11 research outputs found

    Moving Walkways, Escalators, and Elevators

    Full text link
    We study a simple geometric model of transportation facility that consists of two points between which the travel speed is high. This elementary definition can model shuttle services, tunnels, bridges, teleportation devices, escalators or moving walkways. The travel time between a pair of points is defined as a time distance, in such a way that a customer uses the transportation facility only if it is helpful. We give algorithms for finding the optimal location of such a transportation facility, where optimality is defined with respect to the maximum travel time between two points in a given set.Comment: 16 pages. Presented at XII Encuentros de Geometria Computacional, Valladolid, Spai

    Weighted skeletons and fixed-share decomposition

    Get PDF
    AbstractWe introduce the concept of weighted skeleton of a polygon and present various decomposition and optimality results for this skeletal structure when the underlying polygon is convex

    The 1-Center and 1-Highway Problem

    No full text
    In this paper we extend the Rectilinear 1-center as follows: Given a set S of n points in the plane, we are interested in locating a facility point f and a rapid transit line (highway) H that together minimize the expression max p ∈ S d H (p,f), where d H (p,f) is the travel time between p and f. A point p ∈ S uses H to reach f if H saves time for p. We solve the problem in O(n 2) or O(nlogn) time, depending on whether or not the highway’s length is fixed.Peer ReviewedPostprint (published version

    Locating a service facility and a rapid transit line

    No full text
    In this paper we study a facility location problem in the plane in which a single point (facility) and a rapid transit line (highway) are simultaneously located in order to minimize the total travel time of the clients to the facility, using the L 1 or Manhattan metric. The rapid transit line is represented by a line segment with fixed length and arbitrary orientation. The highway is an alternative transportation system that can be used by the clients to reduce their travel time to the facility. This problem was introduced by Espejo and Rodríguez-Chía in [8]. They gave both a characterization of the optimal solutions and an algorithm running in O(n 3logn) time, where n represents the number of clients. In this paper we show that the Espejo and Rodríguez-Chía’s algorithm does not always work correctly. At the same time, we provide a proper characterization of the solutions with a simpler proof and give an algorithm solving the problem in O(n 3) time.Peer ReviewedPostprint (published version

    Reprint of: Weighted straight skeletons in the plane

    Get PDF
    We investigate weighted straight skeletons from a geometric, graph-theoretical, and combinatorial point of view. We start with a thorough definition and shed light on some ambiguity issues in the procedural definition. We investigate the geometry, combinatorics, and topology of faces and the roof model, and we discuss in which cases a weighted straight skeleton is connected. Finally, we show that the weighted straight skeleton of even a simple polygon may be non-planar and may contain cycles, and we discuss under which restrictions on the weights and/or the input polygon the weighted straight skeleton still behaves similar to its unweighted counterpart. In particular, we obtain a non-procedural description and a linear-time construction algorithm for the straight skeleton of strictly convex polygons with arbitrary weights

