IEGA) under multi-path

conditions. It combines the floating-point coding on a binary-coded basis. In the

operation of selection, the information of estimation error evaluated through cross-

evaluation within the multiple receivers is utilized to refine the fitness function. Besides,

it introduces the mutation of individual bits to avoid local optimum. In contrast

with the conventional GA, the new one has high accuracy for the time difference

estimation. The performance of the proposed algorithm is analyzed and evaluated by

numerical simulations. Root Mean Square Errors (RMSE) for different SNR and time

differences in the multi-path environment are shown to approximate the Cramér Rao

Bounds (CRB). The proposed estimators perform better than the existing state-of-the-

art algorithms such as the MUSIC algorithm [165] and correlation approach [166].
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The remainder of this chapter is organized as follows. In Section 5.2, the characteristics

of the receivers through the cross power spectral ratio method are investigated, and the

information fusion through IEGA and the nonlinear optimization to localize the signal

source is illustrated. Section 5.3 demonstrates some numerical simulation examples.

Finally, the conclusion and the future research work are given in 5.4.

5.2 Estimation of Time Difference

Preliminaries as Section 2.1 and Section 2.9-Section 2.12. Most of the conventional

methods [147, 149] confront the accuracy degradation in estimating the time difference

if the source signals have severe band limitation [167]. The information that relates to

time difference can be extracted from the phase information in frequency analysis so

that the frequency method is considered to estimate the time difference. To ensure

accuracy, this chapter assumes that at least one receiver is far from the other two

receivers. The situation that the receivers are very close to each other will be discussed

in the future work.

5.2.1 Cross power spectral ratio method

To guarantee effective localization, the signals are pre-processed to reduce the affection

of noise term V (l)(k) before using the estimation of time difference to localize the signal

source. Let the cross power spectral ratio of l1th and l2th received signals be defined as

follows:

Y (l1,l2)(k) =
E

{
A(l)(k)∗A(l2)(k)

}
E

{
A(l)(k)∗A(l1)(k)

} , (5.1)

Choose such a receiver that is far away from both the l1th and l2th receivers to make

the correlation between V (l)(k) and V (l1)(k), V (l)(k) and V (l2)(k) be very low. Therefore,

the time average of the cross-spectral density in the different time windows in (5.1) can

reduce the influence of noise outside the signal band. If the noise term and numerical
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distortion are reduced, the cross power spectral ratio can be approximated as follow:

Y (l1,l2)(k)

≈
h(l2)e− jωk(τ(l2)−τ(l1))+

M∑
m=1

h(l2)
m e− jωk(τ(l2)

m −τ(l1))

h(l1)+
M∑

m=1
h(l1)

m e− jωk(τ(l1)
m −τ(l1))

, (5.2)

where h(l1) is fixed as 1, the time difference τ(l2)−τ(l1), τ(l2)
m −τ(l1), τ(l1)

m −τ(l1) can only be

estimated with respect with to the reference τ(l1). It is seen that the cross power spectral

ratio of two signals can reflect the characteristics between the paths.

Consequently, the estimation of the time difference between the l1th and l2th receivers

can be given by

τ̂(l1,l2) = τ(l2)−τ(l1). (5.3)

Due to the insufficient frequency components in the band-limited signals, the spectrum

is mutually verified before using the estimation parameter to localize the signal source.

Consequently, the output of the beamformer is represented by

G(l1,l2)(k) = w(l1,l2)(k)Y (l1,l2)(k), (5.4)

where w(l1,l2)(k) is the weight coefficient concerning the spectrum characteristics, it is

determined by the envelope variation of signals, which is given by the Hilbert transform.

Spectrum characteristics are extracted from the frequency domain, and a normalization

module for normalizing the modulus of extracted features into [0, 1], a good set of

weight coefficients of the signal can be obtained from the kurtosis of envelope spectrum.

5.2.2 Path estimation using IEGA

When the bandwidth of the signal is limited, the optimization through gradient-

based search or neural network is an ill-conditioned problem, where the insufficient

frequency components of band-limited signals will lead to ambiguities. In addition,
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the numerical computation of the gradient also becomes complicated because the

optimization function involves several constrained conditions. IEGA is considered

for estimating time differences to solve the location problem of signals with limited

bandwidth in the multi-path environment. The fitness function can easily involve the

evaluation and constraints for every individual in the population. The update depends

on the genetic operations rather than gradient-based search, which is largely influenced

by the signal bandwidth.

