57 research outputs found

    Fundamental Limits on Performance for Cooperative Radar-Communications Coexistence

    Get PDF
    abstract: Spectral congestion is quickly becoming a problem for the telecommunications sector. In order to alleviate spectral congestion and achieve electromagnetic radio frequency (RF) convergence, communications and radar systems are increasingly encouraged to share bandwidth. In direct opposition to the traditional spectrum sharing approach between radar and communications systems of complete isolation (temporal, spectral or spatial), both systems can be jointly co-designed from the ground up to maximize their joint performance for mutual benefit. In order to properly characterize and understand cooperative spectrum sharing between radar and communications systems, the fundamental limits on performance of a cooperative radar-communications system are investigated. To facilitate this investigation, performance metrics are chosen in this dissertation that allow radar and communications to be compared on the same scale. To that effect, information is chosen as the performance metric and an information theoretic radar performance metric compatible with the communications data rate, the radar estimation rate, is developed. The estimation rate measures the amount of information learned by illuminating a target. With the development of the estimation rate, standard multi-user communications performance bounds are extended with joint radar-communications users to produce bounds on the performance of a joint radar-communications system. System performance for variations of the standard spectrum sharing problem defined in this dissertation are investigated, and inner bounds on performance are extended to account for the effect of continuous radar waveform optimization, multiple radar targets, clutter, phase noise, and radar detection. A detailed interpretation of the estimation rate and a brief discussion on how to use these performance bounds to select an optimal operating point and achieve RF convergence are provided.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    The Constant Information Radar

    Get PDF
    abstract: The constant information radar, or CIR, is a tracking radar that modulates target revisit time by maintaining a fixed mutual information measure. For highly dynamic targets that deviate significantly from the path predicted by the tracking motion model, the CIR adjusts by illuminating the target more frequently than it would for well-modeled targets. If SNR is low, the radar delays revisit to the target until the state entropy overcomes noise uncertainty. As a result, we show that the information measure is highly dependent on target entropy and target measurement covariance. A constant information measure maintains a fixed spectral efficiency to support the RF convergence of radar and communications. The result is a radar implementing a novel target scheduling algorithm based on information instead of heuristic or ad hoc methods. The CIR mathematically ensures that spectral use is justified

    Novel Models and Algorithms Paving the Road towards RF Convergence

    Get PDF
    After decades of rapid evolution in electronics and signal processing, the technologies in communications, positioning, and sensing have achieved considerable progress. Our daily lives are fundamentally changed and substantially defined by the advancement in these technologies. However, the trend is challenged by a well-established fact that the spectrum resources, like other natural resources, are gradually becoming scarce. This thesis carries out research in the field of RF convergence, which is regarded as a mean to intelligently exploit spectrum resources, e.g., by finding novel methods of optimising and sharing tasks between communication, positioning, and sensing. The work has been done to closely explore opportunities for supporting the RF convergence. As a supplement for the electromagnetic waves propagation near the ground, ground-to-air channel models are first proposed and analysed, by incorporating the atmospheric effects when the altitude of aerial users is higher than 300 m. The status quos of techniques in communications, positioning, and sensing are separately reviewed, and our newly developments in each field are briefly introduced. For instance, we study the MIMO techniques for interference mitigation on aerial users; we construct the reflected echoes, i.e., the radar receiving, for the joint sensing and communications system. The availability of GNSS signals is of vital importance to the GNSS-enabled services, particularly the life-critical applications. To enhance the resilience of GNSS receivers, the RF fingerprinting based anti-spoofing techniques are also proposed and discussed. Such a guarantee on GNSS and ubiquitous GNSS services drive the utilisation of location information, also needed for communications, hence the proposal of a location-based beamforming algorithm. The superposition coding scheme, as an attempt of the waveform design, is also brought up for the joint sensing and communications. The RF convergence will come with many facets: the joint sensing and communications promotes an efficient use of frequency spectrum; the positioning-aided communications encourage the cooperation between systems; the availability of robust global positioning systems benefits the applications relying on the GNSS service

