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ABSTRACT 

 Scholars in the fields of health geography, urban planning, and transportation studies 

have long attempted to understand the relationships among human movement, environmental 

context, and their effect on health outcomes. Considerable research has been conducted to 

advance our understanding of how environmental exposures affects health behaviors and 

outcomes. In many of these studies, however, environmental exposures are found to have 

inconsistent associations with health. The uncertain geographic context problem (UGCoP) is one 

of the most important methodological issues that contribute to the inconsistent findings. This 

dissertation explores the methodological issues in environmental health research causing the 

uncertain findings and how the UGCoP influences research findings, proposes an activity space 

approaches to comprehensively assess the individual exposures to environmental contexts, and 

designs an innovative environmental exposure evaluation framework to spatiotemporally assess 

individual environmental exposure and evaluated the environmental effects on health outcomes. 

With empirical analysis of real-world applications with the GPS tracking data and environmental 

context data collected at Chicago, IL, and Columbus, OH, these proposed approaches are proved 

perform better than currently widely used methods. Taking into account the complex spatial and 

temporal dynamics of individual environmental exposures, the proposed methods also helps to 

mitigate the UGCoP in important ways. They may be used in environmental health studies 

concerning environmental influences on a wide range of health behaviors and outcomes, and thus 

help to improve our understanding of the environmental effects on different health behaviors and 

outcomes.  

Keywords: Environmental health; the uncertain geographic context problem; activity space; 

environmental context cube; exposure assessment; food environment; physical activity; GPS; GIS  
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CHAPTER 1: INTRODUCTION AND BACKGROUND 

 

1.1 MOTIVATION 

The World Health Organization reports that about 22% of the global disease burden can 

be attributed to the environment (Prüss-Ustün et al. 2016). A growing body of evidence has also 

demonstrated an association between health outcomes and environmental exposures. The field of 

environmental health, which concerns these environmental effects on human health, has attracted 

increasing levels of attention for its use of advanced geographic information science (GIS) 

technologies (Macintyre et al. 2002). As described by Thacker et al. (1996), environmental 

health, from a surveillance standpoint, can be categorized into three general areas: hazard 

surveillance, outcome surveillance, and exposure surveillance. Among these, exposure 

surveillance, which examines “how people are exposed to environmental hazards and the 

processes through which exposure results in an adverse health effect” (Maantay and McLafferty 

2011), widely uses GIS techniques in exposure analysis (Melnick 2002, Collins 2003) because of 

their ability to link population data and environmental data (Jerrett et al. 2005). 

Considerable research has been conducted to advance understandings of the ways in 

which environmental factors (Handy et al. 2002, Saelens, Sallis, Black, et al. 2003, Troped et al. 

2003, 2010, Fisher et al. 2004, Mota et al. 2005, Hoehner et al. 2005, Hillsdon et al. 2006, 

Roemmich et al. 2007, Kerr et al. 2007, Nagel et al. 2008, Grow et al. 2008, Maas et al. 2008, 

Sallis et al. 2009, 2016, Santos et al. 2009, Coombes et al. 2010, Mitchell et al. 2016, Browning 

and Lee 2017) influence people’s health behavior and outcomes. Global Positioning System 

(GPS) tracking data in particular offer a seemingly promising way of evaluating environmental 

exposure from a more comprehensive perspective (Duncan et al. 2009). One systematic literature 

review of applications of GPS to public health study (Maddison and Ni Mhurchu 2009) 
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concluded that “one major advantage is the ability to collect valuable contextual information, 

such as the occurrence of activity within specific facilities, and thus improve our understanding 

about how individuals interact with their environments” (Lachowycz et al. 2012). Because GPS 

tracking data can identify subjects’ exact locations at any time, with GIS able to access the 

environmental context of each location (Krenn et al. 2011), the integration of GIS and GPS 

provides an objective means of examining the correlation between environmental context and 

health outcomes (Elgethun et al. 2003, Wiehe, Hoch, et al. 2008, Maddison and Ni Mhurchu 

2009). 

Many of these studies, however, have been inconsistent in their association of 

environmental exposures with health (Sallis et al. 1998, 2006, King et al. 2000, Salmon et al. 

2000, Trost et al. 2002, Hillsdon et al. 2006, Maas et al. 2008). Recent studies have found three 

fundamental problems that could contribute to such inconsistency: the modifiable areal unit 

problem (MAUP) (Lovasi et al. 2012, Koohsari et al. 2013, Houston 2014), the uncertain 

geographic context problem (UGCoP) (Dunton et al. 2014, Schwanen and Wang 2014, Buck et 

al. 2015, Liao et al. 2015), and the spatial non-stationarity problem (Brunsdon et al. 1996, Holt 

2007, Siordia et al. 2012, Wang, Lee, et al. 2018). Among these three methodological issues, the 

UGCoP is one of the most urgent uncertainty-related issues in environmental health studies, for 

findings of the effects of area-based environmental variables (e.g., land-use mix) on health 

outcomes or behavior (e.g., physical activity) could be affected by how contextual units or 

neighborhoods are geographically delineated. The existence of this problem prevents the drawing 

of any solid conclusions regarding environmental effects on health, with an understanding of the 

true relationship between environmental exposure and health outcomes needed to inform 

effective policy interventions that seek to promote public health. Despite ongoing discussions on 
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this methodology uncertainty, scant research has proposed effective methods of addressing the 

UGCoP. This dissertation investigates this methodological uncertainty issue and proposes 

innovative methods for assessing individual environmental exposure while demonstrating how 

methodological innovation can help mitigate the UGCoP. 

1.2 RESEARCH QUESTIONS 

The overarching goal of this research is to explore the methodological uncertainty in 

environmental health research and develop a set of novel GIS-based methods for assessing 

environmental exposure while demonstrating how methodological innovations can help to 

mitigate the UGCoP. This research is focused on answering the following questions: 

1. What methodological issues in environmental health research cause uncertain 

findings? 

2. How can spatiotemporal variations in environmental context be comprehensively 

profiled? 

3. How can individual spatiotemporal environmental exposures be accurately assessed 

by integrating GPS tracking and GIS? 

Answering these pressing questions will require an in-depth interrogation of the relationship 

between environmental exposure and accessibility, as well as sophisticated improvements to 

spatial–temporal analysis of GPS tracking and environmental context data. 

With a view to addressing these questions, the scope of the dissertation research 

encompasses the following research objectives: 

1. Explore the methodological issues in environmental health research that cause 

uncertain findings with a view to understanding how the UGCoP problem influences 

research findings. 
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2. Develop an innovative method of generating activity space for environmental health 

research, based on GPS tracking data, such as could comprehensively assess exposure 

to environmental variables when access to data concerning temporal variations in the 

environmental context are not available. 

3. Establish an approach for spatiotemporally profiling environmental context using GIS 

data. 

4. Design an innovative environmental exposure evaluation framework to 

spatiotemporally assess individual environmental exposure and evaluate 

environmental effects on health outcomes. 

5. Evaluate these approaches in the context of real-world applications using GPS 

tracking data and environmental context data collected in both Chicago, Illinois, and 

Columbus, Ohio. 

1.3 BACKGROUND 

1.3.1 Environmental Effects on Health Behaviors and Outcomes 

Researchers have spent decades examining the relationships between environmental 

context and health outcomes, during which time there has been an apparent research paradigm 

shift “from one dominated by a focus on psychological factors and individual responsibility to 

one recognizing that environmental factors are important in shaping healthy behaviors” (Troped 

et al. 2010). Evidence also indicates that adult mortality is significantly affected by risky health 

behaviors (Mokdad et al. 2004) and that these risky health behaviors are further associated with 

environmental features (Ross 2000a, Duncan et al. 2002, Lee and Cubbin 2002, Cubbin et al. 

2005). 
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Environmental effects on health outcomes and behaviors have already been investigated 

in some depth in previous studies. Abundant research has shown that various health behaviors 

and outcomes are related to environmental exposure (Millstein et al. 2009, Epstein et al. 2014, 

Koohsari et al. 2015, Shareck et al. 2015). Scholars have found evidence that context exposures 

influence physical activity (Handy et al. 2002, Saelens, Sallis, Black, et al. 2003, Fisher et al. 

2004, Mota et al. 2005, Nelson et al. 2006, Lee and Moudon 2006, McGinn et al. 2007, Berke et 

al. 2007, Carver et al. 2008a, Auchincloss 2009, Sallis et al. 2009, 2016, Wheeler et al. 2010, 

Ding et al. 2011, Almanza et al. 2012, Lachowycz et al. 2012, Koohsari et al. 2015). Various 

health-related behaviors, including tobacco and drug use, are affected by environmental context 

exposures (Boardman et al. 2001, Xue et al. 2007, Kwan et al. 2011, Mennis and Mason 2011, 

Epstein et al. 2014, Lipperman-Kreda et al. 2015, Shareck et al. 2015). Obesity and obesity-

related diseases such as type 2 diabetes and cardiovascular disease have also been found to be 

correlated with environmental exposures (Diez Roux et al. 2002, Ellaway et al. 2005, Jeffery et 

al. 2006, Nelson et al. 2006, Berke et al. 2007, Schootman et al. 2007, Morenoff et al. 2007, 

Andersen et al. 2008, Oliver and Hayes 2008, Seliske et al. 2009, Chaix 2009, Millstein et al. 

2009)—obesity, for example, is more prevalent in areas that lack facilities for physical activity 

(Giles-Corti et al. 2005, Tilt et al. 2007) or that are unfriendly to walking (Ewing et al. 2003, 

Frank et al. 2004). Furthermore, evidence also indicates that neighborhood context is related to 

mental health problems (Aneshensel and Sucoff 1996, Ross 2000b, Coker et al. 2002, Evans 

2003, Fowler et al. 2009, Curtis 2010, Stigsdotter et al. 2010, Houle and Light 2014, Wheaton 

and Clarke 2016). Environmental effects on vector-borne disease have also been intensively 

explored, lest environmental exposure increase the odds of infection (Rogers et al. 1996, 

Acevedo-Garcia 2000, Goetz et al. 2000, Lobitz et al. 2000, Bavia et al. 2001, Anyamba et al. 
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2002, Tatem and Hay 2004). Accordingly, in the field of epidemiology and health geography, 

understanding environmental exposure is a nontrivial issue involving investigation of 

environmental effects on human health. 

1.3.2 Environmental Exposure Measures 

One fundamental question in the field of environmental health is that of how to measure 

environmental exposure. Although many methods exist, the residential neighborhood is 

predominantly used as the context unit for measuring environmental exposure, for it is often 

represented by administrative areas, such as census tracts and postal units, owing to its 

availability and easy access to routine administrative data. The ready availability of spatial 

delineations of administrative areas and the lack of detailed mobility data have also contributed 

to the popularity of administrative areas in environmental health research. With the help of GIS, 

however, a methodological shift came about in health research, from fixed administration units 

to ego-centered definitions (Miller 2007, Lee et al. 2008, Chaix et al. 2009). An ego-centered 

neighborhood is usually represented by a buffer area centered on an individual’s home, with a 

given threshold of specific distance or travel time (Perchoux et al. 2013) that may reflect the 

exposure area more accurately than administrative units can. However, measuring environmental 

context with a sole focus on ego-centered neighborhoods may wrongly specify contextual 

exposure, giving rise to false correlations between environmental context and health outcome 

(Cummins 2007, Rainham et al. 2010). With increasingly broad recognition that neighborhood-

based context measures have methodological flaws—because most people spend only a limited 

amount of time at their home and in its neighborhood—have come calls for more comprehensive 

evaluation of environmental context that involves consideration of nonresidential locations of 

daily activities (Kwan and Weber 2003, Inagami et al. 2007, Chaix et al. 2009, Saarloos et al. 
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2009, Kwan 2012a). Some studies have investigated the correlation between health outcomes 

and nonresidential environmental context, but most of these have been limited to a specific 

number of locations (Inagami et al. 2006, Jeffery et al. 2006, Troped et al. 2010, Vallée et al. 

2010). A better understanding of environmental effects on physical activity requires an accurate 

and comprehensive assessment of the environmental context of locations where physical activity 

takes place (Krenn et al. 2011). 

Amid ongoing debate about the best way of defining geographic context (Weber and 

Kwan 2003, Inagami et al. 2007, Saarloos et al. 2009, Kwan 2012a), with the available of 

activity diary and GPS tracking data, many researchers now believe that the residential 

neighborhood only partially captures people’s exposure to environmental context, with daily 

activities at other locations also contributing to environmental exposure (Chaix et al. 2009, 

Rainham et al. 2010, Houston 2014). The shift from a static measuring approach to a dynamic 

one has inspired research intended to explore and develop exposure assessment methods with 

individual activity diary (Arcury et al. 2005, Sherman et al. 2005, Vallée et al. 2010, Chen et al. 

2011) and GPS tracking data (Duncan et al. 2009, Maddison and Ni Mhurchu 2009, Chaix, 

Méline, Duncan, Jardinier, et al. 2013). GPS tracking data, which allow definition of time–

location in relation to exposure with unprecedented accuracy (Elgethun et al. 2003), are taking 

environmental exposure assessment from exclusively residential neighborhoods to multiple 

places of daily activity (Chaix, Méline, Duncan, Merrien, et al. 2013). Indeed, GPS has been 

widely used in other disciplines, such as farming (Schlecht et al. 2004), epidemiology (Phillips et 

al. 2001), and transportation (Wolf et al. 2003), yet its application for environmental health 

studies is relatively new (Duncan et al. 2009). 
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The Global Positioning System (GPS) uses satellite data to allow accurate navigation at 

any point on Earth’s surface by providing latitude, longitude, and altitude coordinates with a 

timestamp. Nowadays, the GPS system is widely integrated with smartphones, smartwatches, 

and other digital equipment. A portable GPS tracking device can be as small as a matchbox, 

allowing GPS technology to be easily worn. When study participants wear GPS tracking devices, 

investigators can track mobility patterns and objectively assess the spatial location of features in 

the environment or people’s behaviors while moving in the environment. 

The widespread use of GPS technology in health geography research (Duncan et al. 

2009, Lachowycz and Jones 2011, Chaix, Méline, Duncan, Merrien, et al. 2013, Chaix et al. 

2016) suggests that GPS tracking data could easily be used to measure varying exposures of 

different contexts, spatially and temporally, to different people. Portable GPS devices can be 

used to accurately trace human movement, with advanced GIS methods used to relate these data 

to high-resolution data regarding relevant environmental risk factors (Almanza et al. 2012, Kwan 

2012b). A systematic literature review of applications of GPS to physical activity–related health 

research (Maddison and Ni Mhurchu 2009) concluded that the major advantage of GPS tracking 

“is the ability to collect valuable contextual information, such as the occurrence of activity 

within specific facilities, and thus improve our understanding of how individuals interact with 

their environments and use different locations for physical activity” (Lachowycz et al. 2012). 

GPS tracking datasets provide a promising way of transitioning environmental exposure 

assessment from exclusively residential neighborhoods to multiple places of daily activity (Zenk 

et al. 2011). Because GPS tracking data can identify subjects’ exact locations at any time, and 

because GIS can access the environmental context of each location (Krenn et al. 2011), 

integration of GIS and GPS provides an objective means of examining the correlation between 
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environmental context and health outcomes (Elgethun et al. 2003, Wiehe, Hoch, et al. 2008, 

Maddison and Ni Mhurchu 2009). 

What’s more, GPS tracking data can be used to generate activity space, an approach that 

is more representative of people’s daily context than residential neighborhoods are (Chaix, 

Méline, Duncan, Merrien, et al. 2013). With accurate tracking of human movement by GPS and 

integration of context evaluation with GIS, activity space based on GPS tracking data (movement 

data) appears to be a promising way of assessing the environments that individuals use and to 

which they are exposed (Krause 2012, Shen and Chai 2013). Activity space comprises “the local 

areas within which people move or travel in the course of their daily activities” (Albert and 

Gesler 2003). Because activity space indicates where and how people have contact with their 

social and physical environments (Golledge 1997), it can be used as a measure of “people’s 

degree of mobility” (Gesler and Meade 1988). The activity space of an individual can thus be 

used to explore the interaction between human activity and environmental context (Sharp et al. 

2015, Tamura et al. 2017). Standard deviational ellipses, GPS trajectory buffers, minimum 

convex polygons, and kernel density surfaces have been widely used to represent human activity 

space (Cummins 2007, Perchoux et al. 2013, Sharp et al. 2015). 

Use of GPS tracking data to delineate activity space is a significant step forward in 

context exposure assessment. However, Chaix et al. (2013) have argued that health studies that 

use GPS tracking data may represent a step backward in the drawing of causal inferences 

between context exposures and health outcomes with respect to the “selective daily mobility 

bias” in GPS tracking–based context exposure studies, because measures of accessibility to given 

environmental resources are also determined from the locations that were specifically visited to 

use the corresponding resources. For example, GPS-based physical activity studies have found 
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that most outdoor physical activity happens in green spaces. It is indeed possible that exposure to 

green spaces encourages physical activity, but it is also possible that people who want to engage 

in physical activity prefer to visit green spaces because these places are suitable for physical 

activity. GPS tracking locations thus reflect actual behavioral contexts rather than potential 

access, as needed for causal inferences about environmental effects. Furthermore, GPS data 

cannot capture interactions with context—another crucial factor in understanding the health 

effects of exposure (Kwan 2012b). 

Other limitations of GPS tracking datasets must be carefully addressed when using GPS 

to analyze the effects of environmental exposures on human health. First, the accuracy of GPS 

data may vary from location to location—in downtown areas, for example, accuracy tends to be 

low because of the obstruction and reflection of GPS signals by high-rise buildings (in what is 

often referred to as the urban canyon effect). Second, GPS can track people in the outdoor 

environment with high spatial and temporal resolution but cannot collect reliable indoor data, 

because its signal is blocked by walls and roofs (especially in multilevel buildings and concrete 

structures). Accordingly, indoor activity and movement patterns cannot be tracked by GPS 

tracking devices, and other supplemental data relating to indoor activity are thus needed for 

further analysis of nuanced exposure to context. Third, the sample size of a GPS dataset is 

normally relatively small owing to the costs of acquiring portable GPS tracking equipment and 

of recruiting subjects. In addition, although the tracking span of a GPS dataset normally ranges 

from a week to several months, environmental effects on health outcomes often accrue as part of 

a long-term (even lifelong) process. Fourth, because GPS tracking datasets contain only location 

information, the difficulty of deriving the actual activity engaged in at each tracking location 

may introduce some uncertainty when seeking to measure exposure. For instance, working at a 
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fast-food restaurant versus eating at one might well bring different exposure and effects on body 

weight. Because context is expected to influence various types of daily activity (e.g., running, 

reading, eating) differently, supplementing activity data with data on the type and duration of 

daily activity could provide additional valuable information that promotes better understanding 

of the role of environmental factors in explaining health behaviors. Fifth, GPS tracking of people 

may endanger participants’ privacy because of the inherent potential for reverse identification. 

Specifically, analysis of GPS tracking datasets and publication of related results may run counter 

to individuals’ rights to prevent disclosure of the location of their home, workplace, activities, or 

travel. Because of the high accuracy and individual basis of georeferenced data, geolocations are 

highly reidentifiable, enabling criminal activity. Privacy concerns thus pose extra challenges for 

data collection and maintenance of such datasets and prevent the sharing of datasets for 

multidisciplinary studies. 

Rather than using GPS data alone, researchers have tried to integrate other portable 

sensors to capture both real-time environmental context (e.g., an air pollution sensor to record air 

quality) and personal status (e.g., an accelerometer to record physical activity level). Measuring 

the real-time environmental context, for example, portable air pollution sensors can be integrated 

with GPS tracking to assess individual exposure to air pollution (Greaves et al. 2008, Cattaneo et 

al. 2010). Compared to existing methods, which evaluate air pollution by interpolating data from 

fixed air quality monitoring stations sparsely distributed in space (Gray et al. 2013, Nyhan et al. 

2016), portable air pollution sensors are capable of monitoring and assessing individual exposure 

accurately in real time. With a view to obtaining real-time personal status, an evaluation of the 

feasibility of integrating GPS and accelerometer data to assess adult physical activity concluded 

that data recorded using portable GPS devices were precise enough to allow tracking of 
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individuals’ movements sufficient for the purposes of physical activity–related environmental 

effects research (Rodriguez et al. 2005). 

Integrating different portable sensors with GPS data could shed light on individual 

interactions with real-time physical contexts, such as air pollution and noise level, but would not 

take into account the interplay of social settings and other people. For example, environmental 

effects (e.g., loud music) may act differently (e.g., depressing or inspiring) on people even in the 

same context (e.g., home), depending on their immediate mood and the people involved (e.g., 

close friends or inconsiderable neighbors). Integration of an activity diary with GPS tracking 

data could enrich those by introducing more detailed information about daily activities while 

providing new insights into subjects’ interactions with social contexts and other people. For 

example, activity diary data offer information about those with whom an individual interacts, 

how that individual is feeling, and whether activities are indoor or outdoor—critical pieces of 

information for assessing context exposure, and ones that cannot be obtained from GPS data 

alone. Furthermore, the emerging ecological momentary assessment (EMA) offers a promising 

method for filling in the gap with its ability to capture subjects’ real-time behavior, thoughts, and 

feelings in their immediate environmental context by repeatedly collecting data through 

handheld electronic devices (Stone and Shiffman 1994, Shiffman et al. 2008). The EMA 

approach has been widely used in clinical psychology and substance addiction research (Stone 

and Shiffman 1994, Shiffman et al. 2002, 2007, Lukasiewicz et al. 2007, Epstein et al. 2009, 

Shiffman 2009, aan het Rot et al. 2012, Benarous et al. 2016). Its feasibility and validity, as 

demonstrated in previous studies, make it well suited to exploration of environmental effects on 

health behaviors (Serre et al. 2015) from the perspective of contextual individual interaction. 

