78 research outputs found

    Survey of Transportation of Adaptive Multimedia Streaming service in Internet

    Full text link
    [DE] World Wide Web is the greatest boon towards the technological advancement of modern era. Using the benefits of Internet globally, anywhere and anytime, users can avail the benefits of accessing live and on demand video services. The streaming media systems such as YouTube, Netflix, and Apple Music are reining the multimedia world with frequent popularity among users. A key concern of quality perceived for video streaming applications over Internet is the Quality of Experience (QoE) that users go through. Due to changing network conditions, bit rate and initial delay and the multimedia file freezes or provide poor video quality to the end users, researchers across industry and academia are explored HTTP Adaptive Streaming (HAS), which split the video content into multiple segments and offer the clients at varying qualities. The video player at the client side plays a vital role in buffer management and choosing the appropriate bit rate for each such segment of video to be transmitted. A higher bit rate transmitted video pauses in between whereas, a lower bit rate video lacks in quality, requiring a tradeoff between them. The need of the hour was to adaptively varying the bit rate and video quality to match the transmission media conditions. Further, The main aim of this paper is to give an overview on the state of the art HAS techniques across multimedia and networking domains. A detailed survey was conducted to analyze challenges and solutions in adaptive streaming algorithms, QoE, network protocols, buffering and etc. It also focuses on various challenges on QoE influence factors in a fluctuating network condition, which are often ignored in present HAS methodologies. Furthermore, this survey will enable network and multimedia researchers a fair amount of understanding about the latest happenings of adaptive streaming and the necessary improvements that can be incorporated in future developments.Abdullah, MTA.; Lloret, J.; Canovas Solbes, A.; GarcĂ­a-GarcĂ­a, L. (2017). Survey of Transportation of Adaptive Multimedia Streaming service in Internet. Network Protocols and Algorithms. 9(1-2):85-125. doi:10.5296/npa.v9i1-2.12412S8512591-

    Context-awareness for ubiquitous media service delivery in next generation networks

