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ABSTRACT

Spectral congestion is quickly becoming a problem for the telecommunications sec-

tor. In order to alleviate spectral congestion and achieve electromagnetic radio fre-

quency (RF) convergence, communications and radar systems are increasingly encour-

aged to share bandwidth. In direct opposition to the traditional spectrum sharing

approach between radar and communications systems of complete isolation (temporal,

spectral or spatial), both systems can be jointly co-designed from the ground up to

maximize their joint performance for mutual benefit. In order to properly characterize

and understand cooperative spectrum sharing between radar and communications sys-

tems, the fundamental limits on performance of a cooperative radar-communications

system are investigated. To facilitate this investigation, performance metrics are cho-

sen in this dissertation that allow radar and communications to be compared on the

same scale. To that effect, information is chosen as the performance metric and an

information theoretic radar performance metric compatible with the communications

data rate, the radar estimation rate, is developed. The estimation rate measures

the amount of information learned by illuminating a target. With the development

of the estimation rate, standard multi-user communications performance bounds are

extended with joint radar-communications users to produce bounds on the perfor-

mance of a joint radar-communications system. System performance for variations of

the standard spectrum sharing problem defined in this dissertation are investigated,

and inner bounds on performance are extended to account for the effect of continuous

radar waveform optimization, multiple radar targets, clutter, phase noise, and radar

detection. A detailed interpretation of the estimation rate and a brief discussion on

how to use these performance bounds to select an optimal operating point and achieve

RF convergence are provided.
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Chapter 1

INTRODUCTION

Spectral congestion is caused by too many RF communications users concurrently

accessing the electromagnetic spectrum. This congestion may degrade communica-

tions performance and decrease or even restrict access to spectral resources. With

the increase in communications users, spectral congestion has become a major issue

for the telecommunications sector. A proposed solution is to share spectral resources

that were previously allocated for radar systems. As a result, the problem of spec-

tral congestion is forcing legacy radar band users to investigate methods of coop-

eration and co-design with a growing number of communications applications [1, 2].

This problem has motivated government entities like The Defense Advanced Research

Projects Agency (DARPA) to begin funding and investigating these methods to not

only ensure military radar coverage is maintained as spectral allocation is renegoti-

ated, but to potentially improve both military radar and military communications

by co-designing the systems from the ground up [3]. However, these issues extend

far beyond just commercial communications and military radar, and include a wide

variety of applications such as next generation automobiles, medical devices, and 5G

wireless backhaul. As a result, researchers have begun investigating not just methods

of military radar and communications coexistence, but more fundamentally methods

of joint remote sensing and communications.

The two functions of sensing and communications, at their core, tend to be at odds

with one another. For example, sensing typically sends a known waveform or stimulus

and measures a response from the environment, often referred to as the channel.

In the case of the radar system, the sent signal is known and the target channel
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is unknown and is desired to be sensed (estimated). However, a communications

system typically sends an unknown signal with the assumption that the propagation

channel is known or previously estimated. We can also consider the near inverse of

this situation: passive radar. In this case, we must estimate the data as a nuisance

parameter to obtain the information we care about (channel estimation). A non-

adaptive communications channel, where the channel is stationary or controlled, is

the dual of the traditional radar system. Therefore, when considering the general

task of jointly sensing and communicating, it becomes immediately apparent that the

solution is non-trivial.

With opposing requirements, sensing and communications systems are often de-

signed in isolation. The only consideration for the other user in legacy systems has

been in the form of regulatory constraints, such as those imposed by the FCC in the

United States. However, governmental regulation does nothing to incentivize either

user to minimize interference beyond the required limits or assist each other to mutual

benefit. As future systems vie for spectral resources, RF convergence and cooperation

are the solutions to an increasingly crowded wireless domain. We formally define RF

convergence as the operating point at which a given bandwidth allocation is used

jointly by both remote sensing and communications systems to mutual benefit.

Achieving RF convergence for joint radar-communications coexistence is incredi-

bly complicated. Even for a simple case involving a single radar and communications

link, one must consider spatial, spectral, and temporal degrees of freedom. In practice,

there are many contributing sources in a given spectrum-space-time, and regulatory

restrictions may not adequately protect both users even if isolation is acceptable. An

example of the type of complicated scenario that is associated with achieving RF

convergence is shown in Figure 1.1. Future users will find it advantageous to consider

2



Radar Target
Joint Radar

& Communications

Node

Interference?
Joint Radar

& Communications

Nodes

Figure 1.1: An example highlighting the difficulties of achieving RF convergence.
As the number of sources of RF energy increase, it becomes increasingly difficult to
identify an optimal operating point such that the allocated bandwidth is cooperatively
utilized by each user to mutually benefit all involved users. Future systems must be
co-designed to not just mitigate interference, but jointly consider each other in their
inherent operation.

co-designing systems to handle these complicated RF convergence scenarios.

One approach to solving the RF convergence problem is to present the joint radar-

communications problem as a joint information problem. Information is chosen be-

cause it forces one to identify uncertainty in the situation and develop plans to re-

duce it. Estimation theory and signal processing are often presented with traditional

metrics such as the Cramér-Rao lower bound (CRLB), minimum mean-squared er-

ror (MMSE), or signal-to-noise ratio (SNR). While some of these metrics provide a

measure of information gained (especially the CRLB), none of these metrics address

information gained from spectral access. When focusing on reducing estimation error

variance, if the information about the target of interest gained through estimation

is minimal, precious spectrum in a given space-time is being inefficiently utilized. If

a target’s state is known perfectly, the information content about the target is null,

since there is no uncertainty to reduce, regardless of the SNR. Hence, as long as the

target’s state in known, there is no need to allocate spectrum for radar estimation.
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Another reason for using information is that it is already a key metric for communica-

tions systems, and it allows radar and other remote sensing systems to be considered

in a multiple access channel (MAC).

Viewing the problem in an information context, one can easily see how radar and

communications are interrelated. Radar estimation is attempting to reduce uncer-

tainty in the channel, and so all the information content is in the unknown channel.

To estimate the unknown channel, a known waveform is transmitted. The radar pro-

cessor exploits the fact that it knows what was sent to extract the unknown channel

delay and Doppler spread. The communications system on the other hand considers

channel estimation a nuisance operation, with the goal of sending arbitrary, unknown

information. At a signals level, the two waveforms can look identical. By looking for

the information content, the true uncertainty is revealed. This view quickly reveals

the challenge of joint radar-communications. One may note that communications

users periodically send known training sequences to estimate unknown channels be-

fore transmitting information. It is not a far stretch to start thinking of joint systems

where communications equalization functions are doubly tasked to perform radar

operations, making more efficient dual-use of spectrum.

In order to provide a tractable solution to achieving RF convergence, we provide a

point of departure in this dissertation by defining and proposing solutions to a simple

multiple-access joint radar-communications problem, the ‘basic multiple-access sce-

nario.’ It is a simple scenario involving a radar and communications user attempting

to use the same spectrum-space-time. This scenario is instructional, and can easily

be scaled to more complicated scenarios by using it as a building block to construct

real world examples. We present a diagram of the ‘basic multiple-access scenario’ in

Figure 2.1.

4



1.1 Contributions

The estimation rate is the radar information measure used in this dissertation.

The concept of estimation information rate (or estimation rate) [4] - an information

theoretic measure compatible with the communications channel capacity - was devel-

oped to characterize the fundamental limits on performance of a joint sensing and

communications system. Conceptually, the estimation rate represents the amount

of information learned by illuminating a target. The radar estimation rate was also

expanded upon in References [5, 6]. With the development of the estimation rate,

standard multi-user communications performance bounds were extended to produce

bounds on the performance of a joint sensing and communications system for the

standard scenario shown in Figure 2.1 [5]. System performance was investigated for

variations of the standard scenario and inner bounds on performance were extended

to account for the effect of continuous radar waveform optimization [7], multiple radar

targets [8], clutter [9], phase noise [10], and radar detection [11].

The key contributions discussed in this dissertation are as follows

• Develop the estimation rate, a metric analogous to communications data rate.

• Provide an intuitive understanding of radar estimation rate and the implications

of altering it

• Develop several cooperative radar and communications signaling schemes for

the ‘basic multiple-access scenario’

• Introduce and elaborate on the concept of ‘Not All Bits are Equal’; bits repre-

senting information gained for each system can be weighted differently

• Present two methods for selecting the operating point of a joint radar-communications

system
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• Develop and study the minimum estimation error variance radar waveform de-

sign method that maximizes joint performance

• Extend the joint performance bounds for multiple radar targets, presence of

clutter and phase noise, and radar detection

1.2 Background

In this dissertation, we reformulate and extend the performance bounds introduced

in [4]. It is worth noting that the majority of our efforts presented here focus radar

estimation performance rather than radar detection considered in [12–15]. However,

we do extend the bounds presented in [4] to include radar detection performance as

well. To be more specific, unless explicitly stated otherwise, our work focuses on

the estimation of a target parameter, time delay or target range, from the received

target return and the performance of the radar system is measured in terms of the

estimation rate.

Information is well known in the field of communications, but less so in radar.

Perhaps surprisingly, radars were looked at in the context of information theory soon

after Shannon’s seminal work [16] by Woodward [13]. The work presented in [12, 13]

investigated the application of information theory to improve radar system perfor-

mance. It was in these classical works that the idea that SNR does not measure

information is introduced. Over fifty years ago, at the time these works were pub-

lished, it was generally assumed that the higher the output SNR, the better the

detection performance of a radar system. Hence, most radar systems or waveforms

were designed to maximize the output SNR; however, this simple formulation misses

a lot of the subtleties. The primary focus of these works is to dispel such a simplistic

interpretation by using information theory to formulate a new type of receiver, the
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a posteriori radar receiver, that does not try to maximize output SNR but attempts

to maximize the amount of information, given by the a posteriori distribution of a

target parameter.

Interest in radar information resurged many years later with Bell’s work on wave-

form design using information for statistical scattering targets [14]. In [14], waveform

optimization for detection and target information extraction are considered. The

radar waveform is designed so as to maximize the mutual information between the

target parameter of interest and the measurements obtained from the receiver. It is

shown that the maximization of mutual information improves the radar system per-

formance measured in terms of target classification ability or average measurement

error. However, performance of the optimized waveforms in terms of target param-

eter estimation is not explicitly discussed. References [17, 18] employ the concept

of maximizing the expected information gain and apply it to develop information

driven sensor scheduling schemes for target tracking problems. It was shown that

such information driven sensor management schemes outperform task based sensor

management schemes when considering multiple performance criteria, such as target

tracking performance as well as target classification performance. In Reference [19],

information theory is utilized to develop a mutual information measure used for wave-

form and power spectrum design to jointly optimize the performance of radar and

communications systems that overlap in frequency. Similarly, the work presented in

Reference [15] also uses information theory to develop an expression for radar capac-

ity (for radar systems performing target detection only) which, in combination with

traditional communications capacity, can be used to measure the total capacity of a

joint radar-communications network.

Recent results have found connections between information theory and estima-

tion theory, equating estimation information and the integrated MMSE [20]. In addi-
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tion, cognitive radar architectures have been proposed using information to prioritize

physical location access based on uncertainty [21]. These advances make the joint

consideration of radar and communications information interesting when considering

co-designed solutions.

A new joint radar-communications performance metric is developed in Reference

[22] that extends the traditional Neyman-Pearson detection metric for radars to in-

clude the communications data rate. This new metric is used to develop performance

bounds for uncooperative and fully cooperative reception. Finally, Reference [23] in-

vestigates utilizing the energy from communications users to improve a radar user’s

probability of detection. In this scenario, the radar waveform is optimized to function

with the in-band communications system operating as the primary user.

Achieving radar-communications RF convergence is complicated, and so the solu-

tion space tends to be greatly varied. Nevertheless, certain methods are gaining more

traction than others.

Waveform design has become a dominant research thread in the joint radar-

communications phenomenology. Researchers have considered a variety of wave-

form options including orthogonal frequency-division multiplexing (OFDM) [24–33]

or spread spectrum waveforms [34–37].

Most of these results are attempting co-designed systems, where OFDM wave-

forms are used for bi-static communications, and as a mono-static radar. However,

results showed conflicting cyclic prefix requirements, data-dependent ambiguities, and

trouble mitigating peak-to-average power ratio (PAPR) for typical radar power re-

quirements. In Reference [31], the radar system along with the communication system

uses OFDM waveforms for transmission and algorithms are presented to assign OFDM

sub-carriers to each system in such a way so as to optimize channel capacity for the

communication system and the target detection performance (Mahalanobis distance
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[38]) for the radar system. The first algorithm is a low-complexity algorithm that as-

signs sub-carriers to each system such that the channel capacity and target detection

performance are optimized separately while the second algorithm jointly optimizes

the channel capacity and target detection performance. Reference [39] considers a

spectrum sharing scheme for radar and communications systems which utilize the

same OFDM waveform for transmission (communications) and environment illumina-

tion (radar). A communications capacity vs radar detection probability performance

bound is also provided.

Similar to OFDM, spread spectrum waveforms have been proposed for their attrac-

tive, noise-like autocorrelation properties [35–37]. In Reference [37], a communica-

tions system using radar illumination signals like linear frequency modulation (LFM)

chirp waveforms as modulation signals to transmit data have been developed. It has

been shown in [37] that such a modulation scheme when used with a radar system

shows good system performance in terms of bit error rate (BER) (for communications)

and false-alarm rate (for radar).

Multiple-input multiple-output (MIMO) radar techniques have also been pro-

posed, given that the independent transmitted waveforms allow more degrees of free-

dom for joint radar-communications co-design [40–42].

Multiple orthogonal LFM chirps have also been proposed to accomplish both radar

detection and communications transmissions in a MIMO system [43].

Researchers have also looked at optimization theory based radar waveform de-

sign methods in spectrally dense environments that attempt to maximize some radar

performance metrics (detection probability, ambiguity function features etc.) while

keeping interference to other in-band systems at a minimum [44–46].

Employing the existing cellular framework has also been proposed as a solution to

augment the dwindling radar spectrum [47, 48]. These approaches range from sub-
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scribing as cellular users when there is a need for radar illumination, to using cellular

protocols to prioritize radar tasks. As such, the radar is conforming to the design

of the cellular user, and is subsequently close to cooperation than co-design. Other

approaches accept that the existing cellular infrastructures will dominate and aim to

design optimal radar waveforms that ensure spectral compatibility and minimize in-

terference to in-band, nearby cellular users and also improve radar performance (such

as detection, tracking etc.) using non-convex optimization techniques [49].

Some other techniques such as interference mitigation [50], precoding or spatial

separation [51] or waveform shaping [40, 52–56] allow both radar and communications

to share the spectrum and coexist. In Reference [54], waveform shaping is done by

projecting radar waveforms into the null space of the interference channel matrix,

which ensures that there is minimal interference on the communications system from

the radar system. The interference channel matrix can be extracted from the complete

channel matrix. The channel is assumed to be reciprocal (thus making it easier to

estimate the channel matrix) and the radar system is assumed to be a colocated

MIMO radar in which each antenna transmit mutually orthogonal waveforms. The

channel matrix between the primary and secondary user is estimated by the secondary

user and either system can be considered as the primary user. Once the channel

matrix is estimated and the null space of the interference channel matrix is calculated,

the original radar waveform (any radar waveform) is then projected onto the null space

and the resultant waveform is transmitted. It is then shown that such a radar system

is able to perform at levels comparable to a case where null space projections on radar

signals are not done and the radar system has no interference. In References [52, 53],

the theory of matched illumination, the process of optimizing the pulse shape of the

radar waveform (finite duration and finite energy) and the impulse response of the

receiver, is used to design a target detection system that maximizes the target SNR.
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Current research has investigated the benefits of using methods similar to cooper-

ative sensing to solve the problem of radar and communications co-existence [57–62].

Radar nodes that employ some form of cooperative sensing have shown an improve-

ment when compared to traditional nodes that did not employ cooperative sensing.

In Reference [57] four regions of coexistence are defined between radar and communi-

cation systems which are separated based on whether the two systems interfere with

each other and if this interference is detectable by either system. These regions are

defined based on a set of interference-to-noise ratio (INR)/SNR thresholds and proba-

bility of interference/detection thresholds. The non-detectable/non-interfering region

is the worst case region and the system parameters should be chosen in such a way so

as to make this region of coexistence as small as possible. Simple algorithms can be

developed for the other regions. It is then shown that coexistence between radar and

communications is feasible for radar nodes without cooperative sensing only when

subject to stringent interference restrictions such as low radar transmit power. How-

ever, among radar nodes that utilize cooperative sensing, coexistence is not subject to

such stringent constraints. Furthermore radar nodes with cooperative sensing demon-

strate an improvement in performance (especially if the nodes are spaced far apart,

ensuring that the channel correlation between nodes is low) in terms of probabil-

ity of detection, detection range etc. Another approach is employed in Reference [58]

wherein the surveillance space of the radar system is divided into sectors and priorities

are assigned to all radar and communication systems that want to transmit in each

sector. The priorities are determined using fuzzy logic. The criteria used to assign

these priorities include target separation, SNR, clutter etc. Bandwidth is allocated

or ‘shared’ based on these priorities by performing multi-objective optimization.

Other methods utilize isolation approaches such as polarization for co-designed

systems [63]. Space-time dynamic isolation techniques have been proposed, such as
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communications devices communicating carefully to avoid spectrum-space-time colli-

sions with rotating radars [64, 65]. These also varied from coexisting to cooperative

systems.

There is a long standing trade-off between signal sharing systems utilizing radar

waveforms versus signal sharing systems utilizing communications waveforms [66].

Some approaches to shared waveform outside of coding have been investigated, such

as a radar system modulating low-rate communications on the waveform sidelobe

levels [67, 68]. Some researchers have looked at communications systems that receive

radar pulses reflected from targets and re-modulate these pulses on a intrapulse basis

into communications signals, enabling a improvement in communications data rate

[69]. Reference [70] provides a scheduling and resource management perspective for

an ideal shared waveform system.

Advancements in cognitive radios and radar have been proposed as a natural

solution to spectrum congestion problems [71–75]. Cognitive radio has been advancing

spectral sharing potential in the communications realm [76].

However, RF convergence between radar and communications users is largely an

open area of research. These two systems, unlike the cognitive radio user base, have

vastly different goals, metrics, and operators. Joint coding techniques, such as robust

codes for communications that have desirable radar ambiguity properties, as well as

codes that trade data rate and channel estimation error have been investigated as a

co-design solution [77, 78].

Many modern applications have transitioned from classical design approaches to

co-designed, joint radar-communications systems. A wide range of these applications

are categorized in [2]. Emerging applications include automotive radar and vehicle-

to-vehicle communications systems [24, 79], automated flight control and collision

avoidance [80, 81], and high frequency imaging [82] and gesture recognition [83].
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Recent publications consider more advanced topologies, such as simultaneous multi-

static synthetic aperture radar with multiple-access communications [84, 85]. Recent

publications have also focused on developing experimental platforms with which to

test these emerging topologies [86, 87].

Finally, machine learning algorithms have only recently been applied to joint

radar-communications problems such as spectral congestion. Machine learning and

reinforcement learning, however, have been utilized to solve several problems in com-

munications networks. In Reference [88], reinforcement learning is applied to wireless

sensor networks to develop a novel media access control protocol that enables im-

proved network performance (lower power consumption and higher throughput). The

media access control protocol layer is formulated as a performance optimization prob-

lem (in terms of throughput and power consumption) and a reinforcement learning

framework with an underlying Markov decision process is used to solve it, gener-

ating a set of node parameters that provides optimal performance. Reference [89]

applies reinforcement learning algorithms for routing in cognitive radio networks and

investigates the effects of various reinforcement learning parameters on network per-

formance. A new reinforced learning routing scheme is proposed that explores the

trade-off between improving the primary user’s network performance versus improving

the secondary user’s network performance. Reference [90] presents an opportunistic

spectral access algorithm for a single user in a cognitive radio network that employs

a Markov decision process.