However, despite improvements to the theory and methodology used to assess environmental 
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exposure and investigate contextual effects on health outcomes in an activity space, it is 

expensive and time-consuming for researchers to collect all the kinds of possible data regarding 

the full spectrum of human activity and substantial methodological challenges remain. 

1.3.3 Methodological Problems with Environmental Health Research 

Considerable research has been conducted with the aim of advancing current 

understandings of how environmental factors (Handy et al. 2002, Saelens, Sallis, Black, et al. 

2003, Troped et al. 2003, 2010, Fisher et al. 2004, Mota et al. 2005, Hoehner et al. 2005, 

Hillsdon et al. 2006, Roemmich et al. 2007, Frank et al. 2007, Kerr et al. 2007, Nagel et al. 

2008, Grow et al. 2008, Maas et al. 2008, Sallis et al. 2009, 2016, Santos et al. 2009, Coombes 

et al. 2010, Mitchell et al. 2016, Browning and Lee 2017) influence people’s health behavior and 

outcomes. Many studies, however, have been inconsistent in their association of environmental 

determinants with health (Sallis et al. 1998, 2006, King et al. 2000, Salmon et al. 2000, Trost et 

al. 2002, Hillsdon et al. 2006, Maas et al. 2008). For example, some studies have found no 

significant association between physical inactivity and weather—a factor commonly perceived as 

influencing physical inactivity (Sallis et al. 1998, 2006, King et al. 2000). In the same way, some 

studies have found access to parks, density of parks within an environment, and proximity to 

parks to be related to physical inactivity—yet others have not (Cohen et al. 2006, Jago, 

Baranowski, and Baranowski 2006, Jago, Baranowski, and Harris 2006, Roemmich et al. 2006, 

2007, Frank et al. 2007, Tucker et al. 2009). Similarly inconsistent results have also been 

obtained for exposure to recreation facilities (Jago, Baranowski, and Baranowski 2006, Jago, 

Baranowski, and Harris 2006, Roemmich et al. 2006, Timperio et al. 2008, Dowda et al. 2009, 

Tucker et al. 2009), street connectivity (Braza et al. 2004, Roemmich et al. 2006, 2007, Frank et 

al. 2007, Kerr et al. 2007, 2008, Carver et al. 2008b, Larsen et al. 2009), and crime-related 
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safety (Jago, Baranowski, and Baranowski 2006, Jago, Baranowski, and Harris 2006, Timperio 

et al. 2008). Three fundamental problems could contribute to such inconsistency: the MAUP 

(Lovasi et al. 2012, Koohsari et al. 2013, Houston 2014), the UGCoP (Dunton et al. 2014, 

Schwanen and Wang 2014, Buck et al. 2015, Liao et al. 2015), and the spatial non-stationarity 

problem (Brunsdon et al. 1996, Holt 2007, Siordia et al. 2012, Wang, Lee, et al. 2018). Although 

the MAUP has been widely recognized and intensively studied, the influence of the UGCoP and 

the spatial non-stationarity problem has been largely ignored and inadequately explored in 

environmental health studies (Wang, Lee, et al. 2018). 

1.3.3.1 The modifiable areal unit problem (MAUP) 

The MAUP has long been recognized (Zhang and Kukadia 2005, Duncan et al. 2013, 

Wang et al. 2014); it results from the use of arbitrary areal divisions (e.g., census tract) and 

various spatial scales (e.g., neighborhood, city, or county). The MAUP contains two components 

of potential measurement errors: the scale effect and the zoning effect (Openshaw 1984). The 

scale effect refers to the inconsistent results caused by the spatial scale used, while the zoning 

effect refers to the uncertainty prompted by different configurations of zones used for analysis. 

The MAUP has been intensively investigated in environmental health studies (Mitra and Buliung 

2012, Cheng and Adepeju 2014, Clark and Scott 2014, Houston 2014). In previous studies, the 

results of the analysis have been affected by both the areal units and spatial scale used—for 

example, the correlations found at various spatial scales could be different (Clark and Scott 2014, 

Houston 2014). 

Kwan (Kwan 2009b) described two perspectives on dealing with the MAUP in 

environmental health studies. Some scholars seek to identify the best zoning scheme and spatial 

scale for the specific research problem in the hope of mitigating the MAUP (Openshaw 1996, 
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Mu and Wang 2008). For example, by using homogeneous zones to measure environmental 

exposures, some measurement errors caused by the MAUP could be mitigated. Others attempt to 

develop scale-independent analytical measures with which to eliminate the effects of the MAUP 

(Tobler 1989). Most efforts have sought to build up a scale-independent analytical framework by 

using the real-time GPS tracking and GIS (Saelens, Sallis, and Frank 2003, Ewing and Cervero 

2010, Quigg et al. 2010, Wheeler et al. 2010, Adams et al. 2011, Lachowycz et al. 2012, 

Rainham et al. 2012). However, the MAUP still poses a challenge for environmental health 

studies, and further efforts to handle MAUP properly are needed. 

1.3.3.2 The uncertain geographic context problem (UGCOP) 

Even use of advanced activity space methods to assess individual environmental 

exposure has produced inconsistent findings in studies of environmental effects on health 

behaviors and outcomes (Diez Roux 2001, Oakes et al. 2007, Adams and Kapan 2009). Notably, 

the reliability of existing studies might be affected by misspecification of geographic context 

(Spielman and Yoo 2009), recently articulated as the UGCoP by Kwan (2012a). The UGCoP 

refers to the problem whereby findings of the effects of area-based environmental variables (e.g., 

land-use mix) on health outcomes or behavior (e.g., physical activity) could be affected by how 

contextual units or neighborhoods are geographically delineated. The problem “arises because of 

the spatial uncertainty in the actual areas that exert contextual influences on the individuals being 

studied and the temporal uncertainty in the timing and duration in which individuals experienced 

these contextual influences” (Kwan 2012b). As discussed by Kwan (2012a), context uncertainty 

has two critical sources: spatially, the configuration of context units for exposure assessment; 

temporally, the time and duration of subjects’ exposure. 
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1.3.3.2.1 Spatial uncertainty 

As to the spatial configuration of context units, past studies have generally used 

residential administrative areas, such as census tracts or postal code areas, or buffer areas around 

individuals’ residential locations, as the contextual units (Frank et al. 2005, Feng et al. 2010, 

Leal and Chaix 2011, Clark and Scott 2014). Although such units are convenient for assessing 

context exposure, much research has shown that residential neighborhoods cannot accurately 

represent the actual areas that exert contextual influences on health outcomes, because people’s 

daily activity covers a much larger area (e.g., whether working, studying, shopping, or engaging 

in leisure activities) than their residential community (Elgethun et al. 2003, Wiehe, Hoch, et al. 

2008, Kwan 2009b, Basta et al. 2010). In addition, because social contexts (e.g., families, 

friends) do not have predefined geographically defined boundaries, delineating contextual units 

for these contexts requires consideration of the interactions between social environment and 

people’s daily activities. Furthermore, configuration of contextual units may vary with context 

and population group. For example, contextual units might be smaller for children and elderly 

people because of their lower mobility. It is far from clear how to delineate context units, let 

alone which delineation method appropriately represents true geographic context exposure. 

1.3.3.2.2 Temporal uncertainty 

People’s movement patterns and context variables change dynamically over time. On the 

one hand, people move about to engage in daily activities, such as work, shopping, and leisure, 

and they often travel outside their residential neighborhoods to do so. Recent studies of GPS 

tracking data have provided substantial evidence about where and when people spend their time, 

indicating that people spend considerable portions of their daily lives outside their residential 

neighborhood, which has conventionally been defined as the contextual unit for exposure 
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assessment (Cummins 2007, Rainham et al. 2010). Day-to-day variability in people’s activity 

locations is also evident (Wiehe, Hoch, et al. 2008). Temporal variability of activity locations, of 

course, may significantly affect the correlations drawn between context exposure and health 

outcomes. What’s more, in addition to variability in daily activities, people also change their 

residence with time (Kwan 2012a). For long-term effects on health outcomes (e.g., cancer), 

context exposure assessment should thus consider residential history, including locations lived 

and the durations lived there. 

On the other hand, context variables can vary with space and time. Some context 

variables change over the twenty-four hours of a day, and others change with the seasons 

(Gulliver and Briggs 2005, Entwisle 2007). The UGCoP arises if any study seeking to measure 

context exposure fails to appropriately consider and address spatial and temporal variability in 

context variables and people’s daily activity. Furthermore, time lag between context exposure 

and health outcomes and the context exposure’s cumulative effect could also create failures of 

association between contextual variables and health outcomes (Chaix, Méline, Duncan, Merrien, 

et al. 2013). The spatial and temporal uncertainties about environmental context and people’s 

movement patterns that are associated with the UGCoP greatly complicate any examination of 

correlations between environmental context exposures and health outcomes. Failure to identify 

the actual geographic context thus might lead to inconsistent results and inferential errors. 

Existing context exposure assessment methods fail to mitigate the UGCoP both spatially 

and temporally. From the perspective of spatial uncertainty, existing methods ignore the 

accessibility of the study area and thus include spaces that may not be accessible to people. 

What’s more, arbitrary cutoff distances are typically used for delineation. Temporally, the 

duration of environmental exposure is treated merely as a multiplier of exposure, without 
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considering individuals’ interactions with space during particular periods. (The more time spent 

at the location, the more familiar with the surrounding area.) 

1.3.3.3 Spatial non-stationarity for environmental health research 

Considerable research has been conducted to advance understandings of how physical 

environmental factors (Handy et al. 2002, Saelens, Sallis, Black, et al. 2003, Troped et al. 2003, 

2010, Fisher et al. 2004, Mota et al. 2005, Hoehner et al. 2005, Hillsdon et al. 2006, Roemmich 

et al. 2007, Frank et al. 2007, Kerr et al. 2007, Nagel et al. 2008, Grow et al. 2008, Maas et al. 

2008, Sallis et al. 2009, 2016, Santos et al. 2009, Coombes et al. 2010, Browning and Lee 2017) 

and social environmental factors (Salmon et al. 2000, Trost et al. 2002, Brown et al. 2003, 

Fontaine et al. 2004, Gordon-Larsen et al. 2005, Hillsdon et al. 2006, Jones et al. 2009, Mitchell 

et al. 2016) influence people’s level of physical inactivity. Many of these studies, however, have 

been inconsistent in their association of environmental determinants with physical inactivity 

(Sallis et al. 1998, 2006, King et al. 2000, Salmon et al. 2000, Trost et al. 2002, Hillsdon et al. 

2006, Maas et al. 2008). For example, some studies have found no significant association 

between physical inactivity and weather, a factor commonly perceived as influencing physical 

inactivity (Sallis et al. 1998, 2006, King et al. 2000). In the same way, some studies have 

identified access to parks, density of parks within an area, and proximity to parks as being related 

to physical inactivity, whereas others have not (Cohen et al. 2006, Jago, Baranowski, and 

Baranowski 2006, Jago, Baranowski, and Harris 2006, Roemmich et al. 2006, 2007, Frank et al. 

2007, Tucker et al. 2009). Similarly inconsistent results have been obtained for exposure to 

recreation facilities (Jago, Baranowski, and Baranowski 2006, Jago, Baranowski, and Harris 

2006, Roemmich et al. 2006, Timperio et al. 2008, Dowda et al. 2009, Tucker et al. 2009), street 

connectivity (Braza et al. 2004, Roemmich et al. 2006, 2007, Frank et al. 2007, Kerr et al. 2007, 
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2008, Carver et al. 2008b, Larsen et al. 2009), and crime-related safety (Jago, Baranowski, and 

Baranowski 2006, Jago, Baranowski, and Harris 2006, Timperio et al. 2008). 

Scholars have attributed such inconsistencies to the MAUP (Lovasi et al. 2012, Koohsari 

et al. 2013, Houston 2014) and the UGCoP (Dunton et al. 2014, Schwanen and Wang 2014, 

Buck et al. 2015, Liao et al. 2015). For example, correlations may differ with spatial scale (e.g., 

neighborhood, city, county, state) (Houston 2014). What’s more, the different delineations of 

contextual areas (e.g., census tracts, home buffers, road network buffers) used to derive 

contextual or exposure measures may also affect results (Kwan 2012a, 2012b). Indeed, even at 

the same spatial scale, using the same exposure assessment method, environmental factors may 

operate differently at different geographic locations (a phenomenon known as spatial non-

stationarity that has been largely ignored in previous studies). For example, street connectivity 

might be positively correlated with physical inactivity in one city but negatively associated with 

it in another. To the best of the researchers’ knowledge, the spatial non-stationarity of 

environmental effects on physical inactivity and its influence on the consistency of research 

findings have not been adequately explored in previous studies and thus are worthy of 

investigation. 

Wang et al. (2018) explored the existence of spatial non-stationarity and illustrated its 

influence on the research findings by investigating inconsistencies of association between 

leisure-time physical inactivity (LTPI) and various contextual variables (physical, demographic, 

and socioeconomic environmental factors). In an exploratory and ecological study, they 

examined spatial variations of environmental effects on LTPI (percentage of the population 

reporting insufficient leisure-time physical activity) at the spatial scale of U.S. counties. They 

found evidence of spatial non-stationarity in environmental health studies. Accordingly, two 
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similar studies of the effects of the same environmental factor on LTPI might indeed give rise to 

inverse associations if conducted in different regions of the country—perhaps one of the reasons 

research findings have so often been inconsistent in addressing the effects of environmental 

factors on health behaviors and outcomes (e.g., (McGinn et al. 2007, Kurka et al. 2015)). For 

this reason, assessment of spatial non-stationarity and various environmental effects on LTPI as a 

function of geographic location may lead to investigations into, and subsequently better 

understandings of, the ways in which space plays a role in the prevalence of LTPI (Siordia et al. 

2012). 

1.4 THESIS ORGANIZATION 

This dissertation comprises three papers that center on the exploration of the UGCoP in 

environmental health research and on the development of new methods and analysis frameworks 

for spatiotemporally profiling environmental contexts, assessing individual environmental 

exposure, and evaluating environmental effects on health outcomes in real-world applications. 

Chapter 2 presents hexagon-based adaptive crystal growth Voronoi diagrams based on 

weighted planes as a way of addressing service area delimitation. It considers the geographic 

distribution of the clients served by the facilities in question and the characteristics of their 

socioeconomic context while at the same time mitigating the MAUP when dealing with 

socioeconomic context by using a method based on continuous weighted planes of 

socioeconomic characteristics rather than on arbitrary areal units. This study compares a raster 

grid and a hexagon grid for implementation of adaptive crystal growth Voronoi diagrams, taking 

as its case study the delimitation of middle school service areas. Its findings indicate that 

hexagon-based adaptive crystal growth Voronoi diagrams generate better delineation results than 

the raster-based method, considering the degree to which the population in each service area is 
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commensurate with the enrollment capacity of the middle school in that area and the degree to 

which middle schools are accessible within their service areas. Although the hexagon-based 

adaptive crystal growth Voronoi diagrams proposed in this study can help city managers serve 

their citizens better and allocate public service resources more efficiently, they can also be used 

in environmental health research to delineate individual activity space based on subjects’ daily 

movement patterns as well as on the environmental context, represented as hexagon-grid 

weighted planes. Based on the hexagon-based adaptive crystal growth Voronoi diagrams, an 

innovative context-based crystal-growth activity space method for environmental exposure 

assessment is developed and discussed in the chapter 3. 

Chapter 3 proposes a context-based crystal-growth activity space as an innovative 

method for generating individual activity space based on both GPS trajectories and 

environmental context. This method not only considers people’s actual daily activity patterns 

based on GPS tracks but also takes into account the environmental context that either constrains 

or encourages people’s daily activity. Based on GPS trajectory data collected in Chicago, the 

results indicate that the proposed method generates more reasonable activity space than other 

existing methods do. The proposed method can comprehensively assess exposure to 

environmental variables when the data of temporal variations in environmental context are not 

available, thereby helping mitigate the effects of the UGCoP in environmental health studies. 

In Chapter 4, we develop and implement an analytical framework that dynamically 

represents environmental context (the environmental context cube [ECC]) and effectively 

integrates individual daily movement (individual space–time tunnel) to allow accurate derivation 

of individual environmental exposures (the environmental context exposure index). The 

framework is applied to examine the relationship between food environment exposures and the 
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overweight status of 46 participants using data collected using GPS in Columbus, Ohio, together 

with binary logistic regression models. The results indicate that the proposed framework 

generates more reliable measurements of individual food environment exposures than other 

widely used methods do. Taking into account the complex spatial and temporal dynamics of 

individual environmental exposures, the proposed framework also helps mitigate the UGCoP. 

The framework is designed to examine individual food environment exposure but can also be 

used in a wide range of environmental health studies. It provides an innovative environmental 

exposure evaluation framework allowing spatiotemporal assessment of individual environmental 

exposure and evaluation of environmental effects on health outcomes. 

Finally, chapter 5 concludes the dissertation with a discussion of the significant findings 

and limitations of this research as well as of future directions for research. 
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CHAPTER 2: HEXAGON-BASED ADAPTIVE CRYSTAL GROWTH VORONOI 

DIAGRAMS1 

 

2.1 INTRODUCTION 

Delimiting the service areas of public facilities like schools and fire stations is an essential 

topic in spatial analysis. Geographers and urban planners have a considerable theoretical and 

practical interest in this topic. The methodology of service area delimitation can be applied to 

address a wide range of issues as evidenced by the literature on the delineation of market areas 

(Hess and Samuels 1971, Shanker et al. 1975, Marlin 1981, Fleischmann and Paraschis 1988, 

Sinha and Zoltners 2001, Ríos-Mercado and Fernández 2009), school catchment areas (Yeates 

1963, Franklin and Koenigsberg 1973, Holloway et al. 1975, Ferland and Guénette 1990, Caro et 

al. 2004), police districts (Benzarti et al. n.d., Ma et al. 2010, Chen et al. 2015, Steiner et al. 2015), 

political districts (Hess et al. 1965, George et al. 1997, Bozkaya et al. 2003, Ricca et al. 2013), 

and service areas of healthcare facilities (Benzarti et al. n.d., Ma et al. 2010, Chen et al. 2015, 

Steiner et al. 2015). There are many existing methods for delimiting service areas, and they can be 

categorized into mixed-integer programming (Hakimi 1964, 1965, Hess et al. 1965, Zoltners and 

Sinha 1983, Pearce 2000, Williams 2002, Shirabe 2005, Ríos-Mercado and Fernández 2009) and 

heuristic approaches (e.g., genetic algorithm (Fraley et al. 2010), simulated annealing, and tabu 

search (Openshaw and Rao 1995, Macmillan 2001, Aerts and Heuvelink 2002, D’Amico et al. 

2002, Bozkaya et al. 2003)). Among these methods, Voronoi diagrams, named after Georgy 

Voronoi, are a popular and promising delimiting method for partitioning space into several 

subregions based on the distance to a set of seed points specified beforehand (Voronoï 1908). 

                                                 
1 Reprint, with permission, from Wang, J. and Kwan, M., 2018. Hexagon-Based Adaptive Crystal Growth Voronoi 

Diagrams Based on Weighted Planes for Service Area Delimitation. ISPRS International Journal of Geo-

Information, 7 (7), 257–276. 
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Voronoi diagrams are widely used in the fields of geography and urban planning because 

of their computational efficiency and effectiveness for delineating the service area of public 

facilities (Boyle and Dunn 1991, Boots and South 1997, Okabe and Suzuki 1997, Zhang and Zhou 

2004, Zhu et al. 2008). Based on the ordinary Voronoi diagram, many advanced Voronoi diagrams 

have been developed to address the complexity of real-world geographic problems, for instance, 

the weighted Voronoi diagrams that consider the varying service capacities of public facilities 

(Schaudt and Drysdale 1991, Ricca et al. 2008, Moreno-Regidor et al. 2012), the city Voronoi 

diagrams that take into account the effect of transport networks and travel time (Aichholzer et al. 

2004), and the adaptive additively weighted Voronoi diagrams that partition a space into 

subregions with predefined size while considering the position and weight of seed points (Moreno-

Regidor et al. 2012). More recently, Wang et al. (2014) proposed the adaptive crystal growth 

Voronoi diagrams based on weighted planes, which consider the geographic distribution of the 

clients the facilities in question serve and the characteristic of the socioeconomic context. The 

adaptive crystal growth Voronoi diagram approach has several advantages when compared with 

other heuristic approaches. It distributes demand over continuous space by weighted planes with 

fine resolution and, thus, more realistically approximates the spatial distribution of demand. It does 

not rely on population or demand data based on arbitrary administrative units such as census tracts 

and thus mitigates the modifiable areal unit problem (MAUP) to a certain extent. The approach 

takes into account not only the transport network but also walkable areas and natural barriers when 

evaluating accessibility. The method allows for real-time adaptive growth speed of each service 

area in order to balance the service load according to their capacity for all facilities. 

In spatial optimization studies, the representation issues of demand have been extensively 

discussed (Miller 1996, Church 1999, Murray 2003, 2008, Murray et al. 2008). There are many 
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ways to spatially represent the demand for service, which include point representation (Miller 

1996), regional representation (Suzuki and Drezner 1996), and area representation (Love 1972, 

Bennett and Mirakhor 1974, Aly and Marucheck 1982). Murray et al. (Murray et al. 2008) 

explored the different configurations of coverage modeling and evaluated the effectiveness of 

various coverage modeling approaches. The representation of demand for service is one of the 

critical issues for spatial optimization studies and may influence the quality of the spatial 

delineation results (Murray 2008). For approaches based on an areal representation of demand, 

there are three kinds of regular polygon grids for covering the land surface without any gap or 

overlap: equilateral triangles, squares, and hexagons (Carr et al. 1992). The equilateral triangular 

grid is not widely used because the triangles have two different orientations (Birch et al. 2007) and 

complex neighbor relationships. For geographic information science (GIS) modeling and spatial 

analysis, the square grid is widely used due to its symmetric, orthogonal coordinate system which 

simplifies the calculation and analysis based on the grid as well as its convenience for 

transformations between different spatial resolutions (Birch et al. 2007). Moreover, the pixels of 

remotely sensed images are based on square grids (or raster grids), so it is more feasible to utilize 

square grids to integrate other spatial data with remote sensing data. 

