12 research outputs found

    Silicon-Germanium Bipolar Technology for Enabling Cold-Capable, Radiation-Tolerant Electronics for Spacecraft

    Get PDF
    The objective of this research is to investigate the effect that low temperature has on the radiation effects on advanced silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) for the application of deep-space exploration missions that are specifically classified as extreme low-temperature and highly radiation active environments, such as Jovian exploration missions. We designed a unique experimental testbed that enabled DC and RF measurements to be taken in situ at various temperature and radiation points. The experiment was conducted at the Jet Propulsion Laboratory (JPL) where low-temperature and radiation environments can be mimicked. We showed that while there is some radiation damage in base leakage current on the single transistor level, there is no observed damage due to total-ionizing dose (TID) in noise figure, linearity, or gain for a 2.4 GHz low-noise amplifier (LNA) that was irradiated at an ambient temperature of about 100 K up to 1 Mrad (Si). Furthermore, we confirmed the notion that radiation at lower temperatures yields less damage and showed why it is important to separate temperature-dependent performance with measurable radiation damage at different temperatures. We also took a simulation approach to determine whether single-event transients (SETs) get worse as a result of the device being in low ambient temperatures. For a single standalone device, the results show that the transient gets larger in magnitude but shorter in duration. However, the circuit results show that the effects of an SET get worse in some cases with low temperatures such as in the context of LNAs, but can also get better in other cases such as current-mode logic (CML) D-flip-flops.M.S

    Design and characterization of BiCMOS mixed-signal circuits and devices for extreme environment applications

    Get PDF
    State-of-the-art SiGe BiCMOS technologies leverage the maturity of deep-submicron silicon CMOS processing with bandgap-engineered SiGe HBTs in a single platform that is suitable for a wide variety of high performance and highly-integrated applications (e.g., system-on-chip (SOC), system-in-package (SiP)). Due to their bandgap-engineered base, SiGe HBTs are also naturally suited for cryogenic electronics and have the potential to replace the costly de facto technologies of choice (e.g., Gallium-Arsenide (GaAs) and Indium-Phosphide (InP)) in many cryogenic applications such as radio astronomy. This work investigates the response of mixed-signal circuits (both RF and analog circuits) when operating in extreme environments, in particular, at cryogenic temperatures and in radiation-rich environments. The ultimate goal of this work is to attempt to fill the existing gap in knowledge on the cryogenic and radiation response (both single event transients (SETs) and total ionization dose (TID)) of specific RF and analog circuit blocks (i.e., RF switches and voltage references). The design approach for different RF switch topologies and voltage references circuits are presented. Standalone Field Effect Transistors (FET) and SiGe HBTs test structures were also characterized and the results are provided to aid in the analysis and understanding of the underlying mechanisms that impact the circuits' response. Radiation mitigation strategies to counterbalance the damaging effects are investigated. A comprehensive study on the impact of cryogenic temperatures on the RF linearity of SiGe HBTs fabricated in a new 4th-generation, 90 nm SiGe BiCMOS technology is also presented.Ph.D

    Design of wideband silicon-germanium RF front end circuits for broadband communications systems

    Get PDF
    This thesis discusses the design of wideband front-end circuits for broadband communications systems, designed in silicon-germanium technology. The bandwidths of these circuits cover from 2 GHz to 18 GHz. In Chapter 1, an introduction to wideband communications systems is presented. In addition, a brief summary of phased array radars and the need for wideband radars are discussed. Also, an overview of Silicon-Germanium technology and its advantages in the context of wideband circuit design are discussed. In Chapter 2, the design challenges associated with wideband RF front-end circuits are presented. In particular, the design space of wideband power amplifiers and low-noise amplifiers is discussed. Both the active and passive circuit design difficulties for each circuit are evaluated. In addition, traditional approaches to amplifier design and their drawbacks for wideband circuits are explained. In Chapter 3, the design of a wideband 1-20 GHz Silicon-Germanium power amplifier is discussed. In this design, a distributed amplifier topology is utilized with transistor stacking to simultaneously achieve high output power and wideband impedance matching. This amplifier is designed in a highly scaled 90 nm SiGe BiCMOS process. Measurement results and a comparison to state-of-the-art wideband power amplifiers are shown. This work, ”A 1-20 GHz Distributed, Stacked SiGe Power Amplifier” was published in the 2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium [1]. In Chapter 4, the design of a wideband 1-18 GHz Silicon-Germanium low noise ampli- fier is presented. A resistive feedback topology is used to achieve wideband operation with moderate gain and low noise figure. In addition, a cryogenic characterization of this amplifier is conducted with measurements of S-parameters, 1 dB compression point, and noise over temperature. A comparison to state-of-the-art cryogenic amplifiers is shown. Furthermore, the demonstration and explanation of an on-wafer cryogenic noise measurement scheme are presented. This work, ”A Low Power, Wideband SiGe Low Noise Amplifier for Cryogenic Temperature Operation” will be submitted to the 2019 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS). In Chapter 5, a summary of the achieved results is shown. In addition, future research directions are discussed.M.S

    Reliability Analysis of Electrotechnical Devices

    Get PDF
    This is a book on the practical approaches of reliability to electrotechnical devices and systems. It includes the electromagnetic effect, radiation effect, environmental effect, and the impact of the manufacturing process on electronic materials, devices, and boards

    Advanced 3-V semiconductor technology assessment

    Get PDF
    Components required for extensions of currently planned space communications systems are discussed for large antennas, crosslink systems, single sideband systems, Aerostat systems, and digital signal processing. Systems using advanced modulation concepts and new concepts in communications satellites are included. The current status and trends in materials technology are examined with emphasis on bulk growth of semi-insulating GaAs and InP, epitaxial growth, and ion implantation. Microwave solid state discrete active devices, multigigabit rate GaAs digital integrated circuits, microwave integrated circuits, and the exploratory development of GaInAs devices, heterojunction devices, and quasi-ballistic devices is considered. Competing technologies such as RF power generation, filter structures, and microwave circuit fabrication are discussed. The fundamental limits of semiconductor devices and problems in implementation are explored

    Topical Workshop on Electronics for Particle Physics

    Get PDF
    The purpose of the workshop was to present results and original concepts for electronics research and development relevant to particle physics experiments as well as accelerator and beam instrumentation at future facilities; to review the status of electronics for the LHC experiments; to identify and encourage common efforts for the development of electronics; and to promote information exchange and collaboration in the relevant engineering and physics communities

    Bibliography of Lewis Research Center technical publications announced in 1993

    Get PDF
    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1993. All the publications were announced in the 1993 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses

    Particle Physics Reference Library

    Get PDF
    This second open access volume of the handbook series deals with detectors, large experimental facilities and data handling, both for accelerator and non-accelerator based experiments. It also covers applications in medicine and life sciences. A joint CERN-Springer initiative, the “Particle Physics Reference Library” provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A,B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access
    corecore