Reinforcement learning has also been applied in communications networks to im-

prove routing performance [91–93]. Reference [94] presents a method, based on fuzzy

reinforced learning techniques, that enables self-optimization of the capacity and cov-

erage in a communications Long-Term Evolution (LTE) network.

Reinforcement learning also finds utility in the field of communications transmis-
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sions. Reference [95] applies reinforcement learning to solve the problem of energy-

efficient transmission of delay-sensitive data over a fading channel. A new reinforce-

ment learning algorithm is proposed that finds a policy that is jointly optimal in terms

of power-control, adaptive modulation schemes and dynamic power management. In

Reference [96], reinforcement learning is applied to a mobile communications trans-

mission problem and is shown to find optimal policies that maximize channel usage

and minimize power consumption.

Finally, reinforcement learning has also been employed in cognitive radars. In Ref-

erence [97], a novel target tracking algorithm is developed for cognitive radars that

utilizes reinforcement learning. Reference [98] presents a cognitive radar network

architecture which optimizes radar performance and supports the application of ma-

chine learning algorithms. Reinforcement learning is used optimize the survivability

of a naval ship by managing the modes of an air surveillance radar.

1.3 The Multiple-Access Communications Performance Bound - Motivation

Behind Joint Radar-Communications Performance Bounds

We present the multiple-access communications system performance bound [99,

100] as motivation to develop inner bounds on the performance of a joint radar-

communications system [4]. The joint radar-communications performance bounds

discussed in this dissertation are derived by extending this multiple-access bound to

include radar users. This extension of the multiple-access performance bound is made

possible due to development of the radar estimation rate, an information theoretic

performance metric for radar systems similar to the communications data rate.

We consider a scenario in which the channel propagation gain for the first commu-

nications system is given by a1 and channel propagation gain for the second commu-

nications system is given by a2. The power of the first communications transmitter
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is denoted by P1 and the power of the second communications transmitter is given

by P2. The scenario under consideration is shown in Figure 1.2.

User #2

Communications Base 

Station
User #1

Figure 1.2: Physical multiple-access communications system scenario with 2 users.
It is assumed both users are occupying the same bandwidth, and their transmitted
signals converge at same time the communications base station. As a result, their
communication rates must be considered jointly.

Their corresponding rates are denoted R1 and R2. Assuming that the noise vari-

ance is given by σ2
noise, the fundamental limits on communications rate are shown in

Figure 1.3. Vertices are found by jointly solving the two bounds to get [4, 5],

{R1, R2} =

{
log2

(
1 +

‖a1‖2P1

1 + ‖a2‖2P2

)
, log2

(
1 +
‖a2‖2P2

σ2
noise

)}
. (1.1)

The other vertex can be found by switching the subscripts 1 and 2 in Equa-

tion (1.1). The region that satisfies these theoretical bounds is depicted in Figure 1.3.

The achievable rate region is obtained by taking the convex hull [101] of the vertices

1-4. Because a radar signal return is not derived from a countable dictionary, the

fundamental assumption of a communications signal is violated, and the bounds pre-

sented here can not be achieved by a joint radar-communications system [4]. The

result presented in this section can be extended for more than two communications

systems. For N different communications systems, the resultant achievable rate re-

gion will be a N -dimensional polytope [99].
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Figure 1.3: Pentagon containing two-user communications multiple-access achiev-
able rate region. Lines 1,2 and 3,4 are the rates achieved considering each commu-
nications user in an isolated band. The bisecting diagonal is the joint achievable
rate. As a result, the convex hull of the three lines constructs the achievable region
of two-user communications within a given shared band.

1.4 Organization

This dissertation is organized as follows. In Chapter 2, we discuss the underlying

models used to define a joint radar-communications system. We list the assumptions

made for the simulation scenario that is being considered in this dissertation. We

also discuss the successive interference cancellation (SIC) mitigation techniques that

are employed at the receiver. in Chapter 3, we present a brief exposition of com-

munications capacity theory to lay groundwork for the sections to come. We also

derive two specific data rates that are used throughout this dissertation to measure

communications performance. In Chapter 4 we introduce the estimation rate, a novel

parametrization of radar information that provides a radar performance metric sym-

metric to the communications data rate. We also discuss the global estimation rate,

an extension to the estimation rate that takes into account both local and non-local

estimation errors. In Chapter 5, we develop several inner bounds on the perfor-

mance of the joint radar-communications system by considering various scenarios
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and developing estimation and data rates for the radar and communications systems

respectively. In Chapter 6, we evaluate the performance bounds derived in Chapter 5

for an example set of parameters. We also introduce and discuss the concept of ‘Not

All Bits are Equal’ and present two methods for selecting an ideal operating point

for the joint radar-communications system. In Chapter 7, we present a new radar

waveform design method for a joint radar-communications system in which the radar

waveform spectrum and communications power spectral distribution are optimized

to maximize joint performance. In Chapter 8, we develop several different extensions

to the inner bounds on joint radar-communications system performance presented in

Chapters 5 and 6. Finally, in Chapter 9, we summarize the work done and results

obtained in this dissertation.

17



Chapter 2

JOINT RADAR-COMMUNICATIONS SYSTEM MODEL

In this chapter, we discuss the underlying models used to define a joint radar-

communications system. We define the ‘basic multiple-access scenario’, a simple

multiple-access joint radar-communications problem that is the simulation scenario

being considered in this dissertation. Throughout this dissertation, we will derive

joint radar-communications performance bounds for several variations of this ‘basic

multiple-access scenario’. We also state what assumptions are to be made for general

simulation scenarios (such as the one shown in Figure 1.1) and what assumptions are

to be made for the ‘basic multiple-access scenario’ considered in this paper only. The

latter assumptions would need to be re-evaluated when considering different radar

communications sharing schemes or scenarios. We also discuss the SIC mitigation

techniques that are employed at the receiver. A table that defines all significant

notation employed in this dissertation and their respective definitions is provided as

well.

2.1 Notation Used

We present a table of significant notation that will be employed in this paper in

Table 2.1.

Table 2.1: Survey of notation used in this dissertation.

Variable Description

〈·〉 Expectation

Continued on next page
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Table 2.1 – Continued from previous page

Variable Description

‖ · ‖ L2-norm or absolute value

θ,θ Estimation parameters

s(θ; z(t)) Score function of z(t) with respect

to θ

QM(.) Marcum Q-function

δ(.) Dirac-delta function

f Frequency

t Time

J Fisher information

B Full bandwidth of the system

Brms root mean square (RMS) radar

bandwidth

x(t) Unit-variance transmitted radar sig-

nal

X(f) Radar signal frequency response

Prad Radar power

Erad Radar energy

τm Time delay to mth target

τ
(k)
m kth observation of delay for mth tar-

get

τm,pre Predicted time delay to mth target

Continued on next page
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Table 2.1 – Continued from previous page

Variable Description

am Complex combined antenna, cross-

section, and propagation gain for

mth target

T Radar pulse duration

N Number of targets

δ Radar duty factor

γ Radar spectral shape parameter

σ2
resi Clutter residual power

r(t) Unit-variance transmitted commu-

nications signal

Pcom Total communications power

b Combined antenna gain and com-

munications propagation loss (am-

plitude)

n(t) Receiver thermal noise

σ2
noise Thermal noise power

kB Boltzmann constant

Ttemp Absolute temperature

nint+n(t) Interference plus noise for communi-

cations receiver

nradresi(t) Post-SIC radar residual

Continued on next page
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Table 2.1 – Continued from previous page

Variable Description

σ2
int+n+resi Interference plus thermal noise plus

clutter residual for communications

receiver

σ2
τ,proc Variance of range fluctuation process

σ2
CRLB CRLB or estimation error variance

Bcom Communications only sub-band

Brad Radar only sub-band

Bmix Mixed radar and communications

sub-band

ρRO Power spectral density used by radar

only sub-band

ρMU Power spectral density used by

mixed use sub-band

α Bandwidth fraction ratio for sub-

band splitting

β Power fraction used by communica-

tions only sub-band

Rest Radar estimation rate

RCO Communications rate for communi-

cations only sub-band

RMU Communications rate for mixed use

sub-band

Continued on next page
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Table 2.1 – Continued from previous page

Variable Description

p1, . . . , pN Phase parameters of polynomial

chirp

ISNR Integrated radar SNR

2.2 Problem Setup

Radar Target Joint Radar-

Communication System (Radar Node / 

Communications Relay)

Communications 

Receiver

Communications Transmitter

Figure 2.1: The joint radar-communications system ‘basic multiple-access scenario.’
This is a simplified version of the complicated RF convergence scenario shown in
Figure 1.1. However, it provides a point of departure for discussing future work, and
enables tractable, intuitive solutions presented here.

Due to the non-trivial nature of achieving RF convergence in a realistic simula-

tion scenario as mentioned in Chapter 1, in this dissertation, we consider what we

call the ‘basic multiple-access scenario.’ It is a simple scenario involving a radar and

communications user attempting to use the same spectrum-space-time. This scenario

is instructional, and can easily be scaled to more complicated scenarios by using

it as a building block to construct real world examples. We present a diagram of
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the ‘basic multiple-access scenario’ in Figure 2.1. In this scenario, the joint radar-

communications system consists of an active, mono-static, pulsed radar and a single

user communications system. We consider the joint radar-communications receiver

to be a radar transmitter/receiver that can act as a communications receiver. The

joint receiver can simultaneously estimate the radar target parameters from the radar

return and decode a received communications signal. While the node architecture can

easily be generalized to function as a communications relay by including a commu-

nications transmitter, this is not explicitly discussed in this paper. We refer to the

scenario described in Figure 2.1 throughout the rest of this dissertation.

Despite the difficulty in achieving RF convergence in scenarios such as the one

seen in Figure 1.1, we do know that some important assumptions have to be made in

order to develop a tractable solution. Those key assumptions made in this work are

as follows

• Radar and communications operate in the same frequency allocation simulta-

neously

• Joint radar-communications receiver has the ability to simultaneously decode a

communications signal and estimate a target parameter

• Radar detection and track acquisition have already taken place

On top of the assumptions made above, the key assumptions made that apply for

the scenario described in Figure 2.1 are as follows

• Radar system is an active, single-input single-output (SISO), mono-static, and

pulsed system

• Radar system operates without any maximum unambiguous range

• A single SISO communications transmitter is present
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• Only one radar target is present

• Target range or delay is the only parameter of interest

• Target cross-section is well estimated

• Communications signal is received through an antenna sidelobe; Antenna gains

are not identical

It should be noted that this last set of assumptions are specific to the ‘basic

multiple-access scenario’ shown in Figure 2.1. These assumptions will need to be

re-assessed if different simulation scenarios or radar-communications sharing schemes

are being taken into consideration.

2.3 Successive Interference Cancellation Receiver Model

We present the joint radar-communications receiver model that employs the SIC

mitigation technique. SIC [4] is an algorithm that takes advantage of the target track-

ing ability of the joint radar-communications system to ensure that communications

signal decoding and radar detection can be done cooperatively.

We assume we have some knowledge of the radar target range (or time-delay),

based on prior observations, up to some random fluctuation (also called process noise)

which is modeled as a zero-mean random variable nτ,proc(t). Using this information,

we can generate a predicted radar return signal (or pulse) and subtract it from the

joint radar-communications received signal. Since there is some error in the predicted

and actual target locations, this predicted radar signal suppression leaves behind a

residual contribution, nradresi(t), to the joint received signal. By lowering the commu-

nications rate, the receiver can perfectly decode the communications message from

the radar-suppressed joint received signal (which consists of the communications sig-

nal, thermal noise and radar residual). The joint radar-communications receiver uses
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the decoded communications message to reconstruct and remove the communications

waveform from the received signal to obtain a radar return signal free of communica-

tions interference. This method of interference cancellation is called SIC. We assume

that SIC is employed by the joint radar-communications receiver whenever there is

any overlap between the radar and communications signals.

SIC is the same optimal multiuser detection technique used for a two user multiple-

access communications channel presented in Section 1.3 [99, 100], except it is now

reformulated for a communications and radar user instead of two communications

users. The block diagram of the joint radar-communications system considered in

this scenario is shown in Figure 2.2.

Transmit
Radar

Waveform

Radar
Channel

Comms
Channel

Remove
Predicted

Return

Decode
Comms

& Remove

Process
Radar
Return

Comms InfoComms
Signal

Σ

Figure 2.2: Joint radar-communications system block diagram for SIC scenario.
The radar and communications signals have two effective channels, but arrive con-
verged at the joint receiver. The radar signal is predicted and removed, allowing a
reduced rate communications user to operate. Assuming near perfect decoding of the
communications user, the ideal signal can be reconstructed and subtracted from the
original waveform, allowing for unimpeded radar access.

As stated earlier, we have some knowledge of the target’s range up to some range

fluctuation or process noise, nτm,proc. We model the process noise, nτm,proc as a random

process. During the kth observation, the delay for the mth target is given by,

τ (k)
m = τ (k)

m,pre + nτm,proc (2.1)

τ (k)
m,pre = f(k;Tpri,φ) .

The function f(k;Tpri,φ) is a prediction function which depends on Tpri, the pulse

repetition interval (PRI), and a set of nonspecific system and target parameters, φ.
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The variance of the range fluctuation process is given by

σ2
τm,proc =

〈
‖nτm,proc‖2〉 =

〈∥∥τ (k)
m − f(k;Tpri,φ)

∥∥2
〉
. (2.2)

For N targets, the observed complex baseband [100] radar return z(t) in the presence

of a communications signal and noise is given by

z(t) = b
√
Pcom r(t) +

√
Prad

N∑
m=1

am x(t− τm) + n(t) , (2.3)

where complex combined antenna, cross-section, and propagation gain for mth target,

am, is a parameter such that the radar range equation for received power for the mth

target can be written as ‖am‖2 Prad. The received signal at the communications

receiver with the predicted radar return suppressed is given by

z̃com(t) = b
√
Pcom r(t) + n(t) +

√
Prad

N∑
m=1

am[x(t−τm)−x(t−τm,pre)] (2.4)

= b
√
Pcom r(t) + n(t) + nradresi(t) .

Note that we have assumed here that the estimated amplitude is equal to the actual

amplitude. This approach is only useful if the error in delay is smaller that 1/B.

For small fluctuations in delay, we can replace the difference between the actual and

predicted radar return waveforms with a derivative,

x(t− τm)− x(t− τm,pre) ≈
∂x(t− τm)

∂t
nτm,proc . (2.5)

The signal observed by the communications receiver is then given by

z̃com(t) ≈ b
√
Pcom r(t) + n(t) +

√
Prad

N∑
m=1

am
∂x(t− τm)

∂t
nτm,proc . (2.6)

The interference plus noise from the communications system’s point of view is given
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by

nint+n = n(t) + nradresi(t)

=
√
Prad

N∑
m=1

am[x(t−τm)−x(t−τm,pre)] + n(t)

≈
√
Prad

(
N∑
m=1

am
∂x(t− τm)

∂t
nτm,proc

)
+ n(t) , (2.7)

σ2
int+n =

〈
‖nint+n‖2

〉
= Prad

(
N∑
m=1

‖am‖2 (2π)2B2
rms σ

2
τm,proc

)
+ σ2

noise , (2.8)

B2
rms =

∫
df f 2 ‖X(f)‖2∫

df ‖X(f)‖2 , (2.9)

where Brms comes from employing Parseval’s theorem to convert ∂x(t−τm)/∂t into the

frequency domain and then using the differentiation property of the Fourier transform

[100]. The RMS bandwidth is extracted from bandwidth B as follows

γ2B2 = (2π)2B2
rms , (2.10)

where, for a flat spectral shape, γ2 = (2π)2/12.

It should be noted that the performance bounds and results presented in this

paper are very closely tied to the receiver model that is utilized. In this dissertation,

we employ SIC at the receiver. However, employing different mitigation techniques

and changing the receiver model will result in a set of performance bounds that are

different from the ones presented in this paper. Additionally, we note that further

analysis needs to be performed on the optimality of the SIC receiver model.
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Chapter 3

THE COMMUNICATIONS DATA RATE

In this section, we present a brief exposition of communications capacity theory

to lay groundwork for the chapters to come. The goal is to understand the basic

communications phenomenology and to understand dealing with systems in an in-

formation theory context. This chapter serves as a useful bridge to discuss radar

information theory in the next chapter, and forms the basis of how we consider the

joint system. We discuss how to alter the communications data rate and the impli-

cations such alterations will have on the communications performance. Finally, we

formally define the data rate for a joint radar-communications system after SIC has

been applied. We present two methods to model the post-SIC radar residual and

their corresponding data rates, the SIC communications data rate and the spectral

water-filling (WF) SIC data rate.

3.1 Communications Rate

The communications rate capacity is formally defined as the supremum of achiev-

able communications rates for a given channel model with respect to the input distri-

bution. It tells us how much information as a function of time we can communicate

with arbitrarily low BER. This problem was solved by Shannon in his seminal work

[16].

3.1.1 Communications Rate Capacity for a Single Link

For our basic multiple-access scenario, we have a single communications user.

Here, we present Shannon’s results for the capacity of this link, assuming the user

28



is operating with no interference. We assume we have a single wireless communica-

tions link in a continuous memoryless real Gaussian channel with an average power

constraint Pcom and fixed bandwidth B and subject to receiver thermal noise. The

additive white Gaussian noise (AWGN) channel is shown in Figure 3.1. The informa-

tion that we wish to send is X, it is corrupted by the addition of the Gaussian random

variable N , and we measure Y at the receiver. The capacity of such a channel was

Y=X+N

X : Source

N : Gaussian Noise

Y : Measurement

X

N

Figure 3.1: An AWGN channel. X contains the information we care about (sym-
bols of arbitrary information), N is the noise added to our channel, and Y is the
observation.

shown by Shannon to be [16]

Rcom ≤
1

2Ts
log2

[
1 +

‖b‖2 Pcom

kB Ttemp B

]
=

1

2Ts
log2[1 + SNR] , (3.1)

where Ts = 1
2B

is the independent sampling rate of the band-limited system.

3.1.2 Altering the Communications Rate

As we have stated previously, the communications rate is simply a measure of

the amount of arbitrary information that can be transmitted through the channel

given spectrum-space-time access. We can increase the communications rate in a

fixed bandwidth by:

Changing Source Entropy

The source entropy is dictated by the source distribution p(X). The more we increase

this entropy, the larger the mutual information [99]. While this may appear beneficial,
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in doing so, we may exceed the average power constraint, violating the maximizing

terms of the capacity problem. Ignoring the mutual information construct, we can

attempt to communicate at a faster rate (rate taking into account redundant and non-

redundant information [99]). However, exceeding the capacity means an arbitrarily

low BER is not achievable. As a result, the spectral efficiency in b/s/Hz goes down

when considering a channel with an arbitrarily low BER.

However, if the capacity is not exceeded, we achieve the maximum spectral effi-

ciency given the problem parameters. Thus information must be carefully considered

as to the root meaning when trading this parameter, as we see in Section 4.1 when

considering radar estimation rate.

Changing Signal-to-Noise Ratio

From Equation (3.1), we see that by increasing the SNR, we get a net gain in infor-

mation. Sphere packing is a good analogy. In an average power-constrained channel

with fixed bandwidth, this amounts to decreasing the noise power. As a result, more

“levels” can be transmitted and resolved on average at the receiver, meaning more en-

tropy states and overall more information. Thus by increasing SNR, we can increase

the source entropy level at which an arbitrary BER is possible. If less throughput

is needed, the bandwidth can be reduced (noting the non-linear mapping), or the

communications system can be duty cycled in time. This equates to spectrum-time

isolation.

