44,758 research outputs found

    RNA structure alignment by a unit-vector approach

    Get PDF
    none2siMotivation: The recent discovery of tiny RNA molecules such as μRNAs and small interfering RNA are transforming the view of RNA as a simple information transfer molecule. Similar to proteins, the native three-dimensional structure of RNA determines its biological activity. Therefore, classifying the current structural space is paramount for functionally annotating RNA molecules. The increasing numbers of RNA structures deposited in the PDB requires more accurate, automatic and benchmarked methods for RNA structure comparison. In this article, we introduce a new algorithm for RNA structure alignment based on a unit-vector approach. The algorithm has been implemented in the SARA program, which results in RNA structure pairwise alignments and their statistical significance. Results: The SARA program has been implemented to be of general applicability even when no secondary structure can be calculated from the RNA structures. A benchmark against the ARTS program using a set of 1275 non-redundant pairwise structure alignments results in ∼6% extra alignments with at least 50% structurally superposed nucleotides and base pairs. A first attempt to perform RNA automatic functional annotation based on structure alignments indicates that SARA can correctly assign the deepest SCOR classification to > 60% of the query structures. © The Author 2008. Published by Oxford University Press. All rights reserved.openCapriotti, Emidio; Marti-Renom, Marc ACapriotti, Emidio; Marti-Renom, Marc

    SARA: a server for function annotation of RNA structures

    Get PDF
    Recent interest in non-coding RNA transcripts has resulted in a rapid increase of deposited RNA structures in the Protein Data Bank. However, a characterization and functional classification of the RNA structure and function space have only been partially addressed. Here, we introduce the SARA program for pair-wise alignment of RNA structures as a web server for structure-based RNA function assignment. The SARA server relies on the SARA program, which aligns two RNA structures based on a unit-vector root-mean-square approach. The likely accuracy of the SARA alignments is assessed by three different P-values estimating the statistical significance of the sequence, secondary structure and tertiary structure identity scores, respectively. Our benchmarks, which relied on a set of 419 RNA structures with known SCOR structural class, indicate that at a negative logarithm of mean P-value higher or equal than 2.5, SARA can assign the correct or a similar SCOR class to 81.4% and 95.3% of the benchmark set, respectively. The SARA server is freely accessible via the World Wide Web at http://sgu.bioinfo.cipf.es/services/SARA/

    Geometric combinatorics and computational molecular biology: branching polytopes for RNA sequences

    Full text link
    Questions in computational molecular biology generate various discrete optimization problems, such as DNA sequence alignment and RNA secondary structure prediction. However, the optimal solutions are fundamentally dependent on the parameters used in the objective functions. The goal of a parametric analysis is to elucidate such dependencies, especially as they pertain to the accuracy and robustness of the optimal solutions. Techniques from geometric combinatorics, including polytopes and their normal fans, have been used previously to give parametric analyses of simple models for DNA sequence alignment and RNA branching configurations. Here, we present a new computational framework, and proof-of-principle results, which give the first complete parametric analysis of the branching portion of the nearest neighbor thermodynamic model for secondary structure prediction for real RNA sequences.Comment: 17 pages, 8 figure

    Hybrid modeling, HMM/NN architectures, and protein applications

    Get PDF
    We describe a hybrid modeling approach where the parameters of a model are calculated and modulated by another model, typically a neural network (NN), to avoid both overfitting and underfitting. We develop the approach for the case of Hidden Markov Models (HMMs), by deriving a class of hybrid HMM/NN architectures. These architectures can be trained with unified algorithms that blend HMM dynamic programming with NN backpropagation. In the case of complex data, mixtures of HMMs or modulated HMMs must be used. NNs can then be applied both to the parameters of each single HMM, and to the switching or modulation of the models, as a function of input or context. Hybrid HMM/NN architectures provide a flexible NN parameterization for the control of model structure and complexity. At the same time, they can capture distributions that, in practice, are inaccessible to single HMMs. The HMM/NN hybrid approach is tested, in its simplest form, by constructing a model of the immunoglobulin protein family. A hybrid model is trained, and a multiple alignment derived, with less than a fourth of the number of parameters used with previous single HMMs

    A cryptic RNA-binding domain mediates Syncrip recognition and exosomal partitioning of miRNA targets

    Get PDF
    Exosomal miRNA transfer is a mechanism for cell-cell communication that is important in the immune response, in the functioning of the nervous system and in cancer. Syncrip/hnRNPQ is a highly conserved RNA-binding protein that mediates the exosomal partition of a set of miRNAs. Here, we report that Syncrip's amino-terminal domain, which was previously thought to mediate protein-protein interactions, is a cryptic, conserved and sequence-specific RNA-binding domain, designated NURR (N-terminal unit for RNA recognition). The NURR domain mediates the specific recognition of a short hEXO sequence defining Syncrip exosomal miRNA targets, and is coupled by a non-canonical structural element to Syncrip's RRM domains to achieve high-affinity miRNA binding. As a consequence, Syncrip-mediated selection of the target miRNAs implies both recognition of the hEXO sequence by the NURR domain and binding of the RRM domains 5′ to this sequence. This structural arrangement enables Syncrip-mediated selection of miRNAs with different seed sequences. © 2018 The Author(s)
    • …
    corecore