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SUMMARY 

In this work, a novel sensor platform is developed for safer and more effective 

magnetic resonance imaging (MRI). Even though MRI is a safe imaging technique, it uses 

powerful radio frequency (RF) fields, which is absorbed by the tissue and causes 

temperature rise. RF induced heating is a significant safety concern during diagnostic 

imaging especially for patients with implants and pacemaker leads, as these conducting 

structures can resonate with the RF field and cause local hot spots. The first part of this 

work focuses on a sensor for the measurement local RF field with high SNR. When MRI 

is used to guide interventional devices, such as guidewires and catheters, it is important to 

track the location of these devices in the body while avoiding RF induced heating and 

image distortion. Thus, the second part of this work aims to develop RF safe tracking sensor 

for interventional MRI procedures.  

The sensor is based on an acousto-optic modulator coupled with a miniature 

antenna. This structure is realized on an optical fiber which is immune to the RF field and 

eliminates the need for conducting lines. The acousto-optic modulator consists of a piezo-

electric transducer and a fiber Bragg grating (FBG). The piezoelectric transducer is 

electrically connected to the miniature antenna and mechanically coupled to the FBG. 

Local RF signal received by the miniature antenna is converted to acoustic waves by the 

piezoelectric transducer. Acoustic waves change the grating geometry on the FBG, thus 

the reflected light from the FBG is modulated. For diagnostic imaging, short dipole 

antennas are used for sensing the local electric field, which is the primary cause of RF 

induced heating. For tracking purposes, small loop antennas are used for capturing local 



 xxi 

MRI signal which contains the location information. In the scope of this work, an end-to-

end model for the acousto-optic sensor is developed and validated through sensitivity and 

linearity tests. Prototype sensors are built and characterized: sensitivity of 1.36mV/nT and 

98 μV/V/m with minimum detectable field strength of 8.2pT/√Hz and 2.7V/m/√Hz and 

dynamic range of 117dB/√Hz at 23MHz are achieved with 4mm single loop and 8mm short 

dipole antennas respectively. These figures are competitive with commercial sensors with 

much larger form factors. Catheter tracking capability of the sensor is also demonstrated 

under 0.55T and 1.5T clinical MRI system via phantom studies and in-vivo experiments in 

swine in a 0.55T scanner using a 8F catheter. 
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CHAPTER 1. INTRODUCTION 

The objective of this research is to develop optical fiber based acousto-optic sensors 

for safe and more effective magnetic resonance imaging (MRI) procedures. Although MRI 

is a widely used and significant diagnostic imaging modality, RF induced heating is a 

concern for different MRI procedures; from diagnostic imaging, imaging of patients with 

implants, to interventional procedures. Thus, RF field measurement with high SNR without 

image and signal distortion and additional RF heating is key for evaluating MRI safety. In 

this chapter; basic working principles of MRI is given, interventional MRI procedures are 

explained, then safety concerns related to MRI are discussed and lastly motivation of the 

work and sensor specifications are laid out.  

1.1 Magnetic Resonance as a Medical Imaging Modality 

Magnetic resonance imaging (MRI) is a medical imaging technology that uses strong 

static and gradient magnetic fields and radio frequency (RF) waves. MRI exploits the 

physical phenomena nuclear magnetic resonance (NMR) manipulating the hydrogen 

nuclear spins in the patient body [1]. An MRI system consists of two main components; 

MRI scanner and control unit. MRI scanner is the heart of an MRI system; MRI scanner 

excites the hydrogen spins and reads out the MR signal. A cutaway image of a typical MRI 

scanner showing main components is given in Figure 1-1. A static magnet, mostly in the 

form of an electromagnet, creates polarizing magnetic field, B0, manipulating the spins 

such that a net alignment of the spins will be in the direction of B0, which is usually along 

the bore of the electromagnet (𝑧𝑧). According to nuclear magnetic resonance, the spins will 

resonate at a certain frequency, called Larmor frequency f0, proportional to the B0 field.  
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 𝑓𝑓0 =
γ

2π
|𝐵𝐵0| (1-1) 

where 𝛾𝛾 is the gyromagnetic ratio, a constant that is specific to the type of atomic nuclei. 

In medical MRI, hydrogen atoms are used for imaging, the gyromagnetic ratio for hydrogen 

atom is, 

γ
2π

= 42.58 MHz/T (1-2) 

Most common B0 field strength used in clinical settings are 1.5 Tesla and 3 Tesla, resulting 

in Larmor frequencies of 63.87 MHz and 127.74 MHz respectively.   

 

Figure 1-1  MRI scanner cutaway showing main components [2]. 
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Alignment of the spins with B0 field creates a net magnetization, 𝑀𝑀��⃗ , in the direction 

of B0 field. Radio frequency (RF) coils generates an alternating magnetic field, B1 , at 

Larmor frequency. B1 is used to excite the spins that perturbs the alignment of 𝑀𝑀��⃗  with the 

B0 field resulting in spin precess. 𝑀𝑀��⃗  will rotate in B1 direction by flip angle, 𝜃𝜃, with respect 

to B0 field as it absorbs the RF energy. Thus, higher the B1 

θ = γ ∙   𝐵𝐵1 ∙  𝑡𝑡𝑝𝑝 (1-3) 

where γ =  42.58 MHz/T and 𝑡𝑡𝑝𝑝 is the duration of RF transmit signal (B1) field. The spin 

precession decays as soon as the B1 field is ceased and 𝑀𝑀��⃗  vector returns back to its original 

orientation along B0 field. Figure 1-2 depicts the precession of a net magnetization vector 

𝑀𝑀��⃗   after an excitation pulse of flip angle 𝜃𝜃=90o.   

 

Figure 1-2 Illustration of excitation and precession of net magnetization vector 𝑴𝑴���⃗  for 

flip angle 𝜃𝜃=90o [3]. 
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The rate of precession decay depends on the physical properties of the surrounding 

tissue, namely time constants of T1 and T2. Time constants, T1 and T2, are exploited for 

the differentiation of different tissues. By careful design of MRI sequences, contrast 

between different tissues can be adjusted in order to get most clinically relevant anatomical 

and physiological information.  

As the 𝑀𝑀��⃗  vector returns to its steady state position during , spins lose their energy 

and emits MR signal at Larmor frequency, called free induction decay (FID), [4]. The FID 

signal can be detected with receiver coils. A changing magnetic field in a loop of wire 

generates an electromotive force (emf) that is proportional to the change to the rate of 

change in magnetic flux (𝜙𝜙𝐵𝐵),  

emf =
𝑑𝑑𝜙𝜙𝐵𝐵
𝑑𝑑𝑑𝑑

 (1-4) 

Usually RF transmit coils are used for receiving purposes too. Additionally, specialized 

coils such as surface coils, head coils, knee coils can be in order improve the sensitivity in 

the target region of the patient body.  

B0 field has been assumed homogeneous and constant inside the bore. Thus, the FID 

signal for the whole imaging region of the patient body will have the same frequency and 

phase, thus the signals from spins at various locations in the object will be indistinguishable 

from each other. In order to get usable images, gradient coils are used for image encoding. 

Gradient fields (G or dB/dt) are used for distorting B0 field slightly at different locations. 

Figure 1-3 shows different cases when gradients are applied in different orientations. Note 
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that the G vector is along with the B0 field, thus only changing local static magnetic field 

causing small changes in the local Larmor frequency, hence the FID signal, as shown in  

(1-5).  

 

Figure 1-3 Gradient fields are used for image encoding. Gradients are small 

amplitude magnetic fields along the B0 field [5]. 

𝑓𝑓(𝑥𝑥,𝑦𝑦,𝑧𝑧) =
γ

2π
|B0 + 𝐺𝐺(𝑥𝑥,𝑦𝑦,𝑧𝑧)| (1-5) 

Location information in the FID is encoded with the gradient coils which translates 

to frequency shifts and time evolving phase. Thus, image can be obtained by taking Fourier 

transform of the collected signal with the information of the encoding gradient fields and 

their spatial distribution. Since gradient field amplitude and orientation is controlled 

electronically, the imaging can be planar (2D) or tomographic (3D). Moreover, any desired 
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imaging plane can be selected by adjusting the gradient fields and the RF transmit signal 

without repositioning the patient.  

 

 

Figure 1-4 Imaging mechanism of an MRI system [6]. 

Figure 1-4 illustrates the whole imaging mechanism of an MRI system. Patient body 

is excited by the magnetic field |B0 + 𝐺𝐺(𝑥𝑥,𝑦𝑦,𝑧𝑧)| where 𝐺𝐺(𝑥𝑥,𝑦𝑦,𝑧𝑧) is used for image encoding. 

Spins at different portions of the body will resonate at different Larmor frequencies due to 

gradient signal. The MR signal is collected from the whole body with receiver coils. MRI 

pulse sequences (collection of RF transmit waveform, gradient encoding signal and read-

out timings) are designed to fill a spatial frequency domain, k-space, with data points 

determined by the gradients. The MR image can be reconstructed when k-space is sampled 

by taking an discrete Fourier transform.  
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Since MRI provides excellent soft tissue contrast; pathology and abnormalities can 

be detected at an earlier stage, both anatomical and physiological information (such as early 

stage tumor detection[7], diffusion imaging [8], functional MRI [9] etc.) can be obtained.  

Unlike other imaging techniques, different planes, standard or oblique, can be imaged 

without moving the patient [10]. More importantly, MRI utilizes magnetic and 

electromagnetic fields, thus procedure is completely ionizing radiation free [11]. Since the 

introduction of MRI technology to clinical studies in 1982, clinical utilization of MRI has 

been rising steadily [12]. As of 2013, there are approximately 36000 MRI systems in 

operation with 11500 in USA alone despite the high start-up (roughly a million dollar per 

Tesla) and running costs [13]. However, MRI has been extensively used for diagnostic 

imaging purposes. In the next section, an emerging clinical application of MRI, 

interventional radiology, will be discussed.  

1.2 Interventional MRI 

Interventional radiology is a specialized sub field of radiology in which medical 

therapies are guided by medical imaging to the target tissue within the patient body through 

a small incision or a body orifice [14]. Interventional techniques include both diagnostic; 

such as biopsies[15] and angiography[16], and therapeutic techniques; such as tumor 

ablations [17] and balloon angioplasty [18]. Interventional procedures are preferred over 

traditional surgical techniques as interventional techniques are minimally invasive thus 

reducing operation time, patient discomfort, hospitalization time, and procedure related 

risks. In the case of aortic valve stenosis, aortic valve of the patient needs to be replaced. 

Traditionally, valve replacement is done via open heart surgery where the rib cage is split 

and heart is stopped during the valve replacement [19], shown in Figure 1-5(a). As a 
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minimally invasive alternative, transcatheter aortic valve replacement (TAVR) procedure 

is performed by carrying the replacement valve over a hollow tube, catheter, to the heart 

and deployed by an expendable balloon [20], shown in Figure 1-5(b). TAVR reduces the 

hospital stay from weeks to days compared to open heart surgery.  



 9 

 

Figure 1-5 a) Open heart surgery for aortic valve replacement [21] b) Transcatheter 

aortic valve replacement (TAVR) as a minimally invasive alternative [22].  
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1.2.1 Advantages of Real-time MRI over Fluoroscopy in Interventional Radiology 

Interventional device tracking and guidance in the body is an essential part of any 

interventional procedure. Even though, various imaging modalities have been used for 

image guidance of certain interventional procedures, X-ray fluoroscopy has been the 

leading medical imaging technology utilized for real time device-tracking purposes. In X-

ray fluoroscopy, a continuous X-ray image of the body is taken and the image is transmitted 

to a monitor so the movement of a body part, i.e. beating heart, or of an interventional 

device is tracked through the body. An interventional fluoroscopy performed under a C-

Arm image intensifier is shown in Figure 1-6. X-ray fluoroscopy delivers high-resolution 

projection-based images of metallic guidewires and tungsten or barium sulfate (BaSO4) 

doped catheters easily with high frame rate. However, there are intrinsic problems with X-

ray fluoroscopy; it depicts soft tissue poorly thus requires toxic radiopaque contrast agents. 

Iodine based contrast agents might cause kidney failures whereas barium sulfate based dyes 

often result in severe allergic reactions [23]. More importantly, medical staff and patient 

are exposed to harmful ionizing X-ray radiation for prolonged times during the entire 

procedure [24]–[27]. Even though medical staff are required to wear lead layered protective 

vests during procedure to minimize the effect of radiation, the risk is still very high due to 

years of exposure [25]. The level of ionizing radiation from X-ray imaging contribute to 

an increased risk of cancer as X-ray radiation limits for pediatric patients than adults 

rendering fluoroscopy a high-risk alternative for pediatric patients. Thus, doctors prefer 

traditional surgeries over interventional procedures in pediatric applications in most cases 

due to X-ray radiation.  
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Figure 1-6 Interventional fluoroscopy performed under a C-Arm image intensifier. 

Note that the physicians are wearing protective vest to reduce exposure to radiation.    

MRI is an attractive imaging technology with several advantages for image guided 

interventional procedures. MRI provides excellent soft tissue contrast thus eliminating the 

need for toxic contrast agents. More importantly, MRI utilizes only magnetic and RF fields 

for imaging, thus procedure is completely ionizing radiation free.  

 

Figure 1-7 Soft tissue contrast comparison of a chest image between X-ray and MRI.  
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1.2.2 Common Challenges in Developing Interventional MR devices 

There are several technical challenges that is slowing the adoption of MRI guidance 

in interventional radiology. Historically, small bore diameter of the scanner was a limiting 

the movement of the physician. Previously, mostly open bore scanners and exotic double 

donut scanners were used for the ample working space provided for the performing 

physician [28], [29]. However, those scanners are limited to 0.5T field strength and 

specialized, thus suffers from poor image quality.  In the recent years, large bore size – 70 

cm and short magnet length’s has been developed which allows dual use of the MRI suite 

for both diagnostic and interventional MRI (iMRI) procedures [30]. Figure 1-8 shows 

different iMRI suites with open bore scanner, double donut scanner and large bore scanner 

set-ups. Moreover, image acquisition time for MRI is much slower compared to X-ray and 

historically prevented real time image guidance. However, fast imaging sequences 

developed for real time MR image guidance with sufficient image quality [31], [32], given 

in Table 1-1.  
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Table 1-1 Characteristics of commonly used iMRI sequences [33] 

 

All the equipment inside MRI suit needs to be MRI compatible according to the 

FDA guidelines [34]. During iMRI procedures, number of medical equipment is required 

ranging from anesthesia equipment to biopsy needles depending on the specific procedure. 

Thanks to increase in the demand for iMRI, MRI compatible equipment, robotic systems 

and tools have been developed for new iMRI applications [35]–[37]. Moreover, 

interoperative iMRI suites with additional imaging modalities such as ultrasound and CT 

are developed for complicated iMRI procedures [38]–[40].  

Radiopaque markers used for fluoroscopy are not visible under MRI due to the 

fundamental differences between MRI physics and X-ray physics. Thus, safe and effective 

device tracking under MRI remains one of the challenges. Different techniques for device 

tracking under MRI are discussed in detail in the next section. 
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Figure 1-8 a) An open scanner configuration provides sufficient space for the patient 

and the interventionalist [41] b) GE double donut scanner designed specifically for 

interventional MRI [28] c) Real-time MR images and hemodynamics are displayed in 

the room via a projector [42].  
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1.2.3 Review of Device Tracking Techniques Under MRI 

There are two main approaches, based on active and passive techniques, to visualize 

interventional devices under MRI [43]. Passive visualization relies on the material intrinsic 

magnetic properties. Ferromagnetic, when placed on the device as fiducial markers [44], 

[45]. Although passive visualization technique requires minimum device modification, it 

is still not a preferred technique for physicians due to obstruction of the surrounding 

anatomy, distortion in the MR images and visualization performance depending on the 

device orientation. Active visualization techniques require incorporating RF receiver 

antennas [46], [47], usually in small coil form, to collect localized RF signal [48]. Figure 

1-9 illustrates the basic working principle of an active marker with a tracking coil. These 

miniature coils are used as receiver antennas, imaging only the immediate surrounding of 

the coil marking the device location on the reconstructed MR image when overlaid with 

the regular MR image.  Figure 1-10 shows the conspicuity difference between an active 

marker and a passive marker on MRI images of a canine model. While active catheter 

tacking systems offers conspicuity without obstructing the surrounding anatomy, they 

suffer from RF induced heating on the conductive transmission lines that transmit the RF 

signal out of body to MR scanner [49], [50].  
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Figure 1-9 Active MR tracking scheme with 1D imaging sequence [51].  

Elongated conductors with lengths comparable to RF wavelength may resonate 

with RF transmit signal and creates local hot spots [52]. Local RF induced heating on 

catheters or guidewires can cause serious tissue damage and can even risk the patient life. 

Effect of RF induced heating will be discussed in depth in the Section 1.3. Current heat 

mitigation techniques are based on either limiting local RF resonances [53]–[55] during 

RF transmission or replacing electrical transmission lines with optical fiber [56], [57]. 

Balun and billabong structures are incorporated on the transmission lines to reduce local 

RF field concentrations [58]. Another RF engineering approach is detuning the resonant 

structure of the active marker [59]–[61]. However, these RF engineering techniques do not 

eliminate heating completely and suffer from reduced SNR. Moreover, interventional 

neuro radiology applications require 3T scanners, in which the wavelength is shorter and 
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blood perfusion effect is not present to mitigate effect of heating. Therefore, MR safety of 

interventional devices at 3T is much more serious problem and it is hard to eliminate RF 

induced heating by implement existing RF engineering techniques. 

 

Figure 1-10  Difference in visibility of active (A) (capable of receiving MRI signal) 

and passive catheters (B) on MRI images of the canine model [62]. Note that the 

passive catheter is barely distinguishable from the anatomical structure whereas the 

active marker has distinctive signal along the whole catheter. Visibility of the active 

marker can be further increased by highlighting the marker channel (C) [50].   
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Replacing electrical transmission lines with optical fiber eliminates the RF induced 

heating completely thanks to intrinsic electromagnetic immunity of optical fibers. One 

method to use optical fiber connection is using an optical Faraday sensor to detect gradient 

fields for device localization [63]. Because, this system requires additional gradient fields 

further prolonging the imaging sequence, it is not suitable for real time image guidance. 

Another approach is using electro-optic modulators as an intermediator between the coil 

and the optical fiber [56], [64]. The electro-optic modulators used for MRI applications 

consist of an optical modulator circuit with a laser diode and power up circuit that has 

photovoltaic power converter, shown in Figure 1-11. The power is supplied by an optical 

fiber and the local MR signal is carried over a separate fiber. Electro-optic modulator based 

optical solutions require complex electronics and tight optical alignments resulting in long 

rigid structures that will impair the mechanical performance which is crucial in clinical 

use.  
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Figure 1-11 Different electro-optic modulator based active markers: a) an electro-

optic modulator constructed with discrete components and a self-aligning structure 

for fiber optic placement [57], b) an electro-optic modulator based on MEMS mirrors 

and integrated circuit (IC)  [64].  

1.2.4 Interventional MRI applications: Present and Future 

iMRI is used for clinically established routine procedures such as biopsies, tumor 

ablations, angioplasty, and stent as well as novel procedures developed thanks to MRI 

guidance. MRI has the ability to differentiate benign and malignant lesions, normally not 

visible by X-ray or ultrasound-based imaging. Thus, MRI guidance is very effective for 

breast and prostate biopsy guidance [41]. Another common iMRI application is 
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neurosurgical guidance for craniotomies, biopsies, intracranial cyst evaluations, subdural 

drainages and deep brain stimulator leap placement, with lesser complication and infection 

rates compared to standard surgery [65]. An ever-growing field where iMRI use has been 

steadily increasing is monitoring various tumor ablation procedures; RF 

thermocoagulation, chemoablation and laser ablation [66]. MRI is especially practical for 

non-invasive ablation techniques such as high intensity focused ultrasound (HiFU) [67] as 

MRI can map the temperature change noninvasively [68]. MRI is also effectively used for 

cryoablation based pain management therapies [69]. MRI utilization has been limited in 

vascular and cardiac interventions due to lack of MRI visible, mechanically and electrically 

safe catheters/guidewires [70].   

iMRI adoption has been always hampered by lack of effective MRI markers. Most 

of the iMRI procedures uses primitive guidance techniques in which the needle or the 

catheter placement is monitored retrospectively: biopsy needles and catheters are pushed, 

location is checked with MRI, if the device is not at the target location, device pulled back 

and push-pull trial is performed until device is delivered to the target location [71]. This 

process is lengthy and success rate is highly dependent on the experience of the operator. 