5.2.3 Coding scheme

In the present binary-coded GA, binary strings represent the parameter variables in

the genetic population. The length of the binary string needs to solve the problem

according to the accuracy and complexity of the problem. Binary-coded GA has

a Hamming distance problem, which sometimes may cause difficulties in the case

of coding continuous variables. Moreover, binary strings will be very long while

performing multi-parameter optimization. A lengthy binary string always occupies

memory, resulting in inefficient use of computer memory. In order to accelerate

convergence and perform better in genetic operations, floating-point coding is used in

IEGA. Each individual is coded as a vector of floating-point numbers with the same

length as the number of parameters.

5.2.4 Refinement of fitness function

The following fitness function is applied to evaluate the individual quality

f =
L∑

l1,l2=1

α
N−1∑
k=0

(
∆

(l1,l2)
G (k)

∗ ·∆(l1,l2)
G (k)

)

α =


1, if ĥ(l)>ĥ(l)

m m = 1,2, · · · ,M;

τ̂(l)<τ̂(l)
m l = l1, l2

0.01, the other

, (5.5)
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where

∆
(l1,l2)
G (k) =G(l1,l2)(k)− Ĝ(l1,l2)(k). (5.6)

while ∗ indicates the complex conjugate, G(l1,l2)(k) is given by the measured data in

(5.1), while Ĝ(l1,l2)(k) is the estimate given by substituting the parameter estimates τ̂(l1)
m −

τ̂(l1), τ̂(l2)− τ̂(l1), τ̂(l2)
m − τ̂(l1), ĥ(l1)

m , ĥ(l2), ĥ(l2)
m into (5.4).

In order to reduce the probability of local optimum, the estimation error of τ̂(l1,l2) is

evaluated by verifying the difference between τ̂(l1,l2) and τ̂(l,l2) − τ̂(l,l1), where τ̂(l,l2) and

τ̂(l,l1) are estimated respectively by (5.5), and the information of estimation error is used

in the operation of selection. Thus, the refinement of fitness function is as follows:

F = e
min(ε(l1,l2))
ε(l1,l2) f (5.7)

where

ε(l1,l2) =
∑

l,l1,l2

∥∥∥∥τ̂(l1,l2)−
(
τ̂(l,l2)− τ̂(l,l1)

)∥∥∥∥
2
, (5.8)

while ε(l1,l2) is the estimation error index for τ̂(l1,l2). It is seen that the larger ε(l1,l2)

is, the more errors exist in τ̂(l1,l2), the less probability to be selected for fitness with

relative to the minimum estimation error. Moreover, the matrix, whose (l1, l2)th element

is ε(l1,l2), can be considered as indices of all the estimated time difference, it can be used

to determine the weight coefficients in the estimation of the emitter location.

Similarly as ε(l1,l2), the estimation error ε(l1,l2)
m in multi-path paths can be given by

ε(l1,l2)
m =

∑
l,l1,l2

∥∥∥∥τ̂(l1,l2)
m −

(
τ̂(l,l2)

m − τ̂(l,l1)
m

)∥∥∥∥
2
, (5.9)

where

τ̂(l1,l2)
m = τ(l2)

m −τ(l1)
m . (5.10)
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5.2.5 Genetic space and operation

Assume that GA has a population of γ individual chromosomes. The encoding

of difference in time, amplitude to the reference point is connected to form the

chromosome of each individual according to the above coding scheme. The population

evolves successively from the previous population by employing genetic operators of

selection, crossover, and mutation. GA initiates the search for the optimal solution with

an initial population at the 0th generation.

First, the chromosomes are evaluated and sorted based on the refinement of the fitness

function in (5.7). In selection, better-performing chromosomes with a lower error

are selected by the roulette wheel method. The probability of each individual in the

population is as follows:

Is =
Fi∑γ

i=1 Fi
, (5.11)

Fi represents the fitness of the ith individual. Then the child individuals are generated by

crossover operations, where the chromosome bits of the selected parents for crossover

are determined by a crossover probability Ic. Since there are many time and amplitude

parameters in the chromosome corresponding to the reference point, a multi-point

crossover is adopted, and each part of time and amplitude has more than one crossover

point in the crossover. In IEGA, two mutation operations are considered. Besides the

general mutation at probability Im, the mutation of individual bits at a low probability Ii

is introduced to avoid the local optimum and sustain the performance of convergence.

