2,760 research outputs found

    Cancellation of Power Amplifier Induced Nonlinear Self-Interference in Full-Duplex Transceivers

    Full text link
    Recently, full-duplex (FD) communications with simultaneous transmission and reception on the same channel has been proposed. The FD receiver, however, suffers from inevitable self-interference (SI) from the much more powerful transmit signal. Analogue radio-frequency (RF) and baseband, as well as digital baseband, cancellation techniques have been proposed for suppressing the SI, but so far most of the studies have failed to take into account the inherent nonlinearities of the transmitter and receiver front-ends. To fill this gap, this article proposes a novel digital nonlinear interference cancellation technique to mitigate the power amplifier (PA) induced nonlinear SI in a FD transceiver. The technique is based on modeling the nonlinear SI channel, which is comprised of the nonlinear PA, the linear multipath SI channel, and the RF SI canceller, with a parallel Hammerstein nonlinearity. Stemming from the modeling, and appropriate parameter estimation, the known transmit data is then processed with the developed nonlinear parallel Hammerstein structure and suppressed from the receiver path at digital baseband. The results illustrate that with a given IIP3 figure for the PA, the proposed technique enables higher transmit power to be used compared to existing linear SI cancellation methods. Alternatively, for a given maximum transmit power level, a lower-quality PA (i.e., lower IIP3) can be used.Comment: To appear in proceedings of the 2013 Asilomar Conference on Signals, Systems & Computer

    Modeling and Efficient Cancellation of Nonlinear Self-Interference in MIMO Full-Duplex Transceivers

    Full text link
    This paper addresses the modeling and digital cancellation of self-interference in in-band full-duplex (FD) transceivers with multiple transmit and receive antennas. The self-interference modeling and the proposed nonlinear spatio-temporal digital canceller structure takes into account, by design, the effects of I/Q modulator imbalances and power amplifier (PA) nonlinearities with memory, in addition to the multipath self-interference propagation channels and the analog RF cancellation stage. The proposed solution is the first cancellation technique in the literature which can handle such a self-interference scenario. It is shown by comprehensive simulations with realistic RF component parameters and with two different PA models to clearly outperform the current state-of-the-art digital self-interference cancellers, and to clearly extend the usable transmit power range.Comment: 7 pages, 5 figures. To be presented in the 2014 International Workshop on Emerging Technologies for 5G Wireless Cellular Network

    The effect of convolving families of L-functions on the underlying group symmetries

    Full text link
    L-functions for GL_n(A_Q) and GL_m(A_Q), respectively, such that, as N,M --> oo, the statistical behavior (1-level density) of the low-lying zeros of L-functions in F_N (resp., G_M) agrees with that of the eigenvalues near 1 of matrices in G_1 (resp., G_2) as the size of the matrices tend to infinity, where each G_i is one of the classical compact groups (unitary, symplectic or orthogonal). Assuming that the convolved families of L-functions F_N x G_M are automorphic, we study their 1-level density. (We also study convolved families of the form f x G_M for a fixed f.) Under natural assumptions on the families (which hold in many cases) we can associate to each family L of L-functions a symmetry constant c_L equal to 0 (resp., 1 or -1) if the corresponding low-lying zero statistics agree with those of the unitary (resp., symplectic or orthogonal) group. Our main result is that c_{F x G} = c_G * c_G: the symmetry type of the convolved family is the product of the symmetry types of the two families. A similar statement holds for the convolved families f x G_M. We provide examples built from Dirichlet L-functions and holomorphic modular forms and their symmetric powers. An interesting special case is to convolve two families of elliptic curves with rank. In this case the symmetry group of the convolution is independent of the ranks, in accordance with the general principle of multiplicativity of the symmetry constants (but the ranks persist, before taking the limit N,M --> oo, as lower-order terms).Comment: 41 pages, version 2.1, cleaned up some of the text and weakened slightly some of the conditions in the main theorem, fixed a typ

    Range descriptions for the spherical mean Radon transform

    Get PDF
    The transform considered in the paper averages a function supported in a ball in \RR^n over all spheres centered at the boundary of the ball. This Radon type transform arises in several contemporary applications, e.g. in thermoacoustic tomography and sonar and radar imaging. Range descriptions for such transforms are important in all these areas, for instance when dealing with incomplete data, error correction, and other issues. Four different types of complete range descriptions are provided, some of which also suggest inversion procedures. Necessity of three of these (appropriately formulated) conditions holds also in general domains, while the complete discussion of the case of general domains would require another publication.Comment: LATEX file, 55 pages, two EPS figure