Development of safe device tracking techniques with the introduction of cost-effective 

MRI scanners will enable new iMRI procedures while reducing the adoption time of 

already existing interventional techniques. Moreover, better performing markers can be 

integrated to next generation robot assisted MRI guidance, promising increased efficacy 

and reduced procedure times [72].   
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1.3 Safety Concerns Related to MRI 

Even though MRI is accepted as a fairly safe imaging technique compared to X-ray 

based imaging modalities as MRI is ionizing radiation free, there are certain safety 

concerns related MRI. Patients being scanned and people in the immediate vicinity of the 

scanner can be exposed to three variants of magnetic fields simultaneously: RF field (B1), 

static magnetic field (B0) and time varying gradient field (dB/dt).  Each of these fields 

poses specific hazards, each of these risks are discussed separately in the following sections 

1.3.1, 1.3.2 and 1.3.3.  

1.3.1 B1 Field: RF Induced Heating 

During a magnetic resonance imaging (MRI) study, the human body is exposed to 

RF fields at the Larmor frequency, ranging from 1 MHz in very low field scanner up to 

300 MHz (7T) in high field scanners. RF power is deposited in the patient body due to the 

non-zero electrical conductivity of biological tissues [73]. This absorption causes 

temperature rise, called RF induced heating, which is the primary safety concern for MRI 

[11]. Primary heating mechanism is the joule heating of the resistive tissue due to eddy 

current formation by the fast-changing RF field. In extreme cases, RF induced heating will 

accumulate and cause RF burns, an example of RF burn is shown in Figure 1-12. Note that 

RF induced heating concerns only the patients during MRI scan and has insignificant effect 

on MRI staff, since the magnitude of RF field decreases exponentially outside of the bore 

of the scanner.   
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Figure 1-12 Superficial skin burn caused by RF induced heating. [74] 

1.3.1.1 RF Dosimetry and SAR Measurement 

RF dosimetry studies RF field interaction with the tissues. The RF absorption by 

the tissue is a complex problem with many variables including field strength, dielectric 

properties of the tissue, RF field – tissue orientation, field polarization, geometry of the 

specific tissue, RF frequency etc [75]. The dose rate is called specific absorption rate or 

SAR. SAR is defined as the amount of RF power absorbed per unit of mass of an object 

indicated in W/kg. In order to mitigate RF induced heating, RF excitation is bound by 

safety limits of SAR for different MRI applications [76]. SAR is defined as  

SAR =
σ |𝐸𝐸|2

2𝜌𝜌
  [W/kg] (1-6) 

where σ is the electric conductivity of a uniform conducting tissue, 𝜌𝜌 is tissue density and 

E is the induced electric field.  

In order to mitigate the risk of RF burns, SAR limits are determined to dictate the 

maximum RF transmit signal power level and duration. FDA and IEC 60601 SAR limits 
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are given below [34], [77], [78].  All commercial MRI scanners have a built-in tool for 

SAR calculation using the weight of the patient and some empirical RF field parameters. 

The built in SAR monitors are quite conservative to assure safety and used as a general 

guide to prevent RF induced heating. However, excessive concentration of RF energy -hot 

spots- can occur even when the SAR level is kept way under limits due to uneven 

distribution of RF field within the body. Thus, it is imperative to measure local SAR values 

in order to better understand the RF field – tissue interaction and assure patient safety.  

Table 1-2 International Electrotechnical Commission SAR limits for MRI 

 

There are two methods of localized SAR measurement; local RF field measurement 

and temperature measurement. From (1-6), SAR can be measured with an E field sensor 

and if tissue properties are known. Standard E field probes are based on short dipole 

antennas, that dipole length needs to be shorter than 1/10 of the RF wavelength in the 

tissue-equivalent material to assure field uniformity over the entire dipole length, i.e. dipole 

length needs to be smaller than 5 cm for a 1.5T MRI. Since E field sensitivity of shorty 

dipole is proportional to dipole length, dipole size needs to be carefully selected for balance 
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the localization area and SNR performance. Sensitivity of short dipole is anisotropic, 

therefore three orthogonal short dipoles are used for isotropic measurement, especially 

important when the polarization of RF field is unknown such as in a complex shaped non 

uniform tissue [79]. Short dipole based E field probes coupled to a monitoring instrument 

by either a highly resistive transmission line or fiber optics. Even though the resistive 

transmission line is easiest to implement, transmission line will pick up the E field too and 

hinder the accuracy of the probe. In order to prevent this, optical fiber link with electro-

optic modulators can be used. Short dipole based different E field probes are shown in 

Figure 1-13.  

 

Figure 1-13 a) Detail of dipole/detector for miniature E-field probe [80] b) Short 

dipole E field probe using electro-optical modulator (antenna/integrated optical 

modulator) [81]. 
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Another common technique for E field measurement is use of electro optic sensors. 

Certain crystals, such as LiNbO3 exhibit Pockels effect, that the refractive index changes 

proportional to the ambient E field [82], [83]. Then the refractive index change can be 

probed by passing a laser light through it. Optical modulation can be achieved via various 

read-out topologies inducing a change in the amplitude, phase or polarization stage of the 

laser light [84]. Figure 1-14 is showing an example of an electro-optic E field sensor 

developed for MRI systems. Pockels effect E field probes are fully dielectric thus the 

unwanted electromagnetic coupling is eliminated. However, they suffer from poor 

sensitivity.  



 26 

  

Figure 1-14 Schematic overview of an electro optic E-field probe for SAR 

measurements for MR systems. The sensor head is connected to the signal processing 

unit via a 10 m long polarization maintaining optical fiber. The signal of a pick-up 

loop placed in the Faraday cage is used for reference and triggering [83]. 

SAR can be also determined by measuring temperature change due to RF field 

absorption. SAR and temperature relationship is given in (1-7).   

SAR = 4186
c𝐻𝐻 𝛥𝛥𝛥𝛥
𝑡𝑡

  [W/kg] (1-7) 

where cH is the specific heat capacity of the tissue, 𝛥𝛥𝛥𝛥 is temperature change in oC, t is RF 

exposure duration and 4186 is the conversion factor from kcal to joule. In live tissue 
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measurements, the thermal diffusion into the surrounding tissues and blood perfusion 

creates a cooling effect leading to read out errors, especially when the excitation duration 

is relatively long. A comparison between the SAR distribution and corresponding 

temperature rise, considering thermoregulated and basal perfusion as well as thermal 

properties of tissues, is shown in Figure 1-15.  

 

Figure 1-15 Comparison of RF induced SAR and corresponding temperature rise, 

considering thermoregulated and basal perfusion as well as thermal properties of 

tissues. [85] 

Temperature for SAR can be measured in two main way: indirect and direct. In 

indirect methods, special MRI sequences are used and spin relaxation shift due to 

temperature elevation is exploited [68]. Direct temperature measurement use fiber optic 
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based temperature sensors (FOTS) in order to prevent additional RF induced heating. 

Birefringent crystal FOTS [86], GaAs based sensors [87] and fiber Bragg gratings [88], 

[89] are the most used optical temperature sensors in the literature [90], [91]. FOTS offers 

compact and robust solutions and can be easily integrated with other MRI devices such as 

catheters [50] and pacemakers [92]. 

 

1.3.1.2 RF Induced Heating on Metallic Devices and Implants 

In the presence of long conductive structures on or within the patient body, the 

effect of RF induced heating will be increased [52], [93], [94]. Elongated metallic devices, 

such as pacemaker leads, ECG cables, guidewires, long implants etc, can act like an RF 

wire antenna collecting RF field, E field in particular. The induced current will accumulate 

at certain points, such as the tip of a guidewire, creating ‘hot spots’ along the metallic 

structure. The maximum RF induced heating will occur when the metal structures inside 

the body resonates with the RF field. Patients with certain implants such as pacemaker 

leads, neurostimulators and active implants are rejected by most hospitals due to increased 

risk of RF induced heating on the implant. Even the RF power is kept within SAR limits 

given Table 1-2, one can not assure the safety of the patient as there can be local SAR 

values way above the limits, as can be seen in Figure 1-16; there is three orders of 

magnitude difference between the minimum and maximum SAR on the same wire. Figure 

1-17 shows an image of third degree skin burns caused by ECG leads. Placement of the 

electrodes is indicated by the graphical overlay. The wounds are oriented in between the 

electrodes, which indicate burn caused by the ECG leads instead of the ECG electrodes. 
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Note that deepest tissue damaged happened towards the tip of the leads, which is consistent 

with the SAR distribution given in Figure 1-16.  

 

Figure 1-16 a: Experimental evaluation of the temperature increase along a metallic 

λ length wire. Maximum temperatures are observed at both tips of the wire, and for 

a λ/2 distance from the tip. Heating is observed not only at the wire tips but also along 

the wire. b: Simulated squared E-field (SAR) along a metallic λ length wire [93]. 

Recently, a new safety parameter, B1+rms is introduced to have a better assessment 

of the implant safety under MRI, ISO/TS 10974:2018 standard. B1+rms is a time-weighted 

average RF magnetic field exposure independent of the patient [95]. B1+rms  is a function of 

physical properties of the RF field; flip angle, pulse type, number of echoes, slices, and 

TR. New active implants are required to have a B1+rms limit, but this ISO/TS 10974:2018 

does not govern the millions of older implants. As those patients need MRI scans to be able 

diagnosed properly, physicians need a better way of determining safety of implants. One 

way might be use of RF field probes as a monitoring system by measuring the induced field 

along the implant locally and limiting the RF exposure according to the worst case ‘hot 

spot’.  
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Figure 1-17 Image of third degree skin burns caused by ECG leads. Placement of the 

electrodes is indicated by the graphical overlay. The wounds are oriented in between 

the electrodes, which indicate burn caused by the ECG leads instead of the ECG 

electrodes. Note that deepest tissue damaged happened towards the tip of the leads 

[96]. 

1.3.2 B0 Field: Projectile Effect 

Main magnetic field B0 is quite strong, 1.5T and 3T are the most common field 

strengths in clinical settings, and will attract any ferromagnetic object in the magnet room. 

As the ferromagnetic object experiences the attractive force, it will become a projectile if 

it is unsecured. Most incidents related to projectile effect are prevented by enforcing strict 

rules around the MRI suite, proper MRI safety labelling, limiting the number of people 

who can access the scanner room and mandating proper metal screening before entering 

the MRI room.  



 31 

 

1.3.3 Gradient dB/dt:  Peripheral Nerve Stimulation 

Gradients, magnetic field change over time dB/dt, have become stronger with the 

advancements in MRI hardware technology. Rapid imaging sequences, such as echo planar 

imaging or EPI, requires very high values of dB/dt. A changing magnetic field will generate 

a current in the human body and sometimes in nerve and muscle tissues, resulting in a 

peripheral nerve stimulation, in which the patient experiences twitching and tingling. The 

maximum dB/dt values are restricted to prevent cardiac stimulation and pain.  

 

1.4 Motivation and Objectives 

1.4.1 Motivation 

Motivation of this work is the development of a versatile sensing platform for safer 

and more effective MRI procedures. In order to cover most of the MRI safety issues 

described in section 1.2 and section 1.3, we aim to develop a sensing platform for two 

applications; 

1)  Local RF field sensing for the assessment RF induced heating on implants for 

diagnostic MRI.  

2) Device tracking/profiling for real time image guidance in interventional MRI 

procedures.  
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1.4.2 Aims  

Since we are investigating the sensor for two distinct applications, the sensor 

specifications for RF field sensing and device tracking are different from each other. The 

aims of the project are labelled and numbered in 4 different group: A, B, C and D. These 

labels will be referred throughout the text.  

Group A aims are related to RF field sensing. An ideal RF field sensor for local 

field measurements must be capable of the following: 

• Measurement of electric field component of RF field with high SNR (A1) 

• Measurement of magnetic field component of RF field with high SNR (A2) 

• High spatial resolution for fine mapping of current accumulation on 

implants (A3) 

• Directional sensitivity to determine field orientation (A4) 

Group B aims are related to device tracking under MRI. An ideal device tracking 

sensor for real time MRI guidance must be capable of the following:  

• High visibility with real time fast imaging sequences (B1) 

• Accurate and reliable localization (B2) 

• Small form factor (B3) 

• Easy integration with existing interventional devices (B4) 

Group C aims are desired for any sensor and will be advantageous for both 

applications; 

• High dynamic range (C1) 
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• Adaptability for different MRI systems (C2) 

• Easy integration with the existing hardware and software of the MRI system 

(C3) 

• Immune to electromagnetic fields – should not introduce extra RF induced 

heating (C4) 

• Scalability for distributed marker schemes (C5) 

• In-situ temperature measurement (C6) 

Aim D is to development of a detailed model of the sensor in order to design and 

optimize the sensor for different applications – RF field sensing and device tracking- and 

different MRI system adaptations and achieve the aims A, B and C.  

The sensors are designed for and tested with a 0.55 Tesla and 1.5 Tesla MRI 

systems. However, the framework presented can be easily applied to different field strength 

MRI systems.   

1.4.3 Structure of the Thesis 

This dissertation is organized as follows. 

Chapter 1 introduces safety issues in medical MRI and outlines the motivation and 

aims of the research.  

Chapter 2 introduces acousto-optic modulation as a sensor platform, explains the 

working principle of the acousto-optic sensor and describes an end-to-end model of the 

acousto-optic modulator. This chapter focuses on aim D for model development with 

model predictions.  
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Chapter 3 presents the a prototype for the acousto-optic modulator and backend  

opto-electronics for read-out. Moreover, model is validated through characterization test 

of the acousto-optic modulator. This chapter focuses on group C aims.  

In Chapter 4, RF field sensing capability of the acousto-optic sensor is investigated. 

Different antennas are coupled with the acousto-optic modulator for electric and magnetic 

field measurements. Sensitivity, directivity and repeatability tests as well as field mapping 

on a pacemaker lead model are performed. This chapter focuses on group A aims. 

In Chapter 5, the acousto-optic marker is integrated with a catheter and real time 

device tracking capability of the sensor is investigated in phantom and animal studies under 

MRI. This chapter focuses on group B aims. 

Finally, Chapter 6 provides conclusions and a discussion of recommended future work for 

further improvement of the sensor. 
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CHAPTER 2. ACOUSTO-OPTIC SENSOR: WORKING 

PRINCIPLE AND ANALYSIS 

2.1 Overview 

Objective of the research was stated in the previous chapter as to develop a sensor 

platform for both RF field sensing and device tracking under MRI. This chapter introduces 

acousto-optic modulation for such application. The advantages of acousto-optic 

modulation are laid out, then the working principle of the chosen acousto-optic modulator 

are presented. Lastly, a model of the sensor is developed in order to optimize the sensor for 

different applications.  

2.2 Acousto-Optic Modulation  

Different antennas in the form of either loop or dipole, can be used for both RF field 

(electric field and magnetic field) sensing and device tracking. However, antennas require 

conductive transmission lines. In the previous chapter, we established that regardless of the 

sensor technology, long conductive lines need to be eliminated in order to eliminate RF 

induced heating.  Dielectric transmission lines can be used instead of conducting electrical 

transmission lines to eliminate RF induced heating since dielectric materials do not absorb 

RF energy. As a dielectric transmission medium, optical fiber offers low insertion loss, 

mechanical flexibility, easy integration with electronics and most importantly, immunity 

to RF fields. However, a transduction scheme is needed to convert electrical signal to 

optical signal that will be guided within the optical fiber. A block diagram of such a system 

is given in Figure 2-1. Antenna picks up the RF field and generates an electrical signal. An 
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intermediate transduction mechanism converts the electrical signal into optical signal to be 

carried by an optical fiber out of the MRI scanner. Lastly, the optical signal needs to be 

converted back electrical signal by a photodetector.  

 

Figure 2-1 Block diagram of a RF field/device tracking sensor with fiber optic 

connection.  

Electro optic modulation schemes have been proposed as an transduction 

mechanism in the literature [56], [57], [64]. A general topology for such an electro-optic 

modulator is given in Figure 2-2. Electro-optic modulator-based MRI sensors have three 

main components; antenna to pick up MRI signal, a light source that is modulated by signal 

from the antenna and a power up circuit. The optical modulation is achieved by modulating 

the bias current of a laser diode. Since this type of modulator is active, it requires external 

power. A separate optical fiber carries high intensity laser light into the sensor to power up 

the laser diode. A photovoltaic power converter is used for electricity generation. Since the 

optical modulator does not provide high SNR, the antenna requires to be resonant which 



 37 

might lead to additional local RF heating exacerbated by the resonant antenna. Moreover, 

such a system results in long rigid structures due to packaging of complex electronics and 

optical alignments, which will hinder the clinical use. Larger size prevent the use of such 

a sensor for device tracking in iMRI.  

 

Figure 2-2 a) Concept of electro-optic modulator based sensor. Two fibers are applied 

in the catheter. One fiber is used to carry the signal information from the optical 

modulator and the other fiber for the optical power supply. b) Electrical circuit of an 

electro-optic modulator based sensor: The MR signal is received by the resonant 

circuit (L, C1). The signal is directly fed into the gate of the transistor T of the optical 

modulator. The signal is then transmitted by the laser diode (LD) to the optical 

receiver. The power is supplied by a photovoltaic power converter (PPC). 
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 Another transduction mechanism can be realized with acousto-optic modulation. 

In acousto-optic modulation, optical properties of the medium are modulated using 

acoustic waves [97]. The electrical signal from the antenna can be used to generate acoustic 

signal via a piezoelectric transducer. Note that, the available MRI signal to the device 

tracking sensor will be quite low, in sub nW range, thus the acousto-optic modulator needs 

to be very sensitive. Performance of electro-optic based device tracking sensors suffer from 

low SNR whereas resonant nature of the piezoelectric transducers can be utilized for 

increased SNR. Since RF fields in MRI are in a narrow band, few kHz, around the Larmor 

frequency, high quality factor piezoelectric transducers with their resonances at the Larmor 

frequency can be used. If a passive acousto-optic modulator is used, power up circuits and 

other complex electronics will be eliminated resulting in a compact sensor package.  

 

Figure 2-3 Block diagram of a RF field/device tracking sensor with acousto-optic 

modulator.  

One type of acousto-optic modulation is interferometer utilizing reflectors and a 

reference beam [98]. Although interferometric transducers are easy to implement, they 

suffer from low sensitivity and mechanical stability. Another approach is employing fiber 

Bragg gratings (FBG) [99], [100][101]. FBG based acousto-optic modulators are small in 
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size; gratings are already embedded in the optical fiber, and acoustic wave generators such 

as piezoelectric layers can directly be deposited over the optical fiber [102]–[104]. FBG 

based sensors have been widely employed for ultrasound detection for the past few decades 

[100], [105]–[107]. FBGs can be used as hydrophones up to 100 MHz [108]. Moreover, 

multiple FBGs can be easily fabricated on a single fiber enabling multiple sensors on one 

optical fiber [109]. Block diagram of the acousto-optic transduction mechanism for an FBG 

based MRI sensor is given in Figure 2-3. 

2.3 Working Principle of the Acousto-Optic Sensor 

The block diagram of the proposed acousto-optic sensor is shown in Figure 2-4. 

Sensor system consists of four main components: an antenna to receive RF signal; a 

piezoelectric transducer to convert electrical signal to acoustic waves; an FBG sensor 

embedded in an optical fiber for acousto-optic modulation; and backend optoelectronics 

(light source and photodetector) for converting optical signal to electrical signal. 
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Figure 2-4 Block diagram of the FBG based acousto-optic catheter tracking sensor. 

Note that FBG sensor is embedded in the optical fiber, FBG part of the fiber is 

enlarged for illustrative purposes. 