As we see, changing the rate of communication cannot be done arbitrarily, as BERs

may preclude proper system operation. Increasing the communications rate through

SNR is acceptable, but requires reduction of the thermal noise floor, or a change in

the channel constraints. As we see in the next section, increasing the complementary

radar estimation rate must also be done with careful consideration to proper system
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operation and estimation performance.

3.2 The Successive Interference Cancellation Communications Data Rate

As mentioned in Chapter 2, at the receiver, we employ a process called SIC [4],

an algorithm that takes advantage of the target tracking ability of the joint radar-

communications system to ensure that communications signal decoding and radar

detection can be done cooperatively. In Section 2.3, we assumed that we have some

knowledge of the target’s range up to some process noise, nτm,proc(t). We now model

this process noise, nτm,proc(t) as a Gaussian random variable. As a result, from Equa-

tion (2.7), we see that the radar residual, nradresi(t), is Gaussian as well. Thus, the

noise floor from the communications receiver’s perspective is higher and given by

Equation (2.8). The receiver can perfectly decode the communications message from

the joint received signal at a lower communications rate, called the SIC communica-

tions rate.

The joint radar-communications receiver uses the decoded communications mes-

sage to reconstruct and remove the communications waveform from the received signal

to obtain a radar return signal free of communications interference. This mitigation

technique is called SIC. The block diagram of the joint radar-communications system

considered in this scenario is shown in Figure 2.2.

When applying SIC, the interference residual plus noise signal nint+n(t), from the

communications receiver’s perspective, is given by Equation (2.7) [4, 5]. The process

noise and, as a result, the radar residual are modeled with a Gaussian distribution.

Hence, the interference residual plus noise is a zero mean Gaussian random variable

with variance, σ2
int+n, given by Equation (2.8) [4, 5]. The corresponding communica-
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tions rate, known as the SIC data rate, is given by

Rcom ≤ B log2

(
1 +
‖b‖2 Pcom

σ2
int+n

)
. (3.2)

It should be noted that the radar residual used to obtain Equation (3.2) is modeled

by a Gaussian distribution because Gaussian distributions have a closed form solution

to entropy [99], enabling a closed form solution for the SIC communications rate to

exist. Employing any other distribution to model the radar residual will result in a

different SIC communications rate, as we will see in the next section.

3.3 The Spectral Water-filling Successive Interference Cancellation Data Rate

In this section, we utilize the continuous spectral WF algorithm [99, 102] to deter-

mine the optimal communications power distribution over frequency. The continuous

spectral WF algorithm optimizes the data rate for a given noise power spectral den-

sity [99, 102]. Once the receiver model is known, the communications transmitter

can easily determine the noise spectral density at the receiver, Nint+n(f), and ap-

ply the continuous spectral WF algorithm to determine the optimal communications

transmit power distribution, P (f). This communications power distribution, P (f),

maximizes the communications data rate at which the joint radar-communications

receiver decodes the communications message. We define this maximized communi-

cations rate as the spectral WF SIC data rate. The continuous spectral WF algorithm

is a continuous form extension of the WF algorithm employed in References [4, 5].

Figure 3.2 highlights how the continuous spectral WF algorithm selects the optimal

power distribution.

As mentioned earlier, since we employ the SIC model at the joint radar-communications

receiver, the receiver will decode the communications message after the predicted

radar signal has been mitigated from the received signal. As a result, from the com-
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Figure 3.2: An example of the continuous spectral WF algorithm. The black, dashed
line indicates the fill level (maximum amount of communications power that can
be allocated at any frequency), the green curve represents the noise power spectral
density Nint+n(f), and the optimal communications power spectral distribution is
shown in blue.

munications receiver’s perspective, the channel will be corrupted by noise given by

Equation (2.7). In order to find the noise spectral density, Nint+n(f), we first calculate

the autocorrelation function of the time- and band-limited noise signal, n(t) (since

the received signal is also time- and band-limited),

γ(α) =
〈
nint+n(t)n∗int+n(t− α)

〉
= 〈n(t)n∗(t− α)〉+ 〈nradresi(t)nradresi(t− α)〉

= kB Ttemp B sinc(π B α) + ‖a‖2 Prad σ
2
τ,proc

∂x(t− τ)

∂t

∂x∗(t− τ − α)

∂t

= kB Ttemp B sinc(π B α) + (4π2) ‖a‖2 Prad σ
2
τ,proc

∫ ∞
−∞

dff 2X(f)X∗(f)ei2πfα

= kB Ttemp B sinc(π B α) + (4π2) ‖a‖2 Prad σ
2
τ,proc g(α) , (3.3)

where Parseval’s theorem and the time-shift and time derivative properties of the

Fourier transform are used between the second and third steps, sinc(x) = sin(x)
x

, and
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g(α) is the inverse Fourier transform with respect to α of G(f) = ‖X(f)‖2 f 2. Since

the noise power spectral density and autocorrelation are Fourier transform pairs, the

noise power spectral density is given by

Nint+n(f) = N(f) +Nradresi(f)

= kB Ttemp BΠB(f) + (4π2) ‖a‖2 Prad σ
2
τ,proc ‖X(f)‖2 f 2 , (3.4)

where N(f) and Nradresi(f) are the Fourier transforms of n(t) and nradresi(t) respec-

tively, and ΠB(f) is a top-hat or rectangular function from −B
2

to B
2

. The optimal

communications power spectrum determined by the continuous spectral WF algo-

rithm is given by

P (f) =

(
µ− Nint+n(f)

b2

)+

, (3.5)

where (x)+ = x if x ≥ 0; otherwise (x)+ = 0 and µ is a constant that is determined

from the power constraint

Pcom =

∫ B
2

−B
2

dfP (f) =

∫ B
2

−B
2

df

(
µ− Nint+n(f)

b2

)+

. (3.6)

The spectral WF SIC data rate (the corresponding data rate for the channel with

noise spectral density Nint+n(f)) is given by [99, 102]

Rcom =
1

2

∫ B
2

−B
2

df log

(
1 +

b2 P (f)

Nint+n(f)

)
. (3.7)

It should be noted that due to the complexity involved in determining analytical

solutions for the integrals shown in Equations (3.6) and (3.7), these integrals are

evaluated numerically to determine the optimal value for µ and the communications

data rate.

As we see from Equation (3.4), the spectral WF SIC data rate is dependent on the

shape of the radar waveform spectrum. Hence, the continuous spectral WF algorithm

is ideally suited to be employed in scenarios where the radar waveform spectrum is
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not flat such as the one discussed in Chapter 7, where we use optimization theory

to shape the radar waveform spectrum to maximize joint radar-communications per-

formance. Furthermore, since we assume that the radar waveform spectrum is flat

for a significant part of this dissertation, we argue that the continuous spectral WF

algorithm will not provide any significant benefits in terms of communications per-

formance or data rate. This fact coupled with the numerical complexity involved in

calculating the spectral WF SIC data rate makes the SIC communications data rate

better suited for the other simulation scenarios considered in this dissertation.
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Chapter 4

THE RADAR ESTIMATION INFORMATION RATE

In this chapter, we introduce a novel parametrization of radar performance in

terms of information, the estimation rate. The estimation rate provides a measure of

the amount of information contained in a radar return signal. We present a detailed

derivation for the estimation rate for a single radar target and provide an intuitive

interpretation of radar information and the estimation rate. We also discuss how to

increase or decrease the estimation rate and what such an alteration can imply for

radar performance.

Finally, we also extend the estimation rate to account for non-local or low-SNR

estimation errors. This extended estimation rate is called the global estimation rate.

4.1 Radar Estimation Rate

The estimation rate is a metric analogous to the communications rate and provides

a measure of the information about a target that is gained from radar illumination in

radar tracking estimation scenarios. In general, the target has some entropy or infor-

mation about itself that is not explicitly being communicated to the radar system by

the target. Radar illumination can be viewed as the target unwillingly communicating

this target entropy or information to the radar receiver. Thus, the radar channel can

be characterized as an uncooperative communications channel [5] and the estimation

rate can be intuitively thought of as the mutual information between the radar return

signal and the target [5].

As stated in previous chapters, we assume that the radar system has some knowl-

edge of the target’s range, based on prior observations, up to some range fluctuation.
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This range fluctuation, also called process noise, is interpreted as a fluctuation in

delay which is modeled by a Gaussian distribution nτ,proc with variance given by〈
‖nτ,proc‖2〉 = σ2

τ,proc. By definition, the process noise is the true information that is

being transmitted through the radar channel and the estimation rate represents the

minimum number of bits needed to encode the process noise. The radar estimation

rate can be extended to include estimation of different target parameters as seen in

Reference [103], in which the estimation rate is extended to take into account Doppler

estimation. It should be noted that modeling the process noise as a Gaussian random

variable implies that the radar residual, nradresi(t), is also modeled by a Gaussian

random variable as we see from Equation (2.7).

The estimation rate is formally defined as the quantity that represents the mini-

mum number of bits needed to encode the Kalman residual, which is the statistical

deviation from the radar prediction of a target parameter, for a given channel degra-

dation [5]. The estimation rate tells us how much information we stand to gain

once we subtract the prediction of the target’s parameter, since the predicted target

parameter is already known and does not truly convey any information.

Considering the radar channel to act as an uncooperative communications chan-

nel, the process noise, nτ,proc, is the information X being transmitted. This trans-

mitted information X is degraded by the addition of some noise N , which for target

parameter estimation is given by the radar estimation error, nτ,est, and a noisy mea-

surement of X is received at the radar receiver system. The estimation rate for our

uncooperative channel is therefore given by [99]

Rest =
I (X;X +N)

Tpri

, (4.1)

where Tpri = T/δ.

Assuming that the radar estimation error, nτ,est, is Gaussian with variance
〈
‖nτ,est‖2〉 =
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σ2
τ,est, the mutual information can be shown to be [99]

Rest ≤
1

2Tpri

log2

(
1 +

σ2
τ,proc

σ2
τ,est

)
. (4.2)

We leave it as an inequality because typically systems must perform certain non-ideal

processing steps, such as quantization. As a result, the data-processing inequality is

enforced [99].

It should be noted that a Gaussian distribution is used to model the radar esti-

mation error, nτ,est, and process noise, nτ,est, because Gaussian distributions have a

closed form solution to entropy, enabling a closed form solution for the estimation

rate to exist. In radar estimation problems where a Gaussian distribution is not ap-

propriate and a closed form solution for the estimation rate does not exist, bounds

on the radar estimation rate (radar mutual information) exist which can still capture

a measure of radar information [104]. We leave the estimation rate as an inequality

because typically systems must perform certain non-ideal processing steps, such as

quantization. As a result, the data-processing inequality is enforced [99].

Looking at the ratio of variances
σ2
τ,proc

σ2
τ,est

, we see that σ2
τ,proc =

〈
‖nτ,proc‖2〉 is the

power of the transmitted information,
〈
‖X‖2〉, and that σ2

τ,est =
〈
‖nτ,est‖2〉 is the

noise power,
〈
‖N‖2〉. Thus, the ratio of variances

σ2
τ,proc

σ2
τ,est

represents the SNR of the

uncooperative communications channel that is used to characterize the radar chan-

nel. This is more evident when comparing Equation (4.2) to Equation (3.1). Thus,

Equation (4.2) can be written as [4]

Rest ≤
1

2Tpri

log2(1 + SNR) . (4.3)

4.1.1 Estimation Rate for Local Estimation Errors

If we assume that we are operating in a high-SNR regime and that the radar

estimator achieves the CRLB, the variance of delay estimation, σ2
est, is given by the

38



CRLB for time delay estimation and Equation (4.2) can be written as

Rest ≤
1

2Tpri

log2

[
1 +

(
8π2 σ2

τ,proc B
2
rms ISNR

)]
, (4.4)

=
1

2Tpri

log2

[
1 +

(
8π2 σ2

τ,proc γ
2B2 ISNR

)]
,

where the CRLB for time delay estimation is given by [105]

σ2
CRLB = (8π2B2

rmsISNR)−1 (4.5)

= (2 γ2B2 ISNR)−1 .

It should be noted here that if the delay estimator doesn’t achieve the CRLB, the

estimation rate will be lowered. Furthermore, since we are bounding the estimation

error variance with the CRLB, the estimation rate only takes into account local

estimation errors. In practice, the estimation noise depends not only on the CRLB,

but also global estimation ambiguity error as well, especially at low SNRs.

4.2 Altering the Estimation Rate

As we have stated before, the estimation rate is simply a measure of the amount of

information about the target that can be gained through the radar channel through

illumination. Thus, an increase in the estimation rate implies an increased amount of

information about the target is gained by the radar system through the channel. As

we see, increasing the estimation rate can lead to better target parameter estimation

performance and reducing the estimation rate can result in reduced spectral access but

a higher estimation rate is not necessarily always favorable. However, the estimation

rate is still a metric that can be used to determine how to allocate spectral resources

as we will see in Chapters 6 and 7. From Equation (4.2), we see that the estimation

rate can be altered by:
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4.2.1 Changing Process Noise

Process noise represents the amount of information of the target that is unknown.

From Equation (4.2), we see that by increasing the process noise, we increase the

estimation rate. Increasing the process noise essentially means that the target behaves

in an unexpected manner when compared to how the target was modeled by the radar

system. Thus, the amount of information that can be gained about the target through

radar illumination increases and this is reflected via an increase in the estimation rate.

However, if the target was modeled accurately, then the information content

gained through radar illumination is low because much of the true uncertainty about

the target was bought down by accurately modeling the target. This is beneficial

since, as seen in [106], by reducing the process noise, the radar system can illuminate

less frequently. Thus, by using a more accurate model of the target and reducing

process noise, the radar system needs less spectral access which is beneficial for co-

operative radar-communications coexistence.

4.2.2 Changing Estimation Performance

From Equation (4.2), we see that by improving the estimation performance or

decreasing the mean-squared estimation error σ2
est, we increase the estimation rate.

By improving the estimation performance, the radar system is able to extract more

information about the target, thus increasing the estimation rate. Increasing the

estimation rate in this manner, enhances the target parameter estimation quality of

the radar which is always desirable.

As we have seen above, an increase or decrease in the estimation rate is neither

strictly good nor bad, rather it is the manner in which the estimation rate was altered

that can be beneficial or detrimental to the joint radar-communications system. If
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the estimation rate is decreased by lowering the process noise, then the radar system

needs less spectral access which results in a less congested spectrum (aids in radar-

communications coexistence). However, if the process noise is arbitrarily increased by

ignoring prior information (a physical predictive model, for example), then we gain

more information through measurement, but the estimation performance is degraded

and radar system performance is lowered. However, increasing SNR increases both

estimation rate, and estimation parameter performance.

There is a trade-off between reducing radar spectral access and increasing target

parameter estimation quality. On one hand reducing estimation rate by reducing pro-

cess noise frees up more of the spectrum to be used by communications systems, aiding

coexistence, whereas increasing the estimation rate by improving target parameter

estimation quality increases the radar system performance. Accordingly, attempts

should be made to maximize the estimation rate from an SNR perspective, while

jointly considering estimation error performance. That is, estimation error should

never be increased to increase estimation rate, but steps to maximize the mutual

information for a fixed process noise should always been taken.

4.3 Global Estimation Rate

In the previous section, we derived the estimation rate that takes into account local

estimation errors only. We use the method of interval errors [107, 108] to calculate

the effect of non-local errors on time-delay estimation performance. The method

of interval errors is an estimation technique that is used to extend local parameter

estimation bounds (such as the CRLB) to include non-local effects (such as confusing

the mainlobe with a sidelobe) [107]. For the sake of simplicity, we assume that only

the largest sidelobe can be confused for the main lobe. The values and locations of

the largest sidelobe peaks are found through simulation. A closed-form solution of the
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probability of sidelobe confusion, Ps.l. is obtained in terms of the values and locations

of the sidelobe peaks, integrated radar SNR, and the Marcum Q-function QM [100].

The method of intervals time-delay estimation variance is then given by

σ2
est = [1− Ps.l.(ISNR)] σ2

CRLB(ISNR) + Ps.l.(ISNR)φ2
s.l. , (4.6)

where φs.l. is the offset in time (seconds) between the autocorrelation peak sidelobe

and main lobe [5]. The probability of sidelobe confusion, Ps.l., is given by [100]

Ps.l.(ISNR) = 1−QM

(√
ISNR

2

(
1 +

√
1− ‖ρ‖2

)
,√

ISNR

2

(
1−

√
1− ‖ρ‖2

))

+QM

(√
ISNR

2

(
1−

√
1− ‖ρ‖2

)
,√

ISNR

2

(
1 +

√
1− ‖ρ‖2

))
, (4.7)

where ρ is the ratio of the main lobe to the peak sidelobe of the autocorrelation

function. The global estimation rate is calculated by utilizing the method of intervals

estimation error variance, given by Equation (4.6), in Equation (4.2).
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Chapter 5

LIMITS ON JOINT RADAR-COMMUNICATIONS PERFORMANCE

In this chapter we develop several inner bounds on the performance of the joint

radar-communications system by considering various scenarios and developing esti-

mation and data rates for the radar and communications systems respectively.

5.1 Inner Bounds on Joint Radar-Communications Performance

In this section, we derive inner bounds on the performance of the joint radar-

communications system. As mentioned earlier, performance is measured in data

information rate for the communications system and estimation information rate for

the radar system. To find these inner bounds, we hypothesize an idealized receiver

and determine the bounding rates. To simplify the discussion, we consider only a

single radar target with delay τ and gain-propagation-cross-section product a.

Additionally, for the sake of simplicity, we assume that there is only a single

communications link present. The results derived in this section can be extended

for more than the single communications channel link. Similar to the multi-access

channel case described in Section 1.3, this extension results in an (N+1)-dimensional

polytope, for N communications users and a single radar case.

5.1.1 Isolated Sub-Band Inner Bound

In this section, we derive an inner bound by considering a scenario in which we

partition the total bandwidth into two sub-bands, one for radar only and the other

for communications, which is the standard, isolated solution. Each system functions

without any interference in their respective sub-band [4, 5]. The bandwidth is split
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(1-α)B αB

Channel Noise

Figure 5.1: isolated sub-band (ISB) bandwidth split. The noise floor is flat across
the total bandwidth. The radar user and communications user are then given some
complementary fraction of the overall bandwidth B, parameterized by the blending
ratio α.

between the two sub-bands according to some blending ratio α such that,

B = Brad +Bcom , Bcom = αB , Brad = (1− α)B , (5.1)

as shown in Figure 5.1. The corresponding communications rate (for the communi-

cations only sub-band) is given by

Rcom ≤ Bcom log2

(
1 +

‖b‖2 Pcom

kB Ttemp Bcom

)
, (5.2)

where b is the combined gain and communications propagation loss product defined

in Equation (3.1). The corresponding radar estimation rate is given by

Rest ≤
1

2Tpri

log2

(
1 +

(
2σ2

τ,proc γ
2B2

rad ISNR
))
. (5.3)

5.1.2 Successive Interference Cancellation Inner Bound

We discuss the technique of SIC and use it to construct a inner bound on per-

formance. As stated in Section 4.1, we have some knowledge of the radar target pa-

rameter (in this case, range or time-delay) up to some range fluctuation (also called

process noise). Using this information, we can generate a predicted radar return and

subtract it from the joint radar-communications received signal. After suppressing

the radar return, the receiver then decodes and removes the communications signal
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from the observed waveform to obtain a radar return signal free of communications

interference. This method of interference cancellation is called SIC. An achievable

inner bound on joint radar-communications system performance can be derived by

taking the convex hull of all achievable communications and estimation rate pairs,

the SIC inner bound [4, 5]. The block diagram of the joint radar-communications

system considered in this scenario is shown in Figure 2.2.