    Get PDF
    Les rĂ©centes avancĂ©es technologiques permettent dĂ©sormais la fabrication de terminaux mobiles de plus en plus compacts et dotĂ©s de plusieurs interfaces rĂ©seaux. Le nouveau modĂšle de consommation de mĂ©dias se rĂ©sume par le concept "Anytime, Anywhere, Any Device" et impose donc de nouvelles exigences en termes de dĂ©ploiement de services ubiquitaires. Cependant la conception et le developpement de rĂ©seaux ubiquitaires et convergents de nouvelles gĂ©nĂ©rations soulĂšvent un certain nombre de dĂ©fis techniques. Les standards actuels ainsi que les solutions commerciales pourraient ĂȘtre affectĂ©s par le manque de considĂ©ration du contexte utilisateur. Le ressenti de l'utilisateur concernant certains services multimĂ©dia tels que la VoIP et l'IPTV dĂ©pend fortement des capacitĂ©s du terminal et des conditions du rĂ©seau d'accĂšs. Cela incite les rĂ©seaux de nouvelles gĂ©nĂ©rations Ă  fournir des services ubiquitaires adaptĂ©s Ă  l'environnement de l'utilisateur optimisant par la mĂȘme occasion ses resources. L'IP Multimedia Subsystem (IMS) est une architecture de nouvelle gĂ©nĂ©ration qui centralise l'accĂšs aux services et permet la convergence des rĂ©seaux fixe/mobile. NĂ©anmoins, l'Ă©volution de l'IMS est nĂ©cessaire sur les points suivants :- l'introduction de la sensibilitĂ© au contexte utilisateur et de la PQoS (Perceived QoS) : L'architecture IMS ne prend pas en compte l'environnement de l'utilisateur, ses prĂ©fĂ©rences et ne dispose pas d'un mĂ©chanisme de gestion de PQOS. Pour s'assurer de la qualitĂ© fournit Ă  l'utilisateur final, des informations sur l'environnement de l'utilisateur ainsi que ses prĂ©fĂ©rences doivent transiter en cƓur de rĂ©seau afin d'y ĂȘtre analysĂ©s. Ce traitement aboutit au lancement du service qui sera adaptĂ© et optimisĂ© aux conditions observĂ©es. De plus pour le service d'IPTV, les caractĂ©ristiques spatio-temporelles de la vidĂ©o influent de maniĂšre importante sur la PQoS observĂ©e cĂŽtĂ© utilisateur. L'adaptation des services multimĂ©dias en fonction de l'Ă©volution du contexte utilisateur et de la nature de la vidĂ©o diffusĂ©e assure une qualitĂ© d'expĂ©rience Ă  l'utilisateur et optimise par la mĂȘme occasion l'utilisation des ressources en cƓur de rĂ©seau.- une solution de mobilitĂ© efficace pour les services conversationnels tels que la VoIP : Les derniĂšres publications 3GPP fournissent deux solutions de mobilitĂ©: le LTE proposeMIP comme solution de mobilitĂ© alors que l'IMS dĂ©finit une mobilitĂ© basĂ©e sur le protocoleapplicatif SIP. Ces standards dĂ©finissent le systĂšme de signalisation mais ne s'avancent pas sur la gestion du flux mĂ©dia lors du changement d'interface rĂ©seau. La deuxiĂšme section introduit une Ă©tude comparative dĂ©taillĂ©e des solutions de mobilitĂ© dans les NGNs.Notre premiĂšre contribution est la spĂ©cification de l'architecture globale de notre plateforme IMS sensible au contexte utilisateur rĂ©alisĂ©e au sein du projet EuropĂ©en ADAMANTIUM. Nous dĂ©taillons tout d'abord le serveur MCMS intelligent placĂ© dans la couche application de l'IMS. Cet Ă©lĂ©ment rĂ©colte les informations de qualitĂ© de services Ă  diffĂ©rents Ă©quipements rĂ©seaux et prend la dĂ©cision d'une action sur l'un de ces Ă©quipements. Ensuite nous dĂ©finissons un profil utilisateur permettant de dĂ©crire son environnement et de le diffuser en coeur de rĂ©seau. Une Ă©tude sur la prĂ©diction de satisfaction utilisateur en fonction des paramĂštres spatio-temporels de la vidĂ©o a Ă©tĂ© rĂ©alisĂ©e afin de connaĂźtre le dĂ©bit idĂ©al pour une PQoS dĂ©sirĂ©e.Notre deuxiĂšme contribution est l'introduction d'une solution de mobilitĂ© adaptĂ©e aux services conversationnels (VoIP) tenant compte du contexte utilisateur. Notre solution s'intĂšgre Ă  l'architecture IMS existante de façon transparente et permet de rĂ©duire le temps de latence du handover. Notre solution duplique les paquets de VoIP sur les deux interfaces actives pendant le temps de la transition. ParallĂšlement, un nouvel algorithme de gestion de mĂ©moire tampon amĂ©liore la qualitĂ© d'expĂ©rience pour le service de VoIP.The latest advances in technology have already defied Moore s law. Thanks to research and industry, hand-held devices are composed of high processing embedded systems enabling the consumption of high quality services. Furthermore, recent trends in communication drive users to consume media Anytime, Anywhere on Any Device via multiple wired and wireless network interfaces. This creates new demands for ubiquitous and high quality service provision management. However, defining and developing the next generation of ubiquitous and converged networks raise a number of challenges. Currently, telecommunication standards do not consider context-awareness aspects for network management and service provisioning. The experience felt by the end-user consuming for instance Voice over IP (VoIP) or Internet Protocol TeleVision (IPTV) services varies depending mainly on user preferences, device context and network resources. It is commonly held that Next Generation Network (NGN) should deliver personalized and effective ubiquitous services to the end user s Mobile Node (MN) while optimizing the network resources at the network operator side. IP Multimedia Subsystem (IMS) is a standardized NGN framework that unifies service access and allows fixed/mobile network convergence. Nevertheless IMS technology still suffers from a number of confining factors that are addressed in this thesis; amongst them are two main issues :The lack of context-awareness and Perceived-QoS (PQoS):-The existing IMS infrastructure does not take into account the environment of the user ,his preferences , and does not provide any PQoS aware management mechanism within its service provisioning control system. In order to ensure that the service satisfies the consumer, this information need to be sent to the core network for analysis. In order to maximize the end-user satisfaction while optimizing network resources, the combination of a user-centric network management and adaptive services according to the user s environment and network conditions are considered. Moreover, video content dynamics are also considered as they significantly impact on the deduced perceptual quality of IPTV services. -The lack of efficient mobility mechanism for conversational services like VoIP :The latest releases of Third Generation Partnership Project (3GPP) provide two types of mobility solutions. Long-Term Evolution (LTE) uses Mobile IP (MIP) and IMS uses Session Initiation Protocol (SIP) mobility. These standards are focusing on signaling but none of them define how the media should be scheduled in multi-homed devices. The second section introduces a detailed study of existing mobility solutions in NGNs. Our first contribution is the specification of the global context-aware IMS architecture proposed within the European project ADAptative Management of mediA distributioN based on saTisfaction orIented User Modeling (ADAMANTIUM). We introduce the innovative Multimedia Content Management System (MCMS) located in the application layer of IMS. This server combines the collected monitoring information from different network equipments with the data of the user profile and takes adaptation actions if necessary. Then, we introduce the User Profile (UP) management within the User Equipment (UE) describing the end-user s context and facilitating the diffusion of the end-user environment towards the IMS core network. In order to optimize the network usage, a PQoS prediction mechanism gives the optimal video bit-rate according to the video content dynamics. Our second contribution in this thesis is an efficient mobility solution for VoIP service within IMS using and taking advantage of user context. Our solution uses packet duplication on both active interfaces during handover process. In order to leverage this mechanism, a new jitter buffer algorithm is proposed at MN side to improve the user s quality of experience. Furthermore, our mobility solution integrates easily to the existing IMS platform.BORDEAUX1-Bib.electronique (335229901) / SudocSudocFranceF