 

2.3.1 Fiber Bragg Gratings as Ultrasound Detectors 

FBG is a type of distributed Bragg reflector; multiple mirrors in the fiber core are 

formed by periodic refractive index variations which generates a wavelength-specific 

dielectric mirror. Figure 2-5 illustrates the refractive index modulation and spectral 

response of an FBG. Wavelength of the reflected light from FBG, called Bragg wavelength, 

strongly depends on the periodicity of the mirrors and refractive index modulation depth 

in the fiber core. FBG based acousto-optic modulation relies on the Bragg wavelength 

change by acoustic waves. Reflectivity spectrum of the FBG, hence the Bragg wavelength, 
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shifts due to both periodicity change of Bragg grating and refractive index change by 

elasto-optic effect [110].  

 

Figure 2-5 Schematic of FBG showing refractive index modulation and spectral 

response. [99] 

The periodicity of an FBG can change with induced strain or temperature. Thus 

FBGs have been widely used and studied for strain and temperature measurements over 

the last few decades in nondestructive structural health monitoring [100], [111], [112] .  

When an ultrasonic wave is impinged on the FBG, the periodicity of the refractive index 

modulation changes resulting in a spectral shift, illustrated Figure 2-6. A detailed 

theoretical background on the ultrasound sensing with FBG is provided in the next section 

with a numerical model of FBG.  
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Since FBG is directly inscribed into the optical fiber, multiple gratings can be 

embedded onto a single optical fiber enabling multiplexed sensor topologies with 

wavelength division multiplexing [109].  In addition to intrinsic advantages of fiber optic 

sensors, FBG sensors offer amplitude/intensity fluctuation independent results due to 

spectrum based detection mechanisms [111], [113], [114], which ensures reproducible 

measurements despite the optical losses. 
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Figure 2-6 Ultrasound detection with FBG. (a) Modulation of the FBG period by 

acoustic pressure, and (b) corresponding shift of the FBG spectrum [113]. 
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2.3.2 Optical Read-out Scheme 

The most common read out scheme for FBG sensors employs a spectrometer and 

generates output based on the spectrum shift induced by applied strain or change in 

temperature. Spectrometer based approaches are well suited for multiplexed measurements 

where the inspection of the full response of the FBG is required [115], [116]. However, 

this approach is limited by the speed of the spectrometer, which limits the use of FBG 

sensors in higher frequency applications. In ultrasound detection and acousto-optic 

modulators, frequencies are in MHz range whereas strain levels induced by the acoustic 

waves are in μ-strain range or less [117]. Since the spectrum shift of the FBG is fast and 

amplitudes are small, the most sensitive region in the spectrum of the FBG is monitored 

instead of the whole spectrum [100], [118]. A narrow linewidth laser is used as input light 

source and wavelength of the laser is fixed in the middle section of the slope of the FBG 

spectrum, side slope detection scheme is shown in Figure 2-7. As the reflectivity spectrum 

of the FBG constantly shifts back and forth due to acoustic waves created, power of the 

reflected light from the FBG is modulated since laser light is fixed at a certain wavelength, 

the bias point on the side slope. Then, a photo detector captures the reflected light from 

FBG sensor. 
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Figure 2-7 Side slope read-out scheme for the acousto-optic modulator.  

 

2.4 Acousto-optic Modulator Model  

A detailed model of the FBG sensor is required for the analysis and optimization of 

the sensor. Numerical methods are well suited for analysing optical characteristics of the 

FBGs whereas complex mechanical models utilize finite element analysis (FEA) tools. 

Thus, a composite model of the FBG utilizing both numerical and FEA methods is 

developed in order to investigate the linearity and sensitivity of the FBG as an ultrasound 

sensor, shown in Figure 2-8. Numerical methods, namely coupled mode theory (CMT) 

using transfer matrix method, is used for optical simulations. This method allows random 

grating profile and refractive index modulation as well as coupling with acoustic waves 



 46 

and temperature fields. Mechanical response of the FBG to acoustic waves are simulated 

using a FEA tool. Two models are coupled through the pressure field within the fibre optic 

in the grating region. Then the photo detector sensitivity is used to calculate the output 

electrical signal.  

 

Figure 2-8 Composite model of the acousto-optic sensor. 

 

2.4.1 FBG Model 

FBG is manufactured by laterally exposing the core of a single-mode fiber to a 

periodic pattern of ultraviolet light, which alters the refractive index of the core according 

to the periodic pattern (Figure 2-10). In essence, FBG is a narrowband dielectric mirror 

with peak reflection occurring at the Bragg wavelength 

 𝜆𝜆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 2𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝛬𝛬  (8) 

Where neff is the effective refractive index of the fiber core and Λ is the grating 

period. π-phase shifted FBG (πFBG) has a jump in the periodicity in the middle of the 

grating. In essence, this discontinuity separates the grating into two highly reflective mirror 
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resulting in a high-quality factor Fabry Perot like cavity. This introduces a sharp notch in 

the middle of the reflection spectrum FBG (at λBragg) resulting in steeper side slope. The 

spectrum difference and sensitivity comparison between a standard FBG and πFBG is 

shown in Figure 2-9 , enabling higher sensitivity. We used πFBGs for higher SNR 

measurements.  

 

Figure 2-9 Reflectance spectrum and sensitivity difference between a) standard FBG 

and b) a π phase shifted FBG.  
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Reflection spectrum of the πFBG can be calculated using a coupled mode theory 

and transfer matrix method [119], [120]. πFBG with a total length of L is divided into 

smaller uniform sections with length of (Fig. 1a). Relations between forward-going modes, 

Ai, and backward-going modes, Bi, before and after each section can be represented by a 

2x2 transfer matrix Ti. 

 �𝐴𝐴𝑖𝑖𝐵𝐵𝑖𝑖
� = 𝑇𝑇𝑖𝑖 �

𝐴𝐴𝑖𝑖−1
𝐵𝐵𝑖𝑖−1

� = �𝑇𝑇11 𝑇𝑇12
𝑇𝑇21 𝑇𝑇22

� �𝐴𝐴𝑖𝑖−1𝐵𝐵𝑖𝑖−1
�  (9) 

Where Ti is defined as 

 
𝑇𝑇11 = 𝑐𝑐𝑐𝑐𝑐𝑐ℎ( 𝛾𝛾𝐵𝐵𝛥𝛥𝛥𝛥) − 𝑖𝑖

𝜎𝜎�
𝛾𝛾𝐵𝐵
𝑠𝑠𝑠𝑠𝑠𝑠ℎ( 𝛾𝛾𝐵𝐵𝛥𝛥𝛥𝛥) 

(10) 

 𝑇𝑇12 = −𝑖𝑖
𝜅𝜅
𝛾𝛾𝐵𝐵
𝑠𝑠𝑠𝑠𝑠𝑠ℎ( 𝛾𝛾𝐵𝐵𝛥𝛥𝛥𝛥)  (11) 

 𝑇𝑇21 = 𝑇𝑇12 ∗  (12) 

 𝑇𝑇22 = 𝑇𝑇11 ∗  (13) 
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Figure 2-10 Schematic of a πFBG depicting transfer matrix method.  

In Eq. (3) and (4), 𝜎̑𝜎 is dc self-coupling coefficient, κ is ac coupling coefficient and 𝛾𝛾𝐵𝐵 =

√𝜅𝜅2 − 𝜎̑𝜎2. Coupling coefficients for FBG is given as follows 

 𝜎̑𝜎 = 𝛿𝛿 + 2𝜋𝜋𝜋𝜋(𝑧𝑧)/𝜆𝜆  (14) 

 𝜅𝜅 = 𝜋𝜋𝜋𝜋(𝑧𝑧)/𝜆𝜆  (15) 

 

Where 𝛿𝛿 = 2𝜋𝜋𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒(1/𝜆𝜆 − 1/𝜆𝜆𝐷𝐷) is detuning parameter, λ wavelength and 𝜆𝜆𝐷𝐷 =

2𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝛬𝛬(𝑧𝑧) is design wavelength and n is local refractive index. A single transfer matrix  

T(λ) can be defined for the overall grating by multiplying individual transfer matrices Ti at 

each wavelength. Phase shift in the grating can be introduced into the model by 
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 𝑇𝑇𝜋𝜋 = �−𝑖𝑖 0
0 𝑖𝑖 � 𝜆𝜆  (16) 

Hence the system matrix T will become 

 
�
𝐴𝐴(𝑧𝑧=𝐿𝐿)
𝐵𝐵(𝑧𝑧=𝐿𝐿)

� = 𝑇𝑇𝑀𝑀 ⋅ 𝑇𝑇𝑀𝑀−1 ⋅⋅⋅ 𝑇𝑇𝜋𝜋 ⋅⋅⋅ 𝑇𝑇2 ⋅ 𝑇𝑇1 �
𝐴𝐴(𝑧𝑧=0)
𝐵𝐵(𝑧𝑧=0)

� = 𝑇𝑇 �
𝐴𝐴(𝑧𝑧=0)
𝐵𝐵(𝑧𝑧=0)

�  
(17) 

Where 𝐴𝐴(𝑧𝑧=0) and 𝐵𝐵(𝑧𝑧=0) are complex modes at the start of the grating,  𝐴𝐴(𝑧𝑧=𝐿𝐿) and 𝐵𝐵(𝑧𝑧=𝐿𝐿) 

are complex modes at the end of the grating and  𝑀𝑀 = 𝐿𝐿/𝛥𝛥𝛥𝛥. Lastly, by applying boundary 

conditions 𝐴𝐴(𝑧𝑧=0) = 1 and 𝐵𝐵(𝑧𝑧=0) = 0 are in Eq. 10, amplitude and power reflection 

coefficients can be calculated as 𝛤𝛤(𝜆𝜆) = −𝑇𝑇21/𝑇𝑇22 and 𝑟𝑟 = |𝛤𝛤(𝜆𝜆)|2 respectively.  

When the πFBG is impinged by an acoustic wave, refractive index 𝑛𝑛 and grating period 

𝛬𝛬will change due to elasto-optic effect. Normalized refractive index 𝛥𝛥𝛥𝛥 and relative grating 

period changes 𝛥𝛥𝛥𝛥by an acoustic wave with pressure field (𝑧𝑧,)  can be expressed as follow 

 𝛥𝛥𝛥𝛥(𝑧𝑧, 𝑡𝑡)
𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒

= 𝑛𝑛2
𝑃𝑃(𝑧𝑧, 𝑡𝑡)

2𝐸𝐸
(1 − 2𝜈𝜈)(2𝑃𝑃12 + 𝑃𝑃11) 

(18) 

 𝛥𝛥𝛥𝛥(𝑧𝑧, 𝑡𝑡)
𝛬𝛬

= −
𝑃𝑃(𝑧𝑧, 𝑡𝑡)
𝐸𝐸

(1 − 2𝜈𝜈) 
(19) 

where 𝑃𝑃11 and𝑃𝑃12 are elements of the strain-optic tensor, 𝐸𝐸 is Young’s modulus and 𝜈𝜈 is 

Poisson’s ratio. Since coupling coefficients 𝜎̑𝜎 and 𝜅𝜅 depend on refractive index 𝑛𝑛 and 

grating period 𝛬𝛬, new reflection spectrum of the grating can be calculated by plugging Eq.  
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(11) and (12) into (7) and (8). When choosing Δ𝑧𝑧, acoustic wavelength and grating length 

should be taken into consideration such that 𝛬𝛬 ≪ 𝛥𝛥𝑧𝑧 ≪ 𝜆𝜆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 where 𝜆𝜆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is 

acoustic wavelength inside the fiber in order to satisfy uniformity assumption.  

2.4.2 Piezoelectric Model 

FEA is used for modelling of the piezoelectric transducer and pressure calculations 

within the optical fiber. Optical fiber is modelled as a silica cylinder in COMSOL 

Multiphysics platform since the mechanical properties of both core and cladding of the 

fiber are the same Figure 2-12. The piezo-electric transducer was constructed within the 

piezoelectric module of COMSOL.  

 

Figure 2-11 FEA model of piezoelectric transducer and optical fiber with FBG 

embedded in its fiber core.  

Voltage output from the antenna and the input impedance of antenna are used as 

input to the piezoelectric model. The coupling between the piezoelectric transducer and the 

optical fiber is simulated via a Hertzian contact with no losses. Losses was added to the 

piezoelectric transducer model to account for fabrication imperfections and loading of the 
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piezoelectric transducer by glue used for attaching the optical fiber. In order to minimize 

the acoustic wave reflections at the fiber ends, a low reflecting boundary condition is 

applied on both fiber ends. The pressure field in the core of the fiber induced by the external 

acoustic wave is calculated and inserted as P(z,t) into eq. (11) and (12), shown in Figure 

2-12. Note that, any arbitrary pressure field distribution can be used as an input for the 

model as long as Δz is adequately smaller than smallest acoustic wavelength.  

 

Figure 2-12 Piezo electric model used for the stress/strain distribution on the optical 

fiber core region of the FBG grating.  

 

2.4.3 Simulations  

Initially, we used the FBG model for the design of different FBGs. As high 

performance opto-electronics are readily available for 1550nm wavelength due to its 
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extensive use in telecommunication, Bragg wavelength for all the FBGs was set at 1550nm.  

Intrinsic parameters of a fused silica optical fiber are used for all the simulations.   

Shorter grating length is desired for especially device tracking in order to reduce 

the size of the sensor. However, as there is a compromise between the grating length and 

the sensitivity of the FBGs. Three different π-FBGs with different grating lengths are given 

in Figure 2-13. The performance of the FBG is substantially is reduced with shorter grating 

length of 4mm. Even though, 16mm grating length provides the steepest side slope, we 

think the packaging of such a sensor will be a challenge. Thus, we opted for a grating length 

of 8mm as a good compromise between sensitivity and size. 

 

Figure 2-13 Simulation of reflection spectrums of π-FBGs for grating lengths of 4mm, 

8mm and 16mm.   
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A uniform FBG and phase shifted FBG was simulated with the same design parameters. A 

comparison of the reflection spectrum of those FBGs are given in Figure 2-14. The side 

slope of the phase shifted FBG is steeper than standard FBG as expected. Since high SNR 

is required for both device tracking and RF field sensing, we have chosen a phase shifted 

FBG topology. We simulated and designed two π-FBGs with the following parameters, 

given in Table 2-1.  

  

Figure 2-14 Simulation of reflection spectrums for a standard and phase shifted FBG.   

 

 

. 
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Table 2-1  Simulation parameters for π-FBG-1 and π-FBG-2. 

 π-FBG-1 π-FBG-2 

Grating type 𝜋𝜋-phase shifted 

Bragg wavelength 1550 nm 

Bandwidth (FWHM) 2 pm 0.4 pm 

Grating length  8 mm 8 mm 

Refractive index modulation 3.7 × 10−6 4.85 × 10−6 

P11 0.113 

P12 0.252 

Poisson’s ratio 0.25 

Cladding diameter 125 μm 

Young’s modulus 70 GPa 

𝛬𝛬 528nm 

𝛥𝛥𝑧𝑧 10 μm 

𝜆𝜆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 94 μm – 250 μm 
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Ideally, very narrow notch widths are desired for higher sensitivity, however 

fabrications of sub-pm notch width FBGs are very challenging. Thus, spectral bandwidth 

of the center notch of the π-FBGs were designed as 2 pm (250 MHz) in π-FBG-1 for easier 

fabrication and 0.4 pm (50 MHz) in π-FBG-2 for higher sensitivity. In uniform FBGs, 

bandwidth and refractive index modulation are linearly proportional, an example 

simulation is given in Figure 2-15.  However, bandwidth and refractive index modulation 

have an exponential relationship.  Refractive index modulation of 3.7 × 10−6 is required 

for π-FBG-1 and refractive index modulation of 4.85 × 10−6 is required for π-FBG-2. 

Even though, the bandwidth is 5 times narrower in π-FBG-2, refractive index modulation 

is only increased by 1.31.  

 

Figure 2-15 A comparison between bandwidth two uniform FBGs with different 

refractive index modulations (RIN). 
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 Reflection spectrums for π-FBG-1 and π-FBG-2 around the central notch are given 

in Figure 2-16. Side slope of π-FBG-2 is 5 times steeper than side slope of π-FBG-1. Thus, 

a factor 5 increase in sensitivity is expected when π-FBG-2 is used.  

 

Figure 2-16 Reflection spectrums of π-FBG-1 and π-FBG-2 around the central notch. 

 

The pressure sensitivity of the FBG sensors are calculated by using applying a uniform 

pressure across the grating length. Optical modulation depths of 3.2% and 1.59% per kPa 

are calculated for π-FBG-1 and π-FBG-2. Time domain simulation results for an input 

pressure field of 1kPa at 63.86MHz are shown in Figure 2-17.  
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Figure 2-17 Time domain simulation results for π-FBG-1 and π-FBG-2 when an input 

pressure field of 1kPa at 63.86MHz is applied.  

A summary of calculated pressure sensitivities for π-FBG-1 and π-FBG-2 is given 

in Table 2-2. Note that, the output voltage of the photodetector is assumed 10V at the 

maximum reflectance.  

Table 2-2 Pressure sensitivity of the FBG sensors for 10V maximum output voltage  

FBG type Pressure sensitivity 

π-FBG-1 16 mV/kPa 

π-FBG-2 79 mV/kPa 
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The piezoelectric model is first used for impedance calculation of the piezoelectric 

crystals. A comparison between simulation results and measurements of an unloaded 

PZT5A crystal with a size of 1mm x 2mm are given in Figure 2-18. Impedance 

measurements of the actual transducer is used for determining and fine tuning of the loss 

parameters in COMSOL. Multiple peaks in the measurements are mostly caused by 

backing material. The higher capacitance in the imaginary part is caused by the improper 

calibration of the network analyzer as we don’t have a calibration kit suitable for the testing 

of this kind of devices.  

 

Figure 2-18 Simulated and measured input impedance of an PZT5A crystal. 
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Then, the pressure coupling from the piezoelectric transducer to fiber optic was 

simulated. Typical pressure distribution within optical fiber – piezoelectric transducer 

assembly due to acoustic waves generated by the piezoelectric transducer with pressure 

distribution along the red line passing through the fiber core is given in Figure 2-19. Note 

that the pressure at the fiber core is lower than the maximum pressure.  

 

 

Figure 2-19 a) Typical pressure distribution within the optical fiber – piezoelectric 

transducer assembly due to acoustic waves generated by the piezoelectric transducer. 

b) Pressure distribution along the red line passing through the fiber core. Note that 

the pressure at the fiber core is lower than the maximum pressure.  



 61 

 As in can be seen in Figure 2-19a, only small portion of the piezoelectric transducer 

is touching optical fiber, thus most of the input power is wasted. Instead of using a bulk 

piezoelectric material, a piezoelectric thin film can be coated on the optical fiber, schematic 

is shown in Figure 2-20. This way, pressure field generated by the piezoelectric transducer 

can be coupled to the FBG more efficiently. Moreover, the size of the acousto-optic 

modulator will be further reduced to the size of the optical fiber, 125 µm in diameter.  

 

Figure 2-20 Schematic of an acousto-optic modulator coated with thin film 

piezoelectric transducer.  

The model is used for the simulation of an acousto-optic modulator coated with thin 

film piezoelectric transducer, shown in Figure 2-21. 
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Figure 2-21 Simulation result showing multiple mechanical resonances for an optical 

fiber with a thin ZnO piezoelectric layer.  

There are two distinct modes with resonances at 21MHz and 66MHz which are 

closer to Larmor frequencies of 0.55T (23.6MHz) and 1.5T MRI (63.86MHz) systems. The 

resonance frequency easily tunable by adjusting the piezoelectric layer thickness and 

optical fiber diameter. An optimized acousto-optic is designed using the model and the 

stress distribution along the fiber core for a thin film ZnO coated optical fiber optimized 

for 63.86 MHz is given Figure 2-22. 
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Figure 2-22 Stress distribution along the fiber core for a thin film ZnO based acousto-

optic modulator optimized for 63.86 MHz.  

