341 research outputs found

    A 64-channel personal computer based image reconstruction system and applications in single echo acquisition magnetic resonance elastography and ultra-fast magnetic resonance imaging.

    Get PDF
    Emerging technologies in parallel magnetic resonance imaging (MRI) with massive receiver arrays have paved the way for ultra-fast imaging at increasingly high frame rates. With the increase in the number of receiver channels used to implement parallel imaging techniques, there is a corresponding increase in the amount of data that needs to be processed, slowing down the process of image reconstruction. To develop a complete reconstruction system which is easy to assemble in a single computer for a real-time rendition of images is a relevant challenge demanding dedicated resources for high speed digital data transfer and computation. We have enhanced a 64 channel parallel receiver system designed for single echo acquisition (SEA) MRI into a real-time imaging system by interfacing it with two commercially available digital signal processor (DSP) boards which are capable of transferring large amounts of digital data via a dedicated bus from two high performance digitizer boards. The resulting system has been used to demodulate raw image data in real-time data and store them at rates of 200 frames per second (fps) and subsequently display the processed data at rates of 26 fps. A further interest in realtime reconstruction techniques is to reduce the data handling issues. Novel ways to minimize the digitized data are presented using reduced sampling rate techniques. The proposed techniques reduce the amount of data generated by a factor of 5 without compromising the SNR and with no additional hardware. Finally, the usability of this tool is demonstrated by investigating fast imaging applications. Of particular interest among them are MR elastography applications. An exploratory study of SEA MRE was done to study the temperature dependency of shear stiffness in an agarose gel and the results correlate well with existing literature. With the ability to make MRE images in a single echo, the SEA MRE technique has an advantage over the conventional MRE techniques

    Optical Magnetic Induction Tomography of the Heart

    Get PDF
    Atrial Fibrillation (AF) affects a significant fraction of the ageing population, causing a high level of morbidity and mortality. Despite its significance, the causes of AF are still not uniquely identified. This, combined with the lack of precise diagnostic and guiding tools, makes the clinical treatment of AF sub-optimal. We identify magnetic induction tomography as the most promising technique for the investigation of the causes of fibrillation and for its clinical practice. We therefore propose a novel optical instrument based on optical atomic magnetometers, fulfilling the requirements for diagnostic mapping of the heart’s conductivity. The feasibility of the device is here discussed in view of the final application. Thanks to the potential of atomic magnetometers for miniaturisation and extreme sensitivity at room temperature, a new generation of compact and non-invasive diagnostic instrumentation, with both bedside and intra-operative operation capability, is envisioned. Possible scenarios both in clinical practice and biomedical research are then discussed. The flexibility of the system makes it promising also for application in other fields, such as neurology and oncology

    MR Safe Robotic Manipulator for MRI-Guided Intracardiac Catheterization

    No full text
    This paper introduces a robotic manipulator to realize robot-assisted intracardiac catheterization in magnetic resonance imaging (MRI) environment. MRI can offer high-resolution images to visualize soft tissue features such as scars or edema. We hypothesize that robotic catheterization, combined with the enhanced monitoring of lesions creation using MRI intraoperatively, will significantly improve the procedural safety, accuracy, and effectiveness. This is designed particularly for cardiac electrophysiological (EP) intervention, which is an effective treatment of arrhythmia. We present the first MR Safe robot for intracardiac EP intervention. The robot actuation features small hysteresis, effective force transmission, and quick response, which has been experimentally verified for its capability to precisely telemanipulate a standard clinically used EP catheter. We also present timely techniques for real-time positional tracking in MRI and intraoperative image registration, which can be integrated with the presented manipulator to im prove the performance of teleoperated robotic catheterization

    Endoluminal coils for interventional MRI procedures

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and the Institute of Engineering and Sciences of Bilkent University, 2010.Thesis (Master's) -- Bilkent University, 2010.Includes bibliographical references leaves 87-91.In this study we designed endoluminal magnetic resonance imaging (MRI) coils to be used for interventional procedures under the guidance of MRI. The first coil we developed is a two-channel endocervical coil for the treatment of cervical cancer. The coil was embedded into the brachytherapy applicator without interfering with its functions. It provides magnetic resonance (MR) images of the cervix with high signal-to-noise ratio (SNR) that is required for a more accurate radiation dose calculation in the treatment of cervical cancer with high dose rate brachytherapy (HDRB). The performance of this coil was tested with phantom experiments and the results proved that the design worked properly. Second, we developed an MRI guidewire and an MR EP catheter for the treatment of atrial fibrillation (AF). The MRI guidewire had similar mechanical properties with the common cardiovascular guidewires and it was proved successful in obtaining high SNR images of the heart. The MR EP catheter could also provide high SNR images as well as clean intracardiac electrocardiogram (IECG) signal during the MR scan. Due to the loopless antenna embedded inside both of these catheters, they could be navigated in the body under the MRI. They may be used to guide complex interventional procedures such as RF ablation. The performance of these catheters was tested and confirmed with in vitro experiments. To sum up, these two technologies can play a significant role in the treatment of cervical cancer and AF as well as contributing to the development of interventional MRI.ViskuƟenko, V NikolayM.S