GA iteratively replaces the previous population with a new population. Finally, path

characteristics can be estimated by decoding the chromosomes of the optimal candidate

with the largest fitness in the individuals. The detailed steps of the proposed method are

as follows:

Step1: Acquire the signal a(l)(t) by the lth receiver.

Step2: Transform a(l)(t) to frequency domain by fast Fourier transform and obtain

weight coefficients w(l1,l2)(k) from kurtosis of envelope spectrum by the Hilbert

transform.
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Step3: Calculate the cross power spectral ratio Y (l1,l2)(k) and let G(l1,l2)(k) be given by

w(l1,l2)(k)Y (l1,l2)(k).

Step4: Set the number of iterations to 0 and initialize the population by floating-point

coding for design requirements of parameter tuning.

Step5: Decode the chromosomes of γ individuals.

Step6: Evaluate the fitness of each individual based on information of estimation error

and find the individual with the highest fitness value by (5.7).

Step7: Generate intermediate generation by selection operator based on a rule deter-

mined by individual fitness according to (5.11).

Step8: Select individuals according to crossover probability Ic for crossover operation.

Step9: Mutation operation of individual reproductive individuals according to general

mutation probability Im, and copy several bits from the most optimal candidate to a

selected individual in the current generation according to new mutation probability Ii.

Step10: Go to Step5 for the next iteration until the iteration number exceeds the

maximal iteration number. Otherwise, stop the iteration.

5.2.6 Estimation of emitter location

In order to acquire high accuracy, the coefficient λ ∈ (0,1) is introduced to complement

the information of location. Using the estimation of τ̂(l1,l2)
m , the emitter location can be

estimated by solving the following optimization problem

arg min
Pe(x),Pe(y),Pe(z)

(Je+λJt), (5.12)

where

Je =

L∑
l1,l2=1

W(l1,l2)
(
∆

(l1,l2)
e − cτ̂(l1,l2)

)2
,
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Jt =

M∑
m=1

L∑
l1,l2=1

W(l1,l2)
m

(
∆

(l1,l2)
t − cτ̂(l1,l2)

m

)2
, (5.13)

while Pe(x),Pe(y),Pe(z) are the coordinates of emitter position, W(l1,l2) and W(l1,l2)
m

are the weight coefficients with respect to the estimation error ε(l1,l2) and ε(l1,l2)
m ,

respectively. Here the weight coefficients W(l1,l2) and W(l1,l2)
m are determined by

W(l1,l2) = e
1−ε(l1,l2)

d ,W(l1,l2)
m = e

1−ε(l1,l2)
m
dm , (5.14)

where d and dm are positive numbers to ensure the large weight for estimates with low

error. ∆(l1,l2) is the distance difference between the distance from the l2th receiver, and

the distance from the l1th receiver to the source location as follows:

∆
(l1,l2)
e =

∥∥∥∥∥∥∥∥∥∥∥∥∥


Pe(x)

Pe(y)

Pe(z)

−


Pr(l2, x)

Pr(l2, y)

Pr(l2,z)


∥∥∥∥∥∥∥∥∥∥∥∥∥

2

−

∥∥∥∥∥∥∥∥∥∥∥∥∥


Pe(x)

Pe(y)

Pe(z)

−


Pr(l1, x)

Pr(l1, y)

Pr(l1,z)


∥∥∥∥∥∥∥∥∥∥∥∥∥

2

(5.15)

Similarly as ∆(l1,l2)
e , the distance difference ∆(l1,l2)

t between the mth transponder and the

l1th, l2th receivers can be given by

∆
(l1,l2)
t =

∥∥∥∥∥∥∥∥∥∥∥∥∥


Pt(m, x)

Pt(m, y)

Pt(m,z)

−


Pr(l2, x)

Pr(l2, y)

Pr(l2,z)


∥∥∥∥∥∥∥∥∥∥∥∥∥

2

−

∥∥∥∥∥∥∥∥∥∥∥∥∥


Pt(m, x)

Pt(m, y)