Simulation results shows that a maximum pressure of 55 kPa is generated at the 

fiber core when an input of 1V is applied across a bulk LiNbO3 piezoelectric transducer at 

63.86MHz.  However, an optimized acousto-optic sensor with a thin film ZnO coating will 

generate 4.3 MPa at the fiber core resulting in a 2 orders of magnitude sensitivity 

improvement. A summary of the electro-mechanical conversion rates for the acousto-optic 

modulator with bulk and optimized thin film coated piezoelectric transducers is given in 

Table 2-3.  

 

 

 



 64 

Table 2-3 Electro-mechanical conversion rates for the acousto-optic modulator with 

bulk and optimized thin film coated piezoelectric transducers at 63.86 MHz 

Transducer configuration Electro-mechanical conversion rate 

Bulk piezo (LiNbO3) 55 kPa/V 

Optimized thin film (ZnO) 4.3 MPa/V 

A gain for the acousto-optic modulator can be calculated combining the pressure 

sensitivity of the FBG sensors and the electro-mechanical conversion rates of the 

piezoelectric-FBG pair. A summary of acousto-optic conversion gains for the acousto-

optic modulator in different combinations of FBG sensors and piezoelectric transducers is 

given in Table 2-4. 

Table 2-4 Acousto-optic conversion gains for the acousto-optic modulator in different 

combinations of FBG sensors and piezoelectric transducers. 

 π-FBG-1 π-FBG-2 

Bulk piezo (LiNbO3) 1.76 V/V 8.75 V/V 

Optimized thin film (ZnO) 137.6 V/V 683.7 V/V 
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2.5 Summary 

This chapter introduced FBG based acousto-optic modulators as a transduction 

mechanism between an antenna and the optical fiber. Working principle of the acousto-

optic modulator is explained. A model for the acousto-optic sensor is developed and effects 

of various design parameters on the sensor performance are investigated through 

simulations. Hence, aim D is achieved and feasibility of aim C2 is shown.  

The major points of this chapter are listed as follows:  

• Proposed sensor system consists of four main components: an antenna to 

receive RF signal; a piezoelectric transducer to convert electrical signal to 

acoustic waves; an FBG sensor embedded in an optical fiber for acousto-optic 

modulation; and backend optoelectronics (light source and photodetector) for 

converting optical signal to electrical signal. The resonant nature of the 

piezoelectric transducer can be used to increase overall SNR of the system 

while limiting the bandwidth.  

• Side slope read-out scheme can be used for detecting small pressure 

amplitudes at high frequencies.  

• A hybrid model of the acousto-optic modulator is developed. A numerical 

model of FBG is derived using coupled mode theory and transfer matrix 

methods whereas piezoelectric transducer is modeled using FEA. Models are 

coupled through pressure field at the fiber core.  

• Effect of different parameters on FBG design is investigated through 

simulations. As phase shifted FBGs resulted in higher sensitivities, π-FBGs 
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with bandwidths of 0.4pm and 2pm are designed. Optical modulation depths 

of 3.2% and 1.59% per kPa are calculated for FBGs, respectively. 

Pressure fields within the FBG induced by bulk and thin film piezoelectric transducers are 

simulated. 2 orders of magnitude sensitivity improvement is achieved by optimizing the 

thin film piezoelectric transducers for Larmor frequency. 
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CHAPTER 3. PROTOTYPING AND CHARACTERIZATION OF 

THE ACOUSTO-OPTIC MODULATOR 

3.1 Overview 

Working principle of the acousto-optic sensor was presented in the previous chapter 

with a model of the sensor in order to optimize the sensor for different applications. This 

chapter focuses on the sensor prototype and its characterization. First, the specifics of 

sensor prototype and components are given. The back-end opto-electronics used for optical 

read out are explained in detail. Then, the model is verified through sensitivity and linearity 

analysis. Lastly, noise analysis of the acousto-optic modulator is performed.   

3.2 Acousto-optic Modulator Prototype 

Proof of concept prototypes were built for two different field strength MRI scanners: 

a prototype 0.55 Tesla MRI scanner (Aera, Siemens Healthineers Erlangen) and clinical 

1.5 Tesla MRI scanner (Aera, Siemens Healthineers Erlangen). The Larmor frequencies 

are 23.65MHz for 0.55T scanner and 63.86 MHz for 1.5T scanner. The prototype consists 

of two main systems; an acousto-optic modulator probe and a back-end optoelectronic 

system for system control and MRI integration. Overall system schematic is given in Figure 

3-1. 
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Figure 3-1 Schematic of the whole sensor system with distal end probe and the optical 

read-out unit.  

3.2.1 Acousto-optic Probe 

Acousto-optic probe consists of a receiver antenna for RF signal pickup, a 

piezoelectric transducer and a FBG sensor for acousto-optic modulation. Fig. 2(b) 

illustrates the acousto-optic probe designed for the prototype.  
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Figure 3-2 illustration of the acousto-optic probe showing receiver coil, piezoelectric 

transducer and FBG sensor. 

Piezoelectric transducers have highest electro-mechanic coupling efficiency when 

operated at around their resonance frequency [121]. Resonance frequency of thickness 

mode piezoelectric transducers are determined by their thickness, which is around 20-30 

micrometre range for common piezoelectric materials for 63.86 MHz. Since this is difficult 

to fabricate and handle mechanically, a commercially available 100-μm thick piezoelectric 

transducer (Boston Piezo Optics Inc., MA, USA). The measured electrical impedance of 

the particular piezoelectric transducer is shown in Figure 3-3, which clearly shows the first 

and third harmonic mode resonances. Note that, these piezoelectric transducers are custom 

made and there is a huge variety between the sensors resulting in resonance and impedance 

variations up to ±15%. Piezoelectric transducers with first resonances around 23 MHz are 

used for 0.55T scanner and piezoelectric transducers with a resonance frequency of 21 

MHz are used at its third harmonic resonance frequency of around 63 MHz for 1.5T 
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scanner. Electro-mechanic coupling efficiency is significantly reduced when the 

piezoelectric transducer is driven at its third harmonic. 

 

Figure 3-3 Measured electrical input impedance of the PZT5A piezoelectric 

transducer used for 1.5T MRI system. 

Two types of piezoelectric transducers were used; PZT5A and LiNbO3. The width 

of the piezoelectric transducers is 1mm and length of 2mm and 5mm were used. 5mm 

transducer allows easier fabrication due to its larger size. A wrap around electrode 

configuration was used so that bottom side of the piezoelectric transducer can be attached 

onto flat surface. All components at the probe end are held together by a printed circuit 

board (PCB) piece for easy handling. The electrodes were connected to connections on the 

PCB via gold wire bonds, shown in Figure 3-4.  
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Figure 3-4 Close up photo of the acousto-optic modulator assembly on the PCB 

handle.  

Acoustic waves created by the piezoelectric transducer are coupled to FBG sensor 

via a rigid, Hertzian contact; FBG section of the fiber is attached to the piezoelectric 

transducer with low viscosity cyanoacrylate (3M Company, MN, USA). Bragg wavelength 

is chosen as 1550 nm because of its extensive use in telecommunication. In order to 

increase sensitivity, π phase shifted FBG was used in this study [114], [122], [123]. Both 

of the phase shifted FBGs designed in Chapter 2 are fabricated and used in the prototype 

(Teraxion Inc., Quebec, Canada). The single mode optical fiber used at the distal end is a 

single mode polarization maintaining fiber with a cladding diameter of 125 µm and acrylic 

protection layer of 250 µm. Overall grating length for both πFBGs are 8 mm with 2 pm or 

250MHz (π-FBG-1) and 0.4 pm or 50MHz (π-FBG-2) notch bandwidth at FWHM. The 

πFBGs were fabricated on a polarization maintaining (PM) fiber so that there are two Bragg 

wavelengths due to slightly different refractive index in the slow axis and fast axis of PM 
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fiber. In this work, only the slow axis mode was excited with a laser source polarized in 

slow axis.  

 

 

Figure 3-5 Sensitivity of π-FBG along the fiber length with phase shift location at 

0mm.  

The sensitivity of the phase shifted FBG changes along the grating length; most 

sensitive at the phase shift with decaying sensitivity towards the edge of the grating. 

Sensitivity pattern of a π phase shifted FBG is simulated in the model, shown in Figure 

3-5. Thus, location of the piezoelectric transducer is crucial. An assembly rig with 

mechanical translation stage was used for precise alignment of the FBG and the 

piezoelectric transducer, shown in Figure 3-6. The piezoelectric transducer on a PCB 

holder is attached to a 3 axis translational stage whereas the optical fiber is attached to a 

rotational stage. Alignment is monitored by a microscope. Maximum mechanical coupling 
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between the FBG and the piezoelectric transducer is assured by scanning the FBG area for 

maximum optical output when the piezoelectric transducer is driven constantly.   

 

Figure 3-6 Alignment rig used for the assembly of acousto-optic modulator 

Receiver antenna can be either a short dipole or loop antenna depending on the 

application. Short dipoles are more sensitive to electric fields, thus more suitable for SAR 

measurement. Loop antennas are sensitive to magnetic field and mostly used in in device 

tracking application for iMRI in various sizes and configurations. There are multiple 

antenna designs used with acousto-optic sensor. The details of the antennas will be given 

in the Chapter 4 and Chapter 5. In general, short dipole antennas were fabricated on a FR4 

type printed circuit board (PCB). Single loop antennas were also fabricated on a PCB 

whereas multi turn coils were hand wound with 30 AWG insulated copper wire.  

Figure 3-7 shows the schematic of the packaging of the acousto-optic sensor for 

MRI testing where the FBG section of the optical fibre is contained in a rigid glass tubes 
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with electrical and optical connections are provided on opposite ends. The sensor is 

connected to different receiver coils for testing and comparison to conventional coax cable 

connected active markers.  

 

Figure 3-7 a) Schematic of the packaging of the AO sensor where the FBG section of 

the optical fiber is contained in a rigid glass tubes with electrical and optical 

connections are provided on opposite ends. b) The sensor connected to a test coil. c) 

Fully packaged sensor interfaced with an optical fiber. 
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3.2.2 Back-end Optoelectronics 

Back-end optoelectronic system handles the read-out from the acousto-optic probe. 

Back-end optoelectronics schematic is given in Figure 3-8.  A tuneable laser source (NKT 

Photonics, Denmark) provides a narrow linewidth, less than 1 kHz, laser light. One-way 

optical isolator is employed in order to prevent reflected light from FBG to go back into 

laser cavity. A three-way optical coupler separates laser light going into the probe end and 

reflected light from probe end. Reflected light with its intensity modulated around the 

Larmor frequency from the FBG is captured by a high trans-impedance gain InGaAs photo 

detector with 125MHz bandwidth (New Focus Model 1811, CA, USA). 

 

Figure 3-8 Schematic overview of the test setup.  

Gradient magnetic field change creates acoustic noise up to 1.5 kHz due to Lorentz 

forces created on the gradient coils [124]. Since FBG sensor is sensitive to any elastic wave 
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induced on the fiber, the acoustic noise also modulates the reflected light from the FBG. 

AC output from the photodetector is filtered with a band-pass filter to reject the AC signal 

caused by the acoustic noise. Filtered AC signal is analysed with an oscilloscope. AC signal 

is also fed back into coil plug of MRI system, which is used for visualization of the 

interventional device.  

 

Figure 3-9 Photo of the back-end optoelectronics 

Middle section of the side slope in the notch of FBG spectrum offers a linear 

operating region. Therefore, it is crucial to ensure laser wavelength is kept in the linear 

operating region of the FBG spectrum. Wavelength of the FBG can shift due to operating 

conditions such as temperature and mechanical load on FBG as well as high amplitude 

acoustic noise. Thus, a wavelength controller was designed based on an op-amp 
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proportional-integral derivative (PID) controller. Details of the wavelength controller is 

given in Appendix A.   

Wavelength controller can track wavelength changes up to 20 kHz, which covers 

most of the acoustic noise due to gradient fields. Note that, wavelength change created by 

mechanical loading and temperature changes on the FBG sensor has much lower frequency 

and are readily adjusted for by the controller. In the experiments, the bias point on the side 

slope was set to 50% of the maximum reflection.  

3.3 Characterization 

The prototype was characterized through sensitivity and linearity tests in lab 

environment.  We also validated the model by comparing the reflection spectrums of the 

fabricated gratings with simulations as well as pressure sensitivity.  

3.3.1 Spectral Response of the FBG 

The reflection spectrum of the FBGs were measured with the wavelength sweep 

function of the laser source around the Bragg wavelength. Bragg wavelength of each πFBG 

was tracked by adjusting the temperature of the laser. Then, spectrum of the πFBGs were 

measured by sweeping the laser source using the piezo-electric wavelength tuning mode of 

the laser around the Bragg wavelength. Note that, measured reflection spectrums are 

normally not centred around 1550nm due to fabrication tolerances. Thus, the measured 

reflection spectrums were shifted to 1550nm in order to compare the spectrum shape with 

the simulations. The spectrum shape is more critical than the absolute Bragg wavelength 

since readout is carried on the side slope of the center notch. 
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Figure 3-10 shows the reflection spectrum of π-FBG-1around the center notch. The 

reflection spectrum of the π-FBG-1 is in good agreement with the simulation results around 

the Bragg wavelength. Towards the edges, the measured spectral response is slightly 

deviating from the simulation results. Since the read out is performed at 50% bias and the 

optical modulation is usually small, the deviation at the edges will not have significant 

effect.  

 

Figure 3-10 Reflection spectrum of π-FBG-1 around the center notch 

Figure 3-11 shows the reflection spectrum of π-FBG-2 around the center notch. 

Similarly, the reflection spectrum of the π-FBG-2 close to simulation results except the 

notch shape is a little distorted. It should be noted that fabrication of πFBGs with a notch 

bandwidth of 0.4pm is very challenging, and ideal behavior is not expected. 
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Figure 3-11 Reflection spectrum of π-FBG-2 around the center notch 

 

3.3.2 Sensitivity of the FBG to Acoustic Waves 

We characterized the sensitivity of the gratings to acoustic pressure (and resulting 

strain) by exciting them using a piezoelectric transducer immersed in water. Water 

immersion ensures uniform pressure distribution over the FBG region of the fiber. Figure 

3-12 shows the components of the experimental set-up used for the sensitivity testing of 

the acousto-optic sensor.  
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Figure 3-12 Experimental set-up for pressure sensitivity. The hydrophone is placed 

at the FBG location for pressure calibration 

The πFBG is immersed in water at the focal region of a piezoelectric transducer 

(Panametrics Model A306S) with a center frequency of 2.25 MHz. In water, acoustic 

wavelength at 2.25MHz is 666 μm, which is more than twice the diameter of the fiber (125 

μm), thus a uniform ultrasound generated strain  over the radial thickness of the grating is 

achieved. This is further validated via FEA simulation; a fiber model was placed into water 

and excited with a point pressure source away from the fiber and the radial pressure 

distribution was investigated. The simulation results showed a continuous and uniform 

pressure field with 85% of the surrounding pressure field amplitude within the optical fiber, 

shown in Figure 3-13.  
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Figure 3-13 ) FEA simulation showing pressure distribution inside the FBG and the 

surrounding water in the axial direction. Note that the pressure field inside the fiber 

is 85% of the surrounding pressure field. 

The acoustic pressure produced by the transducer at the same location was 

measured using a calibrated hydrophone (ONDA Model HGL0200). An input signal of 10 

cycle tone burst with 10Vpp amplitude was used for acoustic wave generation which 

resulted in 107kPa peak pressure around the fiber, corresponding to 91kPa peak pressure 

at the fiber core.  
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Figure 3-14 Pressure field captured by π-FBG-1 (a) and π-FBG-2 (b) with the 

hydrophone measurement. The time delay between the FBG and hydrophone signals 

is due to the ~4mm distance between them.  

Laser intensity was adjusted such that the photodetector output is 10V when 

maximum reflection is achieved from the gratings. For the same pressure field measured 

by the hydrophone, π-FBG-1 generated 1.1V output whereas π-FBG-2 generated 7.3V 

output (Figure 3-14).  Therefore, the pressure sensitivity of the sensors can be calculated 

as 80 mV/kPa for π-FBG-2 and 12 mV/kPa for π-FBG-1. A comparison between the 

simulated and measured pressure sensitivities is provided in Table 3-1. Note that the 

measured sensitivities are approximately half of the simulated values.  This discrepancy 

mostly due to fabrication tolerances; variations among piezoelectric transducers and lossy 

mechanical coupling between the FBG and the piezoelectric transducer. These variations 

will be substantially reduced with thin film configurations.  
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Table 3-1 Simulated and measured pressure sensitivity of the FBG sensors  

 Simulation Measurement 

π-FBG-1 16 mV/kPa 12 mV/kPa 

π-FBG-2 79 mV/kPa 80 mV/kPa 

 

3.3.3 Linearity Analysis  

Although both normal and phase shifted FBGs have been used as acousto-optic 

sensors with the side slope detection method, large portion of the slope of the spectrum has 

been assumed linear in the previous studies [106], [112]–[114]. This assumption is valid 

when the sensitivity of the FBG is relatively low and acousto-optic modulation is very 

small. However, when the sensitivity and strain levels are high, effect of non-linearity 

becomes prevalent in the form of sensitivity variations to amplitude and phase. Several 

groups [125], [126] have studied the linearity of Fabry-Perot based optical fiber sensors, 

which incorporate the side slope detection method. On the other hand, linearity analysis 

for FBG sensors are limited in the literature.   

Since image formation in MRI is achieved by frequency and phase encoding, the 

linearity of the FBGs is very crucial in such applications, especially phase. In terms of 

phase sensitivity, mili-radian range phase stability is needed for acceptable image quality 

[127].  Each phase-encoding step usually takes an entire MR excitation step and takes up 
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significantly longer times than frequency encoding leading to build up of any non-linearity 

in phase. Moreover, high levels of acoustic noise and temperature changes under MRI 

further accentuates the problem as FBGs are inherently sensitive to all strain and 

temperature changes. In order to characterize FBG response in such dynamically 

challenging environments and highly sensitive applications requiring a detailed analysis of 

linearity and sensitivity of FBG sensors with FBG side slope read-out are required.   

We investigated the linearity of the FBG by inspecting amplitude and phase 

sensitivity with respect to reflectivity level on the side slope. These experiments were 

carried out at 23.6 MHz, the Larmor frequency of the prototype 0.55T MRI system in which 

the subsequent imaging experiments were conducted. To record the sensitivity variation, 

the bias point on the side slope was slowly changed from minimum reflection to maximum 

reflection while using a continuous wave acoustic excitation. This configuration was also 

simulated using the acousto-optic modulator model. The resulting pressure distribution in 

the core of the fiber was used for time domain simulations in the optical model described 

above.  

Amplitude sensitivity of the FBG sensors were calculated by taking the first 

derivative of the output signal with respect to bias as measured in Figure 3-10 and Figure 

3-11. Moreover, the model was used for time domain simulations. A time domain pressure 

signal at 23.6 MHz with an amplitude of 1kPa was used as the input to the model and the 

corresponding optical modulation is calculated at different bias points. Simulation results 

were normalized to the experimental results for better comparison and amplitudes were 

presented in arbitrary units (AU) as the absolute amplitude values were not of interest for 



 85 

this study. Moreover, pressure output from the piezoelectric transducer was kept such that 

the optical modulation does not exceed 1% in order to ensure linearity across the spectrum. 

 

Figure 3-15 Pressure sensitivity of π-FBG-1 (a) and π-FBG-2(b) with respect to 

reflectivity on the side slope. 

As seen in Figure 3-15, simulation results are in good agreement with the 

experimental results. Maximum sensitivity is observed around 25% bias on the side slope 

rather than 50% as reported earlier by [113]. In π-FBG-2, the experimental data shows that 

the maximum sensitivity is observed around 35% rather than 25% due to the fabrication 

tolerances. Maximum sensitivity of FBG-2 is 5.7 times greater than π-FBG-1, which is 

comparable to the hydrophone measurements reported in the previous section; sensitivity 

of π-FBG-2 was 6.6 times larger than π-FBG-1. Moreover, amplitude linearity is observed 

only at a limited range around the 25% bias rather than 20-80% as assumed by [106]. 