    OFDM Waveform Optimisation for Joint Communications and Sensing

    Get PDF
    Radar systems are radios to sense objects in their surrounding environment. These operate at a defined set of frequency ranges. Communication systems are used to transfer information between two points. In the present day, proliferation of mobile devices and the advancement of technology have led to communication systems being ubiquitous. This has made these systems to operate at the frequency bands already used by the radar systems. Thus, the communication signal interferes a radar receiver and vice versa, degrading performance of both systems. Different methods have been proposed to combat this phenomenon. One of the novel topics in this is the RF convergence, where a given bandwidth is used jointly by both systems. A differentiation criterion must be adopted between the two systems so that a receiver is able to separately extract radar and communication signals. The hardware convergence due to the emergence of software-defined radios also motivated a single system be used for both radar and communication. A joint waveform is adopted for both radar and communication systems, as the transmit signal. As orthogonal frequency-division multiplexing (OFDM) waveform is the most prominent in mobile communications, it is selected as the joint waveform. Considering practical cellular communication systems adopting OFDM, there often exist unused subcarriers within OFDM symbols. These can be filled up with arbitrary data to improve the performance of the radar system. This is the approach used, where the filling up is performed through an optimisation algorithm. The filled subcarriers are termed as radar subcarriers while the rest as communication subcarriers, throughout the thesis. The optimisation problem minimises the Cramer--Rao lower bounds of the delay and Doppler estimates made by the radar system subject to a set of constraints. It also outputs the indices of the radar and communication subcarriers within an OFDM symbol, which minimise the lower bounds. The first constraint allocates power between radar and communication subcarriers depending on their subcarrier ratio in an OFDM symbol. The second constraint ensures the peak-to-average power ratio (PAPR) of the joint waveform has an acceptable level of PAPR. The results show that the optimised waveform provides significant improvement in the Cramer--Rao lower bounds compared with the unoptimised waveform. In compensation for this, the power allocated to the communication subcarriers needs to be reduced. Thus, improving the performances of the radar and communication systems are a trade-off. It is also observed that for the minimum lower bounds, radar subcarriers need to be placed at the two edges of an OFDM symbol. Optimisation is also seen to improve the estimation performance of a maximum likelihood estimator, concluding that optimising the subcarriers to minimise a theoretical bound enables to achieve improvement for practical systems

    Full-Duplex OFDM Radar With LTE and 5G NR Waveforms: Challenges, Solutions, and Measurements

    Get PDF
    This paper studies the processing principles, implementation challenges, and performance of OFDM-based radars, with particular focus on the fourth-generation Long-Term Evolution (LTE) and fifth-generation (5G) New Radio (NR) mobile networks' base stations and their utilization for radar/sensing purposes. First, we address the problem stemming from the unused subcarriers within the LTE and NR transmit signal passbands, and their impact on frequency-domain radar processing. Particularly, we formulate and adopt a computationally efficient interpolation approach to mitigate the effects of such empty subcarriers in the radar processing. We evaluate the target detection and the corresponding range and velocity estimation performance through computer simulations, and show that high-quality target detection as well as high-precision range and velocity estimation can be achieved. Especially 5G NR waveforms, through their impressive channel bandwidths and configurable subcarrier spacing, are shown to provide very good radar/sensing performance. Then, a fundamental implementation challenge of transmitter-receiver (TX-RX) isolation in OFDM radars is addressed, with specific emphasis on shared-antenna cases, where the TX-RX isolation challenges are the largest. It is confirmed that from the OFDM radar processing perspective, limited TX-RX isolation is primarily a concern in detection of static targets while moving targets are inherently more robust to transmitter self-interference. Properly tailored analog/RF and digital self-interference cancellation solutions for OFDM radars are also described and implemented, and shown through RF measurements to be key technical ingredients for practical deployments, particularly from static and slowly moving targets' point of view.Comment: Paper accepted by IEEE Transactions on Microwave Theory and Technique

    Millimeter-wave Mobile Sensing and Environment Mapping: Models, Algorithms and Validation

    Get PDF
    Integrating efficient connectivity, positioning and sensing functionalities into 5G New Radio (NR) and beyond mobile cellular systems is one timely research paradigm, especially at mm-wave and sub-THz bands. In this article, we address the radio-based sensing and environment mapping prospect with specific emphasis on the user equipment (UE) side. We first describe an efficient l1-regularized least-squares (LS) approach to obtain sparse range--angle charts at individual measurement or sensing locations. For the subsequent environment mapping, we then introduce a novel state model for mapping diffuse and specular scattering, which allows efficient tracking of individual scatterers over time using interacting multiple model (IMM) extended Kalman filter and smoother. We provide extensive numerical indoor mapping results at the 28~GHz band deploying OFDM-based 5G NR uplink waveform with 400~MHz channel bandwidth, covering both accurate ray-tracing based as well as actual RF measurement results. The results illustrate the superiority of the dynamic tracking-based solutions, compared to static reference methods, while overall demonstrate the excellent prospects of radio-based mobile environment sensing and mapping in future mm-wave networks
    • …
    corecore