The hexagon grid data structure is not widely used in GIS and spatial analysis although it 

has been utilized in different application fields (e.g., the spatial configuration of cell signal 

coverage) because of its many merits. Different from the equilateral triangle and square grid 

structure, the hexagon grid is the most complex regular polygon that can fill a land surface without 

any gap or overlap (Birch et al. 2007). Because hexagonal cells are closer to a circle than 

rectangular cells in terms of their shape (Feick and Robertson 2015), they are the most compact 

regular polygons that tile the land surface, so they “quantize the plane with the smallest average 
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error” and “provide the greatest angular resolution” (Sahr et al. 2003). Therefore, the hexagon grid 

can achieve higher accuracy in representing the spatial features of a land surface than can 

equilateral triangles and square grids from the perspective of spatial analysis (Zook 2015). In 

addition, from the perspective of visualization and cartography, the boundaries of hexagon cells 

create less distraction when distinguishing spatial patterns because human eyes have a strong 

response to the horizontal and vertical lines that are naturally generated by equilateral triangles 

and square grids (Carr et al. 1992). Furthermore, the hexagon grid suffers less from orientation 

bias, and sampling bias from edge effects since the distances to the centroids of all six neighboring 

cells are the same. Tessellated hexagon grids are widely used in ecological research, but less 

utilized in the spatial optimization problem for several possible reasons: (1) The geometry and 

spatial configuration of the hexagon gird are more complicated than those of the raster grid and, 

thus, they increase computational burden. (2) Compared with raster data, there is no mature 

structure for hexagon grid computation that is ready for use by researchers. (3) Remote sensing 

data, which is one of the most common data resources, is typically stored as pixels in the regular 

lattice (raster), so utilizing a hexagon grid to process these data involves the conversion from the 

raster to the hexagon grid data format, which may introduce errors and render data processing 

more difficult. (4) Processing spatial data with different resolutions is always needed in spatial 

analysis. Using different resolutions for a raster grid is relatively straightforward because the 

composition and decomposition of the raster grid maintain congruency and alignment (Birch et al. 

2007), while it is more complicated for a hexagon grid. 

In Wang et al.’s (Wang et al. 2014) study, the demand for service and the environmental 

contexts are rasterized and represented by regular square grids (raster grid). Thus, the purpose of 

this paper is to compare the raster and hexagon grids for implementing adaptive crystal growth 
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Voronoi diagrams. Delimitation results of middle school service areas in the study area based on 

the raster grid and hexagon grid weighted planes will be compared. The objective of the adaptive 

crystal growth Voronoi diagrams is to achieve the minimized difference of supply/demand ratio 

among all the facilities while considering the travel time by actual configuration of accessibility-

related context features (e.g., road network, walkable area, and natural barriers). Therefore, 

whether the population in each service area is commensurate with the enrollment capacity of the 

corresponding middle school and whether the middle schools are accessible within their service 

areas are examined. The results indicate that the hexagon-grid-based (hereafter hexagon-based) 

adaptive crystal growth Voronoi diagrams (HACG) produced superior results to the raster-based 

one considering how commensurate the population in each service area is with the enrollment 

capacity of the corresponding middle school (supply/demand ratio) and how accessible each 

middle school is within its service area (travel time) by addressing both the socioeconomic context 

and accessibility-related context features when delimiting the service areas of schools. 

The remainder of the paper is structured as follows. Section 2 introduces the new hexagon-

based adaptive crystal growth Voronoi method for delimiting service area based on socioeconomic 

factors as well as the conventional raster-based method. Furthermore, a case study is presented in 

Section 3 to delimit the service area of 34 middle schools in the Haizhu district in Guangzhou, 

China based on the accessibility-weighted and population-weighted planes. In addition, the 

delimitation results of the hexagon-based method are compared with those of the raster-based 

method to show the advantage of the hexagon-based adaptive crystal growth Voronoi diagrams. 

The paper follows with Section 4, which includes a discussion of the advantages and limitations 

of the hexagon-based method. Section 5 concludes the paper and also suggests some future 

research directions. 
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2.2 ADAPTIVE CRYSTAL GROWTH VORONOI DIAGRAMS 

This section introduces the adaptive crystal growth Voronoi diagrams based on raster 

weighted planes as well as the new method based on hexagonal weighted planes. In addition, 

examples of the raster-based and hexagon-based methods for service area delineation are presented 

to compare these methods. 

2.2.1 Raster-Based Adaptive Crystal Growth Voronoi Diagrams 

The raster-based adaptive crystal growth Voronoi diagrams (RACG), first proposed by 

Wang et al. (Wang et al. 2014), is an innovative method for delimiting the service areas of public 

facilities that takes into account the socioeconomic context while mitigating the MAUP. With the 

middle school service area delineation problem as the case study, the study area was tiled into 

rectangular cells (raster grid) and two weighted planes (accessibility weighted plane and 

population distribution weighted plane) were generated based on the raster grid. As illustrated in 

Figure 2.1a, on the weighted planes, middle schools were represented as seed points (the cells that 

intersect with the location of middle schools) with their service capacity as the attribute. The 

accessibility of the research area (e.g., road network, walkable area, and natural barriers) was 

simulated as different weight values on the accessibility weighted plane, while the distribution of 

the population was represented as cells with weights on the population distribution weighted plane. 

In the method, the Voronoi diagrams are grown simultaneously from all seed point cells (e.g., the 

location of middle schools), and the service area of each middle school will grow to its neighbor 

cells cycle by cycle. On the one hand, the growth speed at each location (cell) is adjusted based on 

the attribute of that cell. For instance, roads speed up the growth while rivers or lakes block the 

growth. On the other hand, the further growth of any grown area can be either encouraged or 

constrained in real time according to the service capacity of middle schools and the population 
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coverage of their grown areas (supply/demand ratio). For the purpose of illustration, the 

distribution of the population is simplified and represented as cell values in Figure 2.2 with a range 

of 1 to 3. As shown in the figure, crystal growth starts from the seed point cells to their neighbor 

cells, and the growth continues cycle by cycle (Figure 2.2a1 illustrates one crystal growth cycle). 

Different from other cells, the growth speed of transport network cells is faster due to the higher 

accessibility they enable (Figures 2.2a1,a2), while growth is constrained by natural barrier cells 

because it is normally difficult to pass natural barriers such as rivers and lakes (Figures 2.2a2,a3). 

As the crystal grows, the population coverage of each grown area is calculated in real time at each 

crystal growth cycle. According to the population coverage of their grown areas, the growth speed 

is adaptively adjusted based on specific criteria. For example, if the population size of any grown 

area is 10% larger than any other grown area, the further growth of this grown area will be 

temporally stopped until its population size is no more than 10% larger than any other grown area 

in order to balance the population among all grown areas. The crystal growth concludes when all 

the cells are grown and assigned to the grown area of one seed point (Figure 2.2a4). The delineation 

results would be the service area of each seed point (e.g., middle school) considering both the 

distribution of population and the accessibility of the service region. 

Note that there are two kinds of neighbor cells on the raster-based weighted planes: 4 

orthogonal neighbor cells sharing an edge (or “von Neumann neighborhood”) and 4 diagonal 

neighbor cells sharing a corner (or “Moore neighborhood”). Because the distance to the centroid 

of diagonal neighbor cells is larger than that to orthogonal neighbor cells, errors will be introduced 

if the accessibility to these two types of neighbor cells are not treated differently. Therefore, two 

region-growing algorithms are introduced for the crystal growth Voronoi diagram: a 4-domain 

region-growing algorithm that only considers the 4 orthogonal neighbor cells and an 8-domain 
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region-growing algorithm that takes into account both kinds of neighbor cells. Figures 2.3a,b 

illustrate these two raster-based region-growing algorithms. In Wang et al.’s (Wang et al. 2014) 

method, the 8-domain region-growing algorithm was used for the crystal growth of road network 

cells due to their high accessibility, while the 4-domain region-growing algorithm was utilized for 

the crystal growth of other cells. 

2.2.2 Hexagon-Based Adaptive Crystal Growth Voronoi Diagrams 

Different from the raster grid, which covers the land surface with continuous rectangular 

cells arranged in columns and rows, the hexagon grid tiles the space with regularly sized hexagonal 

cells, which are the most complex regular polygons that can fill the land surface without any gap 

or overlap (Birch et al. 2007). Because hexagonal cells are closer in shape to circles than to 

rectangular cells, they are more compact in space than rectangular cells (Feick and Robertson 2015, 

Zook 2015). Furthermore, the hexagon grid suffers less from orientation bias, and sampling bias 

from edge effects since the distances to the centroids of all six neighbor cells are the same (Zook 

2015). To the contrary, in a rectangular grid, the distances to the centroids of the 4 neighbor cells 

that share a corner are longer than the distances to other neighbor cells. Since hexagon cells have 

only one kind of neighbor cells that share the same edge and have the same distance to their 

centroids, only one region-growing algorithm is needed for a hexagon grid: a 6-domain region-

growing algorithm, which reduces the complication in defining neighbor cells (illustrated in Figure 

2.3c). 

Similar to raster-based adaptive crystal growth Voronoi diagrams, the distribution of the 

socioeconomic variable is represented as cell weights in the hexagon grid. For illustration, the 

socioeconomic context (e.g., population distribution) is simplified and represented in Figure 2.1b 

with a value range of 1 to 3. Figures 2.2b1–b4 present an example of the hexagon-based adaptive 
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crystal growth Voronoi diagrams based on weighted planes. As illustrated in Figure 2.2b1, the 

crystal growth starts from the seed point cells based on a 6-domain region-growing algorithm, and 

the growth continues cycle by cycle. Similar to the raster-based method, the growth speed of 

transport network cells is faster due to its higher accessibility and growth is constrained by natural 

barrier cells such as rivers and lakes. The crystal growth speed is adaptively adjusted according to 

the real-time total weight of each grown area based on the same criteria as for the raster-based 

adaptive crystal growth Voronoi diagrams illustrated above. As shown in Figure 2.2, the total 

weight of the grown area in the final result of the hexagon-based method (Red: 87; Green: 88; 

Yellow: 88) is more balanced than the total weight of the grown area in the raster-based method 

(Red: 93; Green: 88; Yellow: 82), which indicates that the hexagon-based adaptive crystal growth 

Voronoi diagrams may work better in service area delimitation problems. 

  
(a) (b) 

Figure 2.1 Illustration of raster-based (a) and hexagon-based (b) weighted planes. The numbers 

in the grid cells are the weights representing the spatial distribution of a socioeconomic factor 

(e.g., population). The blue cells represent elements of the road network; the black cells represent 

natural barriers; the red, green, and yellow cells are three seed cells representing public service 

facilities (e.g., middle schools). 
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(a1) (b1) 

  
(a2) (b2) 

  
(a3) (b3) 

  
(a4) (b4) 

Figure 2.2 Illustration of the adaptive crystal growth Voronoi diagrams with raster-based (a1–

a4) and hexagon-based (b1–b4) weighted planes. The weights for all grown areas (served 

population) of the final delineation results are concluded as follows: Red: 93, Green: 88, and 

Yellow: 82 for the raster-based method; Red: 87, Green: 88, and Yellow: 88 for the hexagon-

based method. 
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(a) (b) (c) 

Figure 2.3 The 4-domain (a) and 8-domain (b) region-growing algorithms for the raster grid; and 

the 6-domain (c) region-growing algorithm for the hexagon grid. 

2.3 MIDDLE SCHOOL SERVICE AREA DELIMITATION 

In this application, adaptive crystal growth Voronoi diagrams were generated using both 

raster-based and hexagon-based weighted planes of the same study area with the same 

socioeconomic context. The results of the HACG will be compared with those of the RACG in 

delimiting service areas of middle schools using adaptive crystal growth Voronoi diagrams based 

on accessibility-weighted and population-weighted planes. The delineation results of HACG and 

RACG are compared in four different spatial resolutions of the weighted plane. 

2.3.1 Study Area 

Because of the shortage of educational resources, parents in developing countries face key 

issues for their children’s education. Under these circumstances, delimitating the service areas of 

schools is crucial for ensuring an equal and fair distribution of educational resources among the 

population. In this study, the Haizhu District in Guangzhou, China was selected as the study area 

because Guangzhou is one of the largest cities in China that faces the problems of both rapid 

population growth and shortage in educational resources. The Haizhu District in Guangzhou is an 

island district (Figure 2.4). It has an area of 90 km2 and a population of about 1.56 million in 2010 

based on the sixth nationwide population census of China. There are 34 middle schools and 18 
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census tracts in the district. As an island, the Haizhu District is relatively independent of other 

parts of Guangzhou; therefore, choosing it as the study area would help to reduce boundary effects 

and edge effects in the analysis. Further, its large population and the considerable number of 

middle schools make it an ideal location for experimenting with middle school service area 

delineation. 

The delineation of the service areas of middle schools is an allocation problem that spatially 

allocates demand to service facilities. This allocation problem is suitable to be solved by the 

adaptive crystal growth Voronoi diagram approach because of the following merits of the method: 

(1) The adaptive crystal growth Voronoi diagrams distribute the population and environmental 

characteristics over a continuous surface (covered with rectangular or hexagon grids). They thus 

eliminate the influence of the boundaries of administrative areas (e.g., census tracts) on delineation 

results and mitigate the MAUP to a certain extent (although the scale of the grid structure (different 

grid size) may affect the results). (2) The approach takes into account not only the transport 

network but also walkable areas and natural barriers when evaluating accessibility. (3) The 

approach allows for real-time adaptive growth speed of each service area in order to balance the 

service load according to their capacity for all facilities. This is not possible using other methods. 

(4) Wang et al.’s (Wang et al. 2014) study has justified that the adaptive crystal growth Voronoi 

diagram approach performs better when compared with other related methods for school service 

area delineation. That study uses rectangular grids, and the current study extends the method by 

using a hexagon-grid-based framework and may obtain further improvement in the results. 
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(a) 

 
(b) 

Figure 2.4 The location of the study area—Haizhu, Guangzhou (the background map was 

abstracted from Google Maps)—and the illustration of the population-weighted plane (a) and 

accessibility-weighted plane (b). 

2.3.2 Weighted Planes 

Two types of weighted planes, namely an accessibility-based plane and a population-based 

plane, were generated for each cell structure (raster grid and hexagon grid). In order to explore the 

scale effects (how the weighted planes in different scales will affect the delineation results), four 

different spatial resolutions were used for both raster-based and hexagon-based methods; there are 

thus one accessibility-based plane and one population plane for each cell structure in each spatial 

resolution. The accessibility-weighted planes take into account the effect of the transport network 
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and water bodies (as natural barriers) on the accessibility of the schools in the study area. The 

population-weighted planes represent the distribution of population based on distinct types of 

residential buildings in the study area. The raster and hexagon cells in these weighted planes have 

the same size in one spatial resolution to ensure consistency and comparability of the results. Four 

different spatial resolutions of the raster-based and hexagon-based weighted planes are generated 

to compare the delineating performance. Specifically, these four spatial resolutions include cell 

sizes of 50, 100, 150, and 200 m2. 

For the accessibility-weighted planes, illustrated in Figure 2.4a, seed point cells are 

assigned a cell value of 10 with a growth speed of 1 cell/cycle. The natural barrier cells (e.g., rivers 

and lakes) are assigned a value of 0 with a growth speed of 0 since they are difficult to pass without 

a road or bridge. The transport cells are assigned a value of 1 to 2, and the growth speed varies 

with their average travel speed. The growth speed of the primary transport network (e.g., highways, 

freeways, and primary trunk roads) cells is 6 pixels/cycle for an average driving speed of about 30 

km/h, while the growth speed of the secondary transport network (e.g., secondary trunk roads, 

collector roads, and local roads) cells is 4 pixels/cycle for an average driving speed of about 20 

km/h. For all other cells, including walkable area cells, the growth speed is 1 pixel/cycle for an 

average walking speed of about 5 km/h. The cell attributes of the accessibility-weighted plane are 

listed in Table 1. 

Table 2.1 Cell values and weights of the accessibility-weighted and population-weighted planes. 

 Cell Type Cell Value Growth Speed 

Accessibility-weighted plane 

Natural Barrier Cells 0 0 

Primary Transport Network Cells 1 6 pixels/cycle 

Secondary Transport Network Cells 2 4 pixels/cycle 

Walkable Area Cells 3 1 pixel/cycle 

Population-weighted plane 

Low-Rise Residential Cells 4 1 pixel/cycle 

Medium-Rise Residential Cells 5 1 pixel/cycle 

High-Rise Residential Cells 6 1 pixel/cycle 

Seed Point Cells (Middle Schools) 10 1 pixel/cycle 
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The geographic distribution of the population is one of the major considerations for school 

service area delimitation in addition to accessibility. Thus, another type of weighted plane for the 

adaptive crystal growth Voronoi diagrams in this study is based on population distribution. As 

discussed in Wang et al. (Wang et al. 2014), due to the modifiable areal unit problem when using 

census tracts as the zonal scheme, creating better representations of the continuous distribution of 

the population is crucial for better results in service area delineations. Therefore, the population-

weighted planes in this study were created based on census and land use data, which were used to 

estimate the population distribution of the research area using the same method in Wang et al. 

(Wang et al. 2014). In the method, the continuous population distribution was simulated by 

distributing the population from census tracts to each cell in the weighted plane based on the 

distribution and attributes of residential areas. Residential areas are classified according to an 

urban land use map and urban planning data into three categories: low-rise residential areas, 

medium-rise residential areas, and high-rise residential areas. With maximum likelihood 

estimation, population density is 0.0680 persons/m2 for low-rise residential areas, 0.1135 

persons/m2 for medium-rise residential areas, and 0.0937 persons/m2 for high-rise residential areas. 

Because four different spatial resolutions are used in this study, the cell weights of the population 

were calculated separately by multiplying the population density with the unit cell size. For 

instance, with the resolution of 100 m2/cell, the weights of the cells for the three types of residential 

areas are 6.8 persons/cell (low-rise residential areas), 11.35 persons/cell (medium-rise residential 

areas), and 9.37 persons/cell (high-rise residential areas) on the weighted plane. Residential cells 

are assigned a value of 4 (low-rise residence cells), 5 (medium-rise residence cells), or 6 (high-rise 

residence cells) for the three types of residential areas with a growth speed of 1 cell/cycle. Table 



38 

 

1 lists all the possible cell values and growth speeds on the weighted planes, and Figure 2.4b 

illustrates the population-weighted plane. 

2.3.3 Crystal Growth Configuration 

In order to make sure that the results of the raster-based and hexagon-based adaptive crystal 

growth Voronoi diagrams are comparable, the growth rules for both methods are unified as follows: 

(1) The seed cells for the raster-based method are the raster cells that intersect with the locations 

of the 34 middle schools, while the seed point cells for the hexagon-based method are the 

hexagon cells that intersect with the locations of the 34 middle schools. In the crystal growth 

process, the service area of each facility grows from the seed point simultaneously. 

(2) In each crystal growth cycle of the raster-based method, the 8-domain region-growing 

algorithm was used for the crystal growth of road network cells due to their high accessibility, 

while the 4-domain region-growing algorithm was utilized for the crystal growth of other cells. 

Regarding the hexagon-based method, the 6-domain region-growing algorithm was used. 

(3) If a neighbor cell has already been labeled as a grown area or it is a barrier cell, it will be 

skipped. Otherwise, the neighbor cell will be labeled as a grown area of the specific middle 

school. Whenever a particular cell is incorporated into the grown service area of a particular 

seed, it becomes part of that service area. In other words, the calculation is based on the rules 

of “first come, first served.” If the growth patterns of two service areas come into contact with 

each other at one place, the growth at that border location will stop for both service areas 

because the cells beyond that point are already incorporated into either of the service areas. If 

a cell is claimed by two or more different service areas at the same cycle during the crystal 

growth process, this cell will be randomly assigned to one of the service areas. 
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(4) The speed of crystal growth for each cell is determined by the cell value and its growth speed, 

which was defined on the accessibility-weighted plane. Therefore, the speed is 1 cell per 

crystal growth cycle for seed point cells, walkable area cells, and residential area cells, while 

the speed is 4 cells per cycle for secondary transport network cells (the average travel speed 

on secondary transport network is about 4 times the speed of walking) and 6 cells per cycle 

for primary transport network cells (the average travel speed on primary transport network is 

about 6 times the speed of walking). 

(5) The growth speed of each grown area is adaptively adjusted in real time to optimize the 

population in each service area because the population in each service area should be 

commensurate with the enrollment capacity of each middle school. Therefore, the enrollment 

capacity of middle schools and the corresponding proportions of enrollment capacity out of 

the total enrollment capacity in the study area are considered as benchmarks for adjusting the 

crystal growth speed of each service area. The population of each grown area is calculated 

based on the population-weighted plane in real time. If the proportion of the population of a 

grown area (𝑃𝑖) is larger than the proportion of its enrollment capacity (𝑃𝐸𝐶𝑖) by a defined 

value 𝜔 (e.g., 𝜔 = 10%,), the growth of the corresponding middle school will be restricted: 

PECi = 
𝐸𝐶𝑖

∑ 𝑆𝐶𝑘
𝑁
𝑘=1

 * 100% (1 ≤ 𝑖 ≤ 𝑁) (2.1) 

𝐴𝑊 =  ∑ 𝑊𝑘

𝑁

𝑘=1
 (2.2) 

𝑃𝑖 =
𝑊𝑖

𝐴𝑊
∗ 100% (1 ≤ 𝑖 ≤ 𝑁) (2.3) 

where N is the number of middle schools, 𝐸𝐶𝑖 is the enrollment capacity of middle schools, 

𝑃𝐸𝐶𝑖 is the proportion of enrollment capacity of each middle school out of the total enrollment 

capacity in the study area, 𝑊𝑘 is the population in each grown area, and 𝑃𝑖 is the proportion 

of the population of each grown area out of the total population in all the grown areas. 
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If 𝑃𝑖 > 𝑃𝐸𝐶𝑖 ∗ (1 + 𝜔) (1 ≤ 𝑖 ≤ 𝑁) , then the growth of middle school 𝑖  will be 

restricted until 𝑃𝑖 ≤ 𝑃𝐸𝐶𝑖 ∗ (1 + 𝜔) (1 ≤ 𝑖 ≤ 𝑁) . 𝜔  is the parameter that defines the 

strictness of the crystal growth constraint, and it is calibrated to achieve the best result. 