Sensitivity is within 1% of its maximum value from 21% to 29% bias. Thus, unwanted bias 

change on the side slope should be kept under 8% for a maximum amplitude variation of 

1%. Note that the response of the FBG sensors becomes unreliable under 5% and above 
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80% bias as the reflectivity curve becomes noisy and signal levels are significantly 

reduced.  

Phase response of the FBG sensors were tested using the same set-up. A continuous 

wave excitation at 23.6 MHz was used as the input and the optical signal and the input 

signal was recorded at different bias points. Then the phase difference between the input 

signal and the optical signal was calculated. Similarly, simulations were performed at 23.6 

MHz with an 1kPa pressure input then the phase difference between the pressure input and 

the modulated optical signal was calculated for different bias points.  

 

Figure 3-16 Phase change with respect to reflectivity on the side slope for π-FBG-1 (a) 

and π-FBG-2 (b). 

A linear relation between the bias point and the phase was observed between 5% 

and 80% reflectivity (Figure 3-16). Simulation and experimental results are in good 

agreement except for π-FBG-2. There is a less then 4o deviation from the simulations up to 

50% bias, then the difference becomes more pronounced. As discussed above, this 

discrepancy can be attributed to the non-ideal fabrication tolerances. The phase changes 
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0.165o per 1% bias change for π-FBG-1, whereas phase changes 0.48o per 1% bias change 

for π-FBG-2 up to 50% reflectivity. Highly phase sensitive MRI applications requires the 

unwanted phase due to bias change to be strictly monitored and corrected in order to 

minimize image distortion. Phase correction can be achieved using proper phase shifting 

electronics. A demonstration of phase correction artefact correction in real-time is 

presented in Chapter 5.  

3.3.4 Frequency Response  

The acousto-optic sensor introduced in this work has limited bandwidth due to the 

resonant nature of the piezoelectric transducer. Frequency response of the sensor around 

its first resonance is given in Figure 3-17.  

The sensor has a bandwidth of 3 MHz at FWHM around 22.5 MHz. The limited 

operational bandwidth of the sensor will limit its use in some applications where the 

frequency of the RF field either has a wide range or is unknown. However, this sensor is 

suitable for MRI applications where the operating frequency is known and has a narrow 

range. For a 100kHz frequency bandwidth, the sensor has a relative standard deviation of 

1.9% at 63.86 MHz. Note that, frequency bandwidth of RF signals in MRI usually does not 

exceed few kHz.  

Moreover, the center frequency, bandwidth and the sensitivity of the sensor can be 

adjusted by using different piezoelectric crystals. High quality factor piezoelectric crystals 

will have higher sensitivity with limited bandwidth whereas low quality factor piezoelectric 

crystals will have lower sensitivity with broader bandwidth. The center frequency can be 
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adjusted by changing the thickness of the piezoelectric crystal. Thus, the magnetic field 

sensor can be optimized for the specific MRI system and application. 

 

Figure 3-17 Frequency response of the acousto-optic sensor for a) 0.55 T MRI system 

and b) 1.5T MRI system 
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3.3.5 Noise Analysis  

There are three noise sources present in the acousto-optic modulator: photodetector, 

laser and piezoelectric transducer.  

Photodetector noise has three components: thermal, shot and amplifier noise [128]. 

Thermal noise is generated by the load resistor in the photodetector. Power spectral density 

of thermal noise, 𝑁𝑁𝑃𝑃𝑃𝑃,𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, is expressed as 

 𝐼𝐼𝑃𝑃𝑃𝑃,𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = �4𝑘𝑘𝑘𝑘𝑘𝑘/𝑅𝑅  (20) 

where k is the Boltzmann’s constant, and T is the absolute temperature, B is bandwidth and 

R is input resistance of the amplifier. The spectral density of the thermal noise is 

independent of the frequency, also known as a white noise. Shot noise caused by statistical 

the nature of photodetection. The photocurrent fluctuates as the result of the discrete photon 

arrival. Power spectral density for shot noise is given  

 𝐼𝐼𝑃𝑃𝑃𝑃,𝑠𝑠ℎ𝑜𝑜𝑜𝑜 = �2𝑞𝑞𝑞𝑞(𝑖𝑖𝑝𝑝 + 𝑖𝑖𝑑𝑑)  (21) 

where q is the electron charge, 𝑖𝑖𝑝𝑝 is induced photocurrent and 𝑖𝑖𝑑𝑑 is dark current. Shot noise 

is also a white noise and the noise and depended on light intensity. In a photodetector, an 

electrical preamplifier has to be used immediately after the photodiode to amplify the 

photocurrent signal and convert it into an electrical voltage. Preamplifier noise is expressed 
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as in input rms noise, 𝐼𝐼𝑃𝑃𝑃𝑃,𝑎𝑎𝑎𝑎𝑎𝑎, and given for the particular preamplifier. The total 

photodetector noise, 𝐼𝐼𝑛𝑛,𝑃𝑃𝑃𝑃, can be expressed as the summation of the noises; 

 𝐼𝐼2𝑛𝑛,𝑃𝑃𝑃𝑃 = 𝐼𝐼2𝑃𝑃𝑃𝑃,𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐼𝐼2𝑃𝑃𝑃𝑃,𝑠𝑠ℎ𝑜𝑜𝑜𝑜 + 𝐼𝐼2𝑃𝑃𝑃𝑃,𝑎𝑎𝑎𝑎𝑎𝑎  (22) 

Manufacturers usually provides noise equivalent power (NEP) which is the 

minimum optical power required for an SNR of 1. Using NEP, the voltage and current 

equivalent noise can be calculated as  

 𝐼𝐼𝑛𝑛,𝑃𝑃𝑃𝑃 = 𝑁𝑁𝑁𝑁𝑁𝑁 ∙ 𝛤𝛤 ∙ √𝐵𝐵  (23) 

 𝑉𝑉𝑛𝑛,𝑃𝑃𝑃𝑃 = 𝐼𝐼𝑛𝑛,𝑃𝑃𝑃𝑃 ∙ 𝑍𝑍𝑇𝑇𝑇𝑇𝑇𝑇 (24) 

where 𝛤𝛤 is photodetector responsivity and 𝑍𝑍𝑇𝑇𝑇𝑇𝑇𝑇 is preamplifier transimpedance gain.  

The particular photodetector has a fairly flat noise spectrum at frequencies higher 

than 10 MHz. NEP is given as 22.5 𝑝𝑝𝑝𝑝/√𝐻𝐻𝐻𝐻 , 𝛤𝛤 is given as 1A/W and the transimpedance 

amplifier has a gain, 𝑍𝑍𝑇𝑇𝑇𝑇𝑇𝑇, of 40 V/mA. Thus, voltage noise amplitude of the photodetector 

is calculated as 2.52 µV/√𝐻𝐻𝐻𝐻.  

Similar to a photodetector, a single mode laser source will have shot noise and 

electronics related noise. Electronics related noise is usually caused by fluctuations in the 

pump current. Pump current fluctuations usually die in kHz ranges  [129].  Shot noise is 

related to the discrete emission of the photons from the laser. A good laser will be designed 
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shot noise limited. Laser noise is usually characterized with relative intensity noise (RIN) 

which is expressed as  

 
𝑅𝑅𝑅𝑅𝑅𝑅 = 2 ∙

ℎ𝑐𝑐
𝜆𝜆𝜆𝜆√

𝐵𝐵  (25) 

where ℎ is Planck's constant, c is speed of light, λ is wavelength and P is optical laser power 

[130]. RIN is a relative power noise normalized to the average power level. Thus, 

equivalent noise at the photodetector output cause by the laser can be calculated as  

 𝑉𝑉𝑛𝑛,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑅𝑅𝑅𝑅𝑅𝑅 ∙ 𝛤𝛤 ∙ 𝑍𝑍𝑇𝑇𝑇𝑇𝑇𝑇 (26) 

Laser has a wavelength of 1550nm. During the experiments, laser intensity was 

adjusted to 3.9mW output power such that the photodetector output is 10V when maximum 

reflection is achieved from the gratings. Therefore, RIN is calculated as 0.066 𝑝𝑝𝑝𝑝/√𝐻𝐻𝐻𝐻 

and 𝑉𝑉𝑛𝑛,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is calculated  2.63 pV/√𝐻𝐻𝐻𝐻.  

Noise of piezoelectric transducer is purely related to thermal noise and expressed as 

 𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = √4𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘  (27) 

Thus, equivalent piezo noise at the photodetector output can be determined using 

previously calculated acousto-optic conversion gains and input resistance of the 

piezoelectric transducers.  The particular piezoelectric transducers used in the sensor have 

an input resistance range from 100 Ω to 4 kΩ. Using the worst case scenario, R = 4 kΩ and 
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acousto-optic conversion gain of 8.75V/V, the equivalent piezo noise at the photodetector 

output is calculated as 71.2 nV/√𝐻𝐻𝐻𝐻.  

The overall noise of the acousto-optic modulator can be calculated by summind the 

power spectral densities of photodetector, laser and piezo noise;  

 𝑉𝑉2𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎 = 𝑉𝑉2𝑛𝑛,𝑃𝑃𝑃𝑃 + 𝑉𝑉2𝑛𝑛,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑉𝑉2𝑛𝑛,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  (28) 

Note that, the photodetector noise has the largest noise by far and dominates the 

overall noise. Thus, the acousto-optic modulator noise can be approximated as  

2.52 µV/√𝐻𝐻𝐻𝐻. Actual spectral noise density of the acousto-optic modulator was also 

calculated by determining the spectral density of the output signal without any electrical 

input to the piezoelectric transducer. The voltage equivalent peak to peak noise of the 

acousto-optic modulator is measured as 𝟓𝟓.𝟔𝟔 µ𝐕𝐕/√𝑯𝑯𝑯𝑯 that is slightly more than the 

calculated noise. The difference between the calculation and the measurement is acceptable 

as given NEP of the photodetector is an estimated average value.  

The output of the acousto-optic sensor starts to saturate at 8V. Thus, the dynamic 

range of the acousto-optic modulator can be calculated as 117dB/√𝐻𝐻𝐻𝐻. 
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3.4 Summary 

This chapter explained the details of the acousto-optic modulator. Working principle 

of the acousto-optic modulator is explained. Detailed sensor characterization and analysis 

are performed and model is further validated through various experiments (aim D). Lastly, 

noise analysis of the acousto-optic modulator is performed.  

The major points of this chapter are listed as follows:  

• A prototype acousto-optic modulator is fabricated with the previously 

designed FBGs, π-FBG-1 and π-FBG-2, and a LiNbO3 bulk piezoelectric 

transducers. The alignment of piezoelectric transducer on the FBG sensor 

should be carefully performed as the phase shifted FBGs are most sensitive 

at the center.  

• A wavelength controller based on a PID controller needed to developed to 

track the Bragg wavelength which changes over time due to external stress 

or temperature change.  

• Spectral response of the designed FBGs closely matching with simulation 

results. π-FBG-2 with 0.4pm bandwidth has a slight mismatch as it is 

challenging to manufacture FBGs with sub-pm bandwidth. 

• Pressure sensitivities were calculated as 80mV/kPa for π-FBG-2 and 

12mV/kPa for π-FBG-1, which are approximately half of the simulation 

results. These variations expected to be reduced with thin film configurations. 

Moreover, highest sensitivity was observed at 25% the bias point, unlike 

widely accepted 50%.  
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• A linear relation between the phase and bias point was observed: the phase 

changes of 0.165o per 1% bias change for π-FBG-1 and phase changes 0.24o 

per 1% bias change for π-FBG-2. This unwanted phase due to bias change 

needs to be corrected for device tracking application.  

• The noise of the acousto-optic modulator is dominated by the photo-
detector noise and measured as 𝟓𝟓. 6 µV/√𝐻𝐻𝐻𝐻 which results in a dynamic 
range of 117dB/√𝐻𝐻𝐻𝐻. Thus, aim C1 is achieved.  
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CHAPTER 4. RF FIELD SENSING  

4.1 Overview 

The acousto-optic modulator part of the sensor was characterized in the previous 

chapter. This chapter focuses on the characterization of the sensor with different antennas 

for RF field sensing. The sensor was tested in a transverse electromagnetic (TEM) cell 

which generates uniform electric and magnetic fields.  The sensor was tested for magnetic 

field sensing with loop antennas and for electric field testing with short dipole antennas as 

well as using the piezoelectric transducer as a parallel plate antenna. Lastly, temperature 

sensing capability of the sensor was demonstrated.   

4.2 Experimental Set-up 

Uniform electric field (E field) and magnetic field (B Field) needs to be generated 

for the testing of acousto-optic sensor for RF field measurements [131]. RF emission and 

sensing tests are typically carried out in well calibrated anechoic chambers, using antennas 

to generate RF fields or pick up the radiated signals. Due to bandwidth limitations, several 

antennas are required to generate uniform fields. Furthermore, it requires much space and 

the cost of the equipment for a standard conformant setup is immense. As an alternative, 

transverse electromagnetic (TEM) cells have been used for testing of electronic devices for 

electromagnetic compatibility (EMC).  
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4.2.1 TEM Cell 

A TEM cell can be used for accurate and homogeneous electro-magnetic field 

generation from DC to few hundred MHz [132], [133]. TEM cells are consists of a septum 

and ground walls, shown in Figure 4-1. TEM cells are in essence, large waveguides with 

transmission lines being parallel plates. TEM cells are usually matched and terminated with 

an 50 Ohm load resistance.  

 

Figure 4-1 Schematic of an TEM cell showing its components. 

 A TEM cell can generate an average E field at the testing area which is the center 

of septum and between septum and ground walls is given as: 

 
𝐸𝐸 =  

𝑉𝑉
𝑑𝑑
𝐶𝐶𝑒𝑒 =  

�𝑝𝑝𝑍𝑍𝑜𝑜
𝑑𝑑

𝐶𝐶𝑒𝑒  
(29) 

where V is the rms input voltage, d is the distance between the septum and the ground 

walls, p is the RF power and 𝑍𝑍𝑜𝑜 is the characteristic impedance of TEM cell, usually 50 Ω, 
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and 𝐶𝐶𝑒𝑒 is a correction factor for the specific TEM cell geometry. In order to achieve the 

desired characteristic impedance, the dimensions of the TEM cell should be calculated 

accordingly [134].   

 

 

Figure 4-2 Open TEM cell prototype dimensions. 

We constructed a TEM cell with thin aluminium sheets using the dimensions and 

geometry given in Figure 4-2. The constructed TEM cell can be seen in Figure 4-3.  
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Figure 4-3 Constructed TEM cell with characteristic impedance of 50 Ω 

The TEM cell has a characteristic impedance of 50 Ω from DC to 40 MHz. The signal 

generator can generate 5Vrms at 23.65 MHz. The TEM cell has a septum height of 5cm and 

𝐶𝐶𝑒𝑒 of 1.2. Thus, an E field of 120V/m can be generated in the test area. Similarly, the B 

field in the testing area is calculated at 190nT. The generated fields were further 

characterized with commercially available an E field probe (Beehive 100D) and an B field 

probe (Beehive 100B) with measured E field of 120V/m and B field of 188nT.  

4.3 Magnetic Field Sensing 

RF field has an electric and magnetic field component. According to Maxwell 

equations, when RF field is in the far field and propagating through a homogeneous media 

with a zero current density (J), the relationship between the magnetic fields and electric 

fields is given as;  
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𝐵𝐵 =  
1
𝑐𝑐0

 𝑘𝑘� × 𝐸𝐸  (30) 

where 𝑐𝑐0 is speed of light and 𝑘𝑘� is the unit vector in the propagation direction. However, 

this relation does not hold in the near field, especially when the medium is inhomogeneous.  

RF fields in MRI are usually in near field and the human body has complex electromagnetic 

properties, thus the electric and magnetic components of the electromagnetic field need to 

be measured separately [135].  

4.3.1 Fiber Optic Sensors for Magnetic Field Measurement 

Most of the fiber optic magnetic field sensors falls into four categories; Faraday 

effect, ampere force, magneto-strictive materials or magnetic fluids. In Faraday type fiber 

optic magnetic sensors, circular birefringence induced in the fiber by the external magnetic 

field is exploited [136]. Even though Faraday type sensors offer compact and robust 

sensing mechanisms, they suffer from low sensitivity. Ampere force type fiber optic 

sensors are coated with conductive materials in order to drive current over the fiber and the 

strain induced by the Ampere law is detected [137]. Ampere force type sensors can be only 

used for DC to low frequency applications and they disturb the electromagnetic field. 

Magneto-strictive type sensors utilizes external magneto-strictive elements which induces 

strain under magnetic field [138]. These sensors suffer from undesired hysteresis and low 

magnetic sensitivity as well as low frequency operation. Lastly, in the recent years, 

magnetic fluids, that refractive index of the fluid is sensitive to magnetic field, have been 

used for magnetic field sensing [139]. Like magneto-strictive materials, magnetic fluids 

also suffer from hysteresis. 
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Alternatively, small loop antennas can be used as magnetic sensors. However, loop 

antennas require conductive electric connections which acts like an antenna resulting in 

magnetic field distortion, current surge and loss of signal coming from the loop antenna. 

In order to overcome these problems, we used the acousto-optic modulator to convert the 

electrical signal from the loop antenna into optical signal to be carried by optical fibers.  

4.3.2 Acousto-optic Probe for Magnetic Field Measurements 

The magnetic field sensor is based on a small loop antenna coupled to the acousto-

optic modulator, shown in Figure 4-4.  

 

 

Figure 4-4 Schematic of the acousto-optic modulator with the loop antenna for 

magnetic field measurements. 

A loop antenna is considered small when its diameter is much smaller than the 

wavelength in the medium (i.e diameter < λ/10 ). When a loop antenna is electrically small, 
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the current within the loop can be approximated as being constant along the loop. Thus, 

the impedance of a small loop is inductive resulting in the small loop antennas being only 

sensitive to magnetic field component of the electromagnetic wave. The time varying 

magnetic field, B, going through a conductive loop induce a voltage due to Faraday’s law 

of induction (31). Voltage (V) induced on the coil is a function of time varying magnetic 

field (B), angle between the magnetic field and loop axis (θ) and loop geometry; area (A) 

and number of turns (N).  

 𝑉𝑉 = 2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 cos𝜃𝜃 (31) 

The sensor output is proportional to the magnetic field as; the induced voltage (V) 

is linearly dependent on the magnetic field and the strain generated in the fiber by the 

piezoelectric transducer is proportional to V. The sensitivity of the sensor can be optimized 

by changing the loop geometry. Larger loops will yield higher sensitivity whereas smaller 

loops will have better spatial resolution. Sensitivity can be increased by increasing number 

of turns (N) while keeping the spatial resolution small.  

 The wavelength in the human body (𝜆𝜆) can be calculated using (32),  

 𝜆𝜆 =
𝑐𝑐0

𝑓𝑓√ε𝑟𝑟µ𝑟𝑟
 (32) 

where 𝑐𝑐0 is speed of light in vacuum, f is frequency of RF field, ε𝑟𝑟 is relative permittivity 

of average human body, µ𝑟𝑟 relative permeability of average human body. 𝑐𝑐0 is  

2.99 × 108 𝑚𝑚/𝑠𝑠,  average ε𝑟𝑟 is 80 and µ𝑟𝑟 is 1 for an average human body. Thus, the 
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wavelength is approximately 140cm for 0.55T MRI, 52cm for 1.5T MRI, 26cm for 3T MRI 

and 11cm for 7T MRI systems. In order to assure the loops are electrical small, loop 

diameters were kept under 1cm. Three single loop antennas were milled out of PCB boards 

with three different loop diameters: 2mm, 4mm, 8mm. The overall sensor size is 

determined by the loop antenna as it is the largest component and can be stacked with the 

acousto-optic modulator when a small sensor footprint is desired. A photo of the tested 

sensor with 2mm diameter loop antenna is given in Figure 4-5.  

 

Figure 4-5 Close up view of the tested magnetic field sensor with 2mm dimeter loop 

antenna.  