    Sistema de Video-on-Demand para IPTV

    Get PDF
    Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores. Universidade do Porto. Faculdade de Engenharia. 201

    Network sharing through service outsourcing in inter-domain IMS frameworks

    Get PDF
    Includes abstract.Includes bibliographical references (leaves 161-167).Resource sharing can be used as a short-term solution to the imbalance between the supply and demand of network resources. Resources sharing enables operators to provide services to their subscribers using networks belonging to other operators. Resource sharing in mobile networks is increasingly becoming an option for operators to provide service to their subscribers. In this thesis we explore a mechanism for sharing access network resources that utilises negotiable short-term Service Level Agreements (SLA) that can easily adapt to changing network conditions. Through this mechanism operators of resource constrained networks may use near real time dynamic SLAs to negotiate network access services for their subscribers. We refer to this form of resource sharing as 'Service Outsourcing'

    Seamless multimedia delivery within a heterogeneous wireless networks environment: are we there yet?

    Get PDF
    The increasing popularity of live video streaming from mobile devices such as Facebook Live, Instagram Stories, Snapchat, etc. pressurises the network operators to increase the capacity of their networks. However, a simple increase in system capacity will not be enough without considering the provisioning of Quality of Experience (QoE) as the basis for network control, customer loyalty and retention rate and thus increase in network operators revenue. As QoE is gaining strong momentum especially with increasing users’ quality expectations, the focus is now on proposing innovative solutions to enable QoE when delivering video content over heterogeneous wireless networks. In this context, this paper presents an overview of multimedia delivery solutions, identifies the problems and provides a comprehensive classification of related state-of-the-art approaches following three key directions: adaptation, energy efficiency and multipath content delivery. Discussions, challenges and open issues on the seamless multimedia provisioning faced by the current and next generation of wireless networks are also provided

    Seamless Multimedia Delivery Within a Heterogeneous Wireless Networks Environment: Are We There Yet?

    Get PDF
    The increasing popularity of live video streaming from mobile devices, such as Facebook Live, Instagram Stories, Snapchat, etc. pressurizes the network operators to increase the capacity of their networks. However, a simple increase in system capacity will not be enough without considering the provisioning of quality of experience (QoE) as the basis for network control, customer loyalty, and retention rate and thus increase in network operators revenue. As QoE is gaining strong momentum especially with increasing users' quality expectations, the focus is now on proposing innovative solutions to enable QoE when delivering video content over heterogeneous wireless networks. In this context, this paper presents an overview of multimedia delivery solutions, identifies the problems and provides a comprehensive classification of related state-of-the-art approaches following three key directions: 1) adaptation; 2) energy efficiency; and 3) multipath content delivery. Discussions, challenges, and open issues on the seamless multimedia provisioning faced by the current and next generation of wireless networks are also provided

