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Abstract

This paper presents a novel digital self-interference canceller for an inband multiple-input-multiple-output (MIMO)
full-duplex radio. The signal model utilized by the canceller is capable of modeling the in-phase quadrature (IQ)
imbalance, the nonlinearity of the transmitter power amplifier, and the crosstalk between the transmitters, thereby
being the most comprehensive signal model presented thus far within the full-duplex literature. Furthermore, it is also
shown to be valid for various different radio frequency (RF) cancellation solutions. In addition to this, a novel
complexity reduction scheme for the digital canceller is also presented. It is based on the widely known principal
component analysis, which is used to generate a transformation matrix for controlling the number of parameters in
the canceller. Extensive waveform simulations are then carried out, and the obtained results confirm the high
performance of the proposed digital canceller under various circuit imperfections. The complexity reduction scheme
is also shown to be capable of removing up to 65% of the parameters in the digital canceller, thereby significantly
reducing its computational requirements.
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1 Introduction
Inband full-duplex communications is a promising can-
didate technology for further improving the spectral effi-
ciency of the next generation wireless systems, such as
the 5G networks [1–11]. The basic idea behind it is
to transmit and receive at the same time at the same
center-frequency, thereby in principle doubling the spec-
tral efficiency. The drawback of such inband full-duplex
operation is the own transmit signal, which is coupling to
the receiver and becomes an extremely powerful source
of self-interference (SI). The most significant challenge
in implementing inband full-duplex radios in practice
is thereby the development of SI cancellation solutions,
which are capable of removing the SI in the receiver.
There are already reports of various demonstrator imple-
mentations, which achieve relatively high SI cancellation
performance, thereby allowing for true inband full-duplex
operation [1–3, 6, 7, 11–14].
Moreover, in order tomeet the high throughput require-

ments of the future wireless networks, it is inevitable that
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the inband full-duplex concept must be combined with
MIMO capabilities in the transceivers [7, 12–19]. This
obviously results in a higher physical layer capacity, but
it also requires more elaborate SI cancellation solutions.
In particular, in a MIMO transceiver, the observed SI
signal in each receiver consists of a combination of all
the transmit signals, which means that also the SI can-
cellers must have all of the transmit signals available.
Furthermore, in order to perform SI cancellation, the cou-
pling channels between all the transmitters and receivers
must be estimated, which results in a somewhat more
demanding SI cancellation procedure. Nevertheless, this
increased complexity is justified by the higher physical
layer throughputs.
Especially the complexity of the RF canceller is heav-

ily affected by the number of transmitters and receivers
[7, 15]. For an NT × NR MIMO transceiver, the RF can-
celler requires at least NTNR cancellation paths, or even
more if using a multi-tap solution [7, 20]. This number
can be somewhat decreased by using auxiliary transmit-
ters to upconvert digitally generated cancellation signals,
since then only NR cancellation paths are required. How-
ever, the drawback of this solution is obviously the need
for additional RF transmitters, as well as the fact that the
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digitally generated cancellation signals do not include any
of the transmitter-induced impairments, which thereby
remain unaffected by this type of an RF cancellation solu-
tion [1]. Another possible solution for decreasing the
complexity of RF cancellation in the context of very large
transmit antenna arrays is to use beamforming to form
nulls in the receive antennas [4, 21], which might even
allow for completely omitting RF cancellation. In typical
MIMO devices, however, the increase in the RF cancella-
tion complexity is more or less inevitable.
Also, the complexity of digital SI cancellation is some-

what increased under MIMO operation, but it is obvi-
ously more straight-forward to process several SI signals
in the digital domain. In particular, more computa-
tional resources are needed to estimate all the channel
responses between the several transmitters and receivers,
but no additional RF hardware is required. However,
having several transmit chains on a single chip intro-
duces another issue from the perspective of the dig-
ital canceller: the crosstalk between the transmitters,
which occurs both before and after the power ampli-
fiers (PAs) [22–28]. This phenomenon is illustrated in
Fig. 1 for an example case of three transmitters. What
makes this an especially cumbersome issue is the fact
that typically the PAs introduce significant nonlinear
distortion [3, 29]. This, on the other hand, means
that nonlinear modeling of the SI is required in the
digital canceller, which is very challenging if the PA
input is in fact a linear combination of all the orig-
inal transmit signals, as is the case under crosstalk
[26]. Nevertheless, it is still necessary to model the
crosstalk, since otherwise the accuracy of the regener-
ated SI signal is not sufficiently high. This is especially
crucial for the emerging massive MIMO transceivers,
where the large amount of transmit chains calls for a

Fig. 1 An illustration of the crosstalk phenomenon in a three-antenna
MIMO transmitter, where crosstalk occurs both before and after the
PAs. The former is typically referred to as nonlinear crosstalk, while the
latter is called linear crosstalk

high level of integration, which results in more leak-
age between the transmission paths [28]. Hence, the
increase in computational complexity caused by the
crosstalk modeling must be tolerated in order to obtain
sufficient levels of SI cancellation also under MIMO
operation.
In this article, we present a general signal model for

the observed SI in the digital domain under a scenario
where there is crosstalk between the transmit chains
before and after nonlinear PAs. Moreover, it is shown
that the signal model can be applied to various different
RF cancellation solutions. The presented comprehensive
signal model, which shows the effect of the crosstalk in
terms of the original transmit signals, is then used as
a basis for a high-performance digital SI canceller. The
IQ imbalance occurring both in the transmitters and in
the receivers is also included in the signal model, since
it is typically one of the dominant sources of distortion
in a practical transceiver, alongside with the PA-induced
nonlinearities [30].
Furthermore, to address the increase in the compu-

tational complexity due to the MIMO operation and
crosstalk modeling, a novel principal component analy-
sis (PCA)-based solution is proposed, which can be used
to control the complexity of the signal model. In partic-
ular, PCA processing is used to identify the insignificant
terms in the observed SI signal, which are then omit-
ted in the further cancellation processing. This results
in a significant reduction of the unknown parameters
that must be estimated, which obviously decreases the
computational requirements of the digital SI canceller.
Moreover, since the most dominant SI terms are retained
by such processing, there is no essential degradation in
the cancellation performance. To the best of our knowl-
edge, such complexity reduction schemes have not been
previously proposed in the context of SI cancellation
solutions.
The detailed list of novel contributions in this paper is

as follows:

• We derive the most comprehensive MIMO signal
model for the observed SI presented so far in the
literature. It covers various RF cancellation scenarios,
while also modeling the crosstalk between the
transmitters under low-cost nonlinear PAs and IQ
imbalance.