    New Results on Abstract Voronoi Diagrams

    Get PDF
    Voronoi diagrams are a fundamental structure used in many areas of science. For a given set of objects, called sites, the Voronoi diagram separates the plane into regions, such that points belonging to the same region have got the same nearest site. This definition clearly depends on the type of given objects, they may be points, line segments, polygons, etc. and the distance measure used. To free oneself from these geometric notions, Klein introduced abstract Voronoi diagrams as a general construct covering many concrete Voronoi diagrams. Abstract Voronoi diagrams are based on a system of bisecting curves, one for each pair of abstract sites, separating the plane into two dominance regions, belonging to one site each. The intersection of all dominance regions belonging to one site p defines its Voronoi region. The system of bisecting curves is required to fulfill only some simple combinatorial properties, like Voronoi regions to be connected, the union of their closures cover the whole plane, and the bisecting curves are unbounded. These assumptions are enough to show that an abstract Voronoi diagram of n sites is a planar graph of complexity O(n) and can be computed in expected time O(n log n) by a randomized incremental construction. In this thesis we widen the notion of abstract Voronoi diagrams in several senses. One step is to allow disconnected Voronoi regions. We assume that in a diagram of a subset of three sites each Voronoi region may consist of at most s connected components, for a constant s, and show that the diagram can be constructed in expected time O(s2 n ∑3 ≤ j ≤ n mj / j), where mj is the expected number of connected components of a Voronoi region over all diagrams of a subset of j sites. The case that all Voronoi regions are connected is a subcase, where this algorithm performs in optimal O(n log n) time, because here s = mj =1. The next step is to additionally allow bisecting curves to be closed. We present an algorithm constructing such diagrams which runs in expected time O(s2 n log(max{s,n}) ∑2 ≤ j≤ n mj / j). This algorithm is slower by a log n-factor compared to the one for disconnected regions and unbounded bisectors. The extra time is necessary to be able to handle special phenomenons like islands, where a Voronoi region is completely surrounded by another region, something that can occur only when bisectors are closed. However, this algorithm solves many open problems and improves the running time of some existing algorithms, for example for the farthest Voronoi diagram of n simple polygons of constant complexity. Another challenge was to study higher order abstract Voronoi diagrams. In the concrete sense of an order-k Voronoi diagram points are collected in the same Voronoi region, if they have the same k nearest sites. By suitably intersecting the dominance regions this can be defined also for abstract Voronoi diagrams. The question arising is about the complexity of an order-k Voronoi diagram. There are many subsets of size k but fortunately many of them have an empty order-k region. For point sites it has already been shown that there can be at most O(k (n-k)) many regions and even though order-k regions may be disconnected when considering line segments, still the complexity of the order-k diagram remains O(k(n-k)). The proofs used to show this strongly depended on the geometry of the sites and the distance measure, and were thus not applicable for our abstract higher order Voronoi diagrams. The proofs used to show this strongly depended on the geometry of the sites and the distance measure, and were thus not applicable for our abstract higher order Voronoi diagrams. Nevertheless, we were able to come up with proofs of purely topological and combinatorial nature of Jordan curves and certain permutation sequences, and hence we could show that also the order-k abstract Voronoi diagram has complexity O(k (n-k)), assuming that bisectors are unbounded, and the order-1 regions are connected. Finally, we discuss Voronoi diagrams having the shape of a tree or forest. Aggarwal et. al. showed that if points are in convex position, then given their ordering along the convex hull, their Voronoi diagram, which is a tree, can be computed in linear time. Klein and Lingas have generalized this idea to Hamiltonian abstract Voronoi diagrams, where a curve is given, intersecting each Voronoi region with respect to any subset of sites exactly once. If the ordering of the regions along the curve is known in advance, all Voronoi regions are connected, and all bisectors are unbounded, then the abstract Voronoi diagram can be computed in linear time. This algorithm also applies to diagrams which are trees for all subsets of sites and the ordering of the unbounded regions around the diagram is known. In this thesis we go one step further and allow the diagram to be a forest for subsets of sites as long as the complete diagram is a tree. We show that also these diagrams can be computed in linear time

    Addressing the uncertain geographic context problem by advanced spatial analysis approaches based on GIS and GPS for environmental health studies

    Get PDF
    Scholars in the fields of health geography, urban planning, and transportation studies have long attempted to understand the relationships among human movement, environmental context, and their effect on health outcomes. Considerable research has been conducted to advance our understanding of how environmental exposures affects health behaviors and outcomes. In many of these studies, however, environmental exposures are found to have inconsistent associations with health. The uncertain geographic context problem (UGCoP) is one of the most important methodological issues that contribute to the inconsistent findings. This dissertation explores the methodological issues in environmental health research causing the uncertain findings and how the UGCoP influences research findings, proposes an activity space approaches to comprehensively assess the individual exposures to environmental contexts, and designs an innovative environmental exposure evaluation framework to spatiotemporally assess individual environmental exposure and evaluated the environmental effects on health outcomes. With empirical analysis of real-world applications with the GPS tracking data and environmental context data collected at Chicago, IL, and Columbus, OH, these proposed approaches are proved perform better than currently widely used methods. Taking into account the complex spatial and temporal dynamics of individual environmental exposures, the proposed methods also helps to mitigate the UGCoP in important ways. They may be used in environmental health studies concerning environmental influences on a wide range of health behaviors and outcomes, and thus help to improve our understanding of the environmental effects on different health behaviors and outcomes
    corecore