Pt(m,z)

−


Pr(l1, x)

Pr(l1, y)

Pr(l1,z)


∥∥∥∥∥∥∥∥∥∥∥∥∥

2

(5.16)
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5.3 Numerical Examples

Some numerical examples are presented in this section to test the performances of the

proposed algorithm. The simulation scenarios in this chapter follow from Fig. 2.3. The

band-limited signals in low-frequency vibration signals are considered. The emitter is

located at [−60;−35;20], and six receivers are located at [0;0;0], [10;0;0], [0;10;0],

[−10;0;0], [0;−10;0] and [0;0;10]. Assume that three transponders are located at

[−20;30;0], [25;15;−20] and [30;−10;20] to transmit the signals. The unit of values is

m. The measured signals r(l)(t) are sampled at the sampling rate of 4 kHz, the records

within a time window of 10 s are used for the data analysis. The SNR is set as 10

dB, and the path attenuation coefficients remain constant during the observation time

interval. The estimation performance of the parameters is evaluated in terms of RMSE,

which is defined by

RMS E =

√√√√√√ Ns∑
i=1
∥x− x̂∥2

Ns
(5.17)

where Ns is the number of Monte-Carlo runs, which is set as 200, x is the real value,

and x̂ is the estimated value.

In IEGA, let the population size of one generation be γ = 100, and the probabilities of

crossover, mutation be Ic = 0.618, Im = 0.0625, Ii = 0.005, respectively.

5.3.1 Estimation with known spectral envelope

If the spectrum characteristics of the measured signals are known, the weight coefficient

w(l)(k) is directly given according to the spectrum characteristics. The localization

performance of the proposed algorithm is illustrated in Fig. 5.1, it is seen that the

localization system still has high localization accuracy when the bandwidth of signals

is up to 30 Hz.
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FIGURE 5.1: Performance and bandwidth of signals with known spectral information
(SNR=10 dB)

5.3.2 Estimation with unknown spectral envelope

For signals with unknown spectral information, the weight coefficient w(l)(k) is

determined by the envelope variation of signals. The weight function is illustrated in

Fig. 5.2, it is seen that the frequency components are concentrated within a limited

bandwidth. Therefore, the propagation path parameters are not estimated easily by the

neural network or gradient-based search. The localization performance of the proposed

FIGURE 5.2: Weight function of signals with unknown spectral information
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algorithm is shown in Fig. 5.3, it is seen that the localization system still has high

localization accuracy when the bandwidth of signals is up to 40 Hz.

FIGURE 5.3: Performance and bandwidth of signals with unknown spectral
information (SNR=10 dB)

5.3.3 Performance versus SNR

Let the snapshot be the same, and the bandwidth be 40 Hz. The comparison of the

proposed algorithm versus the MUSIC algorithm [165] and correlation approach [166]

is shown in Fig. 5.4. Few snapshots will significantly affect the performance of the

MUSIC algorithm and correlation approach. In contrast, the proposed algorithm can

avoid the local optimum by the information evaluation scheme. It can work well under

the same snapshot condition and almost approaches the corresponding CRB under the

multi-path environment, especially for band-limited signals.

5.3.4 Performance versus number of transponders

When emitter and receiving stations are fixed, the fewer transponders, the higher

positioning accuracy. 30 Hz bandwidth signals with known spectral information and
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FIGURE 5.4: CRB and RMSE of time difference estimation versus SNR

40 Hz bandwidth signals with unknown spectral information are considered in Fig. 5.5,

which shows the localization performance in the different number of transponders.

FIGURE 5.5: Performance versus the number of transponders
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5.3.5 Estimation performance against noise

Consider the performance of the proposed IEGA against the noises and band-limited

interferences. Let the iteration be the same, and the bandwidth varies from 20 Hz to 40

Hz. Ten simulation runs have been executed. The relative error of the estimated distance

from the reference point to the emitter versus the true one is summarized in Table 1.

For the comparison, it illustrates the relative errors in the conventional algorithms and

IEGA. It is seen that IEGA can work well even for limited bandwidth in the multi-path

environment.