If Rest ≈ 0 (for example, because of a low power return or well modeled target),

it is as if the radar interference is not present and the communications system can

operate at a data rate determined by the isolated communications bound,

Rcom ≤ B log2

(
1 +

‖b‖2 Pcom

kB Ttemp B

)
. (5.4)

If the estimation rate is non-trivial, then the residual contributes to the communica-

tions system’s noise floor. We can mitigate this by reducing Rcom for a given transmit

power. After subtraction of the predicted radar return, the receiver can decode the

communications signal. With knowledge of the communications system, forward error

correction and spectral shaping can be reapplied, and the radar system can remove

the ideal communications signal from the observed waveform, leaving just the radar

return. Thus, radar parameter estimation can be done without corruption from any

outside interference. This implies that from the communications receiver’s perspec-

tive, it observes interference plus noise as described by Equation (2.8) [4, 5] and the

corresponding communications rate is given by Equation (3.2).

In this regime, the corresponding estimation rate bound Rest is given by Equa-

tion (4.4). The SIC inner bound is given by connecting points given by Equa-

tions (3.2), (4.4) and (5.4). This is equivalent to time sharing between full band

SIC operation (normal radar, reduced communications), and communications only

(no radar). In [106], it was proposed to modulate radar spectral access based on the
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(1-α)T αT

Figure 5.2: The constant information radar (CIR) time-sharing scheme. For a given
cycle time T , part of the cycle is allocated to radar operation, where a reduced rate
communications user is operating using SIC. For the remainder of the cycle, the
communications user is free to operate without any radar emissions. Note that the
radar access time can be fixed at the duration for a single spectral access, and then
the cycle time can be varied.

estimation rate measure, or more specifically, the radar estimation information. The

goal was to delay target revisit until k bits of information about the target would

become available. This fixed the information rate locally around radar access, enforc-

ing a spectral efficiency for allowing radar access. During periods when the target

was well-modeled, or the SNR was low, insufficient information could be obtained,

and so the communications user is allowed to broadcast freely. Figure 5.2 shows this

scheme in action. Our blending ratio α now modulates radar time access, in which

the communications user is allowed to communicate slower at the SIC node. α is in-

creased when the target is well-modeled, or the SNR is low. In the former case, there

is little information gained through measurement, since the target is well predicted

[106]. For the SNR, measurement noise dominates the entropy, and very little “good”

information is obtained through access of the spectrum. The rates are then given by

Rcom ≤ αB log2

(
1 +
‖b‖2 Pcom
σ2

int+n

)
+ (1− α)B log2

(
1 +

‖b‖2 Pcom

kB Ttemp B

)
, (5.5)

Rest ≤ (1− α)
1

2Tpri

log2

(
1 +

(
8 π2 σ2

τ,proc B
2
rms ISNR

))
. (5.6)
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5.1.3 Communications Water-filling Bound

In this section, we consider a scenario in which the total bandwidth is split into

two sub-bands, one sub-band for communications only and the other sub-band for

both radar and communications. It is not necessary that the sub-bands be of equal

bandwidth. We use WF to distribute the total communications power between the

two sub-bands [4, 5]. WF optimizes the power and rate allocation between multiple

channels [99, 100]. In this scenario, the bandwidths of the two channels need not

be equal. This means that the problem formulation in this scenario is not a stan-

dard formulation. Hence, we expect that the shape of the inner-bound derived by

employing WF will be non-intuitive. The mixed use channel operates at the SIC

rate vertex defined by Equations (3.2) and (4.4). The block diagram of the joint

radar-communications system considered in this scenario is shown in Figure 5.3.
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Band

Comms
Info

Comms
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Figure 5.3: Joint radar-communications system block diagram for communications
only and mixed use sub-bands. One band is operating only for communications, and
is spectrally isolated from the radar operation. The other sub-band is operating using
SIC, where the communications and radar RF energy converge at the receiver. The
optimal power split is determined using WF.

As in the ISB case, we use the blending ratio α to split the overall bandwidth B

into a communications only sub-band, and a mixed sub-band operating at the SIC
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Figure 5.4: WF bandwidth allocation. As in the ISB case, we use our blending
ratio α to parameterize the allocation of bandwidth between the communications
only user, and the joint radar-communications band operating using SIC. After the
radar is predicted and subtracted, the mixed band has a radar residual contributing
to the communications noise floor. We then have two channels with differing noise
degradations, and the normal WF solution follows.

node:

B = Bcom +Bmix , Bcom = αB , Bmix = (1− α)B . (5.7)

We then optimize the power utilization, β, between sub-bands,

Pcom = PCO + PMU , PCO = β Pcom , PMU = (1− β)Pcom . (5.8)

There are two effective channels

µcom =
b2

kB Ttemp Bcom

, µmix =
b2

σ2
int+n

, (5.9)

σ2
int+n = ‖a‖2 Prad γ

2B2
mix σ

2
τ,proc + kB Ttemp Bmix . (5.10)

The first for the communications only channel, and the second for the mixed use

channel. We apply the WF result derived in [4] and see that the optimal power
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distribution (β) between the two sub-channels is given by:

β = α +
1

Pcom

(
α− 1

µcom

+
α

µmix

)
;

when Pcom ≥
α

(1− α)µmix

− 1

µcom

. (5.11)

The resulting communications rate bound in the communications-only sub-band,

Rcom,CO, is given by

Rcom,CO ≤ Bcom log2

(
1 +

β Pcom b
2

kB Ttemp Bcom

)
. (5.12)

The mixed use communications rate inner bound, Rcom,MU, is given by

Rcom,MU ≤ Bmix log2

(
1 +

b2 (1− β)Pcom

σ2
int+n

)
, (5.13)

where σ2
int+n is given by Equation (5.10). The corresponding radar estimation rate

inner bound is then given by

Rest ≤
1

2Tpri

log2

(
1 +

(
2σ2

τ,proc γ
2B2

mix ISNR
))
. (5.14)

5.1.4 Optimal-Fisher-Information Inner Bound

In this section, we construct an inner rate bound by splitting the total bandwidth

into two sub-bands and distributing the radar power (or power spectral density)

between the two sub-bands in a way that minimizes the CRLB (or maximizes the

Fisher information) for time-delay estimation. The block diagram of the joint radar-

communications system considered in this scenario is shown in Figure 5.5.

The bandwidth will be split between the two sub-bands according to some α such

that,

B = Brad +Bmix , Brad = αB , Bmix = (1− α)B , (5.15)
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Figure 5.5: Joint radar-communications system block diagram for radar only and
mixed use sub-bands. One band is operating only for radar, and is spectrally isolated
from the communications operation. The other sub-band is operating using SIC,
where the communications and radar RF energy converge at the receiver. We use our
blending ratio α to parameterize the allocation of bandwidth between the radar only
user, and the joint radar-communications band operating using SIC. We derive the
optimal radar power split between both channels that minimizes the estimation error
variance.

and we will optimize the power spectral densities, ρRO and ρMU, utilized by the radar

only and mixed use sub-bands respectively, to maximize the Fisher information, where

Prad = PRO + PMU (5.16)

PRO = αB ρRO , PMU = (1− α)B ρMU . (5.17)

We will have the following constraint on radar power in the two sub-bands,

Prad = αB ρRO + (1− α)B ρMU (5.18)

Now, consider a radar signal x(t) with bandwidth B, whose frequency spectrum X(f)

is centered around BO. We assume that X(f) is spectrally flat. We will now parti-

tion the frequency spectrum into two spectrally flat portions, XRO(f) and XMU(f)

with bandwidths αB and (1 − α)B respectively, thereby creating two new signals,

xRO(t) and xMU(t) that will be transmitted in the radar only sub-band and mixed

use sub-band respectively. Thus, after transmission, the radar receiver will observe
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the following return signal

z(t) = a
√
PRO xRO(t− τ) + a

√
PMU xMU(t− τ) + b

√
Pcomr(t) + n(t)

= a x(t− τ) + b r(t) + n(t) , (5.19)

where x(t − τ) =
√
PRO xRO(t − τ) +

√
PMU xMU(t − τ). Using this return signal,

we derive the CRLB on the variance for time-delay estimation. Let θ = τ be the

parameter to be estimated. From Equation (5.19), we see that z(t) ∼ CN (a x(t −

τ) + b
√
Pcom r(t), σ

2) and has the following probability density function,

p(z(t); θ) =
1

πσ2
e−
‖z(t)−a x(t−τ)−b

√
Pcom r(t)‖2

σ2 . (5.20)

Now, the Fisher information for this estimation problem, J , is given by [109]

J =

〈∥∥∥∥n∗(t) a x′(t− τ)

σ2
+ c.c.

∥∥∥∥2
〉
.

where c.c. stands for complex conjugate term and x′(t − τ) = ∂
∂τ
x(t − τ). On

simplification, we see that

J = 2

〈
‖a‖2 n(t)n∗(t)x′(t− τ)[x′(t− τ)]∗

σ4

〉
, (5.21)

where the cross-terms in the product become 0 due to 〈n(t)〉 = 0 and the independence

of x(t−τ) and n(t). The factor of two comes from the complex conjugate term. Using

the fact that 〈n(t)n∗(t)〉 = σ2 and simplifying, we see that

J =
2‖a‖2

〈∥∥√PRO x
′
RO(t− τ) +

√
PMU x

′
MU(t− τ)

∥∥2
〉

σ2
. (5.22)

By multiplying the terms out, converting to frequency domain and applying Parseval’s

Theorem, the time-shift and differentiation properties of the Fourier Transform, the

orthogonality of XRO(f) and XMU(f), Equation (5.17), and finally evaluating the
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integrals for spectrally flat XRO(f) and XMU(f), we get [109]

J =
8π2 ‖a‖2αTB ρRO

3kBTtempB

[(
BO −

B

2
+ αB

)3

−
(
BO −

B

2

)3
]

+
8π2 ‖a‖2(1− α)TB ρMU

3kBTtempB

[(
BO +

B

2

)3

−
(
BO −

B

2
+ αB

)3
]
. (5.23)

We consider BO to be a free parameter chosen such that the regular Fisher infor-

mation for time-delay estimation, given by Equation (5.23), and the reduced Fisher

information [100] for time-delay estimation derived from the Fisher information ma-

trix (FIM) of joint amplitude and time-delay estimation are be equal. In general, the

reduced Fisher information is given by Equation (B.8). As shown in Chapter B, the

resultant value for BO is given by [109]

BO =
αB (α− 1)[ρMU(α− 1) + ρROα]

2(ρMU(α− 1)2 + ρROα2)
. (5.24)

From Equation (5.18), we see that,

ρRO =
Prad − (1− α)B ρMU

αB
, ρMU =

Prad − αB ρRO

(1− α)B
. (5.25)

Applying Equations (5.24) and (5.25) in Equation (5.23) separately and using the first

and second derivative tests, we can get the values of ρRO and ρMU that maximize the

Fisher information [109]. The resultant estimation rate bound for the radar system

in both sub-bands is given by

Rest ≤
B

2
log2

[
1 + σ2

procJ
] δ
TB , (5.26)

where J is given by Equation (5.23) and related to the variance of the time-delay

estimation by σ2
est = J−1. The corresponding communications rate bound in the
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mixed use channel is

RMU ≤ (1− α)B log2

[
1 +

b2 Pcom

σ2
int+n

]
(5.27)

σ2
int+n = ‖a‖2(1− α)B ρMU γ

2 (1− α)2B2σ2
proc

+ (1− α)kB TtempB .

We expect the resulting inner bound to have end points given by Equations (3.2)

and (4.4) (SIC vertex) when α = 0 and by Equation (4.4) when α = 1.
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Chapter 6

EXAMPLE SET OF JOINT RADAR-COMMUNICATIONS SYSTEM

PERFORMANCE BOUNDS

In this chapter, we present an example of the performance bounds derived in

Chapter 5. The example set of performance bounds are generated by evaluating the

bounds for a given set of parameters. We also introduce the concept of weighting

or prioritizing the amount of information (in bits) gained by each system differently

giving rise to the term ‘Not All Bits are Equal’. Finally, we present two methods for

selecting an ideal operating point for the joint radar-communications system. This

selection process is akin to achieving RF convergence for the joint system shown in

Figure 2.1. It should be noted that the spectral isolation bound that is plotted in

Figures 6.1 to 6.4 is a simple, unachievable outer bound that corresponds to each

system utilizing the full bandwidth with out the presence of each other, given by

Equations (5.2) and (5.3) with α = 1 and 0 respectively.

6.1 Comparison of Joint Radar-Communications Performance Bounds

In Figure 6.1, we display an example of the inner bounds on performance. The

parameters used in the example are displayed in Table 6.1. Through out this report, it

is assumed that the communications signal is received through an antenna sidelobe,

so that the radar and communications receive gain are not identical. In general,

the inner bound is produced by the convex hull of all contributing inner bounds.

In the example, we see that the WF bound exceeds the SIC bound and ISB. The

WF bound is not guaranteed to be greater than the SIC and ISB. The WF bound

is not guaranteed to be convex and its shape is non-intuitive. We also see that

54



the optimal Fisher information bound is always lower than the WF bound and the

linearly interpolated SIC bound. The optimal Fisher information bound can either

exceed the ISB or be lower than the ISB depending on the value of α used. Finally, we

see that the end points of the optimal Fisher bound are as expected. There are some

Table 6.1: Parameters used to generate example performance bounds for the ‘basic
multiple-access scenario.’

Parameter Value

Bandwidth (B) 5 MHz

Center Frequency 3 GHz

Effective Temperature (Ttemp) 1000 K

Communications Range 10 km

Communications Power (Pcom) 0.3 W

Communications Antenna Gain 0 dBi

Radar Target Range 200 km

Radar Antenna Gain 30 dBi

Radar Power (Prad) 100 kW

Target Cross Section 10 m2

Target Process Standard Deviation (στ,proc) 100 m

Time-Bandwidth Product (TB) 100

Radar Duty Factor (δ) 0.01

important subtleties with this figure. For example, the CIR time sharing scheme

shows a linear interpolation between the full bandwidth SIC node, and the radar

free operation (communications only). While it shows a linear decrease in estimation

rate, for any given radar spectrum-space-time access, the radar is operating over

the full bandwidth, unimpeded by the communications user. Contrast that with the
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Figure 6.1: Multiple-access bounds for joint radar-communications access. The
dashed red lines are created by considering each user independently in the entire
bandwidth, without interference. The ISB is given by the brown line, where the
blending ratio α is swept from 0 to 1, which allocates the overall bandwidth B pro-
portionally to the radar or communications user. The constant information time
share or SIC line is given by dashed green and the linear interpolation between the
SIC node and the radar-free communications point is given by dashed gray. Finally,
the optimal WF solution is given by the solid blue line and the optimal Fisher in-
formation bound is given by the solid black line. The proportion of B allocated to
communications only and the mixed-use SIC band is swept with α.

ISB, where traveling along the curve toward the communications only axis implies

a reduction in radar bandwidth, which impacts specific radar parameter estimation

[110]. The same applies for WF. Finally, it should be stated that the performance

bound curves are obtained by sweeping the blending ratio, α from 0 to 1. Changing

the blending ratio alters the operating point of a joint radar-communications system

along the performance bound curves shown in Figure 6.1.

6.2 Not All Bits are Equal

In this section we present the notion that not all bits are equal; that bits represent-

ing information gained for each system can be weighted differently. This allows one to
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prioritize the information gained by each system in a appropriate manner. As stated

previously, the communications and estimation rates represent the amount of infor-

mation, in bits, gained through the respective channels through message transmission

or radar illumination. However, the bits that are used to represent the amount of

information gained for each system can be prioritized differently and the information

rate metrics do not clearly highlight this.

For the multiple-access communications system described previously, an increase

in performance by 1 bit for the first communications system may not be as critical as

an increase in performance by 1 bit for the second communications system and vice

versa. For example, in Figure 1.3, if the first communication system with rate R1

represents a user receiving an emergency broadcast message and the second commu-

nication system with rate R2 represents a local Wi-Fi network connection, an increase

in R1 by 1 bit will be more critical than a similar improvement in R2.

A similar case exists for joint radar-communications systems as well. As we saw in

Section 5.1, we can use the estimation rate to generate achievable rate regions for the

joint radar-communications system, such as in Figure 1.3. The bits used by the radar

system can have more value or priority than the bits used by the communications

system and vice versa.

For example, in Figure 6.1, consider a joint radar-communications system in which

the communications system is used to stream a video and the radar system is monitor-

ing air-traffic. An increase in the communications rate by 1 bit will not be as critical

as a similar improvement in the estimation rate. As highlighted by the examples

provided in this discussion, the importance of bits are application specific. A system

engineer can assign priorities to bits for different systems and use the complete profile

of achievable rate regions, such as the ones provided by Figures 1.3 and 6.1, to set

the appropriate rates for each system.
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6.3 Selecting an Operating Point

The concept that not all bits are equal discussed in Section 6.2 can also be used

to find the appropriate operating point for a joint radar-communications system from

a complete profile of achievable rate regions such as the one shown in Figure 6.1.

As mentioned in Section 6.2, by assigning application specific priorities to bits

for different systems, the complete profile of achievable rate regions can be used to

select the appropriate rates for each system. Given a set of weights and a complete

profile of achievable rate regions, there are two methods to selecting an appropriate

operating point, one that selects the highest data and estimation rates or one that

selects the highest weighted spectral efficiency.

We first discuss the former method. By assigning suitable weights or priorities

to radar and communications bits, plotting this information against the complete

profile of achievable rate regions indicates the appropriate operating point for the

given joint system. This process is further highlighted in Figure 6.2, where we show

two cases, one in which a radar bit is worth 10000 communications bits and another

where a radar bit is worth 4000 communications bits. The two lines indicate on

each inner bound what the appropriate operating points are for each radar bit weight

case. Choosing the furthest of these intersection points (in terms of distance from

the origin) will give you the operating point that has the highest data and estimation

rates for a given set of weights.

We now discuss the second method that selects an operating point with the highest

weighted spectral efficiency. The plots shown in Figures 6.1 and 6.2, while useful, does

not give us a notion of how spectrally efficient we are. In Figures 6.3 and 6.4, we

attempt to do a more fair comparison by looking at the weighted spectral efficiency

of each bound. Here, the weighted spectral efficiency of each performance bound is
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Figure 6.2: Multiple-access bounds for joint radar-communications access describing
operating point selection. The dashed and dotted black lines represent two cases
where a radar bit is valued against a communication bit. The slopes of the dashed
lines indicate how much a radar bit is worth when compared against a communication
bit. In the case of the dotted line, a radar bit is worth 10000 communications bits and
in the case of the dashed line, a radar bit is worth 4000 communications bits. The
solid lines depict the performance bounds shown in Figure 6.1. The intersection of a
dashed line against a performance bound indicates the appropriate operating point
for a given radar bit weight.
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Figure 6.3: Weighted spectral efficiency plots for joint radar-communications access.
Note the accompanying colored dashed lines are the equivalent, isolated weighted
spectral efficiencies. For example, the dashed blue line is the weighted spectral effi-
ciency obtained if the two systems were operating at the same rate given by the CIR
time share scheme in the solid blue line, but isolated in frequency. This means the
communications user that is operating after subtraction of the radar would be in its
own equivalent band.
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given by

Eweighted =
wRRest + wC Rcom

(wR + wC)Btot

, (6.1)

where wR is the radar bit weight, wC is the communications bit weight, and Btot is

the sum of all the bandwidth consumed.

In Figures 6.3 and 6.4, we look at the weighted spectral efficiency of the per-

formance bounds discussed in Chapter 5 for co-designed systems as well as their

respective equivalent, isolated systems (spectrally isolated systems operating at the

same rates) for a given spectral allocation, B. For these isolated systems, the total

consumed bandwidth, Btot is given by

Btot = B + Beff , (6.2)

where B is the bandwidth consumed by an isolated radar system and Beff is the

effective bandwidth required by a isolated communications system to achieve the same

communications rate as a co-designed system. For the CIR time sharing scheme, we

solve for the effective isolated bandwidth by solving

Beff = R−1
com (αRcom,free + (1− α)Rcom,sic) , (6.3)

where Rcom,free is the communications rate when there are no other users given by

Equation (5.4), and Rcom,sic is the reduced communications rate operating at the SIC

node, given by Equation (3.2). That is, we solve for B in Equation (5.4), given that

the left hand side is equal to the total communications rate for a given point along the

CIR time share line. This is the sum of the duty-cycled communications only rate

given by Equation (5.4), and the complementary duty-cycled SIC communications

rate operating after radar prediction subtraction given by Equation (3.2). We utilize

a similar technique for the WF scenario.