    Segmentation of needle artifacts in real time 2D MR images

    Get PDF
    During percutaneous minimally invasive procedures a needle is used to access the region to be treated without need for an open surgery. Remarkable is the increasing use of percutaneous thermal ablation to treat neoplastic formation. The effectiveness of such procedures is highly dependent on the correct placement of the needle inside the region to be treated. Imaging monitoring provides the physician with the possibility to inspect the location of the device, which is responsible for a signal void in the MR images acquired referred to as needle artifact. The procedure can be performed under real time Magnetic Resonance Imaging guidance. In this work two algorithms for automatic needle detection in real time MR images were developed. The detection is anticipated to increase the accuracy of the device positionin

    Temperature and pH Imaging using Chemical Exchange Saturation Transfer (CEST) MRI Contrast

    Get PDF
    Chemical exchange saturation transfer (CEST) is a novel mechanism used to generate contrast in magnetic resonance imaging (MRI). Recently, CEST contrast was proposed to noninvasively measure physiological parameters including temperature and pH. Tissue temperature and pH are known markers of pathological processes in many diseases including stroke and cancer. CEST contrast can be generated using endogenous proteins and peptides (endogenous CEST) or using exogenous paramagnetic lanthanide agents (PARACEST). The general problem of optimizing applications of endogenous CEST and PARACEST contrast to measure temperature and pH is addressed in this thesis. Highlights of the thesis include a novel application of PARACEST contrast to measure extracellular pH and temperature in-vivo and a novel ratiometric approach that uses endogenous CEST contrast to measure intracellular pH in-vivo. Using a Tm3+-based PARACEST agent (Tm3+-DOTAM-Gly-Lys), the PARACEST amide peak chemical shift and linewidth were shown to depend on pH and temperature in a deterministic manner. Quantitative temperature and pH maps were simultaneously measured in a normal mouse leg following agent injection using empirical relations derived in-vitro. A ratio of endogenous amide and amine proton CEST effects was developed to measure absolute tissue pH that is heavily weighted to the intracellular compartment. The technique called amine and amide concentration-independent detection (AACID) was developed using in-vitro phantoms and numerical simulations. Following in-vivo pH-calibration using 31P-magnetic resonance spectroscopy (MRS), tissue pH measurement was demonstrated in mice following focal cerebral ischemia. Local acidosis was measured in ischemic regions and found to correlate with regions of tissue damage. Finally, two endogenous CEST metrics including the AACID ratio were used to monitor cancer treatment using an anticancer drug called lonidamine. Lonidamine selectively acidifies cancer cells. In-vivo experiments demonstrate that endogenous CEST imaging is sensitive to intracellular acidification by lonidamine in a glioblastoma brain tumor mouse model. Overall, the results presented in this thesis demonstrate quantitative measurement of pH and temperature using CEST and/or PARACEST contrast in-vivo. Some of the novel techniques developed in this thesis were demonstrated in stroke and cancer mouse models. Future work should focus on 1) development of PARACEST agents with higher sensitivity in-vivo to improve accuracy of temperature and pH maps; 2) application of AACID for absolute pH measurement to differentiate high- and low-grade tumors in-vivo; and 3) application of endogenous CEST measurement to monitor tumor response to different clinically approved chemotherapy treatments

    Direct cooling of the catheter tip increases safety for CMR-guided electrophysiological procedures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the safety concerns when performing electrophysiological (EP) procedures under magnetic resonance (MR) guidance is the risk of passive tissue heating due to the EP catheter being exposed to the radiofrequency (RF) field of the RF transmitting body coil. Ablation procedures that use catheters with irrigated tips are well established therapeutic options for the treatment of cardiac arrhythmias and when used in a modified mode might offer an additional system for suppressing passive catheter heating.</p> <p>Methods</p> <p>A two-step approach was chosen. Firstly, tests on passive catheter heating were performed in a 1.5 T Avanto system (Siemens Healthcare Sector, Erlangen, Germany) using a ASTM Phantom in order to determine a possible maximum temperature rise. Secondly, a phantom was designed for simulation of the interface between blood and the vascular wall. The MR-RF induced temperature rise was simulated by catheter tip heating via a standard ablation generator. Power levels from 1 to 6 W were selected. Ablation duration was 120 s with no tip irrigation during the first 60 s and irrigation at rates from 2 ml/min to 35 ml/min for the remaining 60 s (Biotronik Qiona Pump, Berlin, Germany). The temperature was measured with fluoroscopic sensors (Luxtron, Santa Barbara, CA, USA) at a distance of 0 mm, 2 mm, 4 mm, and 6 mm from the catheter tip.</p> <p>Results</p> <p>A maximum temperature rise of 22.4°C at the catheter tip was documented in the MR scanner. This temperature rise is equivalent to the heating effect of an ablator's power output of 6 W at a contact force of the weight of 90 g (0.883 N). The catheter tip irrigation was able to limit the temperature rise to less than 2°C for the majority of examined power levels, and for all examined power levels the residual temperature rise was less than 8°C.</p> <p>Conclusion</p> <p>Up to a maximum of 22.4°C, the temperature rise at the tissue surface can be entirely suppressed by using the catheter's own irrigation system. The irrigated tip system can be used to increase MR safety of EP catheters by suppressing the effects of unwanted passive catheter heating due to RF exposure from the MR scanner.</p