Generally speaking, the lower the 𝜔 value, the stricter the growth control; the higher the 𝜔 

value, the less restrictive the crystal growth. For the specific case study of middle school 

service areas, the capacity of the service area of each middle school is controlled in the 

following manner. Equations (1)–(3) are used to calculate the proportion of the population of 

a grown area (𝑃𝑖) and the proportion of its enrollment capacity (𝑃𝐸𝐶𝑖) among all middle 

schools in the study area. Both values are calculated for each grown area after each growth 

cycle. For any grown service area, if the 𝑃𝑖 is larger the 𝑃𝐸𝐶𝑖 by a defined value 𝜔 (e.g., 𝜔 = 

10%), the growth of the corresponding middle school will be restricted. In the calculation, the 

𝜔  value will iterate from 0.001 to 0.1 in steps of 0.005 to find the best setting for the 

delineation considering the supply/demand ratio of the results. 

(6) The crystal growth will finish if all the accessible cells are grown and assigned to the grown 

area of one seed point (middle school). 

ArcMap was used for the data preprocessing and the hexagon grid generation. The 

simulation of the service area delineation was implemented with an algorithm we developed based 

on Python 2.7 and the open source package of Geospatial Data Abstraction Library (GDAL/OGR 

Contributors 2018). The calculation was performed on a Windows 10 desktop computer (CPU: 

Intel Core i7-6700K 4 GHz; RAM: 16 GB). 

2.3.4 Hexagon Data Structure 

The raster-based weighted planes for RACG are generated based on the widely utilized 

raster data structure. Nevertheless, there is no mature data structure for hexagon grid computation 
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to the best of our knowledge. The hexagon tessellation implemented by ArcGIS is in the vector 

format (collection of polygon features), which leads to very low computational efficiency. To 

address the limitation, we designed a hexagon data structure (we named it “Hexter”) in a similar 

format to a raster grid but specifically for the crystal growth algorithm to increase the 

computational efficiency in this study. As illustrated in Figure 2.5a, the original hexagon grid is 

indexed as “ColID-RowID”, in which “ColID” represents the index of the column (ranging from 

“A” to “ZZZ”) in the grid, while “RowID” indicates the index of the row (ranging from “1” to “N”) 

in the grid. With the indexing, the hexagon grid in the vector format is converted to a raster-like 

data structure (see the Hexter table in Figure 2.5b) with their “ColID” as the columns and “RowID” 

as the rows in the Hexter table. With the change of the data format, the spatial relationship in the 

table is also changed. Since the only spatial relationship used in the crystal growth algorithm is the 

neighbor cells, we defined the neighboring relationship of the Hexter based on the original 

relationship of the hexagon grid. Illustrated in Figure 2.5b, for the cells in the odd columns (e.g., 

C, E, and G), the neighbors are the cells in their top, bottom, left, right, bottom-left, and bottom-

right (e.g., cells with indices “C-2” and “C-7” in Figure 2.5), while for the cells in the even columns 

(e.g., B, D, and F), the neighbors are the cells in their top, bottom, left, right, top-left, and top-right 

(e.g., cells with indices “H-2” and “H-7” in Figure 2.5). The rows do not influence the neighboring 

relationship of cells. Note that the Hexter table does not represent the spatial relationship of 

hexagon cells. It is only used to read the vector-formatted hexagon grid into the memory in the 

format of a table for crystal growth computation. After the computation, the crystal growth results 

(cell values) will be projected to the original hexagon grid by matching the “ColID-RowID”. 
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(a) (b) 

Figure 2.5 The original hexagon grid in the vector format (a) and transformed hexagon grid in 

the “Hexter” data structure (b) with an illustration of the neighbor cells definition. The illustrated 

center cells are colored in blue while their immediate neighbor cells are colored in yellow. 

2.3.5 Results 

In the study, middle school service areas were delimited by RACG and HACG in four 

different spatial resolutions (R1: 50 m2; R2: 100 m2; R3: 150 m2; R4: 200 m2) with different 𝜔 

settings ranging from 0.001 to 0.1. In order to compare the results, two types of measurements are 

utilized: (1) how commensurate the population in each service area is with the enrollment capacity 

of the corresponding middle school; and (2) how accessible each middle school is within its service 

area. 

The root-mean-square error (RMSE) and maximum error (Max. Error) are employed to 

compare the commensurateness between the enrollment capacity of a school and the population of 

its service area. Figure 2.6 shows the RMSE of the differences between the proportion of 

enrollment capacity and the proportion of the population in the service areas delimited by RACG 

and HACG. It can be seen from the figure that, with different spatial resolutions, the HACG (solid 

lines in the figure) generally has smaller RMSE compared with the RACG (dashed lines in the 
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figure). In addition, the finer the spatial resolution, the better the results considering the RMSE. In 

the figure, all lines present a U shape. The best results for different methods and different 

resolutions are generally achieved when 𝜔 has a value between 0.015 and 0.065. If 𝜔 is larger or 

smaller than these values, the RMSE increases. For the HACG, the best observed result is achieved 

when the spatial resolution is 50 m2 and 𝜔 is 0.055 or ranging from 0.015 to 0.035. Similarly, the 

best observed result is achieved when the spatial resolution is 50 m2 and 𝜔 is between 0.015 and 

0.035 for the RACG. However, comparing the two curves of HACG and RACG with the spatial 

resolution of 50 m2, the delimitation results of the hexagon-based method generally perform better 

with lower values of RMSE. Figure 2.7 illustrates the Max. Error of the differences between the 

proportion of enrollment capacity and the proportion of the population in the service areas 

delimited by the RACG and HACG with different resolution and 𝜔 settings. Similar with the 

results of RMSE, the HACG (solid lines in the figure) generally has smaller Max. Error compared 

with the RACG (dashed lines in the figure) with different spatial resolutions. For both RACG and 

HACG, the finer the spatial resolution, the smaller the Max. Error. According to the figure, the 

best observed results for RACG are achieved when 𝜔 is ranging from 0.001 to 0.015, while the 

best observed results for HACG are achieved when 𝜔 is ranging from 0.02 to 0.08. Considering 

both the RMSE and Max. Error, the best observed result is obtained when 𝜔 is ranging from 0.02 

to 0.035 for HACG, while it is achieved when 𝜔 is 0.015 for RACG. With the best observed 𝜔 

values, the HACG has much lower RMSE and Max. Errors compared with the RACG, as shown 

in the figure. According to the results, both the Max. Errors and RMSE of the differences between 

the proportion of enrollment capacity and the proportion of population in the service areas are 

lowest when using the hexagon-based method after calibration of the parameter 𝜔. Therefore, the 
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results indicate that the hexagon-based method performs better considering the enrollment capacity 

of middle schools and the population in their service areas. 

 

Figure 2.6 The root-mean-square error (RMSE) of the differences between the proportion of 

enrollment capacity and the population proportion of service areas with different ω settings. 

RACG: raster-based adaptive crystal growth method. HACG: hexagon-based adaptive crystal 

growth method. 

 

Figure 2.7 The maximum error of the differences between the proportion of enrollment capacity 

and the population proportion of service areas with different ω settings. 

The longest travel time (𝐿𝑇𝑇) to a middle school from any location in its service area is 

used as a measure of the accessibility to the middle school within its service area in this study. The 
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maximum 𝐿𝑇𝑇  indicates the lowest accessibility of the middle school in its service area. As 

discussed above, the best observed results are achieved for both RACG and HACG when the 

spatial resolution is 50 m2 considering the enrollment capacity of middle schools and the 

population in their service areas; therefore, the accessibility to the middle school within its service 

area of the delineation results is only compared using a spatial resolution of 50 m2. Figure 2.8 

shows the maximum 𝐿𝑇𝑇 of the service areas of all middle schools in the study area based on the 

delimitation results obtained with different ω settings. For the HACG, the maximum 𝐿𝑇𝑇 varies 

with different 𝜔 settings: it stays at high values of around 24 min when 0.035 ≤ 𝜔 ≤ 0.05 , while 

it is as low as 21 min with other 𝜔 values. Regarding the RACG, the lower values of maximum 

𝐿𝑇𝑇 (around 25 min) are achieved when 𝜔 is smaller than 0.02 and larger than 0.045. Comparing 

the two curve lines of RACG and HACG, it is clear that HACG always performs better than RACG 

with smaller maximum 𝐿𝑇𝑇. 

 

Figure 2.8 Maximum longest travel time (𝐿𝑇𝑇) of service areas based on the delimiting results 

with different ω settings. 

The mean 𝐿𝑇𝑇 is the average value of the longest travel time to the middle schools within 

their service areas, which is used as a general indicator of the accessibility of all middle schools in 
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their service areas based on the delimitation results. Figure 2.9 illustrates the mean 𝐿𝑇𝑇 of the 

service areas of all middle schools based on the delimitation results obtained with different ω 

settings. The figure shows that the mean 𝐿𝑇𝑇 for the HACG stays around 8.4 min while it is around 

9.4 min for the RACG, but the mean 𝐿𝑇𝑇 slightly increased with the increase of the value of ω for 

both methods. Like the maximum 𝐿𝑇𝑇, the mean 𝐿𝑇𝑇 obtained with the RACG is always higher 

than that obtained with the HACG. 

 

Figure 2.9 Mean 𝐿𝑇𝑇 of service areas based on the delimiting results with different ω settings. 

The standard deviation of 𝐿𝑇𝑇 measures the amount of variation of the longest travel time 

to the middle schools within their delineated service areas. Figure 2.10 illustrates the standard 

deviation of the 𝐿𝑇𝑇 for all middle schools based on the delineated service areas with different ω 

settings. Similar to the maximum 𝐿𝑇𝑇, for the HACG, the standard deviation of 𝐿𝑇𝑇 stays at high 

values of around 4.9 min when 0.035 ≤ 𝜔 ≤ 0.05. For all the other ω settings, it stays at low 

values of around 4.2 min. On the contrary, the standard deviation of the 𝐿𝑇𝑇 obtained with the 

RACG is always larger than 5 min. Again, the standard deviation of 𝐿𝑇𝑇 obtained using the RACG 

is always higher than that obtained with the HACG. 
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Figure 2.10 The standard deviation of 𝐿𝑇𝑇 of service areas for all middle schools based on the 

delimiting results with different ω settings. 

According to the calibration results of the ω settings, the best delimitation results were 

selected based on how commensurate the population in each service area is with the enrollment 

capacity of the middle school in the service area and how accessible the middle schools are within 

their service areas. Thus, the observed best value of ω for the HACG is 0.02, while it is 0.015 for 

the RACG. Figure 2.11 illustrates the service area delineation results of the adaptive crystal growth 

Voronoi diagrams using the raster-based and hexagon-based weighted planes with their respective 

best observed 𝜔 values. It can be seen from the figure that the results are generally different. 
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(a) 

 
(b) 

Figure 2.11 The delineation result of middle school service areas by using raster-based (a) and 

hexagon-based (b) adaptive crystal growth Voronoi diagrams. 

Further, the RMSE and Max. Error of the differences between the proportion of enrollment 

capacity and the proportion of the population in the service areas, as well as the maximum, mean, 

and standard deviation of the 𝐿𝑇𝑇 to a middle school from any location in its service, are compared 

in Table 2 with the observed best results of both methods. As the table shows, the RMSE, Max. 

Error, Max. 𝐿𝑇𝑇, mean 𝐿𝑇𝑇 and S.D. 𝐿𝑇𝑇 are all smaller when using the hexagon-based method 

compared with their values obtained when using the raster-based method, which also indicates that 

the HACG performs better than the RACG considering both the commensurate the population in 

each service area is with the enrollment capacity of the corresponding middle school and the 

accessibility of each middle school within its service area. 
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Table 2.2 Comparison of the differences between the proportion of enrollment capacity of each 

middle school and the proportion of the population in each service area of the 34 middle schools 

in the observed best delimitation results (ω = 0.015 for RACG; ω = 0.02 for HACG). 

 RMSE Max. Error Max. 𝐿𝑇𝑇 Mean 𝐿𝑇𝑇 S.D. 𝐿𝑇𝑇 

RACG 1.2048% 3.0379% 25.6759 9.2379 5.0803 

HACG 1.1779% 2.9833% 21.7985 8.2283 4.3100 

Note: RACG represents the raster-based adaptive crystal growth Voronoi diagram; HACG 

represents the hexagon-based adaptive crystal growth Voronoi diagram. 

Considering calculation efficiency, Figure 2.12 illustrates the number of cells for the 

zoning with different spatial resolutions and their computation time for both raster-based and 

hexagon-based adaptive crystal growth Voronoi diagrams. It can be seen from the figure that the 

number of cells increases (from 0.7 to 2.8 million) with finer resolution (from 200 to 50 m2), and 

the computation time for both methods rises. The computation time for RACG increases from 0.09 

to 0.3 minutes while that for HACG increases from 0.35 to 2.34 minutes. With the longest 

computation time of about 2 minutes with a personal computer, the calculation efficiency for 

HACG is acceptable and feasible to be utilized in service area delineation problems. 

 

Figure 2.12 The computation efficiency of the raster-based (RACG) and hexagon-based (HACG) 

adaptive crystal growth Voronoi diagrams for different spatial resolutions. (The left vertical axis 

is the computation time in minutes, while the right vertical axis is the number of cells for the 

weighted planes with different resolution.) 
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2.4. DISCUSSION 

The best delineation results for HACG and RACG can be obtained by iterating and 

calibrating the parameter ω. According to the calibration results of the ω settings, the best observed 

delimitation results were selected based on how commensurate the population in each service area 

is with the enrollment capacity of the middle school in the service area and how accessible the 

middle schools are within their service areas. The delimitation results with observed best ω values 

are illustrated in Figures 2.11a (RACG) and 11b (HACG). In these figures, the polygons with 

distinct colors are the service areas of different middle schools. Because the road network, natural 

barriers, and the population distribution were taken into account through two weighted planes in 

the adaptive crystal growth Voronoi diagrams, different schools have differently sized service 

areas; generally speaking, the service area of a middle school is smaller when the road network is 

sparser, the population density higher, and more natural barriers exist in its surrounding area. Not 

surprisingly, the shape of some middle schools’ service areas is elongated along the transport 

network. This is because these middle schools are located in sparsely populated areas where the 

crystal growth is not constrained and the crystal growth speed along transport network cells is 

faster than in other cells due to the high accessibility. When comparing the delimitation results of 

the raster-based and hexagon-based adaptive crystal growth Voronoi diagrams, Figure 2.11 

highlights the fact that these two service area delimitation methods lead to different results with 

the same crystal growth rules. 

Regarding the ω value, which is the only parameter in the method and represents how 

restrictive the growth constraint rule is, the maximum value of ω for calibration could be defined 

by the specific question of how great a percentage of service over its capacity for each facility is 

allowed and tolerable. For instance, considering the middle school service capacity, we require 
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that the service population should not go over its service capacity by 10%. Otherwise, the school 

would not be able to provide quality education for students. Based on that, the maximum value of 

ω could be set as 0.1. Therefore, the value can be calibrated in the range from 0 to 0.1. Further, 

the process to find the optimal ω value is problem-dependent. It depends on the particular service 

facility in question, and tolerance of errors of the two measurements for the specific questions of 

(1) how commensurate the population in each service area is with the enrollment capacity of the 

corresponding middle school (RMSE or Max. Error); and (2) how accessible each middle school 

is within its service area (Max. or Mean LLT). If the tolerance of errors for how commensurate the 

population in each service area is with the enrollment capacity of the corresponding middle school 

is 10%, and the target is to find the optimal results with the least mean LLT, then the calibration 

procedure is to find the optimal ω value with smallest mean LLT while the Max. Error is no larger 

than 10%. If the target is to find the best fit of the service population with the enrollment capacity 

and the tolerance of travel time in each service area is 25 min, then the calibration procedure is to 

find the optimal ω value with smallest RMSE while the Max. LLT is no larger than 25 min. 

The results prove that HACG generates better delineation results than does RACG in many 

ways. Considering how commensurate the population in each service area is with the enrollment 

capacity of the corresponding middle school, Figures 2.6 and 2.7 show that the proportion of the 

population in different service areas based on the results of the hexagon-based method is more 

commensurate with the proportion of middle schools’ enrollment capacity. This may suggest that 

the hexagon grid may suffer less from orientation bias and sampling bias and thus can generate 

service areas that better match the service capacities of the middle schools in the study area. 

Regarding the accessibility of each middle school within its service area, Figures 2.8–2.10 indicate 

that the 𝐿𝑇𝑇 of the service areas delimited by the hexagon-based method is smaller than the 𝐿𝑇𝑇 
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of the service areas delimited by the raster-based method. These results indicate that the hexagon-

based adaptive crystal growth Voronoi diagrams produced results superior to those obtained with 

the raster-based diagrams in addressing both the socioeconomic context and accessibility (travel 

time based on the road network and natural barriers) when delimiting service areas of public 

schools. Regarding the spatial resolution of the grid cells, the results indicate that the finer the 

resolution, the better the delineation results for both RACG and HACG. However, with the same 

resolution, HACG always performs better than RACG. 

Although the proposed method extends the adaptive crystal growth Voronoi diagrams and 

performs better than the raster-based methods, there are some limitations which should be 

addressed in future research. First, a considerable amount of inner-city travel is made by public 

transit (e.g., bus, subway), which is not considered in this research. It should be integrated into the 

accessibility-weighted plane to better evaluate the accessibility to public facilities. In addition, all 

areas are considered as walkable area except buildings, rivers, and lakes, and this is not accurate. 

Routes that are unsuitable for walking were ignored, and pedestrian sidewalks and pedestrian cut-

throughs should be considered in future studies. Further, the socioeconomic weighted plane in this 

study only considered population distribution; weighted planes of other socioeconomic attributes 

and new crystal growth rules based on multiple socioeconomic weighted planes are also topics for 

future research. Lastly, this study is a pilot exploration of the method on school service area 

delineation to justify the advantages of HACG compared with RACG. However, more studies in 

different locations with different context settings are needed to investigate the merits and 

shortcomings of HACG further. Moreover, the method should be further examined in a broader 

set of test problems in order to be generalizable to the service area delineation of other public 

facilities. 
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CHAPTER 3: CONTEXT-BASED CRYSTAL GROWTH ACTIVITY SPACE METHOD 

FOR ENVIRONMENTAL EXPOSURE ASSESSMENT2 

 

3.1 INTRODUCTION 

In the fields of epidemiology and health geography, understanding environmental exposure 

is a nontrivial issue involving the investigation of environmental effects on human health. 

Researchers have examined the relationships among human movement, environmental context, 

and health outcomes over the past decades. Abundant research has shown that physical activity, 

tobacco use, obesity, mental health and many other health behaviors or issues are related to 

environmental exposure (Millstein et al. 2009, Epstein et al. 2014, Koohsari et al. 2015, Shareck 

et al. 2015). For instance, it has been found that the built environment influences physical activity 

and health (Saelens, Sallis, and Frank 2003, Lee and Moudon 2006)—e.g., obesity is more 

prevalent in areas that lack physical activity facilities (Giles-Corti et al. 2005) or are unfriendly to 

walking (Ewing et al. 2003, Frank et al. 2004). One of the fundamental questions in this research 

area is how to measure environmental exposure.  

Despite the existence of many methods, the residential neighborhood is predominantly 

utilized as the contextual unit for environmental exposure measurement. It is often represented by 

administration areas, such as census tracts and postal units, because of the availability and easy 

access to routine administrative data. The readily available spatial delineations of administrative 

areas and the lack of detailed mobility data are other reasons for the popularity of administrative 

areas in environmental health research. With the help of advanced geospatial technologies (e.g., 

geographic information systems [GIS] and global positioning system [GPS]), there has been a 

                                                 
2 Reprint, with permission, from Wang, J., Kwan, M.-P., and Chai, Y., 2018. An Innovative Context-Based Crystal-

Growth Activity Space Method for Environmental Exposure Assessment: A Study Using GIS and GPS Trajectory 

Data Collected in Chicago. International Journal of Environmental Research and Public Health, 15 (4), 703–726. 
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methodological shift in health research, moving from using fixed administrative areas as 

contextual units to ego-centered definitions (Miller 2007, Lee et al. 2008, Chaix et al. 2009). An 

ego-centered neighborhood is usually represented by a buffer area centered on an individual’s 

home with a given threshold of specific distance or travel time (Perchoux et al. 2013), which may 

reflect more accurately the exposure area rather than administrative units. Due to the ongoing 

debate as to the best way to define geographic context (Weber and Kwan 2003, Inagami et al. 

2007, Saarloos et al. 2009, Kwan 2012a) and the availability of activity diary and GPS tracking 

data, many researchers have now adopted the idea that the residential neighborhood can only 

partially capture people’s exposure to environmental context, and daily activities that take place at 

other locations also contribute to their environmental exposures (Chaix et al. 2009, Rainham et al. 

2010, Houston 2014). The shift from a static measuring approach to a dynamic one has inspired 

researchers to explore and develop exposure assessment methods using individual GPS tracking 

data (Duncan et al. 2009, Maddison and Ni Mhurchu 2009, Chaix, Méline, Duncan, Jardinier, et 

al. 2013).  