 The magnetic field experiment set-up with TEM cell can be seen in Figure 4-6. The 

read-out scheme is the same side slope detection as explained in the Chapter 2. Maximum 

laser power was set so that the photodetector output is 10V and the side slope bias was set 

to 5V. The TEM cell was driven at 23.65 MHz which simulates a 0.55T MRI system.  



 103 

 

Figure 4-6 Experimental set-up for magnetic field testing with TEM cell.  

 

4.3.3 Sensitivity 

The magnetic field inside the TEM cell was changed from 0 nT to 188 nT by 

adjusting the input voltage to the TEM cell. Output voltages of the sensor with different 

size loop antennas; 2mm, 4mm and 8mm, are given in Figure 4-7. The output voltage 

responses are linear with respect to the magnetic field, as the theory. 
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Figure 4-7 Sensitivity of different size loops for varying magnetic fields. 

 A summary of magnetic field sensitivity and dynamic range for different size loops 

are given in Table 4-1. Sensitivity of the sensors are measured as 1.84 mV/nT, 1.36 mV/nT 

and 0.44 mV/nT for loop antenna diameter of 8mm, 4mm and 2mm, respectively. 

According to eq. (31), the sensitivity should increase linearly with the area of the loop. 

However, the sensitivity is increased by a factor of 3.1 between 2mm to 4mm loop diameter 

and 1.35 between 2mm to 4mm loop diameter as opposed to a factor of 4. This could be 

caused by the phase change of  magnetic field inside the TEM cell with respect to spatial 

position. As the loop size gets larger, the effect of destructive interreference of the magnetic 

field would be more pronounced. Once each sensor is characterized, this should not be a 

problem as the individual sensor response is highly linear over the tested magnetic field, 

as seen in Figure 4-7.  
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Table 4-1 Summary of magnetic field sensitivity and dynamic range for different size 

loops. 

Loop diameter Sensitivity Minimum detectable 
magnetic field 

Dynamic range  
(bandwidth100kHz) 

2 mm 0.44 mV/nT 25.4 pT/√Hz 8nT- 18.2µT 

4 mm 1.36 mV/nT 8.2 pT/√Hz 2.6nT-5.9µT 

8 mm 1.84 mV/nT 6.1 pT/√Hz 1.9nT-4.35µT 

 

The noise floor is measured at 5.6 µV/√Hz for this particular acousto-optic 

modulator. Thus, the minimum detectable magnetic fields for each sensor configuration 

are calculated as 6.1 pT/√Hz, 8.2 pT/√Hz and 25.4 pT/√Hz for loop diameters of 8mm, 

4mm and 2mm respectively. As the sensor starts to saturate around 8V, the dynamic range 

of the sensor was calculated as 117dB for a bandwidth of 1Hz. For a typical MRI system, 

the maximum bandwidth of the B1 field will not exceed 100kHz. Thus, the measurable 

magnetic field range calculated as 1.9nT- 4.35µT, 2.6nT-5.9µT and 8nT-18.2µT for loop 

diameters of 8 mm, 4 mm and 2 mm respectively. Considering the B1 field strength is 

usually in µT range, a sensor with smaller size antenna would be more suitable such as the 

2mm loop antenna for magnetic field measurements under MRI. The 2mm sensor has a 

comparable performance (dynamic range of 25.4pT-18.2µT) to a similar size commercial 



 106 

probe (Speag H1TDS time domain H field probe with a dynamic range of 0.4pT-1.25µT 

that is widely used in MRI applications. 

 

4.3.4 Directivity 

The directivity of the magnetic sensor is important to determine individual vector 

components of the B field. Orthogonal loops can be used to measure the vector components 

of B field if the sensor is directional. Radiation patter of a small loop antenna is given in 

Figure 4-8.  

 

Figure 4-8 Radiation pattern of a small loop antenna. 

The directivity of the sensor was measured by attaching the sensor on a rotational 

stage and SNR measurements were taken every 15o. The directivity of the sensor is 

determined by the cross-sectional area of the loop antenna perpendicular to the magnetic 

field, thus the sensor directivity is a function of 𝑐𝑐os𝜃𝜃 as stated in eq. (31). Both measured 

and calculated directivity of the sensor are given in Figure 4-9. The measurement results 

match well with the calculations when the loop was facing the magnetic field vector, 
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around 0o rotation. However, as the rotation angle, 𝜃𝜃, is increased, the measured directivity 

deviated from the theory slightly. This might be caused by a slight misalignment between 

the center of the rotational stage and the loop antenna axis. The difference between the 

measurement and theory is less than 0.1.  

 

Figure 4-9 Directivity pattern of the magnetic field sensor. 

The sensor is most sensitive when the B field is perpendicular to the loop antenna. 

Sensor output has two orders of magnitude difference for perpendicular and longitudinal B 

fields. Thus, the sensor is directional and suitable for measurement of the vector 

components of B field. 

4.3.5 Repeatability 

The acousto-optic sensor was tested for repeatability and hysteresis. The sensor  was 

fixed in the testing area of TEM cell and multiple measurements were taken: 5 consecutive 

measurements followed by 5 measurements every 10 minutes. Relative standard deviations 
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(Relative StD) were calculated for output of 10 measurements, a summary is given in Table 

4-2. Relative StD for 2mm and 4mm loops were measured below 1% for 10 measurements 

per sensor. 8mm loop has slightly higher relative StD at 1.72% which might be caused by 

the B field non-uniformity in TEM cell over 8mm. Moreover, hysteresis was not observed 

during the experiments. Thus, the fiber optic magnetic field sensor offers repeatable and 

reliable measurements.  

Table 4-2  Relative standard deviations for magnetic field sensor for 10 

measurements. 

Loop diameter 2 mm 4 mm 8 mm 

Relative StD  0.97 % 0.85 % 1.72 % 

 

4.4 Electric Field Sensing 

Tissues only absorb the E field component of the RF field. Thus, accurate 

measurement of E field is crucial in order to better understand the RF field – tissue 

interaction and assure patient safety. Traditionally, E field sensors are either based on short 

dipole antennas or electro-optic crystals. Fiber optic E field sensors can be both 

implemented with short dipole antennas or electro-optic crystals.  An overview of different 

E field sensors is given in section 1.3.1.1.  
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4.4.1 Acousto-optic Probe for Electric Field Measurements 

In a similar fashion, short dipole antennas are only sensitive to E field. The fiber 

optic electric field sensor is based on a short dipole antenna coupled to the acousto-optic 

modulator, shown in Figure 4-10.  

 

Figure 4-10 Schematic of the acousto-optic modulator with the short dipole antenna 

for electric field measurements. 

A dipole antenna is considered short when its length is much smaller than the 

wavelength in the medium (i.e d < λ/10 ). The impedance of a short dipole antenna is 

capacitive; thus, the small loop antennas are only sensitive to electric field component of 

the electromagnetic wave. The time varying electric field, E, induces a voltage between the 

ports of a short dipole. Open circuit voltage (𝑉𝑉𝑜𝑜𝑜𝑜) induced on the dipole is a function of 

time varying electric field (B), angle between the electric field and dipole axis (θ), dipole 

half length (h) and frequency.  
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 𝑉𝑉𝑜𝑜𝑜𝑜  ≈  ℎ𝐸𝐸 sin𝜃𝜃 (33) 

The sensor output is proportional to the electric field as; the induced voltage (V) is 

linearly dependent on the electric field, the strain generated in the fiber by the piezoelectric 

transducer is proportional to V and spectrum shift due to the acoustic wave is proportional 

to the strain. The sensitivity of the sensor can be optimized by changing the dipole length. 

Longer dipoles will yield higher sensitivity whereas shorter dipoles will have better spatial 

resolution. Three short dipole antennas were milled out of PCB boards with three different 

dipole lengths: 8mm, 16mm, 32mm. A photo of the tested sensor with 16mm dipole 

antenna is given in Figure 4-11.  

 

Figure 4-11 Close up view of the tested electric field sensor with 2mm dimeter loop 

antenna.  
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 The electric field experiment set-up with TEM cell can be seen inFigure 4-12. The 

read-out scheme is the same as the magnetic field measurements.  

 

Figure 4-12 Experimental set-up for electric field testing with TEM cell.  

4.4.2 Piezoelectric Transducer as an Electric Field Sensor 

Piezoelectric transducer generates acoustic waves due to the electric field generated 

between the electrodes induced by an external voltage. So far, we have been using the 

antenna output as the input voltage to the piezoelectric transducer. However, the need for 

antenna can be eliminated; the external electric field on the piezoelectric transducer will 

induce a voltage drop between the electrodes, illustrated in Figure 4-13. In other words, 

the electrodes of piezoelectric transducer will act like a parallel plate antenna.  
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Figure 4-13 Piezoelectric transducer as a parallel plate antenna. 

An external E field, Eext, will result in an internal E field, 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒/𝜀𝜀𝑟𝑟, inside the 

piezoelectric transducer. Therefore, the induced voltage across the electrodes will be  

 𝑉𝑉 = 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖  ∙ 𝑑𝑑 =  𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒∙𝑑𝑑
𝜀𝜀𝑟𝑟

  , (34) 

where d is the thickness of the piezoelectric transducer. Note that, the dielectric constant 

of piezoelectric materials is quite high, air gapped parallel plates will have higher 

sensitivity then a piezoelectric transducer. Since a piezoelectric transducer with lower 

dielectric constant will have higher induced voltage, we used LiNbO3 (ε𝑟𝑟 = 85) for this 

application instead of PZT5A (ε𝑟𝑟 = 1900).  Same E field measurements as the short dipole 

antenna are performed with this sensor.  
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4.4.3 Sensitivity 

The electric field inside the TEM cell was changed from 0 V/m to 120 V/m by 

adjusting the input voltage to the TEM cell. Output voltages of the sensor with different 

size loop antennas; 8mm, 16mm and 32mm, as well as without an antenna are given in 

Figure 4-14. The output voltage responses are linear with respect to the electric field. 

 

Figure 4-14 Sensitivity of different size dipoles for varying electric fields. 

 A summary of electric field sensitivity and dynamic range for different size loops 

are given in Table 4-3. Sensitivity of the sensors are measured as 98 μV/V/m, 183 μV/V/m 

and 246 μV/V/m for dipole lengths of 8mm, 16mm and 32mm, respectively and 50 μV/V/m 

for piezo only acousto-optic sensor. According to (33) and (34), the sensitivity should 

increase linearly with the dipole length. However, the sensitivity is increased by a factor of 

1.35 from 16mm to 32mm dipole length and a factor of 1.87 from 8mm to 16mm dipole 
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length as opposed to expected factor of 2. This could be caused by the phase change in the 

magnetic field inside the TEM cell with respect to position. As the dipole size gets larger, 

the effect of destructive interreference of the electric field would be more pronounced. 

Once each sensor is characterized, this should not be a problem as the individual sensor 

response is highly linear over the tested magnetic field.  

Table 4-3 Summary of electric field sensitivity and dynamic range for different size 

loops 

Loop diameter Sensitivity Minimum detectable 
magnetic field 

Dynamic range  
(bandwidth100kHz) 

8 mm 98 μV/V/m  110 mV/m/√Hz 34 V/m- 81 kV/m 

16 mm 183 μV/V/m 61 mV/m/√Hz 19 V/m- 43 kV/m 

32 mm 246 μV/V/m 45 mV/m/√Hz 14 V/m- 32 kV/m 

LiNbO3 only 50 μV/V/m 224 mV/m/√Hz 70 V/m- 160 kV/m 

The noise floor is measured at 5.6 µV/√Hz for this particular acousto-optic 

modulator. Thus, the minimum detectable electric fields for each sensor configuration are 

calculated as 110 mV/m/√Hz, 61 mV/m/√Hz and 45 mV/m/√Hz respectively. As the sensor 

starts to saturate around 8V, the dynamic range of the sensor is obtained as 117dB for a 

bandwidth of 1Hz. For a typical MRI system, the maximum bandwidth of the RF field will 

not exceed 100kHz. Thus, the measurable electric field range calculated as 34 V/m- 81 
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kV/m, 19 V/m- 43 kV/m and 14 V/m- 32 kV/m for dipole lengths of 8 mm, 16 mm and 32 

mm respectively and 70 V/m-160 kV/m for piezoelectric transducer only configuration. 

Even though, when the acousto-optic modulator without any antenna has lower sensitivity, 

it might be preferable due to smaller sensor size and better spatial resolution. All the 

acousto-optic E fields sensor configurations have better performance than a similar size 

commercial probe (Speag E1TDS time domain E field probe) with a dynamic range of 

2V/m-1kV/m for 1Hz bandwith that is widely used in MRI applications. 

4.4.4 Directivity 

The directivity of the electric field sensor is important to determine individual 

vector components of the RF field. Orthogonal dipoles can be used to measure the vector 

components of RF field if the sensor is directional. Radiation patter of a short dipole 

antenna is given in Figure 4-15.  

 

Figure 4-15 Radiation pattern of a short dipole antenna 

The directivity of the sensor was measured by attaching the sensor on a rotational 

stage and SNR measurements were taken every 15o. The directivity of the sensor is 
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determined by the angle between the dipole and the E field vector. Both measured and 

calculated directivity of the sensor are given in Figure 4-16.  

 

Figure 4-16 Directivity pattern of the electric field sensor. 

The sensor is most sensitive when the E field is along the dipole length or 

perpendicular to the piezoelectric transducer. Sensor output has two orders of magnitude 

difference for perpendicular and longitudinal E fields. Thus, the sensor is directional and 

suitable for measurement of the vector components of E field. 

4.4.5 Repeatability 

The acousto-optic sensor was tested for repeatability and hysteresis. The sensor was 

fixed in the testing area of TEM cell and multiple measurements were taken: 5 consecutive 

measurements followed by 5 measurements every 10 minutes. Relative StD were 

calculated for output of 10 measurements, a summary is given in Table 4-4. Relative StD 
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for all sensor configurations were measured below 1% for 10 measurements per sensor. 

Moreover, hysteresis was not observed during the experiments. Thus, the fiber optic 

electric field sensor offers repeatable and reliable measurements.  

Table 4-4  Relative standard deviations for electric field sensor for 10 measurements. 

Dipole length 8 mm 16 mm 32 mm LiNbO3 

Relative StD  0.63 % 0.46 % 0.78 % 0.23 % 

 In order to use the acousto-optic E field sensor for SAR measurement in biological 

tissues, following formula can be used for the conversion;  

 SAR = σ |𝐸𝐸|2

2𝜌𝜌
  [W/kg]  , (35) 

where σ is the electric conductivity of the tissue in S/m, 𝜌𝜌 is tissue density in kg/m3 and E 

is the induced rms electric field.  

4.5 RF Field Mapping on a Pacemaker Lead Model 

The motivation for the development of the acousto-optic RF field sensors is to 

measure the local RF hot spots on implants to prevent RF induced heating. We tested the 

sensor platform in both magnetic field and electric field sensor configurations on a 

pacemaker lead model to map the RF field distribution.  
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The pacemaker lead model is constructed using a long14 AWG copper wire with 

1mm thick polymer insulation. A short, 2 mm section of the wire is exposed to simulate 

the end of an open pacemaker lead. A schematic of the test set-up is given in Figure 4-17. 

The pacemaker lead model is immersed in a large grounded saline filled tank and driven 

by an RF signal at 23.65 MHz to simulate RF induced field by a 0.55T MRI scanner. 

Acosuto-optic sensor was scanned over the wire in both configurations: as a magnetic field 

sensor with an 8mm dimeter coil and as an electrical field sensor without any attached. As 

a reference, measurements with a commercial magnetic field probe (Beehive 100A) and a 

commercial electric field probe (Beehive 100D) were taken.   

 

Figure 4-17 Experimental set-up for RF field mapping on a pacemaker lead model 

with acousto-optic probe.  

The acousto-optic sensor in both magnetic field sensor and electric field sensor 

configurations as well as the commercial magnetic field sensor depict the local RF field 

variation at the exposed wire location with excellent correlation, shown in Figure 4-18. The 

commercial electric field sensor do not has adequate sensitivity to pick up reasonable E 
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field around the wire. Additionally, there was a strong coupling between the test set-up and 

the coax cable of the commercial E field sensor. It should be reminded that electromagnetic 

interference is not an issue with the optical fiber transmission.  

 

Figure 4-18 RF signal amplitude recorded on the acousto-optic sensor and reference 

commercial B field sensor as a function of distance on the wire. The exposed location 

is at the origin.  

This experiment shows that the acousto-optic sensor can map the distribution of the 

induced RF field along an implant or on the human body for local SAR measurements as 

MRI dosimeter. Moreover, this platform can be used for the MRI safety evaluation of 

medical implants using the ISO 10974 standard [95] required by the FDA. It also shows 

that E field measurement at a single point on a conductor may not provide accurate 



 120 

information on RF induced heating a long conductor. This spatial variation along 

conductive implant components becomes more important with smaller RF wavelengths 

related to emerging high field MRI scanners such as 3T, 7T and 11.4T [140].  

 

4.6 Temperature Sensing with FBG 

Temperature elevation can be measured rather than SAR (E field) measurement since 

the primary safety concern is RF induced heating. SAR measurement is used for MRI 

dosimetry as it is invasive to measure the temperature inside the body [141]. As mentioned 

earlier, FBG based sensors are widely used for temperature measurements by monitoring 

the slow shifts in the FBG spectrum, [82]. To demonstrate this capability using the same 

FBG sensors used for RF signal sensing, the π-FBG-2 grating was immersed in a water 

bath which slowly heated by a hot plate. Then, we measured the spectrum shift of the Bragg 

wavelength due to rising water temperature. Figure 4-1 shows that the local temperature 

around the FBG location can be measured using the slowly varying controller error signal 

in the wavelength controller. Temperature sensitivity of 10pm/oC is observed from 25oC to 

50oC. 
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Figure 4-19 Bragg wavelength shift due to temperature change.  

Therefore, using a calibration curve, the same acousto-optic sensor can be used as a 

multi-parameter RF safe active marker to monitor the local temperature as a slowly varying 

time signal while providing position tracking using the RF signal, which can be used in 

catheter based thermal/cyro ablation procedures. 

4.7 Summary 

This chapter was focused on the RF field sensing capabilities of the acousto-optic 

sensor. Detailed characterization tests were carried out with different antenna 

configurations. Sensitivity, directivity and repeatability tests were conducted for both E 

field sensors and B field sensors. RF field mapping on a pacemaker lead model was 

performed. Lastly, temperature sensing capability of the FBGs were demonstrated.   
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The major points of this chapter are listed as follows:  

• Electric field sensing was achieved with short dipole antennas as well as 

using the piezoelectric transducer itself as a parallel plate antenna. Several 

antenna sizes were tested for sensitivity, directivity and repeatability. 

Sensitivity of 246µV/V/m and dynamic range of 0.224 V/V/m-160 kV/m 

were achieved, which is better than industry standard MRI dosimetry probe 

(Aim A1).  

• Magnetic field sensing was achieved with small loop antennas. Several 

antenna sizes were tested for sensitivity, directivity and repeatability. 

Sensitivity of 1.84mV/nT and dynamic range of 25.4pT-18.2µT were 

achieved, which is better than industry standard MRI dosimetry probe (Aim 

A2).  

• Moreover, excellent directivity and repeatability of both magnetic and 

electric field sensors was observed. (Aim A4) 

• RF field mapping on a pacemaker lead model was performed. This 

experiment shows that the acousto-optic sensor can map the distribution of 

the induced RF field along an implant or on the human body for local SAR 

measurements as MRI dosimeter. (Aim A3) 

• Temperature sensing capability of the FBGs was demonstrated. Feasibility of 

using the same acousto-optic sensor as a multi-parameter RF safe active 

marker to monitor both the local temperature and local SAR is shown. (Aim 

C6) 
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CHAPTER 5. DEVICE TRACKING UNDER MRI  

5.1 Overview  

The acousto-optic sensor was characterized for electric field and magnetic field 

measurements in the previous chapter. This chapter focuses on the use of acousto-optic 

modulation for device tracking. Small size multiturn loop antennas are used for 

localization. The acousto-optic sensor is integrated on catheters and tested in both phantom 

and animal studies for visibility.  

