Questions in computational molecular biology generate various discrete
optimization problems, such as DNA sequence alignment and RNA secondary
structure prediction. However, the optimal solutions are fundamentally
dependent on the parameters used in the objective functions. The goal of a
parametric analysis is to elucidate such dependencies, especially as they
pertain to the accuracy and robustness of the optimal solutions. Techniques
from geometric combinatorics, including polytopes and their normal fans, have
been used previously to give parametric analyses of simple models for DNA
sequence alignment and RNA branching configurations. Here, we present a new
computational framework, and proof-of-principle results, which give the first
complete parametric analysis of the branching portion of the nearest neighbor
thermodynamic model for secondary structure prediction for real RNA sequences.Comment: 17 pages, 8 figure