Although there are many ways to measure environmental exposure, activity space based 

on GPS tracking data (movement data) appears to be a promising way to assess the environment 

utilized by individuals, and to which they are exposed (Krause 2012, Shen and Chai 2013). Activity 

space is defined as “the local areas within which people move or travel in the course of their daily 

activities” (Albert and Gesler 2003). Because activity space indicates where and how people have 

contact with their social and physical environments (Golledge 1997), it can be used as a measure 

of “people’s degree of mobility” (Gesler and Meade 1988). The activity space of an individual can 

thus be used to explore the interaction between human activity and environmental context (Sharp 

et al. 2015, Tamura et al. 2017). Standard deviational ellipses, GPS trajectory buffers, minimum 
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convex polygons, and kernel density surfaces have been widely used to represent human activity 

space (Cummins 2007, Perchoux et al. 2013, Sharp et al. 2015). Notwithstanding the 

improvements in the theory and methodology to assess environmental exposure and in the 

investigation of the contextual effects on health outcomes with activity space, substantial 

challenges remain. 

Even with advanced activity space methods to assess individual environmental exposure, 

inconsistent findings of the environmental effects on health behaviors/outcomes have been 

observed in recent studies (Diez Roux 2001, Oakes et al. 2007, Adams and Kapan 2009). This 

suggests that the reliability of existing studies may be affected by the misspecification of the 

geographic context (Spielman and Yoo 2009), which was recently articulated as the uncertain 

geographic context problem (UGCoP) by Kwan (2012a). The UGCoP refers to the problem that 

findings of the effects of area-based environmental variables (e.g., land-use mix) on health 

outcomes or behavior (e.g., physical activity) can be affected by how contextual units are 

geographically delineated. The problem “arises because of the spatial uncertainty in the actual 

areas that exert contextual influences on the individuals being studied and the temporal uncertainty 

in the timing and duration in which individuals experienced these contextual influences” (Kwan 

2012b). Existing activity space methods have limitations that may compromise their ability to 

mitigate the UGCoP both spatially and temporally. From the perspective of spatial uncertainty, 

existing methods ignore the accessibility of different locations in the study area and thus may 

include locations that may not be accessible to people. Moreover, arbitrary cut-off distances are 

often used for delineating activity space. Temporally, the duration of environmental exposure is 

treated merely as the multiplier of exposure while individuals’ interactions with space during 
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particular periods of time (the more time spent at the location, the more familiar with the sounding 

area) is not considered.  

This paper proposes the context-based crystal-growth (CCG) activity space as an 

innovative method for generating individual activity space based on both GPS tracking and 

environmental context. To mitigate the UGCoP, portable GPS devices are utilized to trace human 

movement accurately, and advanced GIS methods are used to relate these data to high-resolution 

data of relevant environmental contexts (Almanza et al. 2012, Kwan 2012a). The integration of 

GPS and GIS provides a powerful means for examining the relationships between environmental 

contexts and health outcomes (Wiehe, Hoch, et al. 2008, Maddison and Ni Mhurchu 2009). In 

contrast to other existing methods, and in order to address spatial uncertainty, activity space is 

generated considering not only people’s actual daily activity patterns based on GPS tracks but also 

the environmental contexts that either constrain or encourage people’s daily activity. Instead of 

using arbitrary cut-off distance, activity space is delineated based on the features of individual 

movement patterns. To mitigate temporal uncertainty, the duration of the environmental context 

in which individuals experienced and with which individuals interact are taken into account by 

abstracting the core areas of their daily activities. The size of activity space is based on the 

accumulated time an individual spent at the location (the more time a person spent there, the larger 

the activity space). To the best of our knowledge, this is the first study to introduce the context-

based crystal-growth method and consider both people’s daily activity patterns and environmental 

context in activity space and environmental health research. The results indicate that the proposed 

new method generates more reasonable activity space and more accurate exposure assessment 

when compared to other existing methods. It can help mitigate the UGCoP spatially and temporally 

in environmental exposure measures. The accurate assessment of environmental exposures sheds 
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light on the investigation of environmental effects in the field of epidemiology and health 

geography. The method is a new tool for activity space delineation and can be used for exploring 

the relationships among human movement patterns, environmental context, and health outcomes. 

3.2 METHODOLOGY 

This research proposes an innovative method for delineating individual activity space 

based on GPS tracking data, accessibility-related contextual data, and a crystal-growth algorithm. 

Due to the capability of incorporating GPS tracking and contextual data, as well as the flexibility 

to adaptively adjust the activity space based on the context of accessibility, this method is suitable 

for generating activity space while mitigating the UGCoP. In this method, accessibility-related 

contexts are incorporated into weighted planes, in which space is tiled into fine regular-grid cells 

(e.g., hexagonal cells). The weighted planes use hexagon grids to achieve higher accuracy in 

representing the spatial features of the land surface and minimize orientation bias and sampling 

bias from edge effects. The method is also capable of handling different transportation modes (e.g., 

walking, driving, taking the bus or train) while generating the activity space. Two accessibility-

weighted planes are generated for public transport users and private transport users, respectively, 

considering the different effects of context for various groups of residents. Based on the weighted 

planes, space is delineated by the growth of cells from one or more seed points to neighbor cells 

through a sequence of growth cycles. The crystal-growth method is suitable for this study because 

the growth speed of each cell can be dynamically adjusted according to the accessibility-weighted 

planes, and the growth extent can be feasibly defined based on travel time. Figure 3.1 illustrates 

the workflow of the proposed context-based crystal-growth method. As people’s frequently visited 

locations are essential for understanding their daily activity, these places are considered as the core 

areas of their activity space, as identified by the kernel density analysis of an individual’s 7-day 
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GPS trajectories. Thus, the activity space is grown from the core areas, and they will grow to their 

neighbor cells cycle by cycle. The crystal-growth process is either constrained or encouraged based 

on the accessibility-weighted planes. The merging of the crystal-growth space of all core areas 

generates the activity space.  

 

Figure 3.1 Workflow of the context-based crystal-growth activity space method. 

3.2.1 GPS Tracking and Context Data 

The individual GPS tracking dataset used in this research was collected as part of a larger 

study that examines the relationship among the exposure to environmental stressors, neighborhood 

quality, and individual health in Chicago. The larger study seeks to understand how the 

neighborhoods people live in and visit in their daily life affect their health and wellbeing. It focuses 

on the noise and air quality that people are exposed to in their daily life—not just at their residence, 

but also while they undertake their daily activities at other locations (e.g., travel to work, shopping, 

or running errands). The data were collected from October to December 2017 in the Chicago 

metropolitan area using surveys, GPS-equipped mobile phones, and portable noise and air 

pollutant sensors. The GPS tracking dataset is not recorded in even temporal duration but 

somewhat random over time depending on participants’ movement for prolonging battery life. To 

be specific, if a subject moves more than 1 m from the previous record within 3 s, a tracking point 

will be recorded by the tracking device. If the subject does not move more than 1 m from the last 
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record in 3 s, a new tracking point is still recorded. In the GPS tracking dataset, each subject was 

tracked with GPS-equipped mobile phones for seven days. Because most people have highly 

routinized daily activities (Kestens et al. 2018), 7-day continuous activity tracking, which covers 

both weekdays and weekends, can capture most of the participants’ weekly routine activities and 

is typically used for activity space research (Zenk et al. 2011, Shen et al. 2013, 2015, Ta et al. 

2015, Kestens et al. 2016, 2018, Tana et al. 2016). Consistent with previous studies, GPS tracks 

for 7 consecutive days were used to generate individual activity space in this study.  

To compare the activity space generated by different methods, as some of them are 

sensitive to participants’ movement patterns, four representative participants are selected from the 

dataset, as their movement trajectories have very different patterns (the spatial arrangement of the 

GPS points). The movement trajectories of Person A show a compact clustered pattern, those of 

Person B exhibit a modest clustered pattern, those of Person C display a one-directional pattern, 

and those of Person D present a multi-directional pattern. Note that due to the Institutional Review 

Board’s (IRB) requirements for protecting data confidentiality and participants’ privacy, we can 

describe the patterns but cannot include these maps in this paper. 

Further, the activity spaces are used to assess environmental exposure with the whole 

dataset. The exposure to physical-activity-friendly contexts is used as a proxy for the comparison 

of activity space methods. Physical activity has been intensively studied in environmental health 

research (Rodriguez et al. 2005, Wheeler et al. 2010, Rodríguez et al. 2012) because it is highly 

related to many chronic diseases, such as type-II diabetes, obesity and cardiovascular diseases 

(Ewing et al. 2003, Lahti et al. 2014, Arem et al. 2015, Moore et al. 2016, O’Donovan et al. 2017). 

Although the results are inconsistent, most previous studies have observed a positive association 

between physical-activity-friendly environments and the level of physical activity (Handy et al. 
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2002, Mota et al. 2005, Berke et al. 2007, Maroko et al. 2009, Santos et al. 2009, Zenk et al. 2011, 

Koohsari et al. 2015, Roberts 2017); the effectiveness of activity space for environmental exposure 

assessment can be evaluated by examining whether the association between exposure to the 

context and physical activity is captured. Physical-activity-friendly contexts include green spaces, 

blue spaces and other leisure facilities such as urban parks, playgrounds, swimming pools, and 

sports centers. The level of physical activity, which was reported by participants in the 

questionnaire before the GPS tracking, is measured by the number of days over a typical week in 

which a participant is physically active for a total of at least 30 min. There are 31 participants 

whose GPS tracking data in the dataset are used for such evaluation. The sociodemographic 

characteristics of these participants are shown in Table 3.1. The physical-activity-friendly contexts 

are just an example used to illustrate the usefulness of the proposed activity space method for 

environmental exposure assessment, which can also be applied to examine the effects of other 

environmental influences on other kinds of health behaviors or outcomes. For example, to explore 

the environmental influences on people’s body weight, we can include the availability of different 

types of food outlets or shops (e.g., fast-food outlets that sell unhealthy foods and supermarkets 

that provide more selections of healthy foods. To examine people’s exposure to air pollution, we 

can include traffic-related sources (e.g., highways) and various point sources (e.g., industrial 

plants; oil refineries) as environmental influences. 
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Table 3.1 Sociodemographic characteristics of the participants. 

Sociodemographic Variables Percentage 

Gender 
Male 61.3% 

Female 38.7% 

Age 

18–30 17.2% 

31–40 17.2% 

41–50 24.1% 

51–65 41.4% 

Race 

White 9.7% 

African American 41.9% 

Latino/Hispanic 41.9% 

Other 6.5% 

Education 

Elementary School 6.5% 

High School 58.1% 

College/University 32.3% 

Graduate School 3.2% 

Marital Status 

Married 17.9% 

Divorced 14.3% 

Single 67.9% 

Annual Income 

Less than $10,000 58.1% 

$10,000–$24,999 19.4% 

$25,000–$50,000 9.7% 

$50,000–$99,000 9.7% 

$100,000 or more 3.2% 

 

To generate a consistent and consecutive time series for the GPS trajectories, data cleaning 

and interpolation of GPS points was conducted so that there is one GPS tracking point each second 

for every participant for the 7-day tracking period. A Python program is developed to test every 

consecutive pair of GPS records and calculate the time difference. If the time difference between 

two consecutive GPS records is N seconds, which is longer than 1 s and shorter than 1800 s (half 

hour), linear interpolation in both spatial and temporal dimension is performed between the GPS 

records so that N-1 more records are inserted. After the interpolation process, each participant has 

one GPS tracking point for every second for the entire tracking period. 

The environmental context data for this study were derived from a comprehensive digital 

geographic database of Chicago from the Chicago Data Portal as well as the volunteered 

geographic information website of OpenStreetMap. This includes the geographic location and 
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footprint of buildings, water bodies, woods, restricted area (e.g., airport), and ground railways, 

which can be considered as barrier factors for accessibility; while the various levels of road 

networks, walkable areas, public transport routes are considered as the access friendly context that 

encourages accessibility. These contextual data are used to generate the two context-based 

hexagonal accessibility-weighted planes. 

3.2.2 Core Areas of Daily Activities 

People’s frequently-visited locations are crucial for understanding their daily activity and 

the delineation of their activity space. Therefore, these locations (core areas) are first abstracted 

from the GPS trajectories using kernel density analysis. The results of the kernel density analysis 

of the GPS trajectories are not distributed normally and skewed to the low-density values, so the 

geometric interval classification is a suitable method for classifying the density values by 

minimizing the sum of squares of the number of elements in each class. The algorithm creates 

geometric intervals to ensure that each class range has approximately the same number of values 

while keeping the change between intervals consistent (ESRI 2017). The core areas are abstracted 

from the results of the kernel density analysis as the collection of cells with density value larger 

than the 3/4 cut point of the geometric interval classification of all non-zero values. These core 

areas will be used as the seed points in the following crystal-growth delineation. Further, the 

number of the growth cycle of each core area is weighted based on the accumulated time the 

individual spent at these locations. The more time a person spent there, the more cycles the activity 

space grows. The crystal-growth cycle of each core area is calculated based on the normalized 

sojourn time (NST) at each core area. For instance, one individual spent 600 min daily at home on 

average, so the normalized sojourn time at home (𝑁𝑆𝑇ℎ ) is 600. The growth extent (GE) is 
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dependent on the NST. We assume the growth extent from home location is 𝐺𝐸ℎ, so the 𝐺𝐸𝑖 of 

other core areas can be calculated based on the following formula: 

𝑎 = √𝑁𝑆𝑇ℎ
𝐺𝐸ℎ

 (3.1) 

𝐺𝐸𝑖 = log𝑎 𝑁𝑆𝑇𝑖 (3.2) 

where 𝐺𝐸𝑖 is the growth extent of seed point 𝑖 in minutes, 𝑁𝑆𝑇𝑖 is the normalized sojourn time at 

core area 𝑖, 𝑁𝑆𝑇ℎ is the normalized sojourn time at home, 𝐺𝐸ℎ is the growth extent from the home 

location.  

As the only parameter for defining the growth extent of all the core areas, the 𝐺𝐸ℎ can be 

fixed universally for all subjects, and it can also be determined based on personal mobility. For the 

purpose of illustration, this study uses 10-mins’ travel as the universal value of 𝐺𝐸ℎ. Although the 

𝐺𝐸ℎ could be different for people with different mobility, 10-mins’ travel distance is a reasonable 

assumption that people are familiar with the environment and activity opportunities of the areas 

around the home, and it is highly possible that people choose to undertake the daily activity and 

are exposed to the context in this area. 

3.2.3 Context-Based Hexagonal Accessibility-Weighted Planes 

The accessibility-weighted plane, as a representation of the accessibility-friendliness of the 

environmental context, considers the effect of many kinds of environmental contexts (e.g., rivers 

as barriers, roads as thoroughfares) on the accessibility of the study area. The context of buildings, 

water bodies, woods, restricted areas, ground railways, road networks, public transport routes 

(metro and bus) and walkable areas are critical factors for the accessibility-weighted plane. 

Further, considering the different effects of environmental contexts for various groups of people 

(e.g., the expressway is considered as a thoroughfare for car users, while it is a barrier for public 
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transport users), two context-based hexagonal accessibility-weighted planes are generated 

respectively for private transport users and public transport users. 

For private transport users, on the one hand, among all these contexts, buildings, water 

bodies, woods, restricted areas (e.g., airport, private land) and ground railways are considered as 

barrier factors that are normally hard to trespass by people. On the other hand, various levels of 

road networks and walkable areas are accessibility-friendly context since they increase the general 

approachability of various sites. Road networks are further classified into expressways, primary 

roads, secondary roads and tertiary roads with various travel speeds. On the accessibility-weighted 

plane, as illustrated in Table 3.2, seed point cells are assigned a value of 100. The barrier cells 

(e.g., restricted areas and water bodies) are designated a value from 10 to 14 with a growth speed 

of 0. The transport network cells are assigned a value of 21 to 24, and the growth speed varies with 

their average travel speed. For pedestrian trails and walkable areas, cell values of 30 and 31 are 

assigned, respectively, and the growth speed is 1 cell per cycle (3 miles/h).  

Table 3.2 Cell attributes of the hexagonal accessibility-weighted plane for private transport users. 

Context Type Cell Value Average Moving Velocity Growth Speed (Cells/Cycle) 

Out of Research Area 0 - 0 

Restricted Area 10 - 0 

Water Bodies 11 - 0 

Woods 12 - 0 

Buildings 13 - 0 

Railway 14 - 0 

Expressway 21 About 35 miles/h 12 

Primary Road 22 About 25 miles/h 8 

Secondary Road 23 About 15 miles/h 5 

Tertiary Road 24 About 9 miles/h 3 

Pedestrian Trail 30 About 3 miles/h 1 

Walkable Area 31 About 3 miles/h 1 

Seed Points 100 About 3 miles/h 1 

 

In contrast to private transport users, for public transport users, expressways, buildings, 

water bodies, woods, restricted areas, and ground railways are considered as barriers, while metro 
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routes and bus routes are considered as thoroughfares with higher accessibility. On the weighted 

plane for public transport users, all kinds of local road (including primary roads, secondary roads, 

tertiary roads, and pedestrian trails) are considered as walkable area only, since they do not have 

cars to drive on them. As listed in Table 3.3, local roads and walkable areas are assigned a value 

of 30 and 31, with a growth speed of 1 cell per cycle. Bus routes have a growth speed of 3 cells 

per cycle with a cell value of 23, while metro routes have a growth speed of 6 cells per cycle with 

a cell value of 21. Metro stations are also marked in the weighted plane (cell value: 22; growth 

speed: 1) since citizens can only get on or get off the metro system at stations. On the contrary, 

bus stations are not considered, since buses stop frequently and the distance between bus stations 

are only about 100 to 200 m in Chicago. 

Table 3.3 Cell attributes of the hexagonal accessibility-weighted plane for public transport users. 

Context Type Cell Value Average Moving Velocity Growth Speed (Cells/Cycle) 

Out of Research Area 0 - 0 

Restricted Area 10 - 0 

Water Bodies 11 - 0 

Woods 12 - 0 

Buildings 13 - 0 

Railway 14 - 0 

Expressway 15 - 0 

Metro Routes 21 About 18 miles/h 6 

Metro Stations 22 About 3 miles/h 1 

Bus Routes 23 About 9 miles/h 3 

Local Roads 30 About 3 miles/h 1 

Walkable Area 31 About 3 miles/h 1 

Seed Points 100 About 3 miles/h 1 

 

The geographical location and footprint of the environmental contexts are utilized to 

generate the hexagon-grid-based accessibility-weighted plane. The hexagonal grid, different from 

the raster grid, tiles the land surface with regularly sized hexagonal cells. They are the most 

compact regular polygons that can fill the land surface (Birch et al. 2007). Hexagonal cells are 

closer in shape to circles (Feick and Robertson 2015, Zook 2015), and they have only one kind of 
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neighbor cells that share the same edge. Further, the distance to the centroid of a cell from the six 

neighboring cells is the same. The hexagon grid can achieve high accuracy in representing the 

spatial features of land surface from the perspective of spatial analysis (Zook 2015), and it reduces 

the complexity in defining neighbor cells when compared to the raster grid. Thus, it is suitable for 

the crystal-growth algorithms used in this study. Figure 3.2 illustrates the environmental contexts 

of a neighborhood in Chicago, and the generated hexagonal accessibility-weighted plane for 

private transport users (see Figure 3.3) and public transport users (see Figure 3.4). The hexagonal 

cells in the weighted planes have a fine resolution of 10 × 10 m to ensure the accuracy of the 

calculation and were generated using ArcMap. The context-based hexagonal accessibility-

weighted planes of Chicago are shown in Figure 3.5; there are about 6 million hexagonal cells for 

each weighted plane that covers the city. 

 

Figure 3.2 Accessibility-related environmental contexts. 
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Figure 3.3 Hexagonal accessibility-weighted plane for private transport users. 

 

Figure 3.4 Hexagonal accessibility-weighted plane for public transport users. 
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Figure 3.5 The context-based hexagonal accessibility-weighted plane of Chicago. 

3.2.4 Hexagon-Grid Crystal-Growth Activity Space 

The crystal-growth method is a tool for space partitioning and was used for Voronoi 

diagrams (Zook 2015), spatial delineation (Wang et al. 2014), and spatial optimization (Lin and 

Huang 1998). The method is suitable for this study because the growth speed of each cell could be 

adjusted based on the context of accessibility. Since the context of accessibility is one of the critical 

factors for accurately generating activity space, which is rarely considered in previous research, 

this study utilizes the crystal-growth algorithm based on the hexagon-grid accessibility-weighted 

planes.  

Figure 3.6 illustrates this crystal-growth algorithm. In the method, the activity space is 

grown from all seed point cells (the location of the core areas), the service area of each seed point 

cell will grow to their neighbor cells cycle by cycle. Because the weighted planes simulate the road 

network and other physical barriers (Figure 3.6a), the growth speed of each location can be 

adjusted in real time based on the attributes of the cells. For instance, roads speed up growth, while 



69 

 

rivers or lakes block the growth. For illustration, the road network is rendered as blue cells, while 

black cells represent barriers in the figure. As illustrated, crystal-growth starts from the seed point 

cells to their six immediate neighbor cells, and the growth continues cycle by cycle (Figure 3.6a,b 

illustrates one crystal-growth cycle). In contrast to other cells, the growth speed of transport 

network cells is faster due to the higher accessibility they enable (Figure 3.6b,c). Growth is 

constrained by natural barrier cells because it is usually challenging to travel through barriers such 

as rivers and lakes (Figure 3.6c,d). The growth of each seed point will stop when its maximum 

growth extent reached. The merging of the crystal-growth area of all core areas generates the final 

activity space. 

  
(a) (b) 

 

 

(c) (d) 

Figure 3.6 Illustration of the context-based crystal-growth activity space method. 

According to the generation method of the context-based crystal-growth method discussed 

above, activity space is generated according to the following growth rules. (1) Based on 
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participants’ travel mode, choose the context-based hexagonal accessibility-weighted plane 

accordingly for either private transport users or public transport users. (2) The crystal-growth starts 

from all the seed points (core area cells) separately. Seed point cells are the hexagon cells that 

intersect with the locations of the centroids of core areas. (3) For each crystal-growth cycle, if a 

neighbor cell is a barrier cell or a cell that has already been labeled as a grown area, it will be 

skipped. Otherwise, the neighbor cell will be marked as the grown area. (4) The crystal-growth 

speed of each cell is determined by the cell value, which was defined on the accessibility-weighted 

planes. (5) The crystal-growth will finish if the growth of all the seed cells reached their maximum 

growth extent. (6) The final activity space is generated by merging all the crystal-growth areas. 