• We propose a novel nonlinear digital SI canceller,
which utilizes the aforementioned advanced signal
model.

• We propose a novel complexity reduction scheme
based on PCA, which can be used to control the
computational complexity of the digital canceller,
while minimizing the decrease in the cancellation
performance.
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• We present numerical results, which illustrate
various aspects of the proposed digital SI cancellation
solution with realistic waveform simulations.

The rest of this article is organized as follows. In
Section 2, the MIMO signal model is derived. Then,
in Section 3, the actual nonlinear digital SI canceller is
presented, alongside with the parameter estimation pro-
cedure and the PCA-based complexity reduction scheme.
After this, in Section 4, the proposed digital SI cancella-
tion solution is evaluated with realistic waveform simula-
tions. Finally, the conclusions are drawn in Section 5.

2 Baseband equivalent signal modeling
In this section, we build a complete SI channel model
for a MIMO full-duplex device, including the effects of
transmitter impairments (PA nonlinearity, IQ imbalance,
and transmitter crosstalk), the linear MIMO SI channel,
and RF cancellation. In the forthcoming analysis, the non-
linearities produced by the digital-to-analog and analog-
to-digital converters (DACs and ADCs) [31], alongside
with phase noise, are omitted from the signal model for
simplicity, although phase noise is still included in the
reported simulation results.
An illustration of the considered full-duplex MIMO

transceiver is given in Fig. 2, with two alternative RF
cancellation solutions. In particular, the RF cancellation
can be done either by utilizing the PA output signals,
or by generating the cancellation signals in the digital

domain and upconverting them with the help of auxil-
iary transmitters. In the forthcoming analysis, both of
these options are considered. Furthermore, in Fig. 2, the
transceiver is shown to have separate transmit and receive
antennas only for illustrative purposes, since the same
signal model can also be applied to a case where each
antenna is shared between a transmitter and a receiver
[32]. Hence, the forthcoming analysis is directly applica-
ble also to a shared-antenna architecture. Note that, for
notational simplicity, the actual received signals of inter-
est and additive noise are not included in the following
presentation.

2.1 Power amplifier and IQmodulator models with
crosstalk

Let us denote the baseband signal of transmitter j (j =
1, 2, . . . ,NT ) by xj(n). The output signal of a frequency-
independent IQ modulator model is [33]

xIQMj (n) = K1, jxj(n) + K2, jx∗
j (n) (1)

with K1,j = 1/2(1 + g j exp(jϕj)),K2,j = 1/2(1 − g j exp(jϕj)),
where gj,ϕj are the gain and phase imbalance parameters
of transmitter j. Notice that under typical circumstances
|K1, j| � |K2, j|. The magnitude of the IQ image compo-
nent, represented by the conjugated signal term in (1), can
be characterized with the image rejection ratio (IRR) as
10 log10

(|K1, j|2/|K2, j|2
)
.

Fig. 2 Block diagram of the considered MIMO full-duplex transceiver with NT transmitters and NR receivers. Two alternative RF cancellation schemes
are illustrated in the diagram: one utilizing directly the transmitter output signals and one utilizing auxiliary transmitters with digitally generated RF
cancellation signals
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The response of the PA is approximated using the widely
known parallel Hammerstein (PH) model, given for trans-
mitter j as [34]

xPAj (n) =
P∑

p=1
p odd

M∑

m=0
hp, j(m)ψp(xj,in(n − m)), (2)

where xj,in(n) is the PA input signal, the basis functions are
defined as

ψp(x(n)) = |x(n)|p−1x(n) = x(n)
p+1
2 x∗(n)

p−1
2 (3)

and hp,j(n) denote the impulse responses of the PH
branches for transmitter j, while M and P denote the
memory depth and nonlinearity order of the PH model,
respectively [34–36]. The PH nonlinearity is a widely used
nonlinear model for direct as well as inverse modeling of
PAs [34–37].
Due to the crosstalk occurring before each PA, referred

to as nonlinear crosstalk, the input signal xj,in(n) can be
written as

xj,in(n) =
NT∑

i=1
αijxIQMi (n), (4)

where αij is the crosstalk coefficient between the ith and
jth transmitter chains, and αjj = 1 ∀ j. In other words, as
a result of the crosstalk occurring before the PAs, each
PA input signal is in fact a linear combination of all the
different transmit signals. The crosstalk phenomenon is
illustrated for an example case of three transmitters in
Fig. 1, where both the nonlinear and linear crosstalk are
shown. Inserting now (1) into (4), we can rewrite the PA
input signal as

xj,in(n) =
NT∑

i=1
αij

(
K1,ixi(n) + K2,ix∗

i (n)
)

=
NT∑

i=1
α1,ijxi(n) +

NT∑

i=1
α2,ijx∗

i (n), (5)

where α1,ij = αijK1,i and α2,ij = αijK2,i.

Using (5), the signal at the PA output can be written
as follows:

xPAj (n) =
P∑

p=1
p odd

M∑

m=0
hp, j(m)xj,in(n − m)

p+1
2 x∗

j,in(n − m)
p−1
2

=
P∑

p=1
p odd

M∑

m=0
hp, j(m)

p+1
2∑

k0=0

( p+1
2
k0

)

×
( NT∑

i=1
α1,ijxi(n − m)

) p+1
2 −k0 ( NT∑

i=1
α2,ijx∗

i (n − m)

)k0

×
p−1
2∑

l0=0

( p−1
2
l0

) ( NT∑

i=1
α∗
2,ijxi(n − m)

) p−1
2 −l0

×
( NT∑

i=1
α∗
1,ijx

∗
i (n − m)

)l0

(6)

It can be further modified by expanding all the integer
powers of the sum signals as shown in the Appendix,
which gives

xPAj (n) =
P∑

p=1
p odd

p∑

q0=0

p−q0∑

q1=0
· · ·

p−q0−···−qNT−2∑

qNT−1=0

q0∑

r1=0

q0−r1∑

r2=0
· · ·

q0−r1−···−rNT−2∑

rNT−1=0

M∑

m=0
hp,j,q0,... ,rNT−1(m)