    'ACOUSTO-OPTIC SENSING FOR SAFE MRI PROCEDURES'

    Get PDF
    In this work, a novel sensor platform is developed for safer and more effective magnetic resonance imaging (MRI). This is achieved by tracking interventional devices, such as guidewires and catheters during interventional MRI procedures, and by measuring the radio frequency (RF) field to assess RF safety of patients with implants, such as pacemakers, during diagnostic MRI. The sensor is based on an acousto-optic modulator coupled with a miniature antenna. This structure is realized on an optical fiber which is immune to the RF field and eliminates the need for conducting lines. The acousto-optic modulator consists of a piezo-electric transducer and a fiber Bragg grating (FBG). The piezoelectric transducer is electrically connected to the miniature antenna and mechanically coupled to the FBG. Local RF signal received by the miniature antenna is converted to acoustic waves by the piezoelectric transducer. Acoustic waves change the grating geometry on the FBG, thus the reflected light from the FBG is modulated. For diagnostic imaging, short dipole antennas are used for sensing the local electric field, which is the primary cause of RF induced heating. For tracking purposes, small loop antennas are used for capturing local MRI signal which contains the location information. In this thesis, a comprehensive model for the acousto-optic modulator is developed and validated through sensitivity and linearity tests. Prototype RF field sensors are built and characterized: sensitivity of 1.36mV/nT and 98 ÎŒV/V/m with minimum detectable field strength of 8.2pT/√Hz and 2.7V/m/√Hz and dynamic range of 117dB/√Hz at 23MHz are achieved with 4mm single loop and 8mm short dipole antennas, respectively. These figures are competitive with commercial sensors with much larger form factors. Catheter tracking capability of the sensor under MRI is demonstrated in-vivo in swine in a 0.55T scanner using an 8F catheter in addition to phantom studies under 0.55T and 1.5T clinical MRI systems.Ph.D

    Doctor of Philosophy

    Get PDF
    dissertationFocused ultrasound (FUS) is a promising noninvasive and radiation-free cancer therapy that selectively delivers high-intensity acoustic energy to a small target volume. This dissertation presents original research that improves the speed, safety, and efficacy of FUS therapies under magnetic resonance imaging (MRI) guidance. First, a new adaptive model-predictive controller is presented that leverages the ability of MRI to measure temperature inside the patient at near real-time speeds. The controller uses MR temperature feedback to dynamically derive and update a patient-specific thermal model, and optimizes the treatment based on the model's predictions. Treatment safety is a key element of the controller's design, and it can actively protect healthy tissue from unwanted damage. In vivo and simulation studies indicate the controller can safeguard healthy tissue and accelerate treatments by as much as 50%. Significant tradeoffs exist between treatment speed, and safety, which makes a real-time controller absolutely necessary for carrying out efficient, effective, and safe treatments while also highlighting the importance of continued research into optimal treatment planning. Next, two new methods for performing 3D MR acoustic radiation force imaging (MR-ARFI) are presented. Both techniques measure the tissue displacement induced by short bursts of focused ultrasound, and provide a safe way to visualize the ultrasound beam's location. In some scenarios, ARFI is a necessity for proper targeting since traditional MR thermometry cannot measure temperature in fat. The first technique for performing 3D ARFI introduces a novel unbalanced bipolar motion encoding gradient. The results demonstrate that this technique is safe, and that 3D displacement maps can be attained time-efficiently even in organs that contain fat, such as breast. The second technique measures 3D ARFI simultaneously with temperature monitoring. This method uses a multi-contrast gradient recalled echo sequence which makes multiple readings of the data without increasing scan time. This improves the signal to noise ratio and makes it possible to separate the effects of tissue heating vs displacement. Both of the 3D MR-ARFI techniques complement the presented controllersince proper positioning of the focal spot is critical to achieving fast and safe treatments
    • 

    corecore