3.2.5 Other Existing Activity Space Methods 

To compare the proposed context-based crystal-growth (CCG) activity space method with 

other existing methods, four commonly used delineations of activity space are implemented with 

the same GPS dataset, including GPS trajectory buffers (GTB), standard deviational ellipses 

(SDE), kernel density surfaces (KDS) and minimum convex polygons (MCP). GTB was created 

for each selected participant by covering the subject’s GPS trajectories with a 200-m buffer area, 

which covers all the locations that a participant visited or passed by during the study period. SDE 

is a commonly used method for delineating individual activity space. The SDE captures the 

geographic distribution and directional trend of all activity locations. The ellipse was obtained 

based on one or two standard deviations of the distances between each point and the transformed 

mean center along the rotated major and minor axes of the point set. Since past studies have used 

either one standard deviation SDE (SDE1) or two standard deviations SDE (SDE2), we derived 

both in this study for comparative purposes. KDS is a density surface derived from the activity 

locations and an associated weight using a kernel function and a predetermined search radius. In 
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this study, the KDS was generated based on the duration spent at each GPS point as the weight on 

a raster layer at the spatial resolution of 10 × 10 m and search radius of 1000 m. MCP for a subject 

is the smallest convex polygon that contains all of the person’s GPS tracking points. It represents 

the smallest area that includes all activity destinations of a participant.  

3.3. RESULTS 

3.3.1 Context-Based Crystal-Growth Activity Space 

The CCG activity spaces delineated based on the four selected participants are illustrated 

in Figure 3.7. For person A, whose daily activity is highly concentrated around the home location, 

it shows a compact clustered pattern. Based on the collected demographic characteristics, this 

person is a retired female in her 60s, who spends most of her time at home and only visits the 

public library regularly. Only two core areas are detected, and they are close to each other. Thus, 

the CCG activity space is a grown area centered at these two locations within the travel distance 

of 10 min from home (one of the core areas) and the corresponding travel distance (calculated 

based on the normalized sojourn time) from the other core area (library). Because the growth is 

based on the accessibility-weighted plane, the activity space protrudes along major roads due to 

their higher accessibility than other contexts. There are several hollow areas in the activity space, 

which are barrier contexts, such as water bodies and private houses, that could not be easily 

trespassed. In contrast to the compact clustered pattern, person B presents a modest clustered 

pattern. Although the movement is also clustered around the home, this person has more activity 

locations and travels much further than person A to undertake daily activities. According to the 

participant’s profile, this subject is an unemployed male in his 40s. He visits his mother’s home 

frequently in the west of the city about half-hours’ drive from home. He also visits the downtown 

area to visit doctors and friends. Not surprisingly, three core areas are identified, and his CCG 
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activity space is composed of three separate grown areas centered at home, mother’s house and 

downtown. The largest sub-area is the one centered at home (in the middle of the map) based on 

the fact that he spends the largest amount of time at home. He also spends much time at his 

mother’s house, and the sub-area should be larger than the current form, which is truncated due to 

edge effects. His mother’s home is close to the boundary of the study area, and thus only part of 

the sub-area is captured due to the lack of contextual information outside the border of the study 

area. Since the time he spends in the downtown area is much less when compared to the time 

spends in the other two core areas, this sub-area is much smaller. With a one-directional pattern, 

the CCG activity space of person C is exhibited in Figure 3.7. This person is a middle-aged male. 

He does grocery shopping and other personal activities around the home neighborhood. That is 

probably the reason why many core areas are identified around his residential neighborhood. 

What’s more, with his close relatives living in the southeastern part of the city, he needs to drive 

there and visit them regularly, and that is why we find another core area there. Thus, his activity 

space has a significant part centered at home and another small portion in the southeastern part of 

the city. Finally, person D is a female adult, who has a full-time job at downtown. With 

considerable mobility and travel around the city for daily activities, this participant’s movement 

shows a multi-directional pattern. As shown in the figure, the two largest portions of her activity 

space are the ones around home and workplace, since a significant amount of time is spent at these 

two locations. Other small parts of her activity space are scattered around the city for different 

daily activities. As a married woman, she needs to take care of the family, which includes grocery 

shopping and other household-related activities. It is noted that even though she traveled to the 

further north of the city, no activity space is identified, because she only spends limited time there, 
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and it is not recognized as a core area. It is reasonable to exclude this kind of location from the 

activity space if the subject only visits the place with limited time on a nonregular basis. 

 

Figure 3.7 The context-based crystal-growth activity spaces of the four representative 

participants. 

To compare and illustrate the difference of CCG based on accessibility-weighted planes 

for private transport users and public transport users, respectively, as shown in Figure 3.8, both 

activity spaces are generated with the same core areas at the same locations. For private transport 

users, the activity space is grown and enlarged along primary and secondary roads. On the contrary, 
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the public transport users relied heavily on the bus and metro systems, so the activity space extends 

along the bus and metro routes instead of the roads. It can be seen from the figure that the CCG 

activity space of public transport users is much smaller than that of private transport users. 

 

Figure 3.8 Crystal-growth activity spaces based on accessibility-weighted plane for private 

transport users (left) and public transport users (right). 

3.3.2 Comparing the CCG Activity Spaces with Other Activity Spaces 

3.3.2.1 Comparing the activity spaces 

The commonly used methods for activity space delineations are implemented with the four 

representative participants’ GPS tracking trajectory to compare with the proposed CCG method. 

The comparison is based on the geometric characteristics of the activity spaces, matching them 

with subjects’ daily activity, and visual interpretation. The activity spaces of the four participants 

are illustrated in Figure 3.9, and the comparison results are listed in Table 3.4. Note that the 

resulting maps of GTB, due to the risk of re-identification for the subjects, are not included in 
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Figure 3.9 in order to protect their privacy. The activity spaces of person A are similar among the 

different methods because of the simplicity of the daily movement. Since person A has low 

mobility, and the GPS trajectories have a compact clustered pattern, all five methods generate 

activity spaces that are nearly circular, while focusing on the home location of the subject. The 

area of activity spaces generated by CCG (8.21 km2) and KDS (6.58 km2) are significantly larger 

than the area of activity spaces generated by the other two methods, while they cover almost all of 

the total GPS tracking points. For more complicated movement patterns (persons B, C, and D), the 

CCG is capable of generating multiple areas to portray individual activity space, whereas all the 

other methods only create a single continuous region. The area of the activity space of person B is 

larger than the one of person A. KDS (66.66 km2), and MCP (65.52 km2) have the largest area, 

while CCG (11.74 km2) has the smallest area. CCG activity spaces have the highest coverage of 

the total GPS tracking points except for the GTB, KDS, and MCP. For person C, the GTB, KDS, 

and MCP include not only the area for daily activity, but also the places along the travel trajectories 

between activity locations, leading to their larger areas. The directional pattern of the GPS 

trajectories makes the SDE highly compressed. Although the SDE does not include the places 

along the travel trajectory, it ignores the activity location in the southeastern part of the city and 

covers a lot of unrelated sites in the northwestern part. Still, the CCG activity spaces have the 

smallest size among all the activity spaces (18.76 km2) for person D. The dispersed GPS 

trajectories around the city make the area of the activity spaces generated with KDS, MCP, and 

SDE extremely huge, which covers many irrelevant city spaces. On average, the CCG has the 

smallest area (12.65 km2) among all the methods and the highest coverage (94.04%) of total GPS 

tracking points except for GTB, KDS, and MCP. Because of the nature of the techniques 

themselves, GTB, KDS, and MCP always cover all the GPS tracking points. On the contrary, CCG, 
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and SDE include only the prominent parts of the points since they are more focused on the 

characteristics of the movement patterns instead of every single GPS point. 

Table 3.4 Comparing the representative participants’ activity spaces generated by different methods. 

  CCG GTB KDS MCP SDE1 SDE2 

Person A Area (km2) 8.21 0.91 6.58 0.52 0.0373 0.15 

 %GTPC 100% 100% 100% 100% 93.28% 93.45% 

Person B Area (km2) 11.74 31.14 66.66 65.52 12.704 50.82 

 %GTPC 87.97% 100% 100% 100% 76.47% 85.71% 

Person C Area (km2) 11.89 19.14 81.20 105.10 7.71 30.83 

 %GTPC 96.60% 100% 100% 100% 82.04% 93.72% 

Person D Area (km2) 18.76 28.92 101.28 109.16 39.12 156.48 

 %GTPC 91.69% 100% 100% 100% 75.69% 90.83% 

Average Area (km2) 12.65 20.03 63.93 70.08 14.89 59.57 

 %GTPC 94.04% 100% 100% 100% 81.87% 90.93% 

Note: the area of KDS is measured as the total area with positive density, which is consistent with 

Schonfelder and Axhausen (2003); %GTPC: percent of total GPS tracking points covered. 

For a more comprehensive comparative analysis, the activity spaces of the 31 participants 

in the dataset are also generated by CCG and the other five methods. Figure 3.10 illustrates the 

differences in the size of the activity spaces for private transport and public transport users. 

Considering the median size of the activity spaces, private transport users have larger activity 

spaces than those of public transport users for all the six methods; while the average size of the 

activity spaces of private transport users is still larger when compared to that of public transport 

users for all the methods except MCP. However, as shown in the boxplot in Figure 3.10, the 

difference is only significant for CCG.  
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Figure 3.9 The four representative persons’ activity spaces generated by different methods. 
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Figure 3.10 The differences in size of activity spaces for private transport (1) and public transport 

users (2). 

3.3.2.2. Comparing physical-activity-friendly contextual exposures measured by different activity 

spaces 

Physical-activity-friendly contextual exposures are assessed for the 31 participants by CCG 

activity spaces, as well as the other five methods. The assessment is based on the intersection 

between activity space polygon features and the physical-activity-friendly context polygon 

features. Contextual exposures are evaluated as the ratio of the area of the intersection polygons 

to the area of the activity space. In other words, they are calculated by the percentage of a 

participant’s activity space that is physical-activity-friendly. The higher the percentage value, the 

higher the assessed contextual exposure. The assessment results of the 31 participants are 

displayed in Figure 3.11. The top section illustrates the physical-activity-friendly contextual 

exposures assessed by the different activity space methods, while the bottom section depicts the 
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number of days in which the participant is physically active for 30 min or more in a typical week. 

As indicated in the figure, CCG-assessed contextual exposures match the number of physically 

active days well. For instance, Participant 1 has a high physical activity level, while CCG is the 

only method that yielded high contextual exposure when compared to all other methods. For 

Participant 14, who has a medium level of physical activity, CCG estimated a reasonable level of 

contextual exposure, whereas SDE gave very high levels of exposure. Again, CCG is the only 

method that yielded moderate exposures, while all other methods gave extremely low values for 

Subject 25.  

To further investigate the performance of the methods for discovering the relationship 

between physical-activity-friendly contextual exposures assessed by the different activity space 

methods and physical activity level is examined using a scatter plot with trend lines (Figure 3.12). 

As indicated in the figure, the contextual exposures measured by CCG and KDS show a positive 

correlation with physical activity level, while SDE1 and SDE2 reveal a negative association. For 

GTB and MCP, inconsistent relationships are observed. Although both CCG and KDS reveal the 

positive correlation between physical-activity-friendly contextual exposures and physical activity 

level, CCG has more robust results based on the trend lines and plot points in the figure. 
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Figure 3.11 The physical-activity-friendly contextual exposures assessed by the different activity 

space methods and the physical active days per week for the 31 participants. 
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Figure 3.12 The correlation between physical-activity-friendly contextual exposures and physical 

activity level. (Vertical axis: the physical-activity-friendly contextual exposures level; horizontal 

axis: physical active days per week; trend lines are generated using the 2nd order polynomial 

fitting method.). 
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3.4. DISCUSSION 

This study proposed an innovative method for delineating activity space for environmental 

exposure assessment based on GIS and GPS tracks data. By implementing the method with a GPS 

tracking dataset collected in Chicago, the proposed method generates more reasonable and reliable 

results when compared with other methods. 

The proposed method focuses on movement pattern mining and core-area abstraction using 

the entire GPS trajectory patterns instead of individual GPS points. As listed in Table 3.4, the 

activity spaces derived with GTB, KDS, MCP are large and cover all the GPS tracking points. In 

these methods, each GPS point is indifferently considered as part of the activity space. The 

consequence of this is that the result includes not only the critical activity locations but also areas 

that participants passed by when traveling between activity locations. In contrast to other 

approaches, and by abstracting core areas based on GPS tracking data, the proposed method 

generates activity spaces based on the core areas that cover only the prominent parts of the points. 

All frequently visited activity destinations and more than 90% of the total GPS tracking records 

are covered in the CCG activity spaces. Further, the CCG can generate multiple areas to portrait 

individual activity space instead of a single continuous region, so the places that participants only 

passed by can be excluded. All other activity space techniques generate one activity space that 

unavoidably includes a large area of irrelevant space. This error can be exacerbated, as shown in 

Figure 3.9, when dealing with highly mobile subjects whose movement pattern is dispersed or 

strongly directional. 

While other methods ignore the potential activity opportunities and environmental 

exposure around a person’s critical activity locations, which are also crucial factors for 

environmental exposure assessment, this study includes these potential areas to generate activity 
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space by innovatively utilizing the crystal-growth algorithm. The idea is developed based on the 

fact that people are familiar with the environment and activity opportunities of the areas around 

their core activity locations (e.g., home, workplace). Even though they are not captured by their 

GPS trajectories during the tracking period, it is highly possible that people chose or will choose 

to undertake the daily activity and are or will be exposed to the contextual environments in these 

areas. For instance, in Figure 3.9, the CCG activity space of Person D contains a sub-area on the 

south of the city. According to the sojourn time spent in that area and the context of accessibility, 

an independent activity area is generated, which is centered at that core area and includes the 

potential activity opportunities. For other methods, GTB, KDS, and MCP activity spaces only 

include the actual GPS-tracked locations, while SDE doesn’t even cover that area, since it is so 

isolated from other activity locations. 

By incorporating the hexagon-grid-based accessibility-weighted plane, this is the first 

study that takes into account the context of accessibility for activity space delineation. 

Accessibility is a critical but disregarded factor in previous research. Inaccessible areas in a study 

area may include private houses, water bodies and restricted areas (e.g., airport). Since people can 

only access and undertake daily activities at accessible locations, including inaccessible areas in 

the activity space introduces error for delineating people’s activity space as well as environmental 

exposure assessment. Further, the CCG method generates activity space from core areas based on 

specific travel time distance represented on the accessibility-weighted planes. Various levels of 

road networks and walkable areas are regarded as accessibility-friendly contexts with different 

travel speeds for private and public transport users, while people cannot trespass barrier contexts 

and need to bypass them, so more accurate results can be achieved by considering the context of 
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accessibility. Additionally, the CCG method uses a hexagon grid for the weighted planes instead 

of the widely used raster grid to represent the context of accessibility more accurately. 

The CCG method takes into account the ownership of automobiles, which is a critical factor 

that influences the size of people’s activity space but was widely ignored in previous studies. 

Although living in the same neighborhood, the transportation network and facilities have different 

effects on the accessibility of different groups of residents. For private transport users, road 

networks are treated as a high-accessibility context. Thus, their activity spaces grow and are 

enlarged along road networks. Notice that there is a primary road passing through the area from 

east to west in Figure 3.8, so the activity space extends in an east-west direction. While public 

transport users rely heavily on the bus and metro system, their activity space extends along the bus 

and metro routes. Further, different from private transport users who could utilize all the road 

networks effectively by driving their own cars, the public transport users can only increase their 

travel speed by taking buses or the metro. Although the bus routes are densely distributed in the 

area, the average travel speed is much lower than that of private cars. Not surprisingly, the CCG 

activity space of public transport users is much smaller than the ones of private transport users. By 

considering the different environmental effects of accessibility on different residents, as indicated 

in Figure 3.10, the CCG activity spaces of private transport users are significantly larger than those 

of public transport users, which highlights the fact that residents with automobiles have high 

accessibility and thus a large activity space. Whereas none of the other activity space methods 

consider the effects of automobile ownership on activity space, which introduces error in both the 

delineation of activity space and the assessment of environmental exposures.  

In this study, the exposure to physical-activity-friendly contexts is utilized as an example 

for comparing different activity space methods. Physical activity has been intensively investigated 
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in past research, and it is highly related to obesity. The associations between physical-activity-

friendly contexts and physical activity/obesity were found to be inconsistent and influenced by 

different delineations of activity space in environmental exposure assessment (James et al. 2014). 

For instance, Zenk et al. (Zenk et al. 2011) explored the environmental influences on dietary and 

physical activity through comparing the results generated by two different activity space methods 

(standard deviation ellipses and daily path areas), and inconsistent results were found. In Oliver et 

al.’s (Oliver et al. 2007) study, the influence of land use on walking behaviors was examined by 

using 1-km circular and line-based road network buffers. The author found that the selection of 

activity space methods has considerable influences on the analytical results (Oliver et al. 2007). In 

addition, different kinds of activity space methods for built environment assessment were 

compared by analyzing their relationship with energy balance and obesity in other studies, e.g., 

(James et al. 2014, Zhao et al. 2018). These results indicate that activity space delineations have a 

significant influence on the observed associations between environmental exposures and health 

outcomes or behaviors (James et al. 2014, Zhao et al. 2018). Although the results are inconsistent, 

many past studies have observed the positive relationship between people’s exposures to physical-

activity-friendly contexts and their physical activity level (Handy et al. 2002, Mota et al. 2005, 

Berke et al. 2007, Maroko et al. 2009, Santos et al. 2009, Zenk et al. 2011, Roberts 2017). CCG 

is the only activity space method that discovered such positive association in this study. The 

comparative results in Figures 3.11 and 3.12 support the idea that the proposed context-based 

crystal-growth activity space method performs better than other activity space methods in 

environmental exposure assessment. Although it is not feasible to use regression models to 

investigate the relationship between contextual exposures and participants’ physical activity due 

to the small sample size and the lack of other independent variables, this study obtained results 
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that reasonably justify the usefulness and effectiveness of the proposed CCG activity space method 

for exposure assessment and environmental health studies. Further, although this study only 

implements the new method for assessing environmental influences on physical activity, it can be 

easily applied to other environmental health studies. 

In summary, the CCG activity space method achieves a balance between the actual 

activities captured by GPS trajectories and the context-based potential activity opportunities 

around core areas, which are both crucial factors for environmental exposure assessment. 

According to the results, the SDE and MCP are too sensitive to the pattern of the GPS trajectories; 

they always include much irrelevant space that makes the activity space too large. Remote activity 

sites that are far from the other activity locations tend to be ignored by SDE. GTB is more focused 

on travel behavior and therefore ignores the important activity locations. With respect to KDS, 

similar to all other existing methods, it disregards the context of accessibility.  

As discussed above, the existing activity space methods fail to mitigate the UGCoP. 

Spatially, the context of accessibility is ignored, and thus the activity spaces derived indifferently 

include many areas that may not be accessible. Furthermore, the effects of automobile ownership 

on activity space are ignored, therefore introducing uncertainty in the delineation of activity space. 

Moreover, arbitrary cut-off distance is used for the delineation of activity space, which adds error 

in the assessment of environmental exposures. Temporally, the duration in which individuals 

experienced environmental context is treated merely as a multiplier of exposure, while the 

interactions with space during the time (the more time spent at the location, the more familiar with 

the surrounding area) is overlooked. The CCG activity space method addresses these issues and 

delineates individual activity space more reasonably. It thus helps mitigate the UGCoP when 

assessing environmental exposure by people’s activity space. 
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Finally, this research has several limitations that need to be explored or addressed in future 

studies. First, this study implements the proposed activity space method based on the 7-day GPS 

trajectories of a small sample of participants and compares the results with other existing methods 

from the aspects of the geometric characteristics of the activity space, its correspondence with 

subjects’ daily activity, and visual interpretation. However, a larger dataset with the GPS 

trajectories of more subjects and further utilizing of the proposed technique for environmental 

exposure assessment are needed in future research to further evaluate and justify the method. 

Second, although the CCG is compared with other existing approaches based on GPS tracking 

data, there are also methods that don’t rely on GPS or GIS. For instance, studies that used map-

based electronic questionnaires (Chaix et al. 2012, Kestens et al. 2018), mobility surveys (Kestens 

et al. 2012) and activity space questionnaires (Shareck et al. 2014) also yielded useful results. 

Although these methods based on self-reported information may include recall bias and not be 

geographically accurate, they can capture more background information about participants’ 

activities (Kestens et al. 2018), such as the transportation modes and social interactions (Kestens 

et al. 2017). Thus, further study is needed to compare these methods or integrate them with CCG 

to generate more accurate activity space. Third, the final activity space is hexagon-grid based, so 

distance decay functions can be applied optionally to the results to generate a weighted activity 

space, in which the core areas have a weigh according to their NST values. The weights of other 

cells can be calculated with specific distance decay functions based on travel distance from the 

core areas. Fourth, as the only parameter when calculating the growth extent of all core areas, for 

the purpose of illustration, 𝐺𝐸ℎ is set to 10-mins’ travel distance for all subjects in this study. 

However, it can also be determined based on personal mobility (such as age and health condition) 

to increase accuracy. Fifth, the method is based on the assumption that people are familiar with 
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the environment and activity opportunities of the areas around the core areas, and it is highly 

possible that people choose to undertake the daily activity and expose to the context in these areas. 