5.2 Acousto-Optic Sensor Configuration for Device Tracking 

Loop antennas have been used as active markers for device tracking. Thus, we 

tested the device tracking capability of the acousto-optic sensor with loop antennas. The 

small loop antennas have low sensitivity; thus, they will pick up MRI signals only in the 

immediate vicinity when placed inside the body. If the output of the loop antenna is 

connected to the MRI coil thus, in other words, if the loop antenna is used as receive only 

imaging coil, the constructed image will be that of the location of the coil. It will show up 

as a point marker in the MRI image when only the signal from the loop antenna is 

highlighted. A schematic overview of the acousto-optic tracking sensor with coil antenna 

and its connection with the MRI scanner is given in  Figure 5-1.  
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Figure 5-1 Schematic overview of the acousto-optic marker: an acousto-optic 

modulator converts the local MR signal received by the coil into optical signal, optical 

signal is carried out by a fiber optic to the read-out electronics which is connected to 

the coil plug of MRI as a separate channel.  

Acousto-optic modulator with both 250MHz (π-FBG-1) and 50 MHz (π-FBG-2) 

bandwidth FBGs are used for MRI testing for device tracking purposes. Smaller size 

antennas are desired for better spatial localization. In order to increase SNR while keeping 

the size of the antenna small, multi turn loop antennas in solenoid form were used. 30 AWG 

insulated copper wire was wound into a tight-pitched solenoid coil with various diameters 

and number of turns. The acousto-optic sensor connected to a test coil with a diameter of 

8mm and 12 turns is shown in Figure 5-2. Obviously, this coil used for calibration purposes 

and it is not suitable for actual device tracking due to its size.   
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Figure 5-2 Acousto-optic sensor connected to a test coil with a diameter of 8mm and 

12 turns.  

 8 F (2.4mm diameter) catheter blanks were used for in-vivo device tracking. The 

30 AWG wire was hand wound to the distal end of the catheter blank and secured with 

minute amount of cyanoacrylate (super glue). Since the package of the acousto-optic 

modulator is relatively larger, the acousto-optic modulator was placed at the proximal end 

of the catheter. Very thin heat shrink tube is used for isolation and securing of the wire 

connection between the coil and the acousto-optic modulator. Distal end of a sample 

catheter with 8 turn single coil is shown in Figure 5-3. Note that, size of the package is 

determined by the glass tube housing rather than acousto-optic modulator itself.  

 

Figure 5-3 Distal end of a sample 8F catheter with 8 turn single coil. 
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5.3 Phantom Experiments   

5.3.1 Sensor Characterization with RF Transmit Signal 

In order to investigate the feasibility of device tracking, the acousto-optic sensors 

were used with RF transmission signal for signal analysis and functionality tests as RF 

transmission signal is much higher (~109) than the MRI signal emitted by the tissue. 

Moreover, the acousto-optic based sensors were also compared with conventional active 

markers; identical coils with cable connections matched to 50 Ω. MRI phantoms 

mimicking electromagnetic properties of tissues were used as the testing environment.  A 

photo of the system inside MR room is provided in Figure 5-4. Note that photo detector 

and laser source are located in the control room, the received MR signal is carried out from 

the acousto-optic marker to photo detector by optical fiber.  

 

Figure 5-4 A photo of the system inside MR room. 
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5.3.1.1 Testing with 1.5T MRI Scanner 

Acousto-optic sensor with π-FBG-1 was tested under a clinical 1.5T MRI scanner 

(Siemens Aera, Siemens Healthineers). Figure 5-5 a shows the AC signal at the output of 

photodetector and conventional active marker for RF transmit signal of an spin echo 

sequence. Acousto-optic sensor has a peak amplitude of 1.72 V whereas conventional 

marker has a peak amplitude of 50.7 V, which is 30 dB higher than acousto-optic sensor. 

However, when the frequency spectrum is analysed with normalized amplitudes,Figure 5-5 

b; there is only 10 dB difference between signal to noise ratios (SNR) for a bandwidth of 

100 kHz. SNR values are calculated as 57dB for the prototype and 67dB for the 

conventional active marker. 
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Figure 5-5 Comparison of π-FBG-1 based acousto-optic sensor output and 

conventional marker for a spin-echo RF transmit signal in time domain (top) and 

frequency domain (bottom). 

The prototype was further tested for linearity. Flip-angle is an important parameter 

to improve image contrast during MRI and it is directly proportional to the received RF 

signal amplitude. The prototype was tested for different flip angle values without changing 

any other MRI parameter. Figure 5-6 compares the output signal from the acousto-optic 
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sensor for flip angles of 20o and 40 o. The peak frequencies of both signals are exactly the 

same since the location of the sensor was not changed. The amplitudes are linearly 

proportional; output for 20° flip angle is 75 mV whereas 40° flip angle results in 148mV.  

 

Figure 5-6 π-FBG-1 based acousto optic sensor output for flip angles 20 and 40. 

The prototype sensor response was recorded for different flip angles ranging from 

2° to 90°, shown in Figure 5-7. Flip angle with respect to sensor signal amplitude is linear 

with a slope of 3.7mV/°, except for the region where flip angle approaches to 90° and the 

amplitude of the sensor deviates from the linear region, refer to Chapter 3. In practice, 

small flip angle operation is favourable since higher flip angle sequences requires more 

time and elevates SAR values. When the sensor is used for tracking purposes with faster 

imaging sequences utilizing small flip angles, weak echo signal will not saturate the 

system. 
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Figure 5-7  π-FBG-1 based acousto-optic sensor output vs flip angle.  

Finally, acousto-optic sensor was tested and compared to an active marker for 

visibility in the MRI setting. A coil antenna a diameter of 3mm and length of 10mm with 

40 turns was chosen to compensate for the lower sensitivity of π-FBG-1. A Gradient Echo 

(GRE) sequence with following parameters was used: Flip Angle, 90°:TR, 150 ms; TE, 3.4 

ms for acousto-optic marker and Flip Angle, 15°; TR, 150ms; TE, 3.4 ms for active marker. 

Acquired MR images can be seen in Figure 5-8. In order to increase the visibility of 

acousto-optic sensor, an averaging of 32 was used. Locations of acousto-optic sensor and 

active marker are slightly shifted as both sensors and their corresponding coils were placed 

in same phantom side by side. MR image of acousto-optic sensor has a lower contrast 

compared to MR image of active marker due to lower amplitude and SNR. A better 

performing sensor is required for clinically practical device tracking.  
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Figure 5-8 MR image of (a) conventional marker, (b) acousto-optic marker using a 

GRE sequence and the device receiver channel only. Locations of acousto-optic 

marker and conventional cable connected marker are highlighted with red and yellow 

circles respectively.  

5.3.1.2 Testing with 0.55T MRI Scanner 

Acousto-optic sensor with π-FBG-2 was tested under a prototype 0.55T MRI 

scanner (Siemens Aera, Siemens Healthineers) [142]. Note that, MRI signal level is 

reduced to lower Larmor frequency (23.65 MHz), however the electromechanical 

conversion efficiency of piezoelectric transducer is increased as it is operated around its 

first resonance rather than third harmonic.  Moreover, π-FBG-2 is more sensitive than the 

π-FBG-1.  

Figure 5-9 show the AC signal at the output of photodetector active marker for RF 

transmit signal of a spin echo sequence. π-FBG-2 based acousto-optic sensor output for 

flip angles 1, 5 and 10. Note that the acousto-optic sensor output starts to saturate after flip 
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angle of 10. Moreover, the π-FBG-2 based acousto-optic sensor has 16 dB higher SNR 

compared to a cable connected identical coil.  

 

Figure 5-9  π-FBG-2 based acousto-optic sensor output for flip angles 1, 5 and 10. 

Note that the acousto-optic sensor output starts to saturate after flip angle of 10. 

 Similar to 1.5T phantom testing, π-FBG-2 based acousto-optic sensor was tested 

for visibility under MRI. A coil antenna a diameter of 2.4mm with 12 turns was used. A 

balanced steady state free precession (bSSFP) sequence with following parameters was 

used: Flip Angle, 90°; TR, 471 ms; TE, 1.7 ms; slice thickness, 10mm; bandwidth, 500 

Hz/pixel and matrix size, 128 x 128. Note that, this imaging sequence is very fast (2 frame 

per second) and used for real time MRI guidance during interventional procedures. 

Acquired MR image can be seen in Figure 5-10. Note that the visibility is comparable to 

π-FBG-1 even though a fast imaging sequence is used.  
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Figure 5-10 MR image the π-FBG-2 based acousto-optic sensor using a fast bSSFP 

sequence and the device receiver channel only.  

 

5.3.2 Phase Correction of FBG Response 

The impact of phase nonlinearity of FBG sensor for position tracking during real-

time MRI is observed when the bias point is changed due to finite response time of the 

wavelength controller.  Since π-FBG-2 has higher nonlinearity, it was used to demonstrate 

and test a phase nonlinearity correction method.  

The laser output was adjusted such that the maximum reflection corresponds to 10V 

voltage at the photodetector output. Bias was set to 4.5V for maximum amplitude 

sensitivity where the phase sensitivity of the π-FBG-2 is 24o/V. An analog phase shifter 

(SigaTek Model SF50A2) is used for phase correction. The DC voltage output from 
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photodetector is used for controlling the phase shifter. Since the phase shifter introduces 

18o phase shift per Volt of control voltage input, a gain of 0.75 was applied to the DC 

voltage output of photodetector for proper phase correction. The schematic of the sensor 

with phase shifter inside MRI is given in Figure 5-11. 

 

Figure 5-11 Schematic of the sensor with phase shifter inside MRI. 

Same bSSFP sequence was used for imaging. Figure 5-12 a shows the MRI image 

of the acousto-optic sensor without the phase correction has a size of 5.6 mm with severe 

image distortion at the corners. Moreover, some lines of the coil image were missing which 

indicates the phase was distorted during the acquisition of MR signal associated with that 

particular region. On the other hand, as seen in Figure 5-12 b, the image of the coil was 

uniform with a size of 3.2 mm when phase correction was applied. These results indicate 

the importance of phase linearity for FBG based position sensing in MRI as predicted by 
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the careful modelling and characterization results and demonstrate that these artefacts can 

be corrected in real-time using proper phase shifting electronics. 

 

Figure 5-12 Image of acousto-optic sensor without phase correction (a) and with 

phase correction (b) under MRI. 

5.3.3 RF Induced Heating 

RF induced heating tests were performed under 0.55T MRI scanner which is 

relatively safer compared to higher field strength MRI systems. Acousto-optic sensor with 

a test antenna was placed in an acrylic phantom prepared according to the ASTM F2182 

standard. A polyimide port was placed and fixed in contact with the wire using a polyester 

heat shrink tube.  A fiber optic temperature probe (OpSens, Quebec, Canada) was placed 

inside the polyimide port. The temperature measurement set-up is shown in Figure 5-13. 

Temperature probe advanced maximally at first and manually pulled back slowly to find 

the hot spot under MRI. Temperature at the hot spot was recorded 30 seconds before the 

scan for determining a baseline and during the 180 seconds scans with 45 and 75-degree 
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flip angles. Moreover, RF induced heating tests were performed on a reference catheter 

with an identical coil while the device is connected to the scanner.  

 

Figure 5-13 Temperature measurement set-up for RF induced heating on the catheter 

with a single coil antenna.  

 Temperature rises for both acousto-optic sensor and the reference catheters are 

given in Figure 5-14. The temperature immediately rises as soon as RF field is turned on 

and starts to saturate after 60 seconds. Both catheters have the highest temperature 

elevation for 75o flip angle, as expected. Temperature rises 2.6 oC in the acousto-optic 

sensor, whereas reference catheter has a temperature increase of 20.4oC. In a similar 

fashion, temperature rise of 0.8 oC and 6.7oC are observed on the acousto-optic sensor and 

reference catheter for 75o flip angle. The acousto-optic sensor reduced RF induced heating 

by a factor of 8 in this particular sensor configuration. The effect of RF induced heating on 

the sensor can be further reduced with an optimized antenna and sensor configuration.  



 137 

 

Figure 5-14 A comparison between the acousto-optic (AO) sensor and a reference 

catheter with cable connection for temperature rise due to RF transmit signal  with 

flip angle of 45o and 75o. 

 

5.3.4 Sensor Operation with Multiple Coils 

Position and orientation of the catheter tip are two parameters used for tracking 

purposes. Position information of distal tip can be obtained from single coil. However, at 

least two active markers are required in order to get the orientation information of the 

catheter tip. Orientation information is especially important when catheter is guided 

through complex tortuous vasculatures. 
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In the acousto-optic tracking sensor, one way to obtain multiple location 

information is incorporating multiple coils. A straightforward approach is to use multiple 

sensors on the same fiber since multiple FBGs can easily be defined on single fiber. 

However, this approach will make the back-end optoelectronics more complicated as each 

FBG requires individual laser sources and controller units. Another approach is to connect 

multiple coils at different locations on the catheter to a single acousto-optic modulator since 

the modulator has wide enough operation bandwidth and linear response at the low power 

levels generated by the coils.   

 

Figure 5-15 Experimental set-up for demonstration of multiple coil capability. 
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In order to investigate the multiple coil capability of the system, an experimental 

set-up is prepared as shown in Figure 5-15.  Localized echo signals from the surrounding 

tissue inside the MRI system were emulated with large coils connected to a signal source. 

Large coils were air coupled to small coils of the probe. Two large coils are fed by the 

signal generator at the frequencies of 64 MHz and 64.001 MHz. 1 kHz frequency difference 

corresponds to a distance of 11.7 mm under 20mT/meter gradient field. Figure 5-16 shows 

the frequency spectrum of the captured signal showing peaks at 64 MHz and 64.001MHz, 

indicating the feasibility of multiple coil readout. 

 

Figure 5-16 Frequency spectrum of the captured signal showing peaks at 64 MHz and 

64.001 MHz 

Finally, a catheter with two coils was prepared for the demonstration of multiple 

marker capability of the acousto-optic sensor.  The markers are clearly visible in the image 

obtain by the 0.55T scanner. Distinct images of double coils allow determination of the 
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direction of the catheter tip in addition to location, which would help orient tools during 

interventions. 

 

 

Figure 5-17 ) Image obtained from the catheter with two coils in MRI phantom using 

real time bSSFP sequence. 

 

5.4 In-vivo Real Time Catheter Tracking 

The acousto-optic sensor with π-FBG-2 was experiments.  Large animal experiments 

were performed under the 0.55T interventional MRI suite. Photo of the interventional suite 

with a real time display and the test animal inside the 0.55T MRI scanner is shown in Figure 

5-18.  
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Figure 5-18 In-vivo imaging setup in the interventional MRI suite showing the test 

animal in the bore of the 0.55T MRI system. 

A single coil 8F catheter with acousto-optic sensor was inserted into the femoral 

artery of an Yorkshire swine and progressed towards the heart. bSSFP sequence with 

following parameters was used: Flip Angle, 90°; TR, 471 ms; TE, 1.7 ms; slice thickness, 

5mm; bandwidth, 500 Hz/pixel and matrix size, 256 x 256. A real-time image captured in 

two orthogonal planes is given in Figure 5-19. The signal from the acousto-optic sensor 

plug is overlaid on the relevant cross-sectional images in real-time using red color. The 

location of the marker is also indicated with a white arrow.  

Tracking capability of the sensor was tested by moving the catheter to different 

locations. The catheter location was monitored through the real-time MRI images while 

the catheter was moved. Figure 5-20 show the catheter tip at two different locations. It is 

confirmed that the catheter location can be tracked in real-time using the acousto-optic 

sensor. 



 142 

 

Figure 5-19 Real-time images captured in two orthogonal planes while the catheter 

tip placed in the heart.  

 

Figure 5-20 Catheter tracking demonstration: the MRI images show the catheter tip 

at two different locations.  

These results, obtained in a challenging, SNR limiting low field MRI system, clearly 

demonstrate the potential of acousto-optic sensor as an RF safe tracking sensor for 

interventional MRI.  
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5.5  Summary 

This chapter was focused on the device tracking capabilities of the acousto-optic 

sensor under MRI. Different acousto-optic sensors were characterized in 0.55T and 1.5T 

MRI systems for sensitivity and conspicuity. Multiple coil sensing and real-time phase 

correction was demonstrated. Lastly, catheter tracking capability of the acousto-optic 

sensor was demonstrated in an animal study. Hence, aim group B and C are achieved. 

The major points of this chapter are listed as follows:  

• Acousto-optic sensors with coil antennas were characterized in phantom 

studies with RF transmit signal. Sensor performance at 1.5T was hampered 

by low FBG sensitivity and reduced piezoelectric transducer performance 

due to third harmonic operation. On the other hand, in 0.55T system, an 

SNR improvement of 16dB was achieved by replacing the cable connection 

with the acousto-optic sensor.  

• A phase correction scheme was successfully implemented to prevent image 

distortion due to phase nonlinearity of the acousto-optic sensor.  

• Multiple marker capability of the acousto-optic sensor was demonstrated 

using a catheter with two coils.  

• The acousto-optic sensor reduced temperature rise due to RF induced 

heating by a factor of 8  with respect to cable connection.  

• Tracking of the catheter location was demonstrated in real-time using the 

acousto-optic sensor with a 0.55T MRI system. 
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CHAPTER 6. CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

RF induced heating is a significant safety concern for all MRI procedures; from 

diagnostic imaging, patients with implants, to interventional procedures. Thus, RF field 

measurement with high SNR without image distortion and additional RF heating is key for 

evaluating MRI safety. Moreover, RF safe device tracking sensors are required for real 

time image guidance during interventional MRI procedures. Sensors with optical fiber 

transmission lines are desired as fiber optics have intrinsic electromagnetic immunity.  

The objective of this research was to develop a sensing platform with optical fiber 

link for: 1) local RF field sensing for the assessment RF induced heating for diagnostic 

MRI, 2) device tracking for real time image guidance in interventional MRI procedures. 

This work introduced an acousto-optic modulator based sensor scheme with high SNR RF 

field sensing and real time device tracking capability for safer and more effective MRI 

procedures. All specific research aims given in Chapter 1 were achieved or feasibility was 

demonstrated through various tests and analysis.  

6.2 Contributions 

6.2.1 Fiber Bragg Grating based Acousto-optic Modulator 

Different antenna topologies have been used in both RF field sensing and device 

tracking under MRI. In order to eliminate cables required for signal transmission from 

antenna, a fiber Bragg grating (FBG) based acousto-optic modulation is introduced as a 
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transduction mechanism. The electrical signal from the antenna is used for acoustic wave 

generation on the FBG via a mechanically coupled piezoelectric transducer. A highly 

sensitive transduction mechanism is required for the device tracking application as the 

available MRI signal to the device tracking sensor is quite low. Resonant nature of the 

piezoelectric transducer is utilized for increased sensitivity in the expense reduced 

operational bandwidth. Since RF fields in MRI are in a narrow band around the Larmor 

frequency, high quality factor piezoelectric transducers with their resonances at the Larmor 

frequency are desired for maximum sensitivity. Moreover, power up circuits and other 

complex electronics are not needed leading to a compact sensor package due to the passive 

operation mechanism of this acousto-optic modulator.  

A hybrid model of the acousto-optic modulator is developed for design and 

optimization of sensors for different applications. A numerical model of FBG is derived 

using coupled mode theory and transfer matrix methods whereas piezoelectric transducer 

is modeled using FEA. Models are coupled through pressure field at the fiber core.  

Effect of different parameters on FBG design is investigated through simulations. 

As phase shifted FBGs resulted in higher sensitivities with side slope detection read-out, 

π-FBGs with bandwidths of 0.4pm and 2pm are designed and later fabricated. Bulk and 

thin film piezoelectric transducers are investigated for acoustic field generation within the 

FBG. In the thin film piezoelectric transducer configuration, two distinct modes with 

resonances are predicted at 21MHz and 66MHz which are closer to Larmor frequencies of 

0.55T (23.6MHz) and 1.5T MRI (63.86MHz) systems and can be easily tuned by adjusting 

layer thickness. A transduction gain of 683.7V/V is calculated for an optimized thin film 
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piezoelectric transducer coated FBG whereas maximum transduction gain of 8.75V/V is 

calculated for acousto-optic modulator with bulk piezo at 63.86MHz.  