For the spectral isolation case, Btot is 2B because without coexistence, coopera-

tion, or co-design, the two must occupy separate bandwidths for a given space-time.
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The ISB operates in a similar manner, assuming we have split our overall bandwidth

into two isolated sub-bands. For the CIR time sharing scheme, we see two blue lines.

The solid line is the weighted spectral efficiency gained by cooperation of the two

systems. The dashed blue line is the equivalent, isolated weighted spectral efficiency.

Here we see a large penalty for the radar bandwidth, especially when the radar band-

width is not being used.

To emphasize the importance of the concept that not all bits are equal that was

discussed in great detail in Section 6.2, we assign both the radar and communica-

tions bits a weight of 1 and calculate the weighted spectral efficiency, as shown in

Figure 6.3. Here, with solid and dashed lines representing the co-designed system

and the equivalent isolated system (systems operating at same rates but isolated in

frequency) respectively, we see that cooperation outperforms isolation for this case

and that the WF bound is most spectrally efficient. However, on recognizing that

the blending ratio α is the x-axis for this plot, it then becomes clear that the peak of

this plot is not the optimal operating point, given that α = 1 implies no radar use.

Since both radar and communications bits are assigned equal priorities of 1 in this

scenario, it is evident that not all bits are equal in this optimization process. We can

underscore this by setting wR = 3000 and wC = 1 in Equation (6.1), as shown in Fig-

ure 6.4. With proper weighting, the maximum in this plot becomes more meaningful

when considering spectral allocation. It should be noted that since the radar bits are

weighted 3000x what the communications bits are worth, this implies that more power

may be required to increase the estimation rate as compared to the communications

data rate.
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Figure 6.4: Weighted spectral efficiency (measured here in bits per second per kilo-
hertz) plots for joint radar-communications access, weighted for importance. In this
example, we weighted the radar bits 3000x what the communications bits are worth.
This may be true for certain military radar applications, and the weighting may be
scenario dependent. With proper weighting, the maximum point of spectral efficiency
has more meaning and utility.
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Chapter 7

RESEARCH HIGHLIGHT - RADAR WAVEFORM OPTIMIZATION FOR

COOPERATIVE RADAR AND COMMUNICATIONS JOINT RECEIVER

In this chapter, we present a new radar waveform design method for a joint radar-

communications system in which the radar waveform spectrum and communications

power spectral distribution are optimized to maximize joint performance. The radar

waveform spectrum is optimized to maximize radar performance or minimize esti-

mation error variance in the non-local (or low-SNR) regime and by employing the

continuous spectral WF algorithm [99], the optimal communications power distri-

bution in frequency is obtained that maximizes communications performance. The

global estimation rate, defined in Section 4.3 [111], and spectral WF SIC data rate,

defined in Section 3.3, capture radar and communications performance respectively.

The results presented in this paper is an extension of the work presented in Reference

[111].

In our previous efforts detailed in Chapter 5 [4, 5], the performance bounds of a

joint radar-communications system was found to depend on the shape of the radar

waveform spectrum (via the radar waveform RMS bandwidth). For a given band-

width, an impulse-like radar spectral shape (most of the waveform energy is located

at frequencies closer to the center of the bandwidth allocation) has a small RMS

bandwidth which is more favorable for communications performance, whereas a radar

waveform spectrum with more energy at frequencies closer to the edges of the band-

width allocation has a large RMS bandwidth which is more favorable for estimation

performance. However, the latter waveform also has higher autocorrelation sidelobes

or ambiguity. When taking into account non-local or low-radar SNR regime estima-
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tion errors, these high autocorrelation sidelobes negatively impact estimation perfor-

mance by increasing the radar threshold SNR at which non-local estimation errors

do not occur. Thus, the shape of the radar spectrum poses a trade-off both in terms

of radar performance vs. communications performance and in terms of improved

estimation performance vs. an increased radar threshold SNR.

In order to place emphasis on the waveform design approaches and their perfor-

mance, we assume a simple scenario with a single target and no clutter. The problem

scenario considered in this paper is given by Figure 7.1. The simulation scenario

shown in Figure 7.1 is the same one described in Section 2.2.

Radar Target Joint Radar-

Communication System (Radar Node / 

Communications Relay)

Communications 

Receiver

Communications Transmitter

Figure 7.1: The joint radar-communications system simulation scenario for radar
waveform design. In this scenario, a radar and communications user attempt to use
the same spectrum-space-time. This scenario is instructional, and can easily be scaled
to more complicated scenarios by using it as a building block to construct real world
examples.

7.1 Non-linear Chirp with Parametric Polynomial Phase

In this section, we briefly introduce the parameterized non-linear chirp that will be

used to design the optimal radar waveform in the minimum estimation error variance

waveform design method. We also derive an approximate closed-form solution for the

spectrum for a special case of this non-linear chirp waveform.

64



One desirable property for radar waveforms is to have a PAPR as close as possible

to 1 (the smallest possible value). Thus, most radar systems now require the signal

to be constant modulus or unimodular, which keeps the peak and the average power

the same over any time period, granting the signal the smallest possible PAPR of 1.

To ensure that the optimized radar waveform is unimodular, we begin by considering

the following unimodular non-linear chirp signal with a polynomial phase

x(t) = ejπ(
∑N
i=1 pit

2i), (7.1)

where N is a positive integer and pi ∈ R, ∀i are phase coefficients. We let the poly-

nomial phase to have only even terms to ensure symmetry in the frequency domain.

The shape of the waveform spectrum is determined by the phase coefficients. The

minimum estimation error variance method selects the appropriate phase coefficient

values so as to optimize the shape of the radar spectrum to maximize joint radar-

communications performance.

In the following discussion, we derive an approximate expression for the spectrum

of the non-linear chirp waveform shown in Equation (7.1) for the case that N = 2.

7.1.1 Spectrum of Non-linear Chirp with Parametric Polynomial Phase

Due to the increased complexity involved in evaluating the spectrum for higher

values of N , we consider the simple case of N = 2. The spectrum of the band-limited

non-linear chirp with bandwidth B and time-duration T is given by

X(f) =

∫ T
2

−T
2

dt ejπ(p1B2 t2 + p2B4 t4) e−j2π f t

=

∫ T
2

−T
2

dt ejπ(p1B2 t2 + p2B4 t4− 2 f t)

=

∫ T
2

−T
2

dt ejφ(t,f) . (7.2)
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In order to obtain a closed form solution for the above integral, we employ the

principle of stationary phase (PSP) [112]. We first find the points in time, t0, where

the phase, φ(t, f), is stationary i.e. when

∂φ(t, f)

∂t

∣∣∣
t=t0

= 0

⇒ π(2 p1B
2 t0 + 4 p2B

4 t30 − 2 f) = 0

⇒ 2 p1B
2 t0 + 4 p2B

4 t30 − 2 f = 0

(7.3)

Solving for t0, we get

t0 =
−6

2
3 B6 p1 p2

Q

+
6

1
3 (9B8 p2

2 f +
√

3B16 p3
2 (2B2 p3

1 + 27 p2 f 2))
2
3

Q
(7.4)

where

Q = 6B4 p2 (9B8 p2
2 f +

√
3B16 p3

2 (2B2 p3
1 + 27 p2 f 2))

1
3 .

Using the PSP, the expression for an approximation of the spectrum is given by [112]

X(f) ≈ 2

√
−π

2φ′′(t0, f)
e−j

π
4 x(t0) ejφ(t0,f)

= 2

√
−1

4 p1B2 + 24 p2B4 t20
e−j

π
4 ejπ(p1B2 t20 + p2B4 t40)

· ejπ(p1B2 t20 + p2B4 t40− 2 f t0) (7.5)

where φ′′(t, f) = ∂2φ(t,f)
∂t2

= π(2 p1B
2 + 12 p2B

4 t2). Although we do not use the above-

discussed expression for the radar spectrum in our numerical study, nevertheless, the

above result may be useful in other studies.
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7.2 Radar Waveform Design Methods

In this section, we present a novel radar waveform design method, the minimum

estimation error variance method.

7.2.1 Minimum Estimation Error Variance Method

The waveform design algorithm that we propose in this section designs an optimal

non-linear chirp radar waveform (as modeled in Section 7.1) from a global estima-

tion rate perspective. In other words, we first design the waveform to minimize the

global estimation error variance (estimation error variance taking into account both

non-local and local estimation errors), given by Equation (4.6). This minimization

of the global estimation error variance is accomplished by minimizing the estimation

error variance at the radar threshold SNR of the radar estimator. The threshold

point of an estimator is the estimator (or radar) SNR value at which the estimator’s

performance deviates from the CRLB [113] due to error contributions from non-local

estimation errors. At SNR values lower than the threshold point, due to autocor-

relation mainlobe-sidelobe confusion, non-local estimation errors begin to contribute

to estimator’s error variance which causes the estimation performance to degrade

and deviate from the CRLB [100]. Since the threshold point is the SNR point at

which an estimator’s performance deviates from the CRLB and also the SNR point

at which non-local estimation errors contribute to estimation performance, minimiz-

ing the CRLB at the threshold point gives the lowest possible global estimation error

variance or highest possible global estimation rate.

For a given SNR, we have to design a radar waveform that has a threshold point at

that SNR and has the best (or smallest) estimation error variance. We first eliminate

all radar waveforms that have a threshold point higher than the current SNR and then,
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from the remaining feasible solution set, we find the radar waveform that minimizes

the CRLB given by Equation (4.5). We perform the first elimination step by imposing

the following constraint on the ratio of the global estimation error variance (given by

Equation (4.6)) and the CRLB (given by Equation (4.5))

σ2
est

σ2
CRLB

≤ δconstraint, (7.6)

where δconstraint is a parameter whose value determines the size of the feasible solution

set. We discuss how to tune this parameter in Section 7.3. By ensuring the above

ratio stays below δconstraint, any radar waveforms with higher threshold points (SNR

values) are eliminated. Figure 7.2 depicts how this constraint works on eliminating

radar waveforms with higher threshold points.

We also introduce an additional constraint on spectral leakage (constraint C2) to

the waveform optimization problem in order to obtain optimal radar waveforms that

not only ensure optimal joint radar-communications performance, but also satisfy

additional real-world properties that a traditional radar waveform would. Since the

system can only receive signals whose spectrum lies within the system’s bandwidth,

any RF energy that leaks outside of the bandwidth will be lost. To minimize this loss

of RF energy, we introduce a constraint on the amount of energy present in the radar

spectrum at frequencies out of the system bandwidth range. We enforce this spectral

leakage constraint by having the radar spectrum be below a thresholding spectral

mask such as the one seen in Figure 7.3.

We consider the non-linear chirp waveform given by Equation (7.1). The spec-

tral shape of the waveform is determined by the parameters pi, i = 1, . . . , N . In

order to design the radar waveform spectrum that minimizes the global estimation
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Figure 7.2: An example depicting the impact of the constraint given by Equa-
tion (7.6) on the feasible set for optimization. The dashed vertical line indicates the
given SNR. The red, purple and blue solid curves indicate the estimator performance
for different radar waveforms and the black solid lines indicate the CRLB for each
radar waveform. The black dots indicate the CRLB values for various feasible radar
waveforms at the given SNR. The red and purple dots indicate the actual estimation
error variance (estimation performance) for various feasible radar waveforms at the
given SNR. The grayed out curves indicate estimation performance for unfeasible
radar waveforms at the given SNR. Minimizing the CRLB over the feasible set en-
sures that the optimal radar waveform will have the lowest estimation threshold point
(or best estimation performance, taking both local and non-local estimation errors).

performance, we solve the following optimization problem:

minimize
p̄

1

8π2Brms(p̄)2TB(SNR)
,

subject to pi ∈ [0, 10] ∀i

σ2
est

σ2
CRLB

≤ δconstraint

1A(p̄) = 1 (C2)

(7.7)

where p̄ = (p1, . . . , pN), and p1, . . . , pN are the coefficients of the polynomial phase for

the unimodular waveform in Equation (7.1), and Brms(p̄) is given by Equation (2.9).

The constraint C2 constrains the coefficients p̄ such that the resulting spectrum of
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Figure 7.3: Spectral Leakage Mask used constrain the amount of energy in the
radar spectrum leaking out at frequencies out of the system bandwidth range. The
spectral leakage constraint is enforced by having the radar spectrum be below this
thresholding spectral leakage mask.

the waveform stays below a certain masking threshold, which is represented by an

indicator function, where A is the set of all phase coefficients that let the resulting

masked spectrum stay below the masking threshold as shown in Figure 7.3.

Once the optimal radar waveform that maximizes the radar performance of a

joint radar-communications system is designed, the continuous spectral WF algorithm

described in Section 3.3 is employed to determine the spectral WF SIC data rate that

maximizes the communications performance of a joint radar-communications system.

This optimization process is called the minimum estimation error variance method.

It should be noted that the optimization problem described in Equation (7.7) is a

non-convex optimization problem.

7.2.2 Impact of Threshold Point Signal-to-Noise Ratio

As mentioned earlier in the chapter, we saw from References [4, 5] that the spectral

shape of the radar waveform (the radar RMS bandwidth) impacts the performance of

a joint radar-communications system. Shaping the radar spectrum imposes a trade-

off both in terms of radar performance vs. communications performance and in terms
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of improved estimation performance vs. an increased radar threshold SNR. In this

subsection, we briefly discuss how the choice of the threshold SNR impacts both

the shape of the radar waveform spectrum and the performance of the joint radar-

communications system.

Selecting a low value for the threshold SNR implies that even for small radar SNR

values, the probability of sidelobe confusion for the radar waveform autocorrelation

function (which causes the estimator performance to deviate from the CRLB) is small.

Radar waveforms with more energy at frequencies closer to center of the bandwidth

allocation can have such autocorrelation functions. However, such a radar waveform

has a smaller RMS bandwidth which degrades the overall estimation performance

as seen in Equation (4.5). Furthermore, as we observe from Equation (3.4), radar

waveforms with more spectral energy at the bandwidth center will reduce the noise

spectral density, Nint+n(f), due to minimal radar residual values (Nradresi(f)), thereby

maximizing the data rate.

Conversely, selecting a larger value for the threshold point implies there is more

ambiguity in the radar waveform autocorrelation function (higher sidelobes), which

occurs for radar waveforms with more energy at frequencies closer to the edges of

the bandwidth allocation. Such waveforms also have larger RMS bandwidth values

and a better estimation performance. Finally, radar waveforms with more spectral

energy at the bandwidth edges have larger Nradresi(f) values and consequently, larger

Nint+n(f) values which degrade the communications data rate.

Thus, we see that selecting a low radar SNR threshold point increases the com-

munications performance and decreases the radar performance but also results in a

radar waveform with low sidelobes in the autocorrelation. Similarly, selecting a high

threshold point increases the radar performance and decreases the communications

performance but also results in a radar waveform with large autocorrelation sidelobes.
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The objective is to select a threshold point that optimizes the spectral shape of the

radar waveform such that the performance with respect to radar and communications

is jointly maximized.

The results from the numerical study of the above optimization problem are dis-

cussed in Section 7.3.

7.3 Simulation Results

In this section, we present an example of the waveform design technique discussed

in this paper, the minimum estimation error variance method, for an example param-

eter set. The parameters used in the example are shown in Table 7.1. We also study

the effect of the order of the non-linear chirp phase on joint radar-communications

performance.

7.3.1 Minimum Estimation Error Variance Method

We now discuss the numerical results from implementing the minimum estimation

error variance method in Section 7.2.1. First, we highlight the impact of the threshold

SNR value on the shape of the radar spectrum. We consider two threshold SNR values

of -70dB and 50 dB and we choose N = 5 in Equation (7.1), i.e., x(t) = eiπ(
∑5
m=1 pmt

2m).

The minimum estimation error variance optimized radar waveform spectrum for this

set of parameters is shown in Figure 7.4. From Figure 7.4, we see the optimal radar

spectrum has more spectral energy at the edges of the bandwidth for high threshold

SNR values and has more spectral energy closer to the center for low threshold SNR

values, as we stated in Section 7.2.2.

We also study the impact of the threshold SNR (or radar SNR) on the system

performance. For the purpose of this study, we choose N = 5.

For different values of SNR, we optimize the shape of the waveform, i.e., optimize
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Table 7.1: Parameters used to generate examples of the minimum estimation error
variance radar waveform design method.

Parameter Value

Bandwidth (B) 5 MHz

Center Frequency 3 GHz

Effective Temperature (Ttemp) 1000 K

Communications Range 10 km

Communications Power (Pcom) 0.3 W

Communications Antenna Gain 0 dBi

Communications Receiver Side-lobe Gain 10 dBi

Radar Target Range 200 km

Radar Antenna Gain 30 dBi

Target Cross Section 10 m2

Target Process Standard Deviation (στ,proc) 100 m

Time-Bandwidth Product (TB) 128

Radar Duty Factor (δ) 0.01

Threshold Point Constraint (δconstraint) 1 + 0.01

the coefficients p̄ = (p1, . . . , p5), to minimize the CRLB achieved with the waveform.

We also impose the constraint σ2
est/σ

2
CRLB ≤ δconstraint, which ensures that for the

given SNR, our feasible solution set include only waveforms whose threshold SNR

is less than or equal to the given SNR (as discussed in Section 7.2.1). δconstraint is

tuned so that the ratio between the estimation error variance (which characterizes

estimation performance in this paper) and the CRLB remains close to 1. For this

simulation, we consider a δconstraint value of 1 + ε, where ε introduces some flexibility

to the constraint and typically has a value of 0.01. We solve the optimization problem
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Figure 7.4: The minimum estimation error variance optimized radar waveform spec-
trum for different threshold SNR values. As expected, the radar waveform optimiza-
tion was done for N = 5. We see the optimal radar spectrum has more spectral
energy at the edges of the bandwidth for high threshold SNR values and has more
spectral energy closer to the center for low threshold SNR values.

in Equation (7.7) using differential evolution (DE) [114]. [114] Figure 7.5 shows the

RMS bandwidth values achieved with each optimized waveform for various values of

threshold SNR. As expected, the optimal RMS bandwidth increases as we increase

the threshold SNR. From Equation (4.5) and Section 7.2.2, we see that the optimal

RMS bandwidth increasing as the threshold SNR increases will thereby reduce the

CRLB as stated in Section 7.2.2.

Figure 7.6 shows the autocorrelation function achieved with each optimized wave-

form for various values of threshold SNR. For SNR values -50dB, -20dB and 20dB,

we observed that the peak sidelobes in all three cases occur at ±3µs and have values

of -8dB, -5dB, and -3dB respectively. As expected, the peak sidelobe of the auto-

correlation function increases as we increase the threshold SNR. As mentioned in

Section 7.2.2, a higher threshold SNR implies the optimal waveform has more ambi-
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Figure 7.5: RMS bandwidth of the optimized radar waveform vs. SNR. As expected,
the optimal RMS bandwidth increases as we increase the threshold SNR. From
Equation (4.5), we see that the optimal RMS bandwidth increasing as the threshold
SNR increases will thereby reduce the CRLB. As a result, we see that the estimation
performance increases with SNR.

guity which translates into higher peak autocorrelation sidelobes.