However, even if only rarely, it is possible that one person may spend a lot of time at one location 

but is still not familiar with the surrounding area. This problem could be addressed by cross-

validation with an activity diary data in future studies. 
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CHAPTER 4: AN ANALYTICAL FRAMEWORK FOR INTEGRATING THE 

SPATIOTEMPORAL DYNAMICS OF ENVIRONMENTAL CONTEXT AND 

INDIVIDUAL MOBILITY IN EXPOSURE ASSESSMENT3 

 

4.1 INTRODUCTION 

Environment-related chronic diseases are one of the biggest threats to public health. 

According to the World Health Organization (WHO), 22% of the global burden of disease is 

caused by environmental risks (Prüss-Ustün et al. 2016). Because environmental exposure is a 

significant factor that influences health behaviors and outcomes, researchers in public health and 

health geography have put considerable effort into assessing environmental impacts on health 

(Mitchell et al. 2016, Sallis et al. 2016, Browning and Lee 2017). Evidence shows that exposures 

to different environmental factors, such as air and noise pollution (Eriksson et al. 2007, Ta et al. 

2015, Park and Kwan 2017), the built environment (Troped et al. 2010, Ding et al. 2011, Sallis et 

al. 2016, Browning and Lee 2017) and the food environment (Morland and Evenson 2009, Caspi 

et al. 2012, Cobb et al. 2015, Gamba et al. 2015, Lytle and Sokol 2017), have significant 

associations with various health behaviors, including physical activity (Lachowycz et al. 2012, 

Koohsari et al. 2015, Sallis et al. 2016), tobacco and drug use (Kwan et al. 2011, Epstein et al. 

2014, Lipperman-Kreda et al. 2015, Shareck et al. 2015), and health outcomes, which includes 

obesity and obesity-related disease (Andersen et al. 2008, Oliver and Hayes 2008, Chaix 2009, 

Millstein et al. 2009, Seliske et al. 2009) and mental health disorders (Curtis 2010, Stigsdotter et 

al. 2010, Houle and Light 2014, Wheaton and Clarke 2016). 

                                                 
3 Reprint, with permission, from Wang, J. and Kwan, M.-P., 2018. An Analytical Framework for Integrating the 

Spatiotemporal Dynamics of Environmental Context and Individual Mobility in Exposure Assessment : A Study on 

the Relationship between Food Environment Exposures and Body Weight. International Journal of Environmental 

Research and Public Health, 15 (9), 2022–2045. 
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The food environment, among different environmental factors, is one of the critical factors 

that could lead to obesity (Kestens et al. 2012) and other obesity-related chronic diseases such as 

type II diabetes (Auchincloss 2009) and cardiovascular diseases (PAGAC 2008), whose 

prevalence has increased rapidly in recent decades (Ogden et al. 2014). Increasing public concerns 

have prompted a growing number of studies on the effects of food environment exposures on 

obesity. Previous studies found that living in food desserts (Walker et al. 2010) and exposures to 

unhealthy food outlets (Inagami et al. 2009) may encourage unhealthy food intake behavior that 

is associated with a higher likelihood of obesity. Furthermore, the association between food 

environment exposures and obesity has been utilized in developing intervention strategies to 

improve public health by numerous institutions worldwide (Reisig and Hobbiss 2000, Committee 

on Accelerating Progress in Obesity 2012, Vandevijvere et al. 2015).  

However, the findings of the effects of food environment exposures on obesity are 

inconsistent (Holsten 2009, Chen and Kwan 2015, Cobb et al. 2015). Although a higher likelihood 

of obesity has been found to be significantly associated with exposures to unhealthy food (e.g., 

fast food restaurants) in many studies (Maddock 2004, Morland and Evenson 2009), it was not 

observed in other research (Zick et al. 2009, Jilcott et al. 2011, Lee 2012). For example, exposures 

to fast food restaurants were found to be positively associated with the prevalence of obesity in 

some studies (Davis and Carpenter 2009, Inagami et al. 2009, Li et al. 2009), while no correlation 

(Jeffery et al. 2006, Dunn et al. 2012) or even negative association (Black et al. 2010) was 

observed in other studies. The inconsistent findings regarding the effects of the food environment 

on obesity bring enormous challenges on implementing effective policy to improve public health.  

Many potential issues could cause these inconsistent findings, including the modifiable 

areal unit problem (Kwan 2018b), the uncertain geographic context problem (Kwan 2018b), 



91 

 

and spatial non-stationarity (Wang, Lee, et al. 2018). To examine whether the food environment 

has significant influences on obesity, an important task is to accurately measure individual 

exposure to relevant environmental factors (Kwan et al. 2018). Past studies that examine the 

effects of environmental exposures on health outcomes have predominantly used residential 

neighborhoods as contextual units (Frank et al. 2005). In these studies, residential neighborhoods 

were defined either by the administration units (e.g., census tracts) in which people’s homes are 

located or by buffer areas with a specific radius around people’s home location (Feng et al. 2010, 

Leal and Chaix 2011, Clark and Scott 2014). However, residential neighborhoods only partially 

represent the environmental context that affects people’s health, since people move around in their 

daily life (Wiehe, Hoch, et al. 2008, Kwan 2009a, Basta et al. 2010). Identifying environmental 

context based solely on the residential neighborhood may thus lead to inaccurate contextual 

exposure assessment and erroneous results concerning the relationships between environmental 

contexts and health outcomes (Cummins 2007, Kwan 2013). This methodological issue may 

contribute to the inconsistent findings of past studies and has been articulated as the uncertain 

geographic context problem (UGCoP) by Kwan (2012a).  

The UGCoP refers to the problem that findings about the effects of environmental factors 

(e.g., exposure to fast food restaurants) on individual health outcomes (e.g., obesity) could be 

affected by how contextual units are geographically delineated and the “temporal uncertainty in 

the timing and duration in which individuals experienced these contextual influences” (Kwan 

2012b). In light of the dynamic nature of people’s daily activity, people’s movement in space and 

time should be taken into account while measuring their food environment exposures and its 

effects on obesity (Kwan 2013). To mitigate the UGCoP, portable GPS devices can be utilized to 

accurately trace human movement in space and time, and advanced GIS methods can be used to 
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relate activity locations to relevant environmental risk factors (Almanza et al. 2012, Kwan 2012b). 

Further, GPS trajectories can be used to derive human activity space, which is more representative 

of people’s daily context than the residential neighborhood (Chaix, Méline, Duncan, Merrien, et 

al. 2013). The integration of GPS and GIS provides a powerful means for investigating the 

relationships between environmental contexts and health outcomes (Wiehe, Hoch, et al. 2008, 

Maddison and Ni Mhurchu 2009).  

Individual GPS trajectories capture people’s movement in space and time and thus help 

mitigate the UGCoP through more accurately delineating contextual units. A growing number of 

studies have started to adopt GPS-based activity space methods to investigate environmental 

effects on health outcomes (Kestens et al. 2012, Laatikainen et al. 2018, Wang, Kwan, et al. 2018). 

However, environmental contexts can vary over time in a highly complex manner and are thus 

temporally uncertain (Kwan 2018b). Some contextual variables change over the 24-hour period of 

a day (e.g., air pollution and the food environment), and some change over the seasons (Gulliver 

and Briggs 2005, Park and Kwan 2017). The temporal uncertainty of the environmental context is 

mostly ignored and not taken into account in environmental exposure assessment in previous 

studies. With regard to the food environment, food outlets open and close according to their daily 

schedules. Furthermore, many food outlets have different opening hours for weekdays and 

weekends. Given the complexity and spatiotemporal uncertainties of the food environment, it is 

highly challenging to accurately delineate the environmental context and assess individual 

exposures to the food environment. The UGCoP may introduce considerable errors to the results 

if the spatial and temporal variability of the food environment and people’s daily movement in 

relation to such environment are not appropriately considered, but most previous research has paid 

little attention to them. 
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To address the challenges of the UGCoP, this paper proposes an analytical framework that 

utilizes GIS, time geography and GPS trajectory data to assess individual food environmental 

exposures for environmental health studies. In the framework, an environmental context cube 

(ECC) integrates variations in the food environment over space and time into a 3-D cube. By 

buffering individual GPS trajectories in 3-D to generate the individual space-time tunnel (ISTT) 

and projecting it into the ECC, environmental exposures can be derived and assessed by identifying 

the 3-D intersection of the ISTT and ECC. Based on the intersection, we calculate the 

environmental context exposure index (ECEI) as a standardized measure of individual exposure 

to the food environment. Considering both the spatiotemporal variations in the food environment 

and the dynamics of people’s daily movement, the ECEI may provide a more accurate and reliable 

measurement of individual exposure to the food environment. The ECEI is utilized in this study to 

explore the relationship between individual food environment exposures and the overweight status 

for 46 participants using data collected with GPS in Columbus, Ohio, and binary logistic regression 

models. The results indicate that the proposed framework is effective for assessing individual 

exposures and investigating their health effects when compared with other widely used food 

environment exposures assessment methods. Addressing the spatiotemporal variations of 

contextual influences, the framework may help mitigate the spatial and temporal uncertainties in 

the food environment in public health studies. Further, the methodology is also useful in a wide 

range of environmental health research. 

4.2 THE PROPOSED ANALYTICAL FRAMEWORK 

This study proposes an analytical framework for assessing the effects of environmental 

exposures on individual health outcomes using the food environment as an example. The 

framework seeks to more accurately measure individual food environment exposures so that more 
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robust research findings can be obtained. Figure 4.1 illustrates the framework that integrates GIS, 

time geography, and GPS tracking. For this study, the food environment (BMI-unhealthy food 

outlets) is selected to generate 3-D environmental context cubes (ECC) for weekdays, Saturdays, 

and Sundays, which represent the spatial and temporal dynamics of the environmental contexts. 

By buffering individual GPS trajectories in 3-D, an individual space-time tunnel (ISTT) is 

generated to represent individual exposure space. By projecting the 3-D ISTT into the 

corresponding 3-D ECC and identifying their intersection, the individual environmental context 

exposure index (ECEI) can be derived as a standardized exposure measure. Based on the ECEI, 

the effect of the food environment on overweight is explored with statistical models, and the results 

are compared with other methods. Details of the dataset, the ECC, the ISTT, and the ECEI are 

discussed in the following sections. 

 

Figure 4.1 The proposed analytical framework. 
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4.2.1 Study Area and Data 

The study area for this research is Franklin County (Ohio, U.S.), which is part of the 

Columbus metropolitan area and where the city of Columbus is located. It is the second-most-

populated county in Ohio where the percentage of obese or overweight adults is 63.9% (Franklin 

County Community Health Needs Assessment Steering Committee 2013). The county includes 

urban, suburban, and some rural areas. This characteristic is helpful for a study that seeks to 

consider the influences of various land uses on people’s health outcomes. In addition, Franklin 

County has a diverse racial composition, and also has both wealthy and impoverished 

communities. Further, there are 3727 food outlets in the county that include many kinds of food 

retailers (e.g., fast food restaurants, full-service restaurants, and supermarkets) that provide 

different types of foods. These features of Franklin County facilitate the identification of the spatial 

heterogeneity of the food environment and the differences in the levels of exposure among the 

county’s population with various socio-economic statuses. 

The GPS trajectory dataset used in this research was collected as part of a larger study that 

examines the influence of parks on people’s physical activity in four U.S. cities: Albuquerque 

(NM), Chapel Hill and Durham (NC), Columbus (OH), and Philadelphia (PA). In each of these 

cities, participants were recruited in person in selected public parks and neighborhoods 

surrounding these parks following household interviews. For each selected park and its 

surrounding neighborhoods, about 300 persons from different socio-economic backgrounds were 

randomly solicited to participate in the study. In the end, 238 subjects participated in the study and 

51 of them were from the Columbus study site. Participants in the study were asked to wear a GPS 

and an accelerometer for three consecutive weeks. The data were collected from August 2009 to 

October 2010 in three selected seasons (spring, summer, and fall) to avoid the winter months in 
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which people may undertake fewer outdoor physical activities (since the purpose of the larger 

project was to assess the influence of parks on people’s physical activity). Geographic location 

was recorded by the GPS devices with a time interval of one minute. In addition, data about 

subjects’ demographic, anthropometric and socio-economic statuses were also collected. Subjects’ 

overweight status in the dataset was assessed by the Body Mass Index (BMI), which was calculated 

by dividing the subject’s weight (kg) with his or her height in meters squared (m2).  

The environmental context data for this study were derived from a comprehensive digital 

geographic database of Franklin County maintained by the Franklin County Auditor’s Office. It 

includes the attributes and physical boundaries of relevant environmental contexts. Food outlets 

data were derived from the food license data of Franklin County, and their business hours were 

collected and confirmed using Google Map and phone calls. These data include each food outlet’s 

business name, geographic location, business hours and business category according to standard 

industrial classifications. 

4.2.2 Data Preprocessing 

GPS signals may be absent in locations near tall buildings or under dense tree canopies, 

and this may lead to gaps in GPS tracking data. Data preprocessing is thus necessary to improve 

the reliability and usefulness of GPS data. Consistent with the procedures used by Wiehe et al. 

(2008), missing GPS records in the Columbus GPS dataset were inserted at the location of the 

earlier point if the distance between two temporally adjacent records bounding a period of missing 

data was less than 30 m. If this distance was longer than 30 m and the gap between two recorded 

GPS points was less than 1 hour, interim 1-minute time points were imputed. Missing GPS points 

for time periods longer than an hour were considered missing and not imputed. Further, only 
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survey days with eight or more hours of valid GPS records for each subject were included in the 

analysis. 

Although the original dataset had 51 participants, only subjects with valid GPS records for 

at least five weekdays and two weekend days were included in the analysis. This ensured that there 

were sufficient data for the selected subjects for at least seven days that covered their daily 

activities in both weekdays and weekend days. As a result, 46 participants were finally selected as 

valid subjects for further analysis. Although the sample size is not large, the subjects cover a range 

of socio-economic attributes (e.g., age and education level) and are thus useful for this exploratory 

study of the proposed analytical framework for food environment exposure measurement.  

Table 4.1 shows the demographic and socio-economic characteristics of the 46 participants 

in the sample used in the study. These participants are predominately female (60.87%) and younger 

people. All of them are adults, and only 2.18% are seniors older than 65. With respect to the 

education level, 56.52% of the subjects have a college degree or higher, while 43.58% of them 

have a high school degree or lower. The overweight status among the 46 participants is balanced 

in that half of them are overweight, and the other half are not overweight. 

Table 4.1 The socio-demographic characteristics of the participants. 

Socio-demographic Variables Percentage 

Gender 
Male 39.13% 

Female 60.87% 

Age (years old) 

18–30 56.52% 

31–65 41.30% 

65 + 2.18% 

Education 
With College Degree or Higher (≥ College Degree) 56.52% 

With High School Degree or Lower (< College Degree) 43.48% 

Overweight 

Status 

Overweight 50% 

Non-overweight 50% 
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4.2.3 Representing Dynamic Environmental Contexts Using the Environmental Context Cube 

Any attempt to measure exposures to the food environment needs to begin with 

representing the food environment, which in turn requires researchers to consider the location and 

distribution of food outlets as well as the kinds of food those outlets provide. The geographic range 

of influence from food outlets can be assessed by creating homogeneous buffer areas covering 

food outlet locations with a specific distance (such as 100 m or 1 km). Importantly, however, 

representation of food outlets’ effects on health behavior should take into account the effect of 

distance decay rather than using arbitrary distance cutoffs: Environmental effects change as a 

function of distance, with locations farther from a food outlet less influenced by that outlet than 

nearer locations are. A few researchers have included distance-decay functions (Páez et al. 2010, 

Dai and Wang 2011, Kestens et al. 2012, Lamichhane et al. 2012, Lee et al. 2013, Moore et al. 

2013, Xu et al. 2015) as part of their food environment studies with a view to accounting for the 

effect of distance, but even these studies have treated the food environment statically and have 

failed to consider the dynamic features of the food environment (e.g., food outlets’ opening and 

closing at different times of the day). 

As some researchers have noted (Kwan 2012a, Chen and Kwan 2015), environmental 

contexts undergo continuous change. For example, air pollution levels differ throughout the day. 

For this reason, exposure assessment may produce erroneous results if the variability of the 

environmental context is ignored (Park and Kwan 2017). Furthermore, the contextual influences 

of the food environment may also differ with time of day. Previous studies have largely ignored 

temporal variations in the food environment, although most food outlets operate on specific 

schedules and offer their services only during certain hours. Some even feature different schedules 

for weekdays and weekends. Accordingly, Chen and Clark (2016), arguing that space-only 
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methods of exposure assessment overlook the dynamic features of the food environment, proposed 

a spatiotemporal method that takes into account food outlets’ business hours when measuring 

access to food retailers. Although portrayal of the food environment spatiotemporally in Chen and 

Clark’s (2016) study is an important step forward for the study of environmental health, the study 

measures food access using census tracts as its contextual units and thus may still be susceptible 

to the UGCoP. As a result, further development is needed to more accurately assess individual 

exposures to the food environment and to mitigate the UGCoP.  

The ECC is developed in this study to address both spatial and temporal uncertainties in 

the food environment while accurately assessing individual exposures to that environment. It is 

designed to capture the complex dynamics of environmental contexts as well as individual 

exposures. Indeed, this extension of the space-time cube (Kwan 2000) is explicitly designed for 

use in environmental health research. The base of the space-time cube (or space-time aquarium), 

which is a time-geographic construct first introduced by Hägerstrand in the 1960s, represents the 

geographic contexts of the study area (x-axis and y-axis), with 3-D lines inside the cube 

representing an individual’s movement trajectories. The cube’s vertical dimension (z-axis) 

represents time. Figure 4.2 in the Appendix illustrates a space-time cube that integrates geographic 

contexts and GPS trajectories. Note, however, that this representation visualizes only individual 

movement trajectories in 3-D, whereas the environmental context is represented on a 2-D plane. 

Constrained by the 2-D plane, the environmental context can be visualized and analyzed at only 

one time point using this space-time cube framework. In real-world contexts, however, 

environmental contexts and their influence on moving subjects may change over both space and 

time in highly complex ways. Representation of the environmental context should thus be also 
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extended to capture and represent the dynamic features of the environment by integrating time as 

the third dimension.  

 

Figure 4.2 An example of the space-time cube (aquarium). 

By extending the traditional space-time cube, we propose the environmental context cube 

(ECC) as a new analytical framework for analyzing people’s movement and their dynamic 

relationships with their environmental context (e.g., the food environment). The ECC is a 

collection of 3-D voxels arranged on a regular grid in 3-D space. The value of each voxel represents 

the environmental context at a specific geographic location (x- and y-coordinate) at a specific time 

(z-coordinate). Thus, spatial and temporal variations in the environmental context are rendered as 

the different values of the voxels in 3-D space at various locations and times. In the temporal 

dimension of the cube, layers of voxels constitute the ECC, with each layer representing the spatial 

configuration of the environmental context at a specific time of day. The size of the voxels in the 

3-D space represents the spatial and temporal resolutions: The higher the spatial resolution, the 

more detailed the spatial variations represented; and the finer the temporal resolution, the more 

detailed is the representation of the temporal dynamics. Different spatiotemporal resolutions of the 
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ECC may affect the accuracy with which variations in the environmental context can be captured. 

To thoroughly examine the ECC while exploring the effect of spatiotemporal resolutions (or scale 

effects) on measurement accuracy, we built ECCs featuring combinations of three different spatial 

resolutions (100 m × 100 m, 150 m × 150 m, 200 m × 200 m) and two temporal resolutions (30 

min, 10 min), and then evaluated and compared their performance. 

In this manner, we constructed a series of 3-D ECCs to represent the unhealthy food 

environment of the study area. We classified the food outlets in the study area into three categories 

as described by Rundle et al. (2009)—BMI-healthy, BMI-unhealthy, BMI-neutral. Because 

exposure to BMI-unhealthy food outlets may be related to high BMI, as has been observed in many 

previous studies (Maddock 2004, Davis and Carpenter 2009, Li et al. 2009, Mellor et al. 2011), 

BMI-unhealthy food outlets were used in this study to generate 3-D ECCs for measuring individual 

exposure to unhealthy food environment. In Rundle et al.’s (2009) classification system, BMI-

unhealthy food outlets include fast-food restaurants, convenience stores, meat markets, pizzerias, 

bakeries, and candy and nut stores. Franklin County, the study area, contains 1,645 BMI-unhealthy 

food outlets. All of them are included in the food environment analysis in this study. Figure 4.3 

shows the location of these BMI-unhealthy food outlets. 
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Figure 4.3 The study area (Franklin County) and the location of BMI-unhealthy food outlets. 

In analyzing the business hours of the 1645 BMI-unhealthy food outlets included in the 

study, we found that many food outlets had different schedules on weekdays and weekends; some 

even had different schedules on Saturdays and Sundays. To give just one example, a restaurant 

might be open from 10 a.m. to 10 p.m. on weekdays, from 11 a.m. to 10 p.m. on Saturdays, and 

from 11 a.m. to 8 p.m. on Sundays. Accordingly, we generated three different environmental 

context cubes (ECCs) to better represent this dynamic food environment: one for weekdays, one 

for Saturdays, and the other for Sundays. To construct the ECC for one day, we first generated 

layers of the food environment at different times of the day. For ECCs with a temporal resolution 

of 30 min, we generated a food environment layer for each of the 48 half-hour time slots in the 

day. For each time slot, a food environment layer was created to estimate the extent and degree of 

environmental effects of BMI-unhealthy food outlets based on the locations of the outlets open at 

that specific time.  