6.2.2 Model Validation Through Sensitivity and Linearity Analysis 

 A prototype acousto-optic modulator is fabricated with the previously designed 

FBGs and LiNbO3 bulk piezoelectric transducers. Model was first validated through 

spectral response of the FBGs which closely match with measured spectrum.  

 Pressure sensitivities of the FBGs were measured as 80mV/kPa for 0.4pm (50MHz) 

bandwidth FBG and 12mV/kPa for 2pm (250MHz) bandwidth, which are approximately 

half of the model predictions. These variations expected to be reduced with thin film 

configurations. Moreover, highest sensitivity was observed at 25% the bias point on the 

side slope contrary to widely accepted 50%. A linear relation between the phase and bias 

point was observed: the phase changes of 0.165o per 1% bias change for 250MHz FBG and 

phase changes 0.48o per 1% bias change for 50MHz FBG. This unwanted phase due to bias 

change needs to be corrected for device tracking application where the sensor used for 

image reconstruction and mili-radian range phase stability is needed for acceptable MRI 

image quality. Thus, a phase correction method was implemented for device tracking tests.  

 Lastly, the noise of the acousto-optic modulator is found to be dominated by the 

photo-detector noise and measured as 5.6 µV/√Hz which results in a dynamic range of 

117dB/√Hz.  
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6.2.3 RF Field Sensing with the Acousto-optic Sensor 

The acousto-optic sensor with different antenna configurations were used for RF 

field sensing. Electric field sensing was achieved with short dipole antennas as well as 

using the piezoelectric transducer itself as a parallel plate antenna. Several antenna sizes 

(8mm-32mm) were tested for sensitivity, directivity and repeatability. Sensitivity of 

246µV/V/m and dynamic range of 0.224 V/V/m-160 kV/m were achieved. In a similar 

fashion, magnetic field sensing was achieved with small loop antennas. Several antenna 

sizes (2mm-8mm) were tested for sensitivity, directivity and repeatability. Sensitivity of 

1.84mV/nT and dynamic range of 25.4pT-18.2µT were achieved. Moreover, excellent 

directivity and repeatability of both magnetic and electric field sensors was observed. 

These results are better than the industry standard MRI dosimetry probes for the 0.55T 

MRI system.  

RF field mapping on a pacemaker lead model was performed This experiment 

shows that the acousto-optic sensor can map the distribution of the induced RF field along 

an implant or on the human body for local SAR measurements as MRI dosimeter. 

Moreover, temperature sensing capability of the FBGs was demonstrated proving 

feasibility of using the same acousto-optic sensor as a multi-parameter RF safe active 

marker to monitor both the local temperature and local SAR is shown.  

6.2.4 Real-time Device Tracking under MRI 

The acousto-optic modulator with a solenoid coil was used as an MRI marker for 

device tracking with both 0.55T and 1.5T MRI scanner. The acousto-optic sensor is first 

calibrated with RF transmit signals. The sensor with 250MHz FBG had a linear response 
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with respect to flip angle, whereas the sensor with 50MHz FBG output was saturated at 

flip angles above 10o. The sensor with 250MHz FBG had 10dB lower SNR compared to 

an identical with cable connection whereas sensor with 50MHz FBG had 16dB higher SNR 

compared to an identical with cable connection.  

Visibility of the sensors were tested first tested in phantoms. Even though, the lower 

sensitivity sensor was visible under MRI, it required long imaging sequences with 

averaging. On the other hand, high sensitivity sensor was visible with real time imaging 

sequences (bSSFP sequence with 2 fps frame rate). In terms of RF safety, temperature 

increase at the coil, the only conductive part of the acousto-optic sensor, was monitored 

and less than 3oC temperature increase was observed for a flip angle of 75o, whereas an 

identical coil with cable connection had over 20oC temperature increase. Moreover, 

visibility of multiple coils on the same acousto-optic sensor was demonstrated for 

orientation capability. Hence the visibility and safety of the acousto-optic sensor was 

demonstrated in phantom studies.  

Finally, the acousto-optic sensor was integrated on 8F catheter for in-vivo animal 

experiments. Large animal experiments were performed under the 0.55T interventional 

MRI suite. A single coil 8F catheter with acousto-optic sensor was inserted into the femoral 

artery of the animal and progressed into the heart. Tracking capability of the sensor was 

tested by moving the catheter to different locations and it is confirmed that the catheter 

location can be tracked in real-time using the acousto-optic sensor. These results, obtained 

in a challenging, SNR limiting low field MRI system, clearly demonstrate the potential of 

acousto-optic sensor as an RF safe active marker for interventional MRI.  
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In conclusion, this study is a unique demonstration of the acousto-optic sensing for 

different MRI applications. Overall, the sensors developed as part of this dissertation will 

form a critical step in improving the safety of MRI procedures to enable scanning of 

implant patients and development of next generation interventional MRI procedures. Some 

of the results presented in this thesis have been presented at several conferences and 

published in journal papers [149-150]. Manuscripts are being prepared at the moment for 

unpublished results and multiple abstracts are accepted for presentation at different 

conferences. 

6.3 Significance and Impact 

SAR can be estimated using complex simulations, experimental calorimetry 

through temperature measurements or scanner power measurements. Computer 

simulations are not feasible during individual clinical scans due to variation and complexity 

of human anatomy. Calorimetric methods are applicable with complex phantoms, but not 

for individual patients, and direct temperature measurements do not provide SAR directly 

as the local temperature on a patient’s body is a complex function of circulation, tissue 

properties. The SAR concerns are amplified when patients with medical implants, which 

is a growing patient population. These patients require significantly more time in MRI 

suites and sometimes not scanned partly due to RF safety concerns. These significant 

limitations in clinical practice and research can be overcome with the acousto-optic sensor 

that directly measures E/B-field and temperature. If accurate real time SAR monitoring is 

achieved with the acousto-optic sensor, MRI sequences can be optimized for each patient. 

MRI scan times can be decreased by adjusting sequence parameters according to the SAR 

limits of the particular patient. More importantly, patients with pacemakers and other active 
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implants, who are currently not accepted for MRI scans, can be accommodated by 

optimizing the scan parameters to assure the safety of the patient with implant.  

In the endovascular image-guided interventions, MRI is advantageous over other 

commonly-used imaging modalities (e.g., fluoroscopy and CT) due to its non-ionizing 

radiation characteristic and its ability to provide soft tissue contrast, tissue chemical 

composition, and functional information, including blood flow velocities, perfusion and 

diffusion, and tissue metabolomics. In interventional procedures, it is critically important 

to accurately and rapidly detect the actual location of the endovascular devices or catheters 

and also the site of the pathology to be treated. Active MR markers incorporate small coils 

or antennae connected to the scanner on separate channels through long transmission lines 

for device tracking or profiling purpose. Clinical grade active endovascular catheters and 

guidewires are nearing clinical reality, but before moving on clinical trials, the RF induced 

heating risk over long conductor components of the devices needs to be addressed. With 

increased operation frequency, these problems are more pronounced at high magnetic 

fields such as in 3T scanners. The acousto-optic sensor can provide efficient, practical and 

RF safe active markers adaptable to a wide range of available MRI compatible 

interventional devices which can enable further development and clinical translation of 

endovascular MRI guided interventions.   

6.4 Recommendations for Future Work 

The work presented in this dissertation introduced the acousto-optic sensor and 

demonstrated its feasibility for RF fields sensing and device tracking under MRI. The main 

motivation of this research is to enable safer and more effective MRI procedures. However, 
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the work done so far in this thesis work was limited to the simulations and feasibility studies 

in lab environment for field measurements; demonstration of visibility in phantom and 

animal studies. Thus, detailed clinical studies with phantom, animal and human models are 

required to correlate the local field measurements from the acousto-optic sensor and the 

local SAR. Local SAR mapping on pacemakers in phantom studies and in-situ patient 

studies are required to assess the capability of the acousto-optic sensor as a safety sensor. 

Moreover, the acousto-optic MR marker needs to be integrated on different interventional 

devices and needs to be tested in different applications. All of these tests and applications 

require high SNR, optimized sensor performance, robust and optimized packaging. The 

prototypes used in this study were built with mostly readily available components; thus, 

their performances are less than optimized. The sensor can be improved in multiple areas 

using the model and analysis tools presented in this work. Moreover, further 

characterization and testing of the system is required for translation of the research from 

laboratory to clinical settings. 

6.4.1 Model Development for Optimized Antenna Designs  

The model of the acousto-optic modulator is developed for FBG – piezoelectric 

transducer assembly and assumes the antenna as a voltage source. However, impedance of 

the antenna will affect the power transfer from the antenna to piezoelectric transducer: i.e. 

the power transfer between a piezoelectric transducer and a short dipole antenna with high 

impedance will be different than of a small loop antenna with low impedance. More 

importantly, a good electromagnetic antenna model coupled with acousto-optic modulator 

model will provide a robust design tool for sensor optimization. More advanced and 

complex antenna topologies can be implemented for better performance. Even, endoscopic 
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and intravascular MR imaging [143], [144] can be achieved with high antenna sensitivity 

and optimized acousto-optic modulator. 

6.4.2 Thin Film Piezoelectric Coating on FBG 

Piezoelectric thin film coating on the optical fiber provides more efficient pressure 

field generation and coupling compared to bulk piezoelectric transducers. Moreover, the 

size of the acousto-optic modulator can be further reduced to the size of the optical fiber 

enabling easier packaging and integration of the sensor with other devices. An optimized 

acousto-optic sensor design with thin film ZnO coating was proposed and 2 orders of 

magnitude sensitivity improvement was predicted with the model.  

Even though, thin film deposition of the cylindrical optical fiber is challenging, 

several fabrication methods of piezoelectric coating on optical fibres has been reported in 

the literature.  Standard micro fabrication techniques can be adopted such as sputtering 

[104], [145]. Indeed, we have performed some initial depositions trials of Aluminum 

Nitride (AlN) on optical fiber with low temperature sputtering, Scanning Electron 

Microscope (SEM) images are shown in Figure 6-1. Initial samples were short pieces of 

optical fiber since long FBG sensors with connecters could not be placed into the sputtering 

machine with its current configuration. A custom holder needs to be designed to 

accommodate the FBG sensors. Alternatively, sol-gel methods can be utilized which has 

been used on optical fibers [146]–[148] . Special equipment and clean room are not 

required for sol-gel method, however a thermal treatment (firing process) step is required 

for polycondensation which might erase or damage the gratings. In both methods, 
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fabricated devices need to be characterized through electral impedance and optical 

measurements to tune the material properties and optimize the deposition process.  

 

 

Figure 6-1 SEM images of 2um thick AlN coated optical fibers.  

 

6.4.3 Acoustic Resonator Structures to Improve Sensitivity 

Optimized thin film piezoelectric transducer have radial resonances which 

increases the sensitivity. Similarly, longitudinal resonances can be created by creating a 

resonant structure along the fiber by introducing geometric discontinuities (reflectors), 

such as abrupt changes in the optical fiber diameter by a introducing a notch (removal of 

fiber material) or adding a thick layer, Figure 6-2. These discontinuities result in large 

reflections creating a resonant cavity and effectively trap the acoustic energy and focus it 

on the FBG. Quality factor of the resonant structure can be adjusted by the structure shape, 

size and material selection.  
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Figure 6-2 Two possible acoustic resonator structures. Top: A notch is formed in the 

optical fiber close to the FBG region. Bottom: A reflector can also be formed by 

increasing the diameter of the optical fiber by material deposition or by attaching a 

ring-like structure. 
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APPENDIX A. LASER WAVELENGTH CONTROLLER 

The importance of the matching between the laser wavelength and Bragg wavelength 

is stressed many times throughout the thesis. Middle section of the side slope in the notch 

of FBG spectrum offers a linear operating region and a laser wavelength controller is 

needed to keep the laser wavelength in the linear operating region of the FBG spectrum. 

Wavelength of the FBG can shift due to operating conditions such as temperature and 

mechanical load on FBG as well as high amplitude acoustic noise. Thus, a wavelength 

controller was designed based on an op-amp proportional-integral (PI) controller, 

schematic is shown in Figure A-1.  

 

Figure A-1 Op-amp based laser wavelength controller.  
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The wavelength of the laser source is initially adjusted to desired point on the linear 

operating region of the FBG via temperature control on the laser source. A triangular wave 

as a control signal can be used in order to find the center notch of the FBG. The laser 

wavelength will be passing over the notch many times (100Hz triangular wave gives the 

optimum result with the current system) which will be easier to observe compared to 

simply scanning the laser wavelength once.  DC output from the photodetector is used to 

track the power level of the reflected light from FBG. Dynamic changes in the FBG 

spectrum are tracked via piezoelectric wavelength adjustment channel in the laser source. 

Wavelength controller compares the DC output level with the set bias value and creates an 

error signal (Verror) in the presence of a mismatch. Error signal is first amplified by a high 

voltage amplifier (Trek Inc. Model 2205) and then used for driving the piezoelectric 

actuator of the laser source. The PI controller parameters are initially determined using a 

Simulink model of the back-end optoelectronics. Moreover, the controller parameters were 

further fined tuned for each type of FBG sensor. The parameters are calculated using;  

 𝐾𝐾𝑝𝑝 = 𝑅𝑅1
𝑅𝑅2

   (36) 

 𝐾𝐾𝑖𝑖 = 1
𝑅𝑅𝑖𝑖𝐶𝐶𝑖𝑖

   (37) 

Where Kp is proportional gain and Ki is integral gain. Gains of 0.2 and 100 are 

calculated using the Simulink model for Kp and Ki respectively. Further optimization might 

be needed for the particular sensor if the ambient acoustic noise is high, i.e. in fast gradient 
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echo sequences. High quality potentiometers are used for R1 and R2 resistors for easy and 

reliable gain adjustments.  

Wavelength controller can track wavelength changes up to 20 kHz, which covers most 

of the acoustic noise due to gradient fields. The controller speed is limited by the piezo-

electric control of the laser. Note that, wavelength change created by mechanical loading 

and temperature changes on the FBG sensor has much lower frequency and are readily 

adjusted for by the controller. In the experiments, the bias point on the side slope was set 

to 50% of the maximum reflection. The controller can be  
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APPENDIX B. MATLAB CODE FOR FBG MODEL 

 The following MATLAB scripts were used for FBG model implementation.  

MATLAB script for transfer matrix calculation:  

function [F] = F_matrix(lambda,design_lambda,neff,dn,dn_dc,delta_z) 

% Coupled-mode Theory 

kappa=(pi./lambda)*dn; % AC coupling coefficient 

lambda_detune = 2*pi*neff*(1/lambda-1/design_lambda); % DC coupling coeff. 

sigma_dc = (2*pi./lambda).*dn_dc; 

sigma = lambda_detune + sigma_dc;  % no chirping 

gamma = sqrt(kappa^2-sigma^2); 

% F matrices 

F11 = cosh(gamma*delta_z)-1i*sigma./gamma.*sinh(gamma*delta_z); 

F22 = conj(F11); 

F12 = -1i*kappa./gamma.*sinh(gamma.*delta_z); 

F21 = conj(F12); 

F = [F11 F12; F21 F22]; 

end 
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MATLAB script for spectrum calculations:  

function reflection = FBG_spectra(bandwidth, max_stress,lambda_array ) 

if bandwidth == 250;  

      dn = 37e-5;  % Induced ac index change 

else if bandwidth == 50;  

      dn = 48.5e-5;  % Induced ac index change 

else 

      disp('choose either 50MHz or 250MHz for FBG bandwith') 

end 

% optical parameters 

L = 8e-3;   % Grating Length (m) 

design_lambda = 1550e-9; %  wavelength (m) 

nco=1.445; % nco-core index 

ncl=1.444; % ncl-cladding index 

dn_dc = 0; %no apodization 

phase = pi; % phase shift 

neff = nco; %effective index 

% Grating parameters 

period_grating=design_lambda/(2*neff); % Grating period  

z_n = floor(L/period_grating/100);  

delta_z = L/z_n; %Length of uniform segment 
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z = linspace(-L/2,L/2,z_n); 

n_apo = dn*normpdf(z,0,max(z)/3)/max(normpdf(z,0,max(z)/3)); % 

apodization profile 

 

% mechanical parameters 

v_us = 3764;  % speed of sound in the fiber 

us_freq = 23.65e6; %acoustic frequency 

lambda_us = v_us/us_freq; %acoustic wavelength 

E_fiber = 70e9; % Young modulus of fiber 

phase_us = pi/2; % Phase of acoustic wave 

Vpoisson = 0.25; % Poisson ratio 

P11 = 0.113; % Acousto-optic coefficents 

P12 = 0.252; 

% Pressure distribution – choose one option below 

stress = max_stress*ones(size(z)); % uniform field 

stress = zeros(size(z)); % no input field 

stress(57-10:93-10) = max_stress; % pressure on a selected area on the 

FBG 

stress = max_stress * sin(2*pi/lambda_us*z+phase_us); % acoustic wave 

along the fiber length 
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 % Induced refractuve index changes due to pressure  

n_elasto = nco^3*stress*(1-2*Vpoisson)*(P11 + 2*P12)/(2*E_fiber); % elaso-

optic effect 

z_geo = -(1-2*Vpoisson)*period_grating*stress/E_fiber; % geometric effect 

 

%FBG spectrum calculation 

reflection = zeros(length(lambda_array),1); 

transmission = zeros(length(lambda_array),1); 

F = eye(2); 

for ii = 1:length(lambda_array) 

     lambda = lambda_array(ii); 

     for kk = 1:z_n 

          dn_us =  n_elasto(kk)+n_geo(kk) ; 

          dn_dc = dn_us; 

        neff = nco + dn_dc;   

         %dn = n_apo(kk); % use it when apodization is present 

          design_lambda = (period_grating+z_geo(kk))*2*neff; 

          if  kk == floor(z_n/2) 

              %phase shift 

             F_phase = [exp(-1i*phase/2) 0; 0 exp(1i*phase/2)]; 

            F1 = F_phase*F_matrix(lambda,design_lambda,neff,dn,dn_dc,delta_z); 
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          else 

             % Coupled-mode Theory 

             F1 = F_matrix(lambda,design_lambda,neff,dn,dn_dc,delta_z); 

          end 

        F = F1*F; 

   end 

    reflection(ii) = -F(2,1)./F(2,2); 

      transmission(ii) = F(1,1)-F(2,1)*F(1,2)/F(2,2); 

   F = eye(2); 

end 

 

end 

 

Sample MATLAB script for sensitivity calculation using the FBG_spectra function 

%calculate the whole reflection spectrum for inspection 

bandwidth = 50; 

stress = 0; 

lambda_start = 1549.998e-9; 

lambda_end = 1550.002e-9; 

lambda_n = 1e4; 

lambda_array = linspace(lambda_start,lambda_end,lambda_n); 
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reflection = FBG_spectra(bandwidth, stress,lambda_array ); 

PDout = 10*abs(reflection).^2;  

 

%Inspect the spectrum and  

 figure 

 plot(lambda_array,PDout); 

 title('Spectra for 50MHz'); 

 xlabel('Wavelength(m)'); 

 ylabel('Reflection %'); 

 

%choose the bias point on the side slope 

bias_ind = 5500; %50MHz 

 

% Acoustic wave definition 

max_stress = 1e3; 

freq = 63.86e6; 

t_n = 1000; 

time = linspace(0,19*1/freq,t_n); 

stress = max_stress * sin(2*pi*freq*time); 

ACsig = zeros(length(bias_ind),t_n); 

plot(time/1e-9,stress/max_stress); 

 

%Calculate the optical modulation  

    for ii = 1:t_n 

        lambda = lambda_array(bias_ind); 
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        ref = FBG_time(bandwidth, stress(ii),lambda); 

        ACsig(ii) = 10*abs(ref).^2; 

    end 

     

plot(time,10*(ACsig-mean(ACsig))); 

title('1kPa'); 

xlabel('Time(s)'); 

ylabel('Amplitude (V)'); 

 

% Pressure sensitivity calculation 

Vout = max(ACsig)-min(ACsig) 

Sensitivity = Vout/max_stress  
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