Now, for each threshold SNR value we considered and the optimal waveform

shape parameters p1, p2, p3, p4, p5 we obtained above, we evaluate the radar estimation

rate bound in Equation (4.2) and the spectral WF SIC data rate in Equation (3.7)

corresponding to each of these waveforms. Figure 7.7 shows the plot of estimation

rate and the data rate against the threshold SNR value. Clearly, according to the

figure, the performance of the system improves with respect to the estimation rate as

we increase the threshold SNR, which is expected as the minimum achievable CRLB

decreases with threshold SNR, and the estimation rate increases with decreasing

CRLB according to Equation (4.2) and Equation (4.6). However, we observe that

the spectral WF SIC data rate reduces as the threshold SNR increases. This trend

occurs because, as we stated in Section 7.2.2, as the threshold SNR increases, the

noise spectral density, Nint+n(f) achieves higher values due to larger radar residual

values, which reduces the spectral WF SIC data rate.

We first investigate the relationship between the autocorrelation peak sidelobe
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Figure 7.6: Autocorrelation function of the optimized radar waveform vs. SNR.
As expected, the peak sidelobe of the autocorrelation function increases as we in-
crease the threshold SNR. This trend is observed because a higher threshold SNR
implies the optimal waveform has more ambiguity which translates into higher peak
autocorrelation sidelobes.
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Figure 7.7: Estimation and data rates vs. threshold SNR. Clearly, we see the
performance of the system improve with respect to the estimation rate and degrade
with respect to the spectral WF SIC data rate as we increase the threshold SNR.

levels and N . Figure 7.8 shows the autocorrelation function for N = 2 and N = 4 at

a threshold SNR value of 20dB. We clearly see that the autocorrelation peak sidelobes

increase as N increases, which causes the estimation performance to drop overall as

N increases.

As the shape of the waveform explicitly depends on the coefficients p1, . . . , pN in

Equation (7.7), we now study the effect of the number of coefficients, N , on both
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Figure 7.8: Autocorrelation function of the optimized radar waveform vs. N . We
clearly see that the autocorrelation peak sidelobes increase as N increases, which
causes the estimation performance to drop overall as N increases.

the estimation and the data rates. For this study, we choose a threshold SNR value

of 50dB and vary N from 2 to 8. For each N and threshold SNR value, we solve

Equation (7.7) and evaluate the estimation rate from Equation (4.2) and spectral

WF SIC data rate from Equation (3.7). Figure 7.9 shows plots of these rates against

N . From Figure 7.9, we see that as N increases, the estimation rate and the spectral

WF SIC data rate decreases. This trend in the estimation rate is caused because

increasingN means increasing the amount of energy at higher frequencies for the radar

waveform spectrum. For a fixed threshold SNR value, while this increase in spectral

energy at higher frequencies results in the Brms value increasing, this also means that

the ambiguity or peak autocorrelation sidelobes increase for the waveform (a trend

we observed earlier). This increase in ambiguity results in an overall decrease in the

estimation rate. This increase in the radar waveform’s spectral content at higher

frequencies means that the noise spectral density, Nint+n(f), achieves higher values

due to larger radar residual values, which reduces the spectral WF SIC data rate.

We also notice that after N = 6, the estimation rate and spectral WF SIC data rate
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saturate and do not decrease further. This trend occurs because we have used too

many co-efficients and have over-fitted the spectrum.
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Figure 7.9: Estimation and data rates vs. N . We see that as N increases, the esti-
mation rate and the spectral water-filling SIC data rate both decrease. This trend is
caused because increasing N means increasing the amount of energy at higher frequen-
cies for the radar waveform spectrum. While this results in the Brms value increasing,
this also means that the ambiguity or peak autocorrelation sidelobes increase for the
waveform. This increase in ambiguity results in an overall decrease in the estimation
rate. We also notice that after N = 6, the estimation rate and spectral WF SIC data
rate start saturate and do not decrease further. This trend occurs because we have
used too many co-efficients and have over-fitted the spectrum.

Finally, as we have mentioned earlier in Section 7.2.1, we would like to note that

the optimization problem described in Equation (7.7) that the minimum estimation

error variance method solves is a non-convex optimization problem. Given the non-

trivial nature in solving non-convex optimization problems, additional investigation is

required to better solve the non-convex optimization problem given in Equation (7.7).
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Chapter 8

EXTENDING JOINT RADAR - COMMUNICATIONS PERFORMANCE

BOUNDS TO INCLUDE MULTIPLE RADAR TARGETS, CLUTTER

MITIGATION, PHASE NOISE, AND RADAR TARGET DETECTION

In this chapter, we develop several different extensions to the inner bounds on

joint radar-communications system performance presented in Chapters 5 and 6. More

specifically, we develop extensions to the performance bounds for target estimation

for multiple targets, target estimation in the presence of clutter, target estimation

with clutter mitigation in the presence of phase noise, and radar target detection.

Examples of these performance bound extensions are then generated by evaluating

them for a given set of parameters. We also highlight the effect phase noise has on

clutter estimation and mitigation and how it effects joint system performance.

8.1 Extension of Performance Bounds for Multiple Radar Targets

In this section, the inner bounds on the performance of the joint radar-communications

system developed in Section 5.1 are extended to include target parameter estimation

for multiple independent targets that are far apart. The simulation scenario being

considered in this section is described in Section 2.2.

8.1.1 Multiple Correlated, Closely Spaced Targets

For multiple targets that are closely spaced and have correlated range fluctuation

process noise (tracking motion of the targets are correlated to some degree), deriving

the radar estimation rate becomes much harder. In the Section 4.1, the estimation rate

was easily constructed because we assumed that the CRLB for time delay estimation
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and the range fluctuation process noise for a target was independent of the other

targets, which meant that the mutual information between the radar target and the

radar return was independent for each target and the total estimation rate was the

sum of the individual mutual information over all targets.

However, for two targets that are closely spaced (even if they are resolvable), the

CRLB for time delay estimation for one of those targets is dependent of the location

of the other [115]. Additionally, if two targets are correlated (tracking motion of the

targets are correlated), then they have dependent range fluctuation process noise.

Hence, in scenarios where the targets are correlated and closely spaced, the mutual

information between the radar target and the radar return are no longer independent

for each target and the total estimation rate is not equal to the sum of the mutual

information for each target. When targets are correlated and closely spaced, new

methods have to be implemented to derive the total estimation rate, which are beyond

the scope of this paper.

For multiple targets that are uncorrelated and far apart, the estimation rate can

be easily computed and is given by Equation (4.4).

8.1.2 Inner Bounds on Joint Radar Communications System Performance

In this section, we present the previously derived inner bounds on the perfor-

mance of the joint radar-communications system for multiple target parameter es-

timation. We consider N radar targets with the mth target having delay τm and

gain-propagation-cross-section product am. To simplify the discussion, we assume

that all targets are far apart and that the range fluctuation process noise is indepen-

dent for each target (radar tracking motion is independent for each target).
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Isolated Sub-band Inner Bound

The bandwidth will be split between the two sub-bands according to some α such

that,

B = Brad +Bcom , Bcom = αB , Brad = (1− α)B .

The corresponding communications rate (for the communications only sub-band)

is given by

Rcom ≤ αB log2

(
1 +

‖b‖2 Pcom

kB Ttemp αB

)
. (8.1)

and the corresponding radar estimation rate is given by

Rest ≤
δ

2T

∑
m

log2

(
1 +

2σ2
τm,proc γ

2 (1− α)2B2 T ‖am‖2 Prad

kB Ttemp

)
. (8.2)

Communications Water-filling Bound

Given some bandwidth separation α,

B = Bcom +Bmix , Bcom = αB , Bmix = (1− α)B , (8.3)

we apply the WF result derived in Section 5.1.3 and Reference [4]. The resulting

communications rate bound in the communications-only sub-band is given by

RCO ≤ αB log2

(
1 +

β Pcom b
2

kB Ttemp αB

)
. (8.4)

The mixed use communications rate inner bound is given by

RMU ≤ (1− α)B log2

(
1 +

b2 (1− β)Pcom

σ2
int+n

)
, (8.5)

where σ2
int+n is given by Equation (2.7). The corresponding radar estimation rate

inner bound is then given by

Rest ≤
δ

2T

N∑
m=1

log2

(
1 +

2σ2
τm,procγ

2B2
mix T ‖am‖2 Prad

kB Ttemp

)
. (8.6)
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Optimal Fisher Information Inner Bound

The bandwidth will be split between the two sub-bands according to some α such

that,

B = Brad +Bmix , Brad = αB , Bmix = (1− α)B , (8.7)

the Fisher information for this estimation problem for the mth target, Jm, is given by

Jm =
8π2 ‖am‖2αTB ρRO

3kBTtempB

[(
BO −

B

2
+ αB

)3

−
(
BO −

B

2

)3
]

+
8π2 ‖am‖2(1− α)TB ρMU

3kBTtempB

[(
BO +

B

2

)3

−
(
BO −

B

2
+ αB

)3
]
. (8.8)

BO, ρRO and ρMU are found in the manner described in Section 5.1.4. The resultant

estimation rate bound for the radar system in both sub-bands is given by

Rest ≤
δ

2T

N∑
m=1

log2

(
1 + σ2

procJm
)
, (8.9)

where Jm is given by Equation (8.8) and related to the variance of the time-delay

estimation by σ2
τm,est = J−1

m . The corresponding communications rate bound in the

mixed use channel is

RMU ≤ (1− α)B log2

(
1 +
‖b‖2 Pcom

σ2
int+n

)
(8.10)

σ2
int+n =

N∑
m=1

‖am‖2(1− α)B ρMU γ
2 (1− α)2B2σ2

proc + (1− α)kB TtempB .

8.1.3 Examples

In Figure 8.1, we display an example of the inner bounds on performance. The

values of parameter sets #1 - #5 used in the example are displayed in Table 8.1.

Parameter sets #1 - #4 are used to generate the optimal Fisher information inner

bounds shown in Figure 8.1a while parameter set #5 is used to generate the perfor-

mance bounds shown in solid lines and parameter set #1 to generate the performance

82



bounds shown in dashed lines in Figure 8.1b. The parameters not mentioned in sets

#2 - #5 have the same values as in set #1. Only one target is present in Figure 8.1a

while there are three targets present in Figure 8.1b.

While deriving the optimal Fisher information bound, it was found that the dis-

tribution of radar power (or power spectral density) between the two sub-bands can

only be optimized for α < 0.19 and α > 0.81. Outside this range of α, the radar

power was found to be complex in nature, which was meaningless in terms of the

radar system. In order to get an inner-bound on rate over all values of α a heuris-

tic method is applied wherein the power in each sub-band has been set linearly for

α < 0.19 and α > 0.81 such that the total power used by both sub-bands at α value

is always the total radar power, Prad.

In Figure 8.1a, the SIC bound is indicated by dashed lines and the optimal Fisher

bound by solid lines for a particular parameter set. We see that the end points of the

optimal Fisher bound are as expected. In the example, as the radar power, Prad, is

increased, as seen in parameter set #2, the optimal Fisher information bound shrinks

(SIC vertex is lowered) and moves towards the right (radar estimation rate increases).

Additionally, we see that as the communications power, Pcom, is increased, as seen

in parameter set #3, the optimal Fisher information bound increases in height (SIC

vertex is raised). Finally, we see that as the time-bandwidth (TB) product, TB, is

increased, as seen in parameter set #4, the optimal Fisher information bound moves

towards the left (radar estimation rate decreases.)

In Figure 8.1b, the ISB is indicated by the brown line. The SIC bound is indi-

cated by green. The WF bound is indicated by the blue line. The optimal Fisher

information bound is indicated by the black line. From Figure 8.1b, we see that under

the simple assumptions about the multiple radar targets, the total estimation rate,

which is the sum of each individual target estimation rate, increases as the number
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Figure 8.1: Data Rate and Estimation Rate Bounds for Parameters in Table 8.1

of targets increase which is what we expected.

8.2 Extension of Performance Bounds to Include Clutter

In this section, the inner bounds on the performance of the joint radar-communications

system developed in Section 5.1 are extended to incorporate the effects of clutter with

small intrinsic motion. We present a diagram of the scenario in which the joint radar-

communications system is operating in Figure 8.2. The simulation scenario shown in

Figure 8.2 is described in Section 2.2, with the addition of clutter scatterers to the

environment.

8.2.1 Clutter Models

In this section, we will present the two models we will use to describe clutter and

the techniques used to eliminate clutter under each model. We assume that all clutter

scatterers are resolvable. We first look at clutter in each range cell (post-matched

filtering for radar) and then calculate the total pre-matched filtering clutter return

observed by the joint radar-communications system receiver. As mentioned earlier,
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Table 8.1: Parameters used to generate example performance bounds for multiple
radar targets in the ‘basic multiple-access scenario.’

Parameter #1 Value

Bandwidth (B) 5 MHz

Center Frequency 3 GHz

Effective Temperature (Ttemp) 1000 K

Communications Range 10 km

Communications Power (Pcom) 100 W

Communications Antenna Gain 0 dBi

Communications Receiver Side-lobe Gain 10 dBi

Radar Target Range 100 km

Radar Antenna Gain 30 dBi

Radar Power (Prad) 100 kW

Target Cross Section 10 m2

Target Process Std. Deviation (στ,proc) 100 m

Time-Bandwidth Product (TB) 100

Parameter #1 Value

Radar Duty Factor (δ) 0.01

Parameter #2 Value

Radar Power (Prad) 500 kW

Parameter #3 Value

Communications Power (Pcom) 500 W

Parameter #4 Value

Time-Bandwidth Product (TB) 200

Parameter #5 Value

Radar Target Range #2 80 km

Radar Target Range #3 120 km

Target Process Std. Deviation (στ,proc) #2 130 m

Target Process Std. Deviation (στ,proc) #3 90 m
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Figure 8.2: The joint radar-communications system simulation scenario with clutter
and target scatterers. The joint radar-communications receiver can simultaneously
perform radar target parameter estimation and decode a communications signal. By
considering this idealized receiver in different scenarios, inner bounds on joint perfor-
mance are derived.

the clutter elimination methods presented here are not standard clutter elimination

techniques, but rather simplified methods employed so we can better study the effects

of clutter on joint radar-communications system performance.

Static, Slowly Fluctuating Clutter

In this model, we assume the clutter is static but slowly fluctuating such that the

radar return over Np radar pulses is highly correlated (approximately constant). We

assume that the clutter return is constant over the same Np radar pulses for each

scatterer, but there can be other models where the clutter return is constant for a

different number of pulses for each scatterer. For L resolvable clutter scatterers, the

radar return, z(t), is given by

z(t) =
√
Prad

L∑
m=1

am x(t− τm) + n(t) . (8.11)

With these assumptions, we perform matched filtering on the received signal and

resolve each scatterer into a separate range cell. We perform maximum likelihood
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estimation for the clutter return amplitude across each range cell, and use the estimate

to eliminate the clutter return. Since the clutter return for each range cell is constant

across a certain number of pulses, we can perform amplitude estimation over multiple

pulses, moving the amplitude estimate closer to the true value. Eliminating clutter

with this highly accurate estimate will leave behind only a tiny residual of clutter

in each range cell. This residual can be interpreted as the minimum error between

the true value of amplitude and its estimate and is given by a zero mean complex

Gaussian [116], nresi(t), with variance given by the CRLB for amplitude estimation

[100] which, for noise power σ2
noise = kB Ttemp B, is given by,

σ2
resi =

kB Ttemp B

ns
=
kB Ttemp B

NpTB
, (8.12)

where ns is the total number of independent samples in the period of integration.

Thus, after clutter elimination, each range cell will have a zero mean complex

gaussian residue with variance given by Equation (8.12). Noting that matched filter-

ing doesn’t change the complex Gaussian nature of the clutter residual but adds a

factor of ns = Np TB to the variance, the radar return signal after clutter elimination

is

z(t) =
L∑

m=1

1√
Np TB

nresi(t) + n(t). (8.13)

Thus, we see that z(t) ∼ CN (0, σ2
n+resi), where σ2

n+resi = σ2
noise +

Lσ2
resi

Np TB
.

Static Clutter with Intrinsic Clutter Motion

Similar to the previous model, we assume that the clutter is static over Np radar

pulses. However, in this model, we say that the clutter also has some small intrinsic

motion (intrinsic clutter motion (ICM)) which causes the clutter returns to randomly

fluctuate over each pulse. For each clutter scatterer, the ICM, which is not very large,

induces a narrow Doppler spread, centered around zero Doppler, in the clutter power
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spectrum. We model the clutter power spectrum as a very narrow Gaussian function

with standard deviation σfD , obtained empirically from real world data, centered

around zero Doppler [117]. The Gaussian clutter spectrum for the mth scatterer at

range r is given by

C(f, r) =
Km Prad

r
√

2π σ2
fD

exp

(
−f 2

2σ2
fD

)
, (8.14)

where Km is a constant depending on parameters for the radar system and the mth

scatterer, derived from the radar range equation, such that am = Km
r

, where r is the

corresponding range. Since the Doppler spread is very narrow, a three-tap model, with

each tap located one standard deviation (σfD) apart and centered at zero Doppler,

to capture the Gaussian clutter power spectrum. Each tap in this configuration

represents the average clutter power in the corresponding Doppler cell. The three-

tap model for a Gaussian clutter spectrum for the mth scatterer at range r is given

by

C3−Tap(f, r) =

∫ σfD
2

−σfD
2

dfC(f, r) δ(f) +

∫ −σfD
2

−3σfD
2

dfC(f, r) δ(f + σfD)

+

∫ 3σfD
2

σfD
2

dfC(f, r) δ(f − σfD) . (8.15)

Due to the fluctuations in clutter being random, we can model the distribution of the

complex amplitude of the clutter return at each Doppler tap as zero mean complex

Gaussian with variance given by the clutter power spectrum at each Doppler cell.

An example of the three tap model being used to represent a Gaussian clutter

power spectrum is shown in Figure 8.3.

In order to eliminate clutter from the radar return signal, we perform simple

Doppler processing. Once again, we note that the Doppler processing discussed in

this section is not standard Doppler processing but a greatly simplified method im-

plemented so we can better study the effects of clutter on system performance. The
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Figure 8.3: An example of the three-tap model being used to represent Gaussian
clutter power spectrum. The narrow Gaussian clutter spectrum can be represented by
placing three taps one standard deviation (σfD) apart and centered at zero Doppler

time average of the radar return signal over Np pulses (DFT at zero frequency) will

give an estimate of the clutter spectrum at zero Doppler. Using this estimate, we

eliminate the clutter response at zero Doppler for each clutter scatterer, with only

a small residual remaining. Similar to the previous scenario, this residual will have

a zero mean complex Gaussian distribution with variance given by Equation (8.12).

Since this process only eliminates the clutter at the zero Doppler tap, the clutter at

the non-zero Doppler taps caused by ICM still remain, resulting in a model mismatch.

Thus, after clutter elimination, each range cell with a clutter scatterer present will

have a zero mean complex Gaussian residue with variance given by

σ2
resi =

kB Ttemp B

Np TB
+ σ2

−1thDopplerTap + σ2
+1thDopplerTap. (8.16)

As noted previously, since matched filtering only adds a factor of ns = Np TB to

the variance of the Gaussian residual, we see that, for L clutter scatterers, z(t) ∼

CN (0, σ2
n+resi), where σ2

n+resi = σ2
noise +

Lσ2
resi

Np TB
.
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8.2.2 Received Signal with Predicted Radar Return Suppressed

We employ SIC, which was described in Section 2.3, at the joint radar-communications

receiver.

We assume that the clutter elimination process discussed in Section 8.2.1 has

taken place, and as a result the received signal will be corrupted with be the sum of

thermal noise and clutter residual for L clutter scatterers, nn+resi(t), which is given

by Equation (8.13). Thus, the pre-matched filtering clutter residual from all range

cells, L nresi(t)√
Np TB

, acts as interference from the communications receiver’s perspective,

when decoding the communications signal. On the other hand, it is assumed that

post-matched filtering target detection is already done and estimation is performed

only in range cells in which a target has been detected. Hence for radar estimation,

the radar will only see the post-matched filtering clutter residue for a single range

cell, nresi(t).