× x1(n − m)q1x2(n − m)q2 · · ·
xNT (n − m)p−

∑NT−1
i=0 qi

× x∗
1(n − m)r1x∗

2(n − m)r2 · · ·
x∗
NT (n − m)q0−

∑NT−1
i=1 ri

(7)

where hp,j,q0,... ,rNT−1(m) are the coefficients for the
basis function of the form

∏NT
i=1 xi(n)aix∗

i (n)bi such that
∑NT

i=1 (ai + bi) = p. This signal model is of similar form
as the one presented in [26], with the exception that the
model in (7) also incorporates the effect of IQ imbalance
and is thus more complete.
In order to simplify (7), it can be noted that, for the jth

transmit signal and the pth nonlinearity order, the signal
model contains in fact all the different combinations of the
exponents qm and rn, under the constraint that their sum
is equal to p. This means that we can rewrite (7) as
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xPAj (n) =
P∑

p=1
p odd

∑

k∥∥
∥sk

∥∥
∥
1
=p

M∑

m=0
hj,p,sk (m)

×
NT∏

q=1
xq(n − m)

skqx∗
q(n − m)

skq+NT , (8)

where sk is the kth combination of the 2Nt × 1 expo-
nent vector s, hj,p,sk (m) contains the corresponding coef-
ficients, and ‖·‖1 denotes the L1-norm. Note that all the
elements of s are non-negative integers, as per the signal
model. To illustrate its structure, all the variations of s for
NT = 1 and P = 3 are written below:

s1 = [
1 0

]T , s2 = [
0 1

]T , s3 = [
1 2

]T

s4 = [
2 1

]T , s5 = [
3 0

]T , s6 = [
0 3

]T

After the PAs, there is typically also some additional
crosstalk between the transmitters, referred to as linear
crosstalk. Taking also this phenomenon into account, the
final output signal for the jth transmitter can be written as

xTXj (n) =
NT∑

l=1
βljxPAl (n)

=
P∑

p=1
p odd

∑

k∥∥
∥sk

∥∥
∥
1
=p

M∑

m=0

NT∑

l=1
βljhl,p,sk (m)

×
NT∏

q=1
xq(n − m)

skqx∗
q(n − m)

skq+NT , (9)

where βlj is the crosstalk coefficient between the lth and
jth transmitters. It can be observed that the essential sig-
nal model remains the same as in (8), but with modified
coefficients written as

h́j,p,sk (m) =
NT∑

l=1
βljhl,p,sk (m). (10)

Denoting the MIMO propagation channel impulse
response from TX antenna j to RX antenna i by cij(l), l =
0, 1, . . . , L, the received SI signal at RX antenna i (i =
1, 2, . . . ,NR) can now be written as

zi(n) =
NT∑

j=1

L∑

l=0
cij(l)xTXj (n − l)

=
P∑

p=1
p odd

∑

k∥
∥
∥sk

∥
∥
∥
1
=p

NT∑

j=1

L∑

l=0

M∑

m=0
cij(l)h́j,p,sk (m)

×
NT∏

q=1
xq(n − m − l)s

k
qx∗

q(n − m − l)s
k
q+NT

=
P∑

p=1
p odd

∑

k∥∥
∥sk

∥∥
∥
1
=p

M+L∑

m=0
h̃i,p,sk (m)

×
NT∏

q=1
xq(n − m)

skqx∗
q(n − m)

skq+NT . (11)

Again, the signal model still remains the same as in (8),
but with slightly modified coefficients, which are obtained
from

h̃i,p,sk (m) =
NT∑

j=1

m∑

l=0
cij(l)h́j,p,sk (m − l).

The new memory length of the received signal model is
also increased fromM toM+L. The input signal of the ith
receiver (zi(n)) is then further processed by the RF can-
celler and the actual receiver chain. Note that the above
signal model in (11) also applies to circulator and electri-
cal balance duplexer-based implementations, where each
transmitter and receiver pair share the same antenna [32],
and hence it is generic in that respect.

2.2 RF cancellation
To ensure an extensive analysis and derivation for the pro-
posed digital cancellation algorithm, we consider three
different RF cancellation solutions. The first technique is
similar to what has been used, e.g, in [5, 6], and it involves
directly tapping the transmitter outputs to obtain the ref-
erence signals for RF cancellation. This method is based
on purely analog processing, as the whole cancellation
procedure is performed in the RF domain. The two other
considered methods are based on auxiliary TX chains,
which are used to produce the RF cancellation signal from
digital baseband samples [1, 38, 39]. We call this latter
approach hybrid RF cancellation to distinguish it from
purely analog cancellation. Furthermore, we consider both
linear and nonlinear preprocessing to be used with this
auxiliary transmitter based RF cancellation.

2.2.1 RF cancellationwith transmitter output signals
In this RF cancellation method, the output of each TX
chain is tapped, and subtracted from each of the received
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signals after suitable gain, phase and delay adjustments.
These RF cancellers can be either single-tap or multi-tap
[9, 40], for which reason we denote them with impulse
responses hRFij (l), operating on the TX output signals
xTXj (n). The coefficients are obviously chosen such that
they model the MIMO coupling channel coefficients in
cij(n) as accurately as possible. The RF cancellation signal
for the ith receiver can thus be written as

zci (n) =
NT∑

j=1

L′∑

l=0
hRFij (l)xTXj (n − l), (12)

where L′ is the number of taps in the RF canceller. It can
be easily shown that the cancellation signal is of similar
form as the actual received signal in (11), with coefficients
of the form

ȟRFi,p,sk (m) =
NT∑

j=1

m∑

l=0
hRFij (l)h́j,p,sk (m − l)

and a memory length ofM + L′. Thus, the received SI sig-
nal of receiver i, after this type of analog RF cancellation,
becomes

ri(n) = zi(n) − zci (n)

=
P∑

p=1
p odd

∑

k∥
∥
∥sk

∥
∥
∥
1
=p

M+max(L,L′)∑

m=0

(
h̃i,p,sk (m)

−ȟRFi,p,sk (m)
) NT∏

q=1
xq(n − m)

skqx∗
q(n − m)

skq+NT ,

(13)

Hence, the structure of the RF canceller output signal
model is still of the same form as in (11), but with mod-
ified coefficients expressed as h̆i,p,sk (m) = h̃i,p,sk (m) −
ȟRFi,p,sk (m).
This type of purely analog RF cancellation calls forNT ×

NR canceller circuits to be implemented in the device,
one canceller from each transmitter to each receiver. The
complexity may become prohibitive when the number
of antennas is significantly increased and, thereby, when
implementing a high order full-duplex MIMO device,
alternative methods for RF cancellation might have to be
considered.