    Digital predistortion of RF amplifiers using baseband injection for mobile broadband communications

    Get PDF
    Radio frequency (RF) power amplifiers (PAs) represent the most challenging design parts of wireless transmitters. In order to be more energy efficient, PAs should operate in nonlinear region where they produce distortion that significantly degrades the quality of signal at transmitter’s output. With the aim of reducing this distortion and improve signal quality, digital predistortion (DPD) techniques are widely used. This work focuses on improving the performances of DPDs in modern, next-generation wireless transmitters. A new adaptive DPD based on an iterative injection approach is developed and experimentally verified using a 4G signal. The signal performances at transmitter output are notably improved, while the proposed DPD does not require large digital signal processing memory resources and computational complexity. Moreover, the injection-based DPD theory is extended to be applicable in concurrent dual-band wireless transmitters. A cross-modulation problem specific to concurrent dual-band transmitters is investigated in detail and novel DPD based on simultaneous injection of intermodulation and cross-modulation distortion products is proposed. In order to mitigate distortion compensation limit phenomena and memory effects in highly nonlinear RF PAs, this DPD is further extended and complete generalised DPD system for concurrent dual-band transmitters is developed. It is clearly proved in experiments that the proposed predistorter remarkably improves the in-band and out-of-band performances of both signals. Furthermore, it does not depend on frequency separation between frequency bands and has significantly lower complexity in comparison with previously reported concurrent dual-band DPDs

    Impact of Spatial Filtering on Distortion from Low-Noise Amplifiers in Massive MIMO Base Stations

    Full text link
    In massive MIMO base stations, power consumption and cost of the low-noise amplifiers (LNAs) can be substantial because of the many antennas. We investigate the feasibility of inexpensive, power efficient LNAs, which inherently are less linear. A polynomial model is used to characterize the nonlinear LNAs and to derive the second-order statistics and spatial correlation of the distortion. We show that, with spatial matched filtering (maximum-ratio combining) at the receiver, some distortion terms combine coherently, and that the SINR of the symbol estimates therefore is limited by the linearity of the LNAs. Furthermore, it is studied how the power from a blocker in the adjacent frequency band leaks into the main band and creates distortion. The distortion term that scales cubically with the power received from the blocker has a spatial correlation that can be filtered out by spatial processing and only the coherent term that scales quadratically with the power remains. When the blocker is in free-space line-of-sight and the LNAs are identical, this quadratic term has the same spatial direction as the desired signal, and hence cannot be removed by linear receiver processing

    Adaptive Nonlinear RF Cancellation for Improved Isolation in Simultaneous Transmit-Receive Systems

    Get PDF
    This paper proposes an active radio frequency (RF) cancellation solution to suppress the transmitter (TX) passband leakage signal in radio transceivers supporting simultaneous transmission and reception. The proposed technique is based on creating an opposite-phase baseband equivalent replica of the TX leakage signal in the transceiver digital front-end through adaptive nonlinear filtering of the known transmit data, to facilitate highly accurate cancellation under a nonlinear TX power amplifier (PA). The active RF cancellation is then accomplished by employing an auxiliary transmitter chain, to generate the actual RF cancellation signal, and combining it with the received signal at the receiver (RX) low noise amplifier (LNA) input. A closed-loop parameter learning approach, based on the decorrelation principle, is also developed to efficiently estimate the coefficients of the nonlinear cancellation filter in the presence of a nonlinear TX PA with memory, finite passive isolation, and a nonlinear RX LNA. The performance of the proposed cancellation technique is evaluated through comprehensive RF measurements adopting commercial LTE-Advanced transceiver hardware components. The results show that the proposed technique can provide an additional suppression of up to 54 dB for the TX passband leakage signal at the RX LNA input, even at considerably high transmit power levels and with wide transmission bandwidths. Such novel cancellation solution can therefore substantially improve the TX-RX isolation, hence reducing the requirements on passive isolation and RF component linearity, as well as increasing the efficiency and flexibility of the RF spectrum use in the emerging 5G radio networks.Comment: accepted to IEE
    corecore