For N targets and L clutter scatterers, a communications receiver employing SIC

will have an interference plus noise plus clutter residual variance given by [4]:

σ2
int+n+resi = Prad

(
N∑
m=1

‖am‖2 (2π)2B2
rms σ

2
τm,proc

)
+ σ2

noise +
Lσ2

resi

Np TB
. (8.17)

8.2.3 Radar Estimation Rate

The radar estimation information rate for time delay estimation is bounded ex-

plicitly as [4, 5]

Rest ≤
∑
m

δ

2T
log2

(
1 +

σ2
τm,proc

σ2
τm,est

)

=
1

2

∑
m

B log2

(
1 +

2σ2
τ,proc γ

2NpB
2 (TB)2 ‖am‖2 Prad

TB kB Ttemp B + σ2
resi

)δ/(TB)

. (8.18)
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8.2.4 Inner Bounds on Joint Radar-Communications System Performance

In this section, we derive inner bounds on the performance of the joint radar-

communications system. We consider only a single radar target with delay τ and

gain-propagation-cross-section product a and L resolvable clutter scatterers. We also

assume that clutter elimination has taken place.

Successive Interference Cancellation Bound

When Rcom is sufficiently low, the interference plus noise plus clutter residual from

the communications receiver’s perspective, σ2
int+n+resi, is described by Equation (2.7),

and the communications data rate will be,

Rcom ≤ B log2

(
1 +

b2 Pcom
σ2

int+n+resi

)
, (8.19)

In this regime, the corresponding estimation rate bound Rest is given by Equa-

tion (8.18). The SIC inner bound is given by the convex hull between points given

by Equations (5.4), (8.18) and (8.19).

Communications Water-filling Bound

Given some bandwidth separation α,

B = Bcom +Bmix , Bcom = αB , Bmix = (1− α)B , (8.20)

the resulting communications rate bound in the communications-only sub-band is

given by

RCO ≤ αB log2

(
1 +

β Pcom b
2

kB Ttemp αB

)
. (8.21)

The mixed use communications rate inner bound is given by

RMU ≤ (1− α)B log2

(
1 +

b2 (1− β)Pcom

σ2
int+n

)
, (8.22)
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where σ2
int+n is given by Equation (8.17). The corresponding radar estimation rate

inner bound is then given by

Rest ≤
δ

2T
log2

(
1 +

2σ2
procγ

2NpB
4
mix T ‖a‖2Prad

TBmix kB TtempBmix + σ2
resi

)
.

(8.23)

8.2.5 Examples

In Figure 8.4, we compare the inner bounds on performance in the presence of

different types of clutter described in Section 8.2. The parameters used in the example

are displayed in Table 8.2. It should be noted that the bounds presented in this section

are not fundamental limits on performance, and much tighter bounds can be achieved

by applying more effective methods of clutter elimination.

In Figure 8.4, the SIC bounds are represented by dashed lines and the WF bounds

by solid lines. In Figure 8.4a, we compare the inner bounds of performance in the

absence of clutter, shown in black, to the inner bounds on performance in the presence

of clutter with large ICM, shown in red, and small ICM, shown in blue. In Figure 8.4b,

we compare the inner bounds of performance in the presence of clutter with large ICM,

shown in red, small ICM, shown in blue, and no ICM, shown in green.

As seen from Figures 8.4a and 8.4b, there is almost no change in performance

in the presence clutter without ICM when compared to performance in the absence

of clutter. This is expected since static, slowly-fluctuating clutter can easily be es-

timated accurately and eliminated, leaving behind a negligible amount of residual.

However, the presence of clutter with ICM can impose a significant degradation on

performance from both a communications and radar system’s perspective. Whenever

the communications and radar signals overlap, communications performance degrades

significantly since the total clutter residual acts as interference from the communica-

tions receivers perspective. Furthermore, since radar estimation is done after target

92



0 1000 2000 3000 4000 5000 6000
0

1×107

2×107

3×107

4×107

5×107

6×107

7×107

Estimation Rate (b/s)

D
at
a
R
at
e
(b
/s
)

Water-filling, w/o clutter
SIC, w/o clutter
Water-filling, σfD= 0.62 m/s
SIC, σfD= 0.62 m/s
Water-filling, σfD= 0.06 m/s
SIC, σfD= 0.06 m/s

(a) Performance Bounds with Clutter Absent Vs.

Performance Bounds with Clutter with Large

and Small ICM Present

0 1000 2000 3000 4000 5000 6000
0

1×107

2×107

3×107

4×107

5×107

6×107

7×107

Estimation Rate (b/s)

D
at
a
R
at
e
(b
/s
)

Water-filling, σfD= 0.62 m/s
SIC, σfD= 0.62 m/s
Water-filling, σfD= 0.06 m/s
SIC, σfD= 0.06 m/s
Water-filling, w/o ICM
SIC, w/o ICM

(b) Performance Bounds with Clutter with Small

ICM Vs. Clutter with Large ICM Vs. Clutter

with no ICM

Figure 8.4: Data Rate and Estimation Rate Bounds for Parameters in Table 8.2

detection, the clutter residual from only the current range cell effects estimation per-

formance and as a result, radar performance degrades by a smaller amount when

compared to communications performance. Additionally, as seen from Table 8.2, the

radar target is far away, causing the clutter residual present in the target range cell to

be negligible. Hence, the radar performance undergoes almost no degradation. How-

ever, radar performance would degrade significantly for closer radar targets. Finally,

we see that clutter with large ICM will cause more degradation in performance when

compared to the effect of clutter with small ICM on performance.

8.3 Extension of Performance Bounds to Account for Phase Noise Effects

In this section, the inner bounds on the performance of the joint radar-communications

system developed in Section 5.1 are extended to incorporate the effects of phase noise

while performing clutter mitigation. We consider the same simulation scenario shown

in Figure 8.2 that was used in the previous section, Section 8.2.

The model used to characterize the clutter in this section is described in Sec-

tion 8.2.1.
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Table 8.2: Parameters used to generate example performance bounds for a single
radar target in the presence of clutter for the ‘basic multiple-access scenario.’

Parameter Value

Bandwidth (B) 5 MHz

Center Frequency 3 GHz

Effective Temperature (Ttemp) 1000 K

Communications Range 10 km

Communications Power (Pcom) 100 W

Communications Antenna Gain 0 dBi

Communications Receiver Sidelobe Gain 10 dBi

Radar Target Range 80 km

Radar Antenna Gain 30 dBi

Radar Power (Prad) 100 kW

Target Cross Section 10 m2

Target Process Std. Deviation (στ,proc) 100 m

Time-Bandwidth Product (TB) 100

Radar duty factor (δ) 0.01

Number of Clutter Scatterers 50

Total Pulses Integrated 40

Doppler Spread Std. Deviation (Small ICM) 1.2 Hz

Doppler Spread Std. Deviation (Large ICM) 12.4 Hz

Clutter Cross Section 100 m2
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8.3.1 Piecewise Linear Phase Noise Model

We can account for the effects of phase noise once the phase noise power spectral

density at the carrier frequency is known. In this report, we assume that the local

oscillator used by the joint radar-communications receiver (which is also a radar

transmitter) is a quartz oscillator with a natural frequency of 10 MHz. Up-conversion

to a higher carrier frequency will increase the phase noise spectrum by a constant up-

conversion factor Kconv, given by the square of the ratio of the higher carrier frequency

to the oscillator’s natural frequency [118]. The phase noise model used in this paper

will incorporate the effects of such an up-conversion. We assume that the phase noise

power spectral density (S(f)) can be modeled as a linear piecewise function. The

piece-wise linear phase noise spectrum S(f) can be characterized by the following

parametric model [118]

S(f) = Kconv

0∑
i=−3

bi f
i , (8.24)

where Kconv is the up-conversion factor and, bi, the phase noise slope coefficients, are

obtained from data sheets for real quartz oscillators.

For this paper, we consider the Agilent 10811 quartz oscillator and obtain phase

noise slope coefficients as seen in Table 8.3. The oscillator will have a phase noise

power spectral density at its natural frequency as shown in Figure 8.5 [118]. After

up-conversion to a higher carrier frequency, the oscillator will have a phase noise

power spectral density as shown in Figure 8.6. We also consider a carrier frequency

of 3 GHz, which results in a up-conversion factor Kconv = 3002.

Range Decorrelation Effects on Phase Noise

When looking at the radar return spectrum, the presence of phase noise causes a scat-

terer’s frequency response to spread. However, this spreading is also range dependent.
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Table 8.3: The slope coefficient values employed for the phase noise model.

f, Hz S(f), dBc/Hz

b0 −162

b−1 −137

b−2 −131
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Figure 8.5: A plot of the linear piecewise phase noise power spectral density at the
oscillator’s natural frequency. This up-conversion will cause the phase noise spectrum
to increase by the up-conversion factor.
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Figure 8.6: A plot of the linear piecewise phase noise power spectral density after up-
conversion to a higher carrier frequency. This linear piecewise power spectral density
is constructed by obtaining phase noise slope coefficients bi from a real oscillator and
then applying the phase noise model given by Equation (8.24).

The contribution of phase noise on a scatterer response depends on a filtering effect

known as range decorrelation. The closer a scatterer is, the less phase noise impacts

the scatterer’s return. This range dependency is because the effects of phase noise

arises due to the decorrelation in the received signal and local oscillator’s phase. This

difference in phase depends on the time delay (or range) between the transmitted and

received signals. The shorter the time delay (or range), the smaller the decorrelation

between phases. In other words, the longer the time delay (range) between transmit-

ted and received signals, the longer the phase of the local oscillator drifts, causing a

larger amount of phase noise.

The effects of range decorrelation on phase noise can be modeled as a filter, and
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the phase noise spectrum is modeled as

SPN+range(f, r) = S(f) 4 sin2

(
2 π r

f

c

)
, (8.25)

where the range decorrelation filter component is 4 sin2 2πr f
c

for a scatterer at range

r.

Finally, the total clutter spectrum with phase noise and range decorrelation for

the mth scatterer at range r is given by

Sclutter+PN+range(f, r) = C3−Tap(f, r) + C3−Tap(f, r) ∗ SPN+range(f, r) . (8.26)

8.3.2 Clutter Mitigation with Phase Noise Processing

In this section, we briefly describe the clutter mitigation and phase noise tech-

niques used by the joint radar-communications receiver. Once clutter mitigation and

phase noise processing have occurred, the clutter cancellation residual power σ2
residual

is computed by integrating the clutter spectrum in the presence of phase noise. The

processing chain for clutter cancellation is similar to the one described in [105]. A

block diagram representation of the entire clutter cancellation processing chain is

shown in Figure 8.7.

Clutter + PN 
Spectrum

Clutter 
Cancellation 

(Notch 0 Doppler)

Integrate 
Clutter 

Mitigated 
Spectrum

Clutter 
Cancellation 

Residual 
Power

Figure 8.7: Block diagram representation of computation of clutter cancellation
residual in the presence of phase noise. Simple clutter cancellation techniques are
employed (notching 0 Doppler) and the residual power is calculated by integrating
the resulting clutter spectrum.

As stated earlier, we assume that target detection has already occurred. Thus,

clutter only affects radar estimation performance if there is clutter present in the

same range cell as the target of interest. However, the communications system sees
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the clutter response for all the scatterers. Thus, the communications system can be

adversely affected by clutter and as a result, clutter mitigation has to be done before

any communications signal decoding. We will only consider there to be a single clutter

scatterer located in the same range cell as the target of interest. Doppler filtering is

used to suppress the clutter return.

Clutter processing is done over Np radar pulses of coherent integration. Thus, the

communications system has to wait until Np radar returns arrive at the receiver. Since

we are integrating over multiple pulses, the radar return spectrum will have narrow

pulse repetition frequency (PRF) sidelobes which occur at every multiple of the PRF.

However, these sidelobes generally are located far away from the main lobe and thus

will not affect radar performance. Additionally, even though the communications

system will see these narrow sidelobes, they occur at known frequency intervals and

the effects of it can easily be mitigated through pre-coding. Thus, these PRF sidelobes

can be ignored.

We assume our clutter mitigation filter is the length of the returned waveform

without pulse compression, and is a narrow notch filter equivalent to a frequency

domain window where unit gain is present in all bins except DC. Therefore, the

resulting notch filter perfectly cancels clutter if there is no ICM and no phase noise.

When either or both of these conditions exist, a residual remains. We integrate the

clutter spectrum after clutter mitigation is done to obtain the residual power σ2
residual,

and treat it as an additional noise power term that degrades radar performance.

In addition, as we will see, this degrades the communications user who now has

additional residual signal power left over after SIC is complete. We assume the

resulting residual is an additional Gaussian noise term, independent of the thermal

noise contribution. A block diagram of the joint radar-communications system in this

scenario is shown in Figure 8.8.
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Figure 8.8: Joint radar-communications system block diagram for clutter cancella-
tion in the presence of phase noise. Since the communications system can be adversely
affected by clutter, clutter mitigation has to be done before any communications sig-
nal decoding. Additionally, the clutter cancellation residual further degrades the
channel, adversely impacting both the communications and radar performances.

8.3.3 Examples

In Figures 8.9 to 8.11, we display examples of the effects of clutter and phase

noise on the inner bounds on performance and the relationship between phase noise

and scatterer range. The parameters used in the examples are displayed in Table 8.2.

In Figure 8.9, we look at the estimation rate as a function of range for a cluttered

return with and without phase noise. In this case, no ICM is present in the clutter,

as ICM dominates phase noise effects for spectral spreading. Interestingly, the most

impactful ranges are the closest to the radar, effectively less than 2 km in this example.

While range decorrelates the phase noise and makes clutter cancellation difficult, the

power of the clutter drops rapidly. As a result, the phase noise contribution becomes

negligible compared to thermal noise at the radar receiver. Near to the radar, while

we have more correlation assisting with clutter cancellation, the clutter is much more

powerful.

To see the effect of the clutter with ICM (using previously mentioned model)

and phase noise on the joint multiple-access system, we look at the joint radar-

communications outer and inner bounds in Figure 8.10. Immediately, one striking

difference from previous work is that the WF solution is occasionally bested by the

CIR time share inner bound. In prior work where clutter was ignored [4, 5, 8, 103],
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Figure 8.9: Estimation rate in the presence of clutter (no ICM) and phase noise as
a function of range. Close in, the clutter power is overwhelming, despite improved
phase correlation. Out far, though decorrelated, the clutter power has dropped such
that the residual power is overcome by thermal noise. The inset plot shows detail of
the estimation rate with phase noise near 0 km.

this was never the case. The ISB has similar behavior. When the two converge, the

WF algorithm is deciding not to use the degraded radar channel, as it is not optimal

use of the communications power.

To see the effects of clutter with ICM (using previously mentioned model) in

general more clearly, we compare the ideal inner and outer bounds to the ones just

discussed. This is shown in Figure 8.11. The estimation rate is halved in the ideal

case. Note the communications user without any radar interference is unaffected, so

the outer bound on the y-axis is unchanged. However, all communications bands with

radar returns, such as those employing SIC, are affected by the residual clutter noise.

8.3.4 Effect of Phase Noise on Clutter Estimation and Mitigation

In this section we investigate the effect phase noise has on clutter estimation and

mitigation and also show that by combining observations and results obtained from
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blue. Finally, the WF bound is shown in green.
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Figure 8.11: Multi-access bound for radar and communication, compared for with
and without clutter with ICM using previously mentioned model. The colored lines
are the same as in the previous plot, with the legend omitted for clarity. Instead, a
dashed line indicates ideal operation if no clutter is present, while the corresponding
same colored solid line indicates the cluttered system. The red lines are the interfer-
ence free outer bounds. The ISB is shown in yellow, while the CIR time share line is
given in blue. Finally, the WF bound is shown in green.
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both Sections 8.2 and 8.3, the effects of phase noise can be clearly highlighted.

In Section 8.3, we considered the estimation rate as a function of range for a

cluttered return with and without phase noise for a single target. Clutter here was

considered to have no ICM such as the clutter model described in Section 8.2.1. From

Figure 8.9, we saw that the estimation rate for a cluttered return in the presence of

phase noise was adversely affected only at closer ranges (approximately less that 2

km in the example described). Essentially, this means that as range of the radar

target increases, the effect of phase noise on the estimation rate decreases and the

estimation rates for both scenarios converge. Additionally, from Figure 8.11, we also

see that the estimation rate in the presence of clutter (with ICM) and phase noise

does not match the ideal case estimation rate (without clutter or phase noise), by

almost a factor of 2 in this case. It is easy to erroneously attribute this disparity in

performance to the presence of clutter, especially in light of the observations made

from Figure 8.9. By looking at results from Section 8.2, we can see how it is in fact

phase noise that is responsible for the degradation in performance.

From Figure 8.4, we see that in the presence of clutter (either with or with out

ICM) and no phase noise, the estimation rate undergoes a negligible performance

degradation. In fact, the estimation rate remains the same for clutter with out ICM.

It becomes clear now that the performance degradation seen in Figure 8.11 was due to

the presence of phase noise. In Section 8.2, we used a optimal form of clutter estima-

tion and mitigation through which the clutter residual was minimized. This resulted

in the estimation rate barely being affected by the presence of clutter. However, when

phase noise is present, the clutter returns cannot be estimated accurately and hence,

sub-optimal clutter mitigation techniques must be used. This results in larger clutter

residuals which cause the adverse effect on performance seen in Figure 8.11.
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8.4 Extension of Performance Bounds for Radar Target Detection

In this section, we extend the previously derived joint radar-communications per-

formance bounds to include radar detection. We consider a scenario in which a

communications user operates while an in-band radar user searches for a potentially

nonexistent target. We assume that clutter is present, and that the clutter scatterers

are static over some Np radar pulses and have no ICM. The clutter can be estimated

in the absence of a radar target during the first coherent processing interval (CPI)

(Np pulses). These estimates can then be used to mitigate clutter in the next CPI, in

which a target may or may not be present. This estimation and mitigation of clutter is

performed via one-dimensional (1D) coherent change detection [119], which assumes

that the clutter estimates from the previous CPI is a good estimate for clutter in the

current CPI.

We consider a simulation scenario and joint radar-communications receiver similar

to the one described in Section 2.2. The inner bounds on performance are found by

considering this ideal receiver in different scenarios and deriving performance bounds

on radar and communications systems respectively. The simulation scenario consid-

ered in this paper is depicted in Figure 8.12.

8.4.1 Clutter Model and Mitigation

The clutter model and associated processing techniques used here were first dis-

cussed in Section 8.2.1 [9]. We assume that there are multiple resolvable clutter scat-

terers. We first look at clutter in each range cell (post-matched filtering for radar)

and then calculate the total pre-matched filtering clutter return observed by the joint

radar-communications system receiver. The residual clutter power remaining after

clutter mitigation is assumed to be Gaussian and is treated as an additional additive
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Figure 8.12: Top level diagram of joint radar-communications detection problem
description. Environment contains radar clutter, an in-band communications user
and, possibly a radar target. The joint radar-communications receiver is capable of
simultaneous target detection and communications decoding. A target is illuminated
along with clutter in the alternative hypothesis. If this is true, the reflected energy
arrives at the joint radar-communications receiver. Otherwise, only clutter energy is
seen at the joint radar-communications receiver. A communications signal is input to
the system through the antenna sidelobe. The superposition of the radar signal and
the communications signal is perturbed by thermal receiver noise and clutter.

noise term.

We assume that each clutter scatterer is static (with no ICM) over some Np

radar pulses such that the radar return over this time period is highly correlated

(approximately constant). With these assumptions, we resolve the scatterers into

appropriate range cells and perform maximum likelihood amplitude estimation for

clutter returns from the first CPI. These range and amplitude estimates of clutter

are used to mitigate the clutter return in the next CPI.