2.2.2 Hybrid RF cancellation using auxiliary transmitters
with linear preprocessing

One such alternative RF canceller structure is the hybrid
method, which utilizes extra transmitter chains, one for
each receiver, to upconvert and subtract estimated repli-
cas of the SI signals from the received signals at RF
[1, 38, 39]. In this case, linear MIMO filtering is already
done at digital baseband on the transmit signals xj(n) with

some estimated MIMO channel responses hRFij (l). Since
the transmit signals from the different antennas can now
be combined already in the digital domain, the analog
hardware complexity of this type of an RF cancellation
scheme scales withNR instead ofNTNR, and may prove to
be more attractive with a high number of antennas. Note
that in this subsection, we consider only linear process-
ing for the hybrid RF canceller, and thereby IQ modulator
imbalance or PA nonlinearity are not explicitly dealt with
at this stage. The RF cancellation signal can in this case be
written as

zci (n) =
NT∑

j=1

L′∑

l=0
hRFij (l)xj(n − l), (14)

which is a special case of the signal model in (11) with
P = 1 and coefficients ȟRFi,1,sk (m) consisting of hRFij (l)
with proper sk . The signal after RF cancellation is again
obtained as shown in (13), and with the final coeffi-
cients as

h̆i,p,sk (m) = h̃i,p,sk (m) − ȟRFi,p,sk (m), p = 1

h̆i,p,sk (m) = h̃i,p,sk (m), p ≥ 3

Also this model is essentially of the same form as (11),
with the coefficients of the linear SI terms being affected
by the hybrid RF cancellation procedure, while the other
terms remain unchanged. This means that the observed SI
signal in the receiver digital domain can still be modeled
with the same signalmodel as in the case of pure analog RF
cancellation (or no RF cancellation at all). Thus, from the
perspective of the digital cancellation algorithm, it makes
no difference whether RF cancellation is performed by
tapping the transmitter output or by using auxiliary TX
chains with linear preprocessing, although the RF cancel-
lation performance itself might obviously be different for
the considered methods.

2.2.3 Hybrid RF cancellation using auxiliary transmitters
with nonlinear preprocessing

Yet another alternative RF cancellation technique utilizes
auxiliary transmitters, but with nonlinear preprocessing,
instead of purely linear processing. The estimated MIMO
channel responses of the different nonlinear SI terms are
now denoted by hRFij,p(l). In the forthcoming analysis, it is
assumed that the auxiliary TX chains are linear. This is
a relatively feasible assumption, since no PA is required
due to the lower output power requirements. Now, the
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cancellation signal obtained with this RF cancellation pro-
cedure can be expressed as

zci (n) =
NT∑

j=1

P′∑

p=1
p odd

L′∑

l=0
hRFij,p(l)xj(n − l)

p+1
2

× x∗
j (n − l)

p−1
2 , (15)

where P′ is the nonlinearity order of the RF cancellation
signals. Note that this signal model neglects IQ imbalance
and crosstalk, since the RF canceller must only attenuate
the SI such that the receiver is not saturated. Also this RF
cancellation signal can be easily represented with a sig-
nal model of the same form as in (11). The coefficients
ȟRFi,p,sk (m) of the signal model now consist of hRFij,p(l) with
the parameters p and sk that correspond to the basis func-
tions xj(n − l)

p+1
2 x∗

j (n − l)
p−1
2 , and other coefficients are

set to zero. Similar to the other RF cancellation schemes,
after subtracting the cancellation signal from the received
signal, as in (13), the signal model remains the same and
its coefficients are h̆i,p,sk (m) = h̃i,p,sk (m)− ȟRFi,p,sk (m). Now,
also some of the nonlinear SI terms are attenuated by
RF cancellation, as they are modeled in the preprocessing
stage.
Overall, it can be concluded that the essential structure

of the observed SI signal in the digital domain is inde-
pendent of the chosen method for RF cancellation. This
means that, in the forthcoming analysis, the same digital
cancellation algorithm can be applied in all the situations
since the only difference between the three alternative
RF cancellation schemes are the relative power levels of
the various SI terms. However, as already mentioned, the
RF cancellation performance is likely to differ between
these techniques, and also the hardware and computa-
tional requirements are different for each RF canceller
structure.
In the forthcoming analysis, we will refer to the param-

eters of the signal model in all cases by h̆i,p,sk (m), similar
to the above derivations, even though the exact values of
the different coefficients vary for different RF cancellation
techniques. This notation will simplify the equations and
make them more straightforward and illustrative. Hence,
the signal after RF cancellation, which is then processed
by the digital canceller, can be written as

ri(n) =
P∑

p=1
p odd

∑

k∥
∥
∥sk

∥
∥
∥
1
=p

M+max(L,L′)∑

m=0
h̆i,p,sk (m)

×
NT∏

q=1
xq(n − m)

skqx∗
q(n − m)

skq+NT , (16)

Note that this signal model implicitly incorporates also
the IQ imbalance occurring in the receiver, even though it
is omitted in the derivations for brevity [15].

2.3 Total number of basis functions in the overall model
In general, with the above cascaded modeling approach
for IQ modulator and PA impairments with crosstalk
between the transmitters, it can easily be shown that the
total number of basis functions in (16) becomes

nb =
P∑

p=1
p odd

(
p + 2NT − 1
2NT − 1

)
. (17)

Figure 3 illustrates the number of basis functions for
different nonlinearity orders and numbers of transmit
antennas for the full signal model and also for the
crosstalk-free signal model discussed below in Section 2.4.
It is immediately obvious that with higher order MIMO
systems, or with heavily nonlinear PAs, the number of
basis functions becomes unacceptably high when utilizing
the full signal model with crosstalk. Thus, it is necessary
to determine methods that will decrease the number of
basis functions, and thereby facilitate the estimation of the
parameters of this signal model also in practice.
Luckily, many of the terms arising from the cascade

of the impairments are so insignificant that they can be
neglected with very little effect on the overall modeling
accuracy. This will reduce the computational cost of such
modeling and the corresponding cancellation procedure.
In this work, we propose a specific preprocessing stage
which can be used to decrease the dimensionality of the
full signal model in (16). This is elaborated in more details
in Section 3.2.