    Network-Based Management for Optimising Video Delivery

    Get PDF
    The past decade has witnessed a massive increase in Internet video traffic. The Cisco Visual Forecast index indicates that, by 2022, (79%) of the world's mobile data traffic will be video traffic. In order to increase the video streaming market revenue, service providers need to provide services to the end-users characterised by high Quality of Experience (QoE). However, delivering good-quality video services is a very challenging task due to the stringent constraints related to bandwidth and latency requirements in video streaming. Among the available streaming services, HTTP adaptive streaming (HAS) has become the de facto standard for multimedia delivery over the Internet. HAS is a pull-based approach, since the video player at the client side is responsible for adapting the requested video based on the estimated network conditions. Furthermore, HAS can traverse any firewall or proxy server that lets through standard HTTP data traffic over content delivery networks. Despite the great benefits HAS solutions bring, they also face challenges relating to quality fluctuations when they compete for a shared link. To overcome these issues, the network and video providers must exchange information and cooperate. In this context, Software Defined Networking (SDN) is an emerging technology used to deploy such architecture by providing centralised control for efficient and flexible network management. One of the first problems addressed in this thesis is that of providing QoE-level fairness for the competing HAS players and efficient resource allocation for the available network resources. This has been achieved by presenting a dynamic programming-based algorithm, based on the concept of Max-Min fairness, to provide QoE-level fairness among the competing HAS players. In order to deploy the proposed algorithm, an SDN-based architecture has been presented, named BBGDASH, that leverages the flexibility of the SDN’s management and control to deploy the proposed algorithm on the application and the network level. Another question answered by this thesis is that of how the proposed guidance approach maintains a balance between stability and scalability. To answer this question, a scalable guidance mechanism has been presented that provides guidance to the client without moving the entire control logic to an additional entity or relying purely on the client-side decision. To do so, the guidance scheme provides each client with the optimal bitrate levels to adapt the requested bitrate within the provided levels. Although the proposed BGGDASH can improve the QoE within a wired network, deploying it in a wireless network environment could result in sub-optimal decisions being made due to the high level of fluctuations in the wireless environment. In order to cope with this issue, two time series-based forecasting approaches have been presented to identify the optimal set of bitrate levels for each client based on the network conditions. Additionally, the implementation of the BBGDASH architecture has been extended by proposing an intelligent streaming architecture (named BBGDASH+). Finally, in order to evaluate the feasibility of deploying the bounding bitrate guidance with different network conditions, it has been evaluated under different network conditions to provide generic evaluations. The results show that the proposed algorithms can significantly improve the end-users QoE compared to other compared approaches

    Poor Man's Content Centric Networking (with TCP)

    Get PDF
    A number of different architectures have been proposed in support of data-oriented or information-centric networking. Besides a similar visions, they share the need for designing a new networking architecture. We present an incrementally deployable approach to content-centric networking based upon TCP. Content-aware senders cooperate with probabilistically operating routers for scalable content delivery (to unmodified clients), effectively supporting opportunistic caching for time-shifted access as well as de-facto synchronous multicast delivery. Our approach is application protocol-independent and provides support beyond HTTP caching or managed CDNs. We present our protocol design along with a Linux-based implementation and some initial feasibility checks

    Provider-Controlled Bandwidth Management for HTTP-based Video Delivery

    Get PDF
    Over the past few years, a revolution in video delivery technology has taken place as mobile viewers and over-the-top (OTT) distribution paradigms have significantly changed the landscape of video delivery services. For decades, high quality video was only available in the home via linear television or physical media. Though Web-based services brought video to desktop and laptop computers, the dominance of proprietary delivery protocols and codecs inhibited research efforts. The recent emergence of HTTP adaptive streaming protocols has prompted a re-evaluation of legacy video delivery paradigms and introduced new questions as to the scalability and manageability of OTT video delivery. This dissertation addresses the question of how to enable for content and network service providers the ability to monitor and manage large numbers of HTTP adaptive streaming clients in an OTT environment. Our early work focused on demonstrating the viability of server-side pacing schemes to produce an HTTP-based streaming server. We also investigated the ability of client-side pacing schemes to work with both commodity HTTP servers and our HTTP streaming server. Continuing our client-side pacing research, we developed our own client-side data proxy architecture which was implemented on a variety of mobile devices and operating systems. We used the portable client architecture as a platform for investigating different rate adaptation schemes and algorithms. We then concentrated on evaluating the network impact of multiple adaptive bitrate clients competing for limited network resources, and developing schemes for enforcing fair access to network resources. The main contribution of this dissertation is the definition of segment-level client and network techniques for enforcing class of service (CoS) differentiation between OTT HTTP adaptive streaming clients. We developed a segment-level network proxy architecture which works transparently with adaptive bitrate clients through the use of segment replacement. We also defined a segment-level rate adaptation algorithm which uses download aborts to enforce CoS differentiation across distributed independent clients. The segment-level abstraction more accurately models application-network interactions and highlights the difference between segment-level and packet-level time scales. Our segment-level CoS enforcement techniques provide a foundation for creating scalable managed OTT video delivery services
    • 

    corecore