As seen in Section 8.2.1, the clutter residual in each range cell has power given

Equation (8.12). This minimum error (residual) is a zero mean complex Gaus-

sian, nresi(t), with variance given by Equation (8.12). The radar return signal af-

ter clutter mitigation for L clutter scatterers is given by Equation (8.13). Thus,

z(t) ∼ CN (0, σ2
n+resi), where σ2

n+resi = σ2
noise +

Lσ2
resi

Np TB
.
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Performing clutter mitigation in this manner requires that the clutter estimates

obtained from the previous CPI remain good estimates for the current CPI, which

is an optimistic assumption. If less accurate clutter estimates are used, the resulting

clutter residual is larger and the system performance is further degraded.

The estimation and mitigation of clutter can performed using 1D coherent change

detection [119], which ascertains when the estimation and mitigation CPIs begin and

end. Clutter is then mitigated by subtracting the total power of the first CPI from

the second.

8.4.2 Importance of Clutter

Inclusion of clutter is necessary because of a subtlety in the problem formula-

tion. Because both systems share the same spectrum allocation, each system pushes

for more spectral access. For a communications system, an increase in spectral ac-

cess directly improves performance by increasing the data rate. For a radar system,

increased spectral access improves radar estimation but not radar detection. For

example, a radar waveform with an impulse-like spectrum can perform target detec-

tion, but has poor ranging resolution and degrades time-delay estimation performance

(which traditionally succeeds radar detection).

The introduction of clutter couples radar detection performance with spectral

allocation. By increasing spectral allocation for the radar system, ranging resolution

is improved, resulting in smaller range cells. As a result of smaller range cells, the

number of scatterers in the target range cell reduces, thereby reducing the clutter

residual power after mitigation and improving radar detection performance.
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8.4.3 Communications Message Decoding and Mitigation

In this section, we also discuss how the joint radar-communications system is able

to simultaneously decode a communications message and perform target estimation.

At the receiver, we employ a communications signal mitigation technique which is

similar to SIC employed in Section 2.3 [4]. The algorithm used in this paper decodes

the communications message from the composite received signal at a lower rate to

ensure that communications signal decoding and radar detection can be done co-

operatively. We assume that the radar interference can be modeled as a Gaussian

random variable. Thus, the radar interference essentially raises the noise floor from

a communications receiver’s perspective. At a much lower data rate, the communi-

cations message can be decoded and removed from the received signal. Radar target

estimation can then be done without any communications interference.

Prior works employing SIC [4, 5, 9] assumed that target detection and acquisition

(for tracking) had already taken place and used the target tracking information to

perform radar mitigation prior to communications decoding. As a result, the same

SIC mitigation technique can not be employed here. Additionally, treating radar

interference as noise is not a realistic assumption and results in sub-optimal commu-

nications performance. However, we argue that once a target has been detected, SIC

can be used to improve communications performance.

By employing the mitigation technique described above at the receiver, the re-

ceived signal is corrupted by thermal noise as well as returns from all L clutter scat-

terers, which has an adverse effect on communications performance. Hence, we have to

perform clutter mitigation first. In doing so, communications performance is affected

by the total clutter residual as well. However, for radar detection performance, since

matched filtering is already done and the environment has been resolved into range
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Figure 8.13: Joint radar-communications system block diagram showcasing clutter
mitigation and simultaneous communications signal decoding and target detection.
Since the communications system can be adversely affected by clutter, clutter miti-
gation has to be done before any communications signal decoding. Additionally, the
clutter cancellation residual further degrades the channel, adversely impacting both
the communications and radar performances.

cells, the radar will only see clutter residue from the current range cell in which tar-

get detection is being performed. A block diagram of the joint radar-communications

system in this scenario is shown in Figure 8.13. Given the following received signal

for N targets and L clutter scatterers,

z̃com(t) =
√
Pcom b r(t) +

√
Prad

N∑
m=1

amx(t−τm)

+
L∑

m=1

1√
Np TB

nresi(t) + n(t) , (8.27)

the interference plus noise plus clutter residual variance from the communications

receiver’s perspective is given by Equation (8.17) [5, 9].

8.4.4 Receiver Operating Characteristic Curves for Radar Detection

In this section, we show how radar detection performance is measured and derive

false alarm and detection probabilities for the joint radar-communications system.

The receiver operating characteristic (ROC) curves for radar detection in a joint

radar-communications system are derived for the aforementioned scenario. Since SIC

is employed at the receiver, the received signal, z(t), contains only the radar return
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and thermal noise. We perform matched filtering and measure the total energy in

each range cell for each CPI. Assuming H0 is the null hypothesis,

H0 : z(t) = nresi(t) + n(t)

H1 : z(t) = a
√
NpTBPrad x(t− τ) + nresi(t) + n(t) , (8.28)

where
√
Np TB is present due to the coherent integration factor from matched fil-

tering. Equation (8.28) implies that the radar return energy from a range cell is

drawn from either a complex central chi-squared distribution of one degree under H0

(P‖z(t)‖2|H0
(q) = PC

χ2(q ,Np , σ
2
noise+

σ2
resi

Np TB
)) or a complex non-central chi-squared distri-

bution of one degree under H1 (P‖z(t)‖2|H1
(q) = PC

χ2
nc

(q , σ2
noise +

σ2
resi

Np TB
, Np TB a2 Prad))

[100, 105].

Hence, at detection threshold η, the resulting false-alarm probability is given by

[100]

PFA = 1− 1

Γ(Np)
γ

Np,
η

σ2
noise +

σ2
resi

Np TB

 , (8.29)

and the detection probability is given by [100]

PD = QNp


√√√√2Np TB a2 Prad

σ2
noise +

σ2
resi

Np TB

,

√√√√ 2 η

σ2
noise +

σ2
resi

Np TB

 . (8.30)

8.4.5 Examples

In this section, through Figures 8.14 and 8.15, we present example performance

bounds by evaluating the WF bound defined in Section 5.1.3 and the results of Sec-

tion 8.4.4 for a set of example parameters. The parameter set used in this section is

displayed in Table 8.4.

The evaluated communications WF bound on performance is shown in Figure 8.14

for different values of number of radar pulses integrated (Np). The communications
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Table 8.4: Parameters used to generate example performance bounds for radar
detection of a single radar target in the presence of clutter for the ‘basic multiple-
access scenario.’

Parameter Value

Bandwidth (B) 5 MHz

Center Frequency 3 GHz

Effective Temperature (Ttemp) 1000 K

Communications Range 10 km

Communications Power (Pcom) 100 W

Communications Antenna Gain 0 dBi

Communications Receiver Sidelobe Gain 10 dBi

Radar Target Range 80 km

Radar Antenna Gain 30 dBi

Radar Power (Prad) 1000 W

Target Cross Section 10 m2

Time-Bandwidth Product (TB) 100

Number of Clutter Scatterers 10000

Total Pulses Integrated 10, 5, 1

performance, measured by data rate, and the detection performance, measured by

area under the ROC curves, are compared against each other as the bandwidth split-

ting parameter α is swept from 0 to 1. For values of α closer to 1, more bandwidth

is allocated for communications only, resulting in improved communications perfor-

mance and lower radar detection performance. When α is 1, the radar does not have

any spectral allocation and cannot illuminate the environment, resulting in the detec-

tor making random guesses for target detection. This is highlighted by an area under

the ROC curve of 0.5, which is characteristic of a random guess detector, when α is
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Figure 8.14: The evaluated communications WF bound on performance vs. area
under the ROC curve. The figure shows the communications data rate and detection
area under the ROC curves as α, the bandwidth splitting parameter, is swept from
0 to 1. We see that as α increases, more bandwidth is assigned to communications
only, hence communications performance increases and radar performance decreases.
The opposite effect on bandwidth happens as α approaches 0 and as a result radar
performance increases and communications performance decreases, reaching the SIC
communications rate at α = 0.

1. Similarly, for values of α closer to 0, more bandwidth is allocated for mixed use,

resulting in improved detection performance and communications performance ap-

proaching the SIC communications rate. Additionally, target detection performance

also depends on the number of integrated radar pulses, Np. An increase in Np results

in improved target detection performance, characterized by an area under the ROC

curve closer to 1, as seen in Figure 8.14. The sample evaluation presented in this

section uses a simplistic model for clutter. Under more complicated clutter models,

the clutter residual is larger and adversely affects communications performance. As

shown in Reference [9], introducing a small amount of ICM has a significant negative

impact on communications performance.

In Figure 8.15, we more closely evaluate the relationship between detection per-

formance and spectral allocation assigned for mixed use (i.e. spectrum allocated for

radar). In this figure, detection performance is captured via ROC curves. As ex-
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Figure 8.15: Detection performance for different values of α and Np = 10. Detection
performance here is highlighted through ROC curves for different values of α. As
expected, we see that detection performance improves as α moves from 1 to 0. When
α is 1, the radar cannot illuminate the environment and the detector has to make
random guesses for target detection, resulting in a ROC curve given by a straight
line, which is characteristic of a random guess detector.

pected, the detection performance improves as α moves from 1 to 0. When α is 1,

the radar cannot illuminate the environment and the detector has to make random

guesses for target detection, resulting in a ROC curve given by a straight line, which

is characteristic of a random guess detector.
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Chapter 9

SUMMARY

In this dissertation, we first describe the problem of radar-communications coex-

istence and the challenges for finding a solution and achieving RF convergence. We

perform a survey of previously proposed solutions and considering the joint radar-

communications problem as a joint information problem, we present a novel approach

to constructing future solutions. We derive the estimation rate, an information met-

ric for estimation performance symmetric to the communications rate, and provide a

more intuitive understanding of the estimation rate. We also develop an extension to

the estimation rate that takes into account non-local estimation errors as well. We

develop multiple solutions to cooperative radar and communications coexistence for

a simple multi-access scenario, which can be applied to more complicated scenarios.

Using the estimation rate and the communications data rate, we then develop sev-

eral cooperative signaling schemes that are used to develop inner bounds on joint

performance. We also note how the information measured by the estimation and

communications rate in bits for each system can have different values or priority,

depending on the importance of each system. Two methods for choosing an opti-

mal operating point for a joint radar-communications system are also presented. We

also present a new radar waveform design method for a joint radar-communications

system in which the radar waveform spectrum and communications power spectral

distribution are optimized to maximize joint performance. The performance of this

radar waveform design algorithm is also studied. Finally, we develop extensions to

the previously derived performance bounds for target estimation for multiple targets,

target estimation in the presence of clutter, target estimation with clutter mitigation
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in the presence of phase noise, and radar target detection.

114



REFERENCES

[1] H. Griffiths, L. Cohen, S. Watts, E. Mokole, C. Baker, M. Wicks, and S. Blunt,
“Radar spectrum engineering and management: Technical and regulatory is-
sues,” Proceedings of the IEEE, vol. 103, no. 1, pp. 85–102, January 2015.

[2] B. Paul, A. R. Chiriyath, and D. W. Bliss, “Survey of RF communications
and sensing convergence research,” IEEE Access, vol. 5, no. 1, pp. 252–270,
December 2016.

[3] J. Chapin. Shared spectrum access for radar and communica-
tions (SSPARC). [Online]. Available: http://www.darpa.mil/program/
shared-spectrum-access-for-radar-and-communications

[4] D. W. Bliss, “Cooperative radar and communications signaling: The estimation
and information theory odd couple,” in IEEE Radar Conference, May 2014, pp.
50–55.

[5] A. R. Chiriyath, B. Paul, G. M. Jacyna, and D. W. Bliss, “Inner bounds on
performance of radar and communications co-existence,” IEEE Transactions on
Signal Processing, vol. 64, no. 2, pp. 464–474, January 2016.

[6] A. R. Chiriyath, B. Paul, and D. W. Bliss, “Radar-communications conver-
gence: coexistence, cooperation, and co-design,” IEEE Transactions on Cogni-
tive Communications and Networking, vol. 3, no. 1, pp. 1–12, February 2017.

[7] A. R. Chiriyath, S. Ragi, H. D. Mittelmann, and D. W. Bliss, “Radar wave-
form optimization for cooperative radar-communications receiver,” Submitted
to IEEE Transactions on Aerospace and Electronic Systems, 2018.

[8] A. R. Chiriyath and D. W. Bliss, “Joint radar-communications performance
bounds: Data versus estimation information rates,” in 2015 IEEE Military
Communications Conference, MILCOM, October 2015, pp. 1491–1496.

[9] ——, “Effect of clutter on joint radar-communications system performance in-
ner bounds,” in 2015 49th Asilomar Conference on Signals, Systems and Com-
puters, November 2015, pp. 1379–1383.

[10] A. R. Chiriyath, B. Paul, and D. W. Bliss, “Joint radar-communications infor-
mation bounds with clutter: The phase noise menace,” in IEEE Radar Confer-
ence, May 2016, pp. 690–695.

[11] ——, “Simultaneous radar detection and communications performance with
clutter mitigation,” in IEEE Radar Conference, May 2017, pp. 279–284.

[12] P. M. Woodward, Probability and Information Theory, with Applications to
Radar. Dedham, Massachusetts: Artech House, 1953.

[13] P. Woodward, “Information theory and the design of radar receivers,” Proceed-
ings of the IRE, vol. 39, no. 12, pp. 1521–1524, December 1951.

115



[14] M. R. Bell, “Information theory and radar waveform design,” IEEE Transac-
tions on Information Theory, vol. 39, no. 5, pp. 1578–1597, September 1993.

[15] J. R. Guerci, R. M. Guerci, A. Lackpour, and D. Moskowitz, “Joint design and
operation of shared spectrum access for radar and communications,” in IEEE
Radar Conference, May 2015, pp. 761–766.

[16] C. Shannon, “A mathematical theory of communication,” Bell System Technical
Journal, vol. 27, pp. 379–423, 623–656, July, October 1948.

[17] C. Kreucher, A. O. Hero, and K. Kastella, “A comparison of task driven and
information driven sensor management for target tracking,” in Proceedings of
the 44th IEEE Conference on Decision and Control, Dec 2005, pp. 4004–4009.

[18] C. Kreucher, K. Kastella, and A. O. Hero, “A Bayesian method for integrated
multitarget tracking and sensor management,” in Sixth International Confer-
ence of Information Fusion, 2003. Proceedings of the, vol. 1, July 2003, pp.
704–711.

[19] A. Turlapaty and Y. Jin, “A joint design of transmit waveforms for radar and
communications systems in coexistence,” in IEEE Radar Conference. IEEE,
May 2014, pp. 315–319.
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APPENDIX A

List of Acronyms

1D one-dimensional

AWGN additive white Gaussian noise

BER bit error rate

CIR constant information radar

CPI coherent processing interval

CRLB Cramér-Rao lower bound

DARPA The Defense Advanced Research Projects Agency

DE differential evolution

FIM Fisher information matrix

ISB isolated sub-band

INR interference-to-noise ratio

ICM intrinsic clutter motion

LFM linear frequency modulation

LTE Long-Term Evolution

MAC multiple access channel

MIMO Multiple-input multiple-output

MMSE minimum mean-squared error
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OFDM orthogonal frequency-division multiplexing

PAPR peak-to-average power ratio

PRF pulse repetition frequency

PRI pulse repetition interval

PSP principle of stationary phase

RMS root mean square

RF electromagnetic radio frequency

ROC receiver operating characteristic

SIC successive interference cancellation

SISO single-input single-output

SNR signal-to-noise ratio

TB time-bandwidth

WF water-filling
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APPENDIX B

Derivation of Reduced Fisher Information for Time-Delay Estimation

In this appendix, we first derive the Fisher information cross terms for joint amplitude

and time-delay estimation and find the value of the free parameter BO that sets these

cross-terms to 0. We then show that by setting the cross-terms to 0, the reduced

Fisher information for time-delay estimation is the same as the Fisher information

for time-delay estimation, given by Equation (5.23).

We consider the same scenario as described in Section 5.1.4. The total band-

width is split into two sub-bands and the radar power (or power spectral density)

is distributed between the two sub-bands. The bandwidth and radar power (power

spectral densities) are split between the two sub-bands according to some α.

Now, consider a radar signal x(t) with bandwidth B, whose frequency spectrum

X(f) is flat and centered around BO. xRO(t) and xMU(t) are the spectrally orthogonal

sub-band signals with bandwidths αB and (1− α)B respectively.

Thus, the joint receiver observes the following return signal

z(t) = a x(t− τ) + b
√
Pcom r(t) + n(t) . (B.1)

where x(t−τ) =
√
PRO xRO(t−τ)+

√
PMU xMU(t−τ), r(t) is the communications signal

that is present in the mixed use channel and n(t) is circularly symmetric Gaussian

noise with zero mean and variance σ2 = kB Ttemp B.

Let θ = [ τa ] be the parameters to be estimated. From Equation (B.1), we see

that z(t) ∼ CN (a x(t − τ) + b
√
Pcom r(t), σ

2) and has the following score function,
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s(θ; z(t)) is given by

s(θ; z(t)) = ∇θ{logp(z(t);θ)}

=


an∗(t)x′(t−τ)

σ2 + c.c.

n∗(t)x(t−τ)
σ2 + c.c.

 , (B.2)

where c.c. stands for the complex conjugate term and x′(t − τ) = ∂
∂τ
x(t − τ). Now,

the FIM for this estimation problem, J, is given by

J = 〈s(θ; z(t))s†(θ; z(t))〉

=

〈
an∗(t)x′(t−τ)

σ2 + c.c.

n∗(t)x(t−τ)
σ2 + c.c.


(
a∗ [x(t−τ)]∗ n(t)

σ2 + c.c.∗ x∗(t−τ)n(t)
σ2 + c.c.∗

)〉

=

Jτ,τ Jτ,a

Ja,τ Ja,a

 . (B.3)

We now simplify the cross terms of the FIM. Starting with Jτ,a, we see that on

simplification,

Jτ,a =
a 〈x′(t− τ)x∗(t− τ)]〉

σ2
+
a∗ 〈[x′(t− τ)]∗x(t− τ)〉

σ2
. (B.4)

By multiplying the terms out, converting to frequency domain and applying Parseval’s

Theorem and the time-shift and differentiation properties of the Fourier Transform,

for spectrally flat X(f) (or XRO(f) and XMU(f)), we get

Jτ,a =
(i a− i a∗)

σ2

∫ BO+B
2

BO−B2

df(2πf)X(f)X∗(f) . (B.5)
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Applying the definition of x(t) and simplifying, we get

Jτ,a =
(i a− i a∗)

σ2

[
π αTB ρROf

2
∣∣BO−B2 +αB

BO−B2
+ π (1− α)TB ρMUf

2
∣∣BO+B

2

BO−B2 +αB

]
=

(i a− i a∗) π αTB ρRO

σ2

[(
BO −

B

2
+ αB

)2

−
(
BO −

B

2

)2
]

+
(i a− i a∗) π (1− α)TB ρMU

σ2

[(
BO +

B

2

)2

−
(
BO −

B

2
+ αB

)2
]
,

(B.6)

Similarly, using the same properties as mentioned above, on simplifying the other

cross term in the FIM we see that

Ja,τ = Jτ,a .

In order to find the value of BO that sets the FIM cross-terms Ja,τ and Jτ,a to 0,

we set Ja,τ = Jτ,a = 0 and solve for BO. The resultant value for BO is

BO =
αB (1− α)[ρMU(α− 1) + ρROα]

2(ρMU(α− 1)2 + ρROα2)
. (B.7)

This means that the Fisher information cross terms are be 0 whenever the value of

BO is given by Equation (B.7). In this case, the reduced Fisher Information [100] for

time-delay estimation is

J (R)
τ,τ =

(
Jτ,τ − Jτ,a J−1

a,a Ja,τ

)
(B.8)

= (Jτ,τ − 0)

= Jτ,τ .
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