Fig. 3 The number of basis functions with respect to the nonlinearity
order of the signal model (P). The curves have been plotted for
different numbers of transmit antennas and for both the full signal
model and the crosstalk-free signal model
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2.4 Nonlinear signal model without crosstalk
Another simple way to decrease the number of basis
functions is to neglect the crosstalk effect between the
transmitters. Then, the cross terms between the differ-
ent transmit signals will be removed, which obviously
results in a significant decrease in the number of unknown
parameters. Modifying (16) accordingly, we can write the
signal model now as

ri(n) =
NT∑

j=1

P∑

p=1
p odd

p∑

q=0

M+max(L,L′)∑

m=0
h̆i,j,p,q(m)

× xj(n − m)qx∗
j (n − m)p−q, (18)

where h̆i,j,p,q(m) represents now the coupling channel cor-
responding to the considered SI signal terms propagating
from the jth transmitter to the ith receiver. This signal
model is also derived in [15], where it is briefly discussed
and analyzed. For this reason, the detailed derivation
process of (18) is omitted in this article.
Since now all the cross-terms are neglected from the sig-

nal model, the number of basis functions can be expressed
as

nCT−free
b = NT

(
P + 1
2

) (
P + 1
2

+ 1
)
. (19)

When investigating Fig. 3, it can be seen that this signal
model results in a significant reduction of basis functions,
when compared to the full signal model with crosstalk.
With moderate crosstalk levels, it is therefore likely that
using this signal model will provide a very favorable trade-
off between cancellation performance and computational
complexity. However, as already discussed, in highly inte-
grated transceivers explicit modeling of the crosstalk
between the transmitters is likely required in order to
ensure sufficient cancellation performance [28].

3 Self-interference parameter estimation and
digital cancellation

In this section, building on the previous modeling in,
e.g., [15, 29], we will describe the proposed digital can-
cellation algorithm that models both IQ imbalance and
PA nonlinearity in a MIMO full-duplex transceiver with
crosstalk between the transmitters. In general, there are
two possible approaches for nonlinear digital SI cancel-
lation: (i) construct a linear-in-parameters model of the
observed SI signal in the digital domain, including the dif-
ferent impairments, the MIMO propagation channel, and
RF cancellation, estimate the unknown parameters of the
model, and finally recreate and cancel the SI from the
received signals; (ii) have separate models for the MIMO
propagation channel and the transmitter impairments,
estimate the unknownmodel parameters sequentially, and

recreate and cancel the SI from the received signals. Typ-
ically the latter approach is computationally less demand-
ing, but it requires a more elaborate estimation procedure.
In this article, we consider the former approach, while the
latter is left for future work.

3.1 Linear-in-parameters model
Having already derived a linear-in-parameters signal
model in Section 2, presented in (16), the next step is to
estimate its parameters in h̆i,p,sk (m). After this, the esti-
mated parameters are used to regenerate the SI signals,
which are then subtracted from the received signals at
digital baseband to obtain cancellation. Figure 4 shows
the whole digital cancellation procedure on a fundamental
level.
Denoting the desired signal of interest and additive

noise at the ith receiver by si(n) and wi(n), respectively,
the overall received signal at digital baseband can be
expressed as

yi(n) = ri(n) + si(n) + wi(n). (20)

The corresponding output of the digital SI canceller is
then

ŝi(n) = yi(n) − r̂i(n), (21)

where r̂i(n) denotes the SI estimate obtained using the
signal model in (16) with estimated parameters, written as

r̂i(n) =
P̄∑

p=1
p odd

∑

k∥
∥∥sk

∥
∥∥
1
=p

M2∑

m=−M1

ˆ̆hi,p,sk (m)

×
NT∏

q=1
xq(n − m)

skqx∗
q(n − m)

skq+NT . (22)

Here, P̄ is the nonlinearity order of the digital canceller,
M1 is the number of pre-cursor taps, M2 is the number
of post-cursor taps, and ˆ̆hi,p,sk (m) contains the estimated
parameters of the signal model. The pre-cursor taps are

Fig. 4 A description of the proposed model for regeneration and
cancellation of nonlinear self-interference
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introduced to model all the memory effects produced by
the transmitter and RF cancellation circuitry.

3.1.1 Least-squares-based estimator
In this work, the actual parameter learning is performed
with the widely used least squares (LS) estimation. For
brevity, the parameter learning and digital cancellation
procedure is here outlined only for the ith receiver, since
the procedure is identical for all the receivers.
In practice, calculating the LS estimate requires knowl-

edge of (i) the original transmitted data signal, (ii) the
predetermined signal model in (16), and (iii) the observed
received signal yi(n). In the consideredMIMO full-duplex
device, all of these are obviously known by the digital can-
celler. Since the LS estimation is performed using a block
of data, the vector/matrix representations of the relevant
signals with N observed samples are first defined as

yi = ri + si + wi, with

yi = [
yi(n) yi(n + 1) · · · yi(n + N − 1)

]T (23)

and ri, si,wi are defined in the same manner as yi. The
error vector is then defined as

ei = yi − r̂i (24)

where the nonlinear SI estimate is

r̂i = �
ˆ̆hi. (25)

Here,� is a horizontal concatenation of the convolution
matrices defined as follows:

�i,p,sk

=

⎡

⎢⎢
⎢⎢
⎢
⎢⎢
⎢
⎣

ψi,p,sk (n+M1) ψi,p,sk (n+M1−1) · · · ψi,p,sk (n−M2)

ψi,p,sk (n+M1+1) ψi,p,sk (n+M1) · · · ψi,p,sk (n−M2+1)

...
...

. . .
...

ψi,p,sk (n+M1+N−1) ψi,p,sk (n+M1+N−2) · · · ψi,p,sk (n−M2+N−1)

⎤

⎥⎥
⎥⎥
⎥
⎥⎥
⎥
⎦

,

where

ψi,p,sk (n) =
NT∏

q=1
xq(n)

skqx∗
q(n)

skq+NT ,

with p = 1, 3, . . . , P̄, and sk is each combination for which∥
∥sk

∥
∥
1 = p, similar to the sum limits shown in (16).

Overall, the number of concatenated matrices is given
by the total number of basis functions in (17), since this
is the amount of different combinations of sk for all the
nonlinearity orders.

Alternatively, in the crosstalk-free model � consists of
the concatenation of the matrices defined as follows:
� j,p,q

=

⎡

⎢⎢⎢⎢⎢
⎢
⎣

ψj,p,q(n+M1) ψj,p,q(n+M1 −1) · · · ψj,p,q(n−M2)

ψj,p,q(n+M1 +1) ψj,p,q(n+M1) · · · ψj,p,q(n−M2+1)
...