TABLE 5.1: Comparison of IEGA versus conventional algorithms on relative errors
(%) (Noise with the bandwidth of 20 Hz and SNR of 10 dB)

Algorithm

Bandwidth
20 25 30 35 40

Correlation 39.25 24.89 17.62 13.79 11.25

MUSIC 14.23 13.86 13.58 13.3 12.88

GA 14.98 13.66 12.47 11.19 9.48

IEGA 4.56 3.52 2.05 1.31 0.67

5.4 Summary

The localization problem of signal sources has been investigated through multiple

receivers. It has been shown that by introducing weight functions to extract the effective

signals and introducing the cross power spectral ratio method for time difference

estimation through IEGA into the nonlinear optimization problem, the proposed

algorithm can work for band-limited signals under the multi-path environment. The

analysis of band-limited radar signals has demonstrated the effectiveness of the

algorithm.
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Conclusions

6.1 Summary

This thesis shows the system models under insufficient information conditions and

proposes new approaches based on information in both time and frequency domains.

1) a new recursive algorithm for the system with rapid variation but less variation

information. 2) extension of identification system using time-varying model. 3)

localization system using multi-path model for band-limited signal source.

Chapter 3 proposes a new recursive algorithm for the system with rapid variation but

less variation information. The recursive identification based on cosine series based

approximation is introduced to remove the discontinuity of the model parameters by

expanding the varying parameters into even periodic functions in order not to cause the

Gibbs effect at the time window edges. The parameter estimation can be obtained by

estimating the coefficients of the cosine series in frequency domain.

Chapter 4 proposes the extension of identification system based on time-varying model

of Chapter 3. A weight factor is imposed on the output and parameters to decrease

the degree of cosine series and suppress the approximation error. And a smoothing

technique is considered to reduce the influence of the noise term. Moreover, in order

to mitigate the fluctuation caused by Gibbs effect in the parameter estimation, detection

75
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of abrupt variation points is introduced into the rapid time-varying system, and more

time-domain variation information can be complemented by parameter compensation.

Chapter 5 proposes a localization algorithm using multi-path model for insufficient

frequency information. The spectral characteristics including phase information in

frequency domain are used to analyze the characteristics of multiple paths. Moreover, a

time-domain information evaluation based genetic algorithm is considered for the time

difference estimation.

6.2 Topics for Future Research

They still have many works to continue from very different perspectives. A few possible

extensions are listed here.

• Noise has always been an unavoidable problem in signal processing. Therefore,

the study on reducing estimation error under the strong noise environment is

necessary for the time-varying and localization systems.

• Based on Chapter 3, Chapter 4 adds abrupt changing point detection, the

identification of a fast time-varying system with high accuracy is realized in two

steps. The implementation of the parameter compensation into the recursion of

parameter updates will be considered in future work.

• Chapter 5 assumes that at least one receiver is far from the other two receivers.

As a result, the noise correlation can be reduced by choosing the signals received

by the receivers with far distances. However, if the receivers are very close to each

other, the correlation of noise signals will become stronger, the cyclostationarity

characteristics of the received signals can be utilized to reduce the influence of

correlated noise. Solving such a problem of signal-dependent noise is a direction

of future work in the localization system.



Bibliography

[1] F. Ding, L. Xu, and Q. Zhu, “Performance analysis of the generalised projection

identification for time-varying systems,” IET Control Theory & Applications,

vol. 10, no. 18, pp. 2506–2514, 2016.

[2] C. Bao, H. Hong, Z. Li, and X. Zhu, “Time-varying system identification using

a newly improved HHT algorithm,” Computers & Structures, vol. 87, no. 23-24,

pp. 1611–1623, 2009.

[3] L. Shang, J. Liu, and Y. Zhang, “Recursive fault detection and identification for

time-varying processes,” Ind.eng.chem.res, 2016.

[4] S. Zhang, S. Lu, Q. He, and F. Kong, “Time-varying singular value

decomposition for periodic transient identification in bearing fault diagnosis,”

Journal of Sound and Vibration, vol. 379, pp. 213–231, 2016.

[5] M. Zhong, T. Xue, and S. Ding, “A survey on model-based fault diagnosis for

linear discrete time-varying systems,” Neurocomputing, vol. 306, 2018.

[6] Y. Gu, H. Wei, R. J. Boynton, S. N. Walker, and M. A. Balikhin, “System

identification and data-driven forecasting of AE index and prediction uncertainty

analysis using a new cloud-NARX model,” Journal of Geophysical Research:

Space Physics, vol. 124, no. 1, pp. 248–263, 2019.