...
. . .

...
ψj,p,q(n+M1+N−1) ψj,p,q(n+M1+N−2) · · · ψj,p,q(n−M2+N−1)

⎤

⎥⎥⎥⎥⎥
⎥
⎦

,

where ψj,p,q(n) = xj(n)qx∗
j (n)p−q, with j = 1, 2, . . . ,NT ,

p = 1, 3, . . . , P̄, and q = 0, 1, . . . , p.
An estimate of the parameter vector h̆i, denoted by ˆ̆hi,

is a vertical concatenation of the vectors
ˆ̆hi,p,sk =

[ ˆ̆hi,p,sk (−M1) · · · ˆ̆hi,p,sk (M2)
]T

(26)

In the crosstalk-free model, the parameter vector con-
sists of the concatenation of vectors

ˆ̆hi,j,p,q =
[ ˆ̆hi,j,p,q(−M1) · · · ˆ̆hi,j,p,q(M2)

]T
(27)

The LS estimate of the parameter vector h̆i is then found
as the solution which minimizes the power of the error
vector ei, as

ˆ̆hi = argmin
h̆i

‖ei‖2 = argmin
h̆i

∥
∥
∥yi − �h̆i

∥
∥
∥
2

= (
�H�

)−1
�Hyi, (28)

assuming full column rank in � .

3.2 Computationally efficient estimation with principal
component analysis

Another approach to simplify the estimation procedure
is to retain the cross-terms, and instead determine which
of them are actually significant in terms of the cancella-
tion performance. In this analysis, principal component
analysis (PCA) [41] is used to decrease the number of
parameters to be estimated. The idea behind the PCA is to
determine which of the terms have the highest variance,
providing valuable information regarding the significance
of the different basis functions. In practice, PCA results
in a transformation matrix, with which the original data
matrix is multiplied. The size of the transformationmatrix
can be chosen to provide the desired number of parame-
ters for the final estimation procedure.
There are also various alternative solutions for model

complexity reduction, such as compressed sampling (CS)
based techniques. Nevertheless, in this work, we choose
to use the PCA since it is a straight-forward method for
the complexity reduction of the proposed signal model,
while also providing nearly the same performance as CS
when high modeling accuracy is required [42]. Experi-
menting with different complexity reduction methods is
an important future work item for us.
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The first step in obtaining the desired PCA transfor-
mation matrix is to determine the least squares channel
estimate given in (28) using all the basis functions. This
estimate should be calculated with the highest possible
transmit power, since the nonlinear SI terms that are neg-
ligible with the highest power will also be negligible with
any lower transmit power. Hence, this reveals the terms,
which can be omitted under the whole considered trans-
mit power range. If the transceiver in question has more
than one receiver chain, the channel estimation can be
done individually for all of them, after which the mean
value of the estimates is calculated. This is done to avoid
having separate transformation matrices for each receiver,
resulting in a decreased amount of required data storage.
The hereby obtained coefficient vector, which is denoted
by ˆ̆h0, is used as an initial channel estimate for the full set
of basis functions.
The next step is to determine the relative strengths of

the different terms present in the SI signal. Using the ini-
tial channel estimate, this can be done by multiplying the
original data matrix with the obtained estimate. Then, we
get

�0 =
(
1 ˆ̆hT0

)
× � , (29)

where 1 is a column vector consisting of 1s, and× denotes
element-wise multiplication between two matrices. The
matrix �0 now contains all the SI terms in its columns,
each multiplied with the corresponding coefficient of the
initial channel estimate.
As a starting point for the PCA, the singular value

decomposition of the normalized data matrix can be
expressed as

�0 = U�VH , (30)

where U and V are the matrices containing the left and
right singular vectors, respectively, while � is a diago-
nal matrix consisting of the corresponding singular val-
ues. In this analysis, it is assumed that the singular
values are in decreasing order. To minimize the possible
numerical issues upon the PCA transformation, the actual
transformation matrix is obtained in its normalized form,
which is given by

W = V�−1. (31)

To control the number of parameters, part of the
columns of the obtained matrix W can then be omitted.
Based on the earlier assumption regarding the ordering
of the singular values, the columns of the transformation
matrix represent the different parameters in the descend-
ing order of their significance. Thus, by starting to remove
the columns from the right, the number of parameters can
be decreased with minimal effect on the modeling accu-
racy. Thus, denoting the number of chosen parameters

with u, we can write the final transformation matrix as

W̃ = [
w1 w2 · · · wu

]
, (32)

where wi is the ith column of the matrix W. Finally, the
reduced data matrix can be calculated as

�̃ = �W̃. (33)

The hereby obtained datamatrix is then used in the least
squares estimation as a replacement for the original data
matrix � . It should also be noted that when generating
the actual digital cancellation signal, the cancellation data
matrix must be transformed with the same matrix W̃, as
the SI channel estimate is only valid in this transformed
space.
An important aspect to point out is that the trans-

formation matrix W̃ is calculated only once with the
highest transmit power, after which it can be used with
all transmit powers to reduce the number of basis func-
tions. Namely, since the strengths of the nonlinearities
are directly proportional to the transmit power, the SI
terms that are negligibly weak with the highest transmit
power are at least as weak with the lower transmit pow-
ers, which means that the same SI terms can be omitted
also then. This is also proven by the waveform simula-
tions, the results of which will be discussed in Section 4.
However, should the SI channel change drastically at any
point, then the matrix W̃ must be recalculated to ensure
that no significant memory taps are neglected.
In general, perhaps the most crucial design problem in

the context of the PCA is to determine the optimal num-
ber of parameters to be included in the final model. This
can bemost easily determined experimentally by reducing
the number of parameters until the obtained cancellation
performance starts to drop. Also, the singular values in
� can be used to calculate the percentage of the variance
accounted for by the included basis functions. We will
address this issue more closely with the help of waveform
simulations in Section 4.

4 Performance simulations and analysis
The evaluation of the proposed scheme is now done with
realistic waveform simulations, utilizing a comprehensive
inband full-duplex transceiver model. It incorporates all
the relevant impairments, and thereby the SI waveform
represents a real-world scenario rather well. Below, we
describe the waveform simulator in detail, after which the
results are shown. As an important future work item, we
aim to evaluate the proposed scheme also with actual RF
measurements to confirm the results obtained here with
the simulations.

4.1 Simulation setup and parameters
The waveform simulations are performed with Matlab,
where all the relevant aspects of the full-duplex
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transceiver are modeled. These include the nonlinearity
of the PAs, the crosstalk between the transmitters (both
before and after the PA), the multipath SI channel, the
imperfect RF cancellation, nonlinearity of the receiver,
IQ imbalance, phase noise, and the quantization upon
analog-to-digital conversion, while the DAC/ADC non-
linearities are omitted also from the simulator model
since we have not observed them to be a significant factor
in our earlier RF measurements [3, 43]. This means that
the simulator model is rather comprehensive and can be
expected to provide realistic results, although they must
still be confirmed with real-life measurements. Note that,
since the focus of this work is on SI cancellation, the
signal of interest is not present in any of the simulations.
The RF cancellation is performed in all the cases using
the transmitter output signal, since the essential signal
model is not affected by the RF cancellation procedure,
as shown in Section 2.2. The used waveform is a 20 MHz
LTE downlink signal, which utilizes OFDM with a 4-
QAM constellation. When modeling the phase noise,
a common local oscillator for all the transmitters and
receivers is assumed, which is a feasible assumption for
an inband full-duplex device. All the relevant parameters
of the waveform simulator are listed in Table 1, while the
used phase noise characteristics are shown in Fig. 5.
In the forthcoming results, five different digital can-

cellers are considered, and they are as follows:

Table 1 The relevant parameters of the waveform simulator

Parameter Value

Bandwidth 20 MHz

Sampling frequency 122.88 MHz

Number of TX/RX antennas 2/2

PA gain 27 dB

PA IIP3 13 dBm

Level of TX crosstalk before the PAs −10 dB/varied

Level of TX crosstalk after the PAs −10 dB

Receiver noise floor −96.9 dBm

Phase noise characteristics See Fig. 5

Transmit power 25 dBm/varied

SI channel length 20 taps

Antenna attenuation 40 dB

RF cancellation 30 dB

IRR (TX/RX) 25 dB

ADC bits 12

Parameter estimation sample size (N) 30,000/varied

Parameter estimation sample size for PCA 10,000

Nonlinearity order of the canceller (P) 5

Number of pre-cursor taps (M1) 10

Number of post-cursor taps (M2) 20

Fig. 5 The phase noise characteristics used in the waveform simulator,
corresponding to a charge-pump type phase locked loop-based
oscillator, taken from: http://datasheets.maximintegrated.com/en/ds/
MAX2870.pdf

• Digital canceller with the full signal model in (22),
including PCA processing to decrease the
dimensionality and computational complexity

• Digital canceller with the full signal model in (22), but
without any dimensionality reduction

• Digital canceller utilizing the N-input memory model
from [26], which considers the nonlinearity of the PA
and both linear and nonlinear crosstalk.

• Digital canceller with the crosstalk-free signal model
in (18), from [15], where both the nonlinearity of the
PA and the IQ imbalance are modeled.

• Digital canceller with a traditional linear signal
model, where P = 1.

In all the cases, the same parameter estimation sample
size is used for the different cancellers with M1 = 10 and
M2 = 20 to ensure a fair comparison. The PCA matrix
is calculated using 10 000 samples in the initial channel
estimation stage. Furthermore, to avoid overfitting when
estimating and cancelling the SI, separate portions of the
signal are used for calculating the SI channel estimate and
evaluating the actual SI cancellation performance.

4.2 Results
First, the signal spectra after the different digital can-
cellers are shown in Fig. 6 using the default parameters,
alongside with the spectra of the RF cancelled signal and
the receiver noise floor. It can be observed that only the
digital cancellers utilizing the full signal model can obtain

http://datasheets.maximintegrated.com/en/ds/MAX2870.pdf
http://datasheets.maximintegrated.com/en/ds/MAX2870.pdf
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Fig. 6 The signal spectra after the different digital cancellers, alongside
with the spectra of the RF cancelled signal and the receiver noise floor

sufficient levels of SI cancellation. In particular, the digital
canceller utilizing the linear signal model and the nonlin-
ear crosstalk signal model from [26] perform very poorly
since in this case IQ imbalance is the dominant source
of distortion. The signal model from [15], on the other
hand, has insufficient modeling accuracy since it does not
take into account the crosstalk. Thereby, it is necessary to
model both the IQ imbalance and the crosstalk, together
with the nonlinearity of the PA, to obtain sufficient levels
of digital cancellation. Furthermore, based on Fig. 6, the
number of basis functions can be reduced to 35% without
any reduction in the cancellation performance when using
the full signal model.
Note that in this case the phase noise has no significant

effect on the residual SI power since a common local oscil-
lator between the transmitters and receivers is assumed.
This results in a certain level of self-cancellation of the
phase noise upon downconversion, considerably reducing
its significance [44].
Figure 7 shows then the increase in the effective noise

floor due to the residual SI for the different digital can-
cellers, with respect to the total transmit power. In other
words, the closer to 0 dB the canceller achieves, the bet-
ter is its overall SI cancellation performance. As expected,
the linear canceller is not capable of efficient cancellation
even with the lowest transmit powers, whereas the nonlin-
ear cancellers with IQ imbalancemodeling suppress the SI
nearly perfectly up to transmit powers of 20 dBm. More-
over, the digital canceller utilizing the nonlinear crosstalk
signal model from [26] performs very poorly with the
whole transmit power range since it does not model the
IQ imbalance, as already discussed.
With transmit powers beyond 20 dBm, the crosstalk

effects begin to decrease also the accuracy of the
crosstalk-free nonlinear signal model from [15]. On the
other hand, the full signal models perform relatively well

Fig. 7 The increase in the noise floor due to residual SI, with respect
to the total transmit power

even with the highest transmit powers, resulting in only
a very minor increase in the noise floor. Furthermore,
as observed earlier, retaining only 35% of the terms after
the PCA processing does not seem to decrease the accu-
racy of the signal model when compared to the full signal
model with all the terms included. In fact, the perfor-
mance of the digital canceller with the lower transmit
powers is slightly improved by the dimensionality reduc-
tion since the smaller number of parameters results in a
more accurate parameter vector estimate, and hence in
more efficient cancellation.
To investigate the PCA-based dimensionality reduction

in greater detail, Fig. 8 shows the increase in the noise
floor with respect to the percentage of the terms included
after the PCA, when using the full signal model in (22).
The performance of the case without any PCA processing
is also shown for reference. It can be observed from the