[7] X. Li, J. Wen, and E. Bai, “Building energy forecasting using system

identification based on system characteristics test,” in 2015 Workshop on

Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES), 2015,

pp. 1–6.

77



Bibliography 78

[8] Y. Li, X. Wang, S. Sun, X. Ma, and G. Lu, “Forecasting short-term subway

passenger flow under special events scenarios using multiscale radial basis

function networks - ScienceDirect,” Transportation Research Part C: Emerging

Technologies, vol. 77, pp. 306–328, 2017.

[9] D. Arifianto, “Crack detection of propeller shaft on board marine ship using

microphone array,” Journal of Physics Conference, vol. 1075, no. 1, p. 012086,

2018.

[10] D. Sun, H. Li, C. Zheng, and X. Li, “Sound velocity correction based on effective

sound velocity for underwater acoustic positioning systems,” Applied Acoustics,

vol. 151, pp. 55–62, 2019.

[11] L. David, W. Olof, G. Fredrik, and H. Hans, “Shooter localization in wireless

microphone networks,” Eurasip Journal on Advances in Signal Processing, 2010.

[12] W. A. Ahroon, A. Houtsma, and B. E. Acker-Mills, “Speech intelligibility in

noise using throat and acoustic microphones,” Aviation Space and Environmental

Medicine, vol. 77, no. 1, pp. 26–31, 2006.

[13] R. Wang and S. Bei, “Optimization of fixed microphone array in high speed

train noises identification based on far-field acoustic holography,” Advances in

Acoustics and Vibration,2017,(2017-02-1), vol. 2017, pp. 1–11, 2017.

[14] L. Alsteris and K. Paliwal, “Further intelligibility results from human listening

tests using the short-time phase spectrum,” Speech Communication, vol. 48,

no. 6, pp. 727–736, 2006.

[15] J. M. Valin, F. Michaud, J. Rouat, and D. Létourneau, “Robust sound source

localization using a microphone array on a mobile robot,” IEEE, 2016.

[16] X. Du, F. Lao, and G. Teng, “A sound source localisation analytical method for

monitoring the abnormal night vocalisations of poultry,” Sensors, vol. 18, no. 9,

2018.

[17] A. J. Weiss, “Direct position determination of narrowband radio frequency

transmitters,” IEEE Signal Processing Letters, vol. 11, no. 5, pp. 513–516, 2004.



Bibliography 79

[18] J. Caffery, “Wireless location in CDMA cellular radio systems,” Ph.D.

dissertation, Kluwer academic publishers, 1998.

[19] A. Eshkevari and S. M. S. Sadough, “An improved method for localization of

wireless capsule endoscope using direct position determination,” IEEE Access,

vol. 9, pp. 154 563–154 577, 2021.

[20] Z. Lu, J. Wang, B. Ba, and D. Wang, “A novel direct position determination

algorithm for orthogonal frequency division multiplexing signals based on the

time and angle of arrival,” IEEE Access, vol. 5, pp. 25 312–25 321, 2017.

[21] Y. T. Chan, W. Y. Tsui, H. C. So, and P. C. Ching, “Time-of-arrival

based localization under NLOS conditions,” IEEE Transactions on Vehicular

Technology, vol. 55, no. 1, pp. 17–24, 2006.

[22] F. Gustafsson and F. Gunnarsson, “Positioning using time-difference of arrival

measurements,” in 2003 IEEE International Conference on Acoustics, Speech,

and Signal Processing, 2003. Proceedings. (ICASSP ’03)., vol. 6, 2003, pp. VI–

553.

[23] J. D. Bard and F. M. Ham, “Time difference of arrival dilution of precision and

applications,” IEEE Transactions on Signal Processing, vol. 47, no. 2, pp. 521–

523, 1999.

[24] R. Peng and M. L. Sichitiu, “Angle of arrival localization for wireless sensor

networks,” in 2006 3rd Annual IEEE Communications Society on Sensor and Ad

Hoc Communications and Networks, vol. 1, 2006, pp. 374–382.

[25] P. Kulakowski, J. Vales-Alonso, E. Egea-López, W. Ludwin, and J. Garcı́a-
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