Fig. 8 The increase in the noise floor due to residual SI, with respect
to the percentage of included terms
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figure that there is a wide range of values for the per-
centage of included terms that provide the same cancella-
tion performance. However, if the percentage of included
terms goes significantly below 35%, the performance of
the PCA-based canceller is rather poor. This is caused by
the decreased accuracy of the signal model due to exclud-
ing some of the significant terms. Also note that when
50–80% of the terms are included, the PCA-based solution
achieves slightly higher levels of SI cancellation than the
canceller without PCA processing. The reason for this is
the decreased variance of the parameter estimate, thanks
to the smaller number of terms.
In order to minimize the computational complexity of

the cancellation procedure, the number of included terms
must obviously be minimized. Hence, the smallest num-
ber of terms that still provides the required performance
is in this sense the optimal choice. Figure 8 indicates
that, with the parameters considered in these simulations,
the optimal percentage of included terms is roughly 35%,
which corresponds to 840 coefficients with the considered
nonlinearity order and number of memory taps.
Since the level of the crosstalk occurring before the

transmitter PAs is obviously the most significant aspect
in determining whether the full signal model is actually
necessary, Fig. 9 shows then the performance of the differ-
ent digital cancellers with different crosstalk levels. It can
be observed that, with the considered transmit power of
25 dBm, the crosstalk has a rather significant effect already
at the level of −20 dB, since using the nonlinear signal
model without any crosstalk modeling from [15] results
in a 3 dB higher noise floor than when using the full sig-
nal models. With higher crosstalk levels, the performance
difference is obviously further emphasized. Furthermore,
similar to the earlier observations, the signal models that
do not model the IQ imbalance perform very poorly since
it is the dominant source of distortion.

Fig. 9 The increase in the noise floor due to residual SI, with respect
to the level of the crosstalk before the PAs

It can also be observed from Fig. 9 that a larger number
of terms is required with the very high crosstalk levels. In
particular, having only 35% of the terms retained results
in a somewhat higher residual SI power than retaining
all of the terms. This is explained by the fact that higher
crosstalk levels also result in a larger number of signifi-
cantly powerful SI terms. Nevertheless, the cancellation
performance differences between the full signal models,
with or without PCA processing, are still relatively small
with these reasonable crosstalk levels.
In order to further investigate the differences in the

computational complexity of the different digital can-
cellers, Fig. 10 shows their performance for different
parameter estimation sample sizes (N). It can be observed
that the signal models without sufficient modeling accu-
racy are not bottlenecked by the amount of available
learning data, since their performance is largely unaf-
fected by the value of N. The benefits of the PCA-based
dimensionality reduction for the full signal model are
also clearly apparent, since the case with 35% of the
terms retained performs relatively well even with very
small parameter estimation sample sizes. As opposed to
this, without any dimensionality reduction, roughly N =
24 000 is required to obtain a sufficiently accurate estimate
of the parameters. Overall, it is hence clear that the PCA
processing helps in significantly reducing the computa-
tional complexity of the digital SI cancellation procedure
when utilizing the full signal model.

5 Conclusions
In this paper, a novel digital self-interference canceller
for a nonlinear MIMO inband full-duplex transceiver was
presented. The canceller is based on a comprehensive
signal model for the SI observed in the digital domain,
which includes the effect of crosstalk occurring between
the transmit chains, while also incorporating the most

Fig. 10 The increase in the noise floor due to residual SI, with respect
to the parameter estimation sample size (N)
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significant RF imperfections. Furthermore, it was also
shown that the signal model is valid for various different
RF cancellers. To control the complexity of the cancel-
lation procedure, a novel principal component analysis
based scheme was then proposed, which can be used to
control the number of parameters in the signal model.
With the help of waveform simulations, the proposed dig-
ital canceller was shown to cancel the SI nearly perfectly,
even when its computational complexity was significantly
reduced using principal component analysis.

Appendix: Power amplifier output signal under
crosstalk
Let us define a signal y(n) as follows:

y(n) =
N∑

i=1
αixi(n),

where αi is a scaling constant and xi(n) are known signals.
To express an arbitrary integer power p of the signal y(n)

in terms of the signals xi(n), let us expand the correspond-
ing equation accordingly.

y(n)p =
(

α1x1(n) +
N∑

i=2
αixi(n)

)p

.

Applying now the binomial theorem to the above
expression, we obtain

y(n)p =
p∑

k1=0

(
p
k1

)
(α1x1(n))k1

( N∑

i=2
αixi(n)

)p−k1

Applying the binomial theorem in a similar manner to

the expression
(∑N

i=2 αixi(n)
)p−k1

, we get

y(n)p =
p∑

k1=0

[(
p
k1

)
(α1x1(n))k1

×
(

α2x2(n) +
N∑

i=3
αixi(n)

)p−k1
⎤

⎦

=
p∑

k1=0

⎡

⎣
(
p
k1

)
(α1x1(n))k1

⎡

⎣
p−k1∑

k2=0

[(
p − k1
k2

)

× (α2x2(n))k2

( N∑

i=3
αixi(n)

)p−k1−k2
⎤

⎦

⎤

⎦

⎤

⎦

=
p∑

k1=0

p−k1∑

k2=0

(
p
k1

)(
p − k1
k2

)
(α1x1(n))k1

× (α2x2(n))k2

( N∑

i=3
αixi(n)

)p−k1−k2

.

Applying the binomial theorem again to the expres-

sion
(∑N

i=3 αixi(n)
)p−k1−k2

and continuing in a similar
manner, we finally obtain the following equation:
( N∑

i=1
αixi(n)

)p

=
p∑

k1=0

p−k1∑

k2=0
· · ·

p−k1−···−kN−2∑

kN−1=0

(
p
k1

)

×
(
p − k1
k2

)
· · ·

(
p − k1 − · · · − kN−2

kN−1

)

× x1(n)k1x2(n)k2 · · · xN (n)p−k1−···−kN−1

=
p∑

k1=0

p−k1∑

k2=0
· · ·

p−k1−···−kN−2∑

kN−1=0
Ak1,... ,kN−1

× x1(n)k1x2(n)k2 · · · xN (n)p−k1−···−kN−1 ,

where Ak1,... ,kN−1 is a constant.
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