103 

 

As already noted, any assessment of the environmental influence of food outlets should 

take into account the effects of distance decay. For this reason, based on the location of the food 

outlets operating during each of the 48 time slots of a day, we modeled the decline in each food 

outlet’s influence using three distance-decay methods that were used in previous environmental 

health studies (Páez et al. 2010, Dai and Wang 2011, Kestens et al. 2012, Lamichhane et al. 2012, 

Lee et al. 2013, Moore et al. 2013, Xu et al. 2015): kernel density estimation (KD), an inverse-

square distance-decay function (ISDD), and a negative-exponential distance-decay function 

(NEDD). The food environment at a specific time of day (a time slot) was thus represented as a 

raster layer created by estimating the extent and degree of the environmental effects of BMI-

unhealthy food outlets based on the locations of food outlets operating at that time of day, using 

one of the three distance-decay functions. Figure 4.4 shows the food environment layers at three 

different time slots of the same day, as generated by the three distance-decay methods. Separate 

food environment layers were generated for the 48 time slots using each of these methods for three 

kinds of days (weekdays, Saturdays and Sundays). Then, for each kind of day, the 48 food 

environment raster layers were voxelized with the unit size of 30 min and mapped to the z-axis. In 

this way, a 3-D environmental context cube (ECC) was constructed by organizing the 48 voxelized 

layers chronologically using the assigned z-values (which represent the specific time 

corresponding to each layer). Because the ECCs were implemented using three distance-decay 

methods (KD, ISDD, NEDD) in three spatial resolutions (100 m × 100 m, 150 m × 150 m, 200 m 

× 200 m) for three kinds of day (weekdays, Saturdays, and Sundays), 27 ECCs were ultimately 

constructed with a temporal resolution of 30 min. 
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Figure 4.4 The food environment layers at different time of a day generated by the three different 

distance-decay methods (the food environment layers with spatial resolution of 100 m × 100 m 

are used in this figure to illustrate the three distance-decay methods). 

To capture more details of the temporal variations in the food environment, another 27 

environmental context cubes (ECCs) with a temporal resolution of 10 min were constructed using 

the same three distance-decay methods, three spatial resolutions, and three kinds of day. Each of 

these ECCs has 144 food environment layers, where each layer represents each of the 10-minute 

slots that make up the 24 hours of a day (e.g., 10:10 a.m., 10:20 a.m. and so on). These layers were 

calculated by raster algebra using linear interpolation, in which the pixel value of an additional 

layer (in addition to the original 48 layers at the resolution of 30 min) was calculated using linear 

polynomials based on the values of the corresponding pixels in the two temporally adjacent layers 

among the 48 30-minute resolution layers. These 144 food environment layers were then 

voxelized, mapped to the z-axis, and organized chronologically to form the ECCs with a temporal 

resolution of 10 min. This higher temporal resolution allowed the temporal dynamics of the food 
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environment in any particular day to be better represented. Figure 4.5 illustrates the process of the 

temporal interpolation as well as the generation of a 3-D ECC and its food environment layers. 

 

Figure 4.5 The process of the temporal interpolation and the generation of the 3-D environmental 

context cube with food environment layers. 

To facilitate the implementation and computation of the 3-D environmental context cubes 

(ECCs), we converted each 3-D ECC to a 3-D point cloud, with each voxel in the cube represented 

by a point in the cloud at the centroid of the original voxel. As shown in Figure 4.6, the three 

dimensions of the points correspond to the x-coordinate (X), y-coordinate (Y), and time (T) seen 

in the original ECC. The values of the environmental factors were stored as an attribute table linked 

to each point in the 3-D point cloud.  

 

Figure 4.6 Implementation of the 3-D environmental context cube using a 3-D point cloud. (a): 

an environmental context cube, (b) voxels in the cube represented by points at the centroid of the 

original voxels, (c) the corresponding 3-D point cloud. 
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4.2.4 Capturing the Spatiotemporal Exposure Space with Individual Space-Time Tunnel 

Using GPS trajectory data for individual exposure assessment could capture the daily 

movement of people and thus help mitigate the UGCoP to some degree. However, existing 

methods capture only the spatial extents of individuals’ activities using 2-D polygons that represent 

a person’s activity space (e.g., GPS trajectory buffers, standard deviation ellipses, and minimum 

convex polygons) or, at most, weigh the accumulated time spent at different activity locations (e.g., 

kernel density surface, context-based crystal-growth activity space (Wang, Kwan, et al. 2018)), 

where environmental contexts were considered statically and the dynamics of the food 

environment ignored. Although these methods consider the accumulated time that an individual 

spends at different locations (e.g., person A spends 8 hours at the workplace on weekdays), they 

ignore temporal variations in people’s location of activity (e.g., person A stays at the workplace 

from 8 a.m. to 12 p.m. and from 1 p.m. to 5 p.m. on weekdays). Knowledge of the exact times 

when a person is at a location is essential for understanding the resulting level of exposure to the 

food environment. For example, consider a person who visits an area where many fast food 

restaurants may be found but does so at 1 a.m., when they are closed. Existing activity space 

methods would include this occurrence in the environmental context exposure assessment even 

though the person was not actually exposed to fast food restaurants at that time. In this way, 

overlooking temporal variations in the food context and the exact times when people undertake 

their daily activities at various locations may introduce measurement error. 

To help address the temporal uncertainty that is an essential element of the environmental 

context and the dynamics of people’s daily activity, we propose the individual space-time tunnel 

(ISTT) as a way of representing the individual exposure space. The ISTT was generated by a 3-D 

buffer of an individual’s GPS trajectory at a specific distance (e.g., 100 m) in a 3-D space. To 
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generate the ISTT, GPS trajectories were projected into the ECC according to the geographic 

coordinates and timestamps of the GPS records. As shown in Figure 4.7a, the GPS trajectory of a 

subject is projected into the 3-D space of an ECC, much like the space-time paths inside a space-

time aquarium. The voxels along a particular trajectory and its surrounding areas constitute the 

environmental context that influences the corresponding subject. Thus, environmental exposure 

should be derived using a 3-D buffer space of appropriate radius around people’s movement 

trajectories, as shown in Figure 4.7b. The buffer radius 𝐵𝑟, a user-defined parameter that represents 

the effective range of a particular environmental influence, can vary for different population 

groups based on individual socio-demographic attributes (e.g., age). For example, older adults and 

children may have a smaller 𝐵𝑟 than adolescents do, because they both tend to have lower mobility. 

We might also define 𝐵𝑟 as a function of travel velocity. For example, we might associate higher 

velocity with smaller 𝐵𝑟 , noting that higher velocity (i.e., quicker bypass) may allow for less 

influence on the subject from the environmental context around a location. For purpose of 

illustration, we set 𝐵𝑟 to 100 m in this exploratory study. 
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(a) (b) 

Figure 4.7 A GPS trajectory (a) and an individual space-time tunnel (b) projected into an 

environmental context cube. 

4.2.5 Measuring Food Environment Exposure with the Environmental Context Exposure Index 

The proposed 3-D environmental context cube (ECC) can capture the complexity and 

dynamics of the food environment, and the individual space-time tunnel (ISTT) can delineate the 

individual spatiotemporal exposure space by integrating spatial as well as temporal variations in a 

person’s daily activities. As a result, individual exposures to the food environment can be derived 

by the 3-D intersection of the ECC and the ISTT: By projecting the 3-D ISTT into the 

corresponding point cloud of the ECC, as illustrated in Figure 4.8, we can link exposure to the 

food environment with all points located inside the ISTT in the 3-D space. The results of the 3-D 

intersection allow calculation of the environmental context exposure index (ECEI), which in turn 

allows the measurement of individual exposures to the environmental context. By capturing the 

extent to which a person is exposed to the relevant environmental context during each time unit 
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throughout a day, the ECEI provides a new method for quantifying an individual’s level of 

exposures to the food environment. In this study, the ECEI was used to analyze the association 

between individual exposure to the food environment and health outcomes. 

 

Figure 4.8 The 3-D intersection of the point cloud and individual space-time tunnel. 

By identifying the 3-D intersection of the ISTT and the point cloud, subjects’ exposures to 

the food environment can then be derived. After abstracting all intersected 3-D points from the 

ECC, the ECEI was evaluated as follows: 

𝐸𝐶𝐸𝐼(𝑗)(𝑘) =  ∑
𝐸𝐶𝑖𝑗𝑊𝑖

𝑇

𝑛

𝑖=1
    (1 ≤ 𝑖 ≤ 𝑛) (4.1) 

𝑊𝑖 = {
1                 𝑖𝑓 𝑣𝑖 = 0

(
1

2
)

𝑣𝑖
         𝑖𝑓 𝑣𝑖 > 0

       (1 ≤ 𝑖 ≤ n) (4.2) 

where 𝐸𝐶𝐸𝐼(𝑗)(𝑘) is the environmental context exposure index of environmental factor 𝑗  for 

subject 𝑘, 𝐸𝐶𝑖𝑗 is the value of environmental factor 𝑗 for 3-D point 𝑖 based on the intersection of 
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the ISTT and the ECC, 𝑊𝑖 is the weight for 3-D point 𝑖, 𝑇 is the time span of the intersection (the 

time unit can be hour or day), and 𝑛 is the total number of points derived by the 3-D intersection. 

𝑊𝑖 is a user-defined parameter for calculating the environmental context exposure index 

(ECEI). In most cases, the point weight (𝑊𝑖) can be set to 1, but it can also differ for different 

research questions. One possible method for assigning voxel weight is to use movement velocity, 

as shown in Equation (2), where 𝑣𝑖 is the movement velocity of the subject when passing through 

voxel 𝑖: The higher the velocity, the smaller the weight should be, indicating less contextual 

influences. When speed equals 0, the subject is staying at that location, so weight is set to 1. A 

quickly moving subject, by contrast, may pass by a location quite rapidly; thus, the influence of 

the environmental factor at 3-D point 𝑖 should be small and the weight less than 1. Again, for 

purpose of illustration, 𝑊𝑖 was set to 1 globally for this exploratory study. 

Using this method, we calculated an environmental context exposure index (ECEI) for each 

of the 54 environmental context cubes (ECCs) separately. Because the three distance-decay 

methods generate ECCs with different value ranges, we standardized the ECEI by using z-score to 

facilitate the comparison of the exposures measured by different ECCs.  

4.2.6 Comparing the Individual Food Environment Exposure Measurement with Other Methods 

To compare the proposed analytical framework for food environment exposure 

measurement with other methods, four widely used exposure assessment methods (Shannon and 

Spurlock 1976, Arcury et al. 2005, Rainham et al. 2010, Zenk et al. 2011, Crawford et al. 2014, 

Kwan et al. 2018, Zhao et al. 2018) were also implemented with the same dataset. The four 

methods are GPS trajectory buffers (GTBs), standard deviation ellipses with one or two standard 

deviation(s) (SDE1, SDE2) and minimum convex polygons (MCPs). Figure 4.9 illustrates these 

four methods based on one subject’s GPS trajectory (note that the geographic coordinates of the 
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GPS tracks shown in this figure have been modified for the purpose of human subjects’ protection). 

The GTBs were created by a 100-meter 2-D buffer along the participant’s GPS trajectories. The 

buffering area covered all the daily activity locations that this subject visited in the study period. 

The SDE is another widely-used method for exposure space delineation. Based on the transformed 

mean center and the rotated major and minor axes of all the GPS points of the subject, an ellipse 

was obtained based on either one or two standard deviation(s) of the distances between all pairs of 

GPS points. The SDEs represent the spatial distribution and directional trends of the subject’s 

activity locations and normally does not include all of the GPS points. The MCP is the smallest 

convex polygon that contains all the GPS points of the subject, which covers all the daily activity 

locations. With the same data of BMI-unhealthy food outlets, exposure to BMI-unhealthy food 

environment was calculated as the density of BMI-unhealthy food outlets in these four delineations 

of exposure space. The results were standardized with z-score transformation and compared with 

those obtained using the ECCs and ECEIs.  
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Figure 4.9 Four widely used methods for delineating individual exposure space based on one 

subject’s GPS trajectory data. 

4.2.7 Analytical Approach 

To compare the performance of the environmental context cubes (ECCs) with different 

distance-decay methods at various spatial and temporal resolutions, as well as the exposure 

assessment results between the environmental context exposure index (ECEI) and other widely 

used food environment exposure measurements, we examined all these measurements and their 

relationship with participants’ overweight status using binary logistic regression models, which 

are widely used in public health studies (Li et al. 2009, Zick et al. 2009, Mellor et al. 2011). The 

response variable is individual overweight status (0: non-overweight; 1: overweight or obese) 

based on participants’ BMI (non-overweight: BMI < 25.0kg/m2; overweight or obese: BMI ≥ 25.0 

kg/m2), while the independent variable is individual food environment exposure. The models were 

GTB 

MCP 

SDE (1 SD and 2 SD) 

Research area 
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controlled for subjects’ age, gender, and education level. A total of 22 models were built with 

different measurements of BMI-unhealthy food environment exposure (18 measured by the ECEI 

based on various ECCs and 4 measured by other methods). The performance of these models was 

compared by the Akaike information criterion (AIC), Nagelkerke R2, likelihood ratio chi-square 

(LR χ2) and the corresponding p-value, which indicate the robustness of the model. The more 

robust a model is, the better exposure assessment will be obtained. In addition, the models were 

compared to see if a significant association existed between individual food environment exposure 

and overweight status.  

4.3 RESULTS 

4.3.1 Variation in Food Environment Exposure Measurements with Different Methods 

Individual food environment exposures were measured by the environmental context cubes 

(ECCs) and the environmental context exposure indexes (ECEIs) using three different distance-

decay methods, three different spatial resolutions, and two different temporal resolutions, as well 

as other four widely used methods (GTB, MCP, SDE1, and SDE2). Figure 4.10 illustrates the 

standardized measures of these methods for each participant. In the figure, exposures measured by 

the ECCs with three distance-decay methods include only those with the highest spatial (100 m × 

100 m) and temporal resolution (10 min), since they captured the finest detail of the spatial and 

temporal dynamics of the food environment. The measurement results of the ECCs with different 

spatial and temporal resolutions will be compared and discussed in the following sections. The 

horizontal axis of Figure 4.10 indicates the 46 participants in the study, while the vertical axis 

shows the food environment exposure measures. The figure indicates that different methods give 

considerably different exposure measures for the same participant.  
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Figure 4.10 Comparison of the exposure measures obtained with different methods for each 

participant. (ECC: environmental context cube; KD: kernel density estimation; ISDD: inverse-

square distance decay function; NEDD: negative-exponent distance decay function; GTB: GPS 

trajectory buffers; MCP: minimum convex polygons; SDE1: standard deviation ellipses with one 

standard deviation; SDE2: standard deviation ellipses with two standard deviations.) 

To investigate the relationship among all the exposure measures obtained using different 

methods, we perform bivariate Pearson correlation analysis between each pair of the measures. 

Table 4.2 illustrates the results, which indicates that more than half of the pairs do not have 

significant correlations, including the pairs of ECC(KD) – MCP, ECC(ISDD) – MCP, ECC(ISDD) 

– SDE1, ECC(ISDD) – SDE2, ECC(NEDD) – GTB, ECC(NEDD) – MCP, ECC(NEDD) – SDE1, 

ECC(NEDD) – SDE2, GTB – SDE1, MCP – SDE1 and MCP – SDE2. Although the other pairs 

show significant correlations, most of the coefficients are smaller than 0.6, which indicate 

moderate to low associations. Only the pairs ECC(KD) – ECC(NEDD), ECC(ISDD) – 

ECC(NEDD), GTB – MCP and SDE1 – SDE2 shows strong associations. It is reasonable that the 

results of the ECCs with different distance-decay methods are correlated with each other since 

they share the same model and concepts, while SDE1 and SDE2 are also the same methods with 
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various parameters. The results show that individual exposures measured by different methods are 

mostly different from and not correlated with each other, which indicates the existence of the 

UGCoP. Therefore, it is worth comparing these measurements and exploring the accurate ways to 

assess individual food environment exposures. 

Table 4.2 The results of the bivariate Pearson correlation analysis between each pair of the 

methods for food environment exposure assessment. 

Methods ECC(KD) ECC(ISDD) ECC(NEDD) GTB MCP SDE1 SDE2 

ECC(KD) - 0.407 * 0.658 * 0.438 * 0.364 0.508 * 0.476 * 

ECC(ISDD) - - 0.642 * 0.396 * 0.198 0.358 0.057 

ECC(NEDD) - - - 0.269 0.180 0.168 -0.033 

GTB - - - - 0.629 * 0.345 0.439 * 

MCP - - - - - 0.099 0.291 

SDE1 - - - - - - 0.699 * 

SDE2 - - - - - - - 

* p-value < 0.05 

4.3.2 Comparing the Performance of Food Environment Exposure Measurement Methods 

Table 4.3 shows the results of the binary logistic regression models with different 

measurements of individual BMI-unhealthy food environment exposure on the relationships 

between food environment exposure and overweight status. In the table, models KD100T10, 

KD100T30, KD150T10, KD150T30, KD200T10, and KD200T30 use exposures measured based 

on ECCs with KD as the distance-decay function in different spatial and temporal resolutions. In 

addition, models ISDD100T10, ISDD100T30, ISDD150T10, ISDD150T30, ISDD200T10, and 

ISDD200T30 use the exposure assessed based on ECCs with ISDD in various spatial and temporal 

resolutions. Furthermore, models NEDD100T10, NEDD100T30, NEDD150T10, NEDD150T30, 

NEDD200T10, and NEDD200T30 use exposure evaluated based on ECCs with NEDD in different 

spatial and temporal resolutions. Lastly, models M-GTB, M-MCP, M-SDE1, M-SDE2 use the 

measurement of individual food environment exposure based on four widely used methods (GTB, 

MCP, SDE1, and SDE2). The table shows that all the logistic regression models are statistically 
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significant with p-value < 0.001. The models explained at least 45% (Nagelkerke R2) of the 

variance of participants’ overweight status. Among these models, the most robust one is the 

ISDD100T10 with the smallest AIC (45.552), largest LR χ2 (28.217), and p-value < 0.001. The 

model explained 61.13% (Nagelkerke R2) of the variance of participants’ overweight status. The 

least robust model is the KD150T10 (AIC = 54.240, LR χ2 = 19.529), which only explained 

46.12% of the variance. 

Table 4.3 The results of binary logistic regression models with different measurements of 

individual BMI-unhealthy food environment exposure for relationships between food 

environment exposure and overweight status. 

Model a, b Method Spatial Resolution Temporal Resolution AIC Nagelkerke R2 LR χ2 p-value 

KD100T10 

ECC 

(KD) 

100 m × 100 m 
10 min 53.898 0.4677 19.872 0.00053 *** 

KD100T30 30 min 53.879 0.4681 19.891 0.00052 *** 

KD150T10 
150 m × 150 m 

10 min 54.240 0.4612 19.529 0.00062 *** 

KD150T30 30 min 54.228 0.4615 19.542 0.00061 *** 
KD200T10 

200 m × 200 m 
10 min 54.198 0.4620 19.571 0.00061 *** 

KD200T30 30 min 54.223 0.4616 19.546 0.00061 *** 

ISDD100T10 

ECC 

(ISDD) 

100 m × 100 m 
10 min 45.552 0.6113 28.217 0.00001 *** 

ISDD100T30 30 min 48.567 0.5624 25.202 0.00005 *** 

ISDD150T10 
150 m × 150 m 

10 min 53.272 0.4794 20.498 0.00040 *** 

ISDD150T30 30 min 52.801 0.4881 20.969 0.00032 *** 
ISDD200T10 

200 m × 200 m 
10 min 53.124 0.4822 20.645 0.00037 *** 

ISDD200T30 30 min 54.073 0.4644 19.696 0.00057 *** 

NEDD100T10 

ECC 

(NEDD) 

100 m × 100 m 
10 min 49.769 0.5420 24.001 0.00008 *** 

NEDD100T30 30 min 53.597 0.4734 20.172 0.00046 *** 
NEDD150T10 

150 m × 150 m 
10 min 52.945 0.4855 20.825 0.00034 *** 

NEDD150T30 30 min 51.792 0.5064 21.977 0.00020 *** 

NEDD200T10 
200 m × 200 m 

10 min 54.132 0.4633 19.638 0.00059 *** 
NEDD200T30 30 min 54.199 0.4650 19.571 0.00061 *** 

M-GTB GTB - - 51.462 0.5124 22.308 0.00017 *** 

M-MCP MCP - - 52.390 0.4956 21.380 0.00027 *** 
M-SDE1 SDE1 - - 53.542 0.4744 20.228 0.00045 *** 

M-SDE2 SDE2 - - 51.753 0.5071 22.016 0.00020 *** 

a N = 46 subjects, b Response variable: 0 non-overweight; 1 overweight, *** p-value < 0.001, AIC: Akaike information 

criterion (the smaller the value, the better the model fit), LR χ2: likelihood ratio chi-square (the larger the value, the 

better the model fit) 

Among the ECC models, the food environment exposures estimated by ISDD generates 

the best results, while the ones estimated by KD generate the worst results. Considering various 

spatial and temporal resolutions of the ECC, the finer the resolution, the better the results. For 

instance, among the ECC models with specific distance-decay function, the most robust model is 

always the one with the finest spatial resolution: KD100T30 (AIC = 53.879, Nagelkerke R2 = 

0.4681, LR χ2 = 19.891) for ECC(KD); ISDD100T10 (AIC = 45.552, Nagelkerke R2 = 0.6113, LR 
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χ2 = 28.217) for ECC(ISDD); NEDD100T10 (AIC = 49.769, Nagelkerke R2 = 0.5420, LR χ2 = 

24.001) for ECC(NEDD). In addition, the table indicates that ECCs with a temporal resolution of 

10 min normally generate better results compared to the ones with a temporal resolution of 30 min 

with several exceptions. 

Regarding the four widely used exposure assessment methods, GTB performs the best with 

AIC = 51.462, Nagelkerke R2 = 0.5124, LR χ2 = 22.308. However, the models with ECC(ISDD) 

and ECC(NEDD) still perform much better than the GTB-based model. It is worth noting that the 

models with ECC(KD) have the worst performance when compared to all the other methods, which 

may indicate that the effects of food outlets may not follow the decay patterns as depicted by a 

kernel density estimation. 

4.3.3 Association between Food Environment Exposure and Overweight Status 

The associations between food environment exposure based on different ECCs and 

participants’ overweight status are shown in Table 4.4. Almost all the models, except 

NEDD150T10, indicate that being female (compared to being male) is associated with higher odds 

of being overweight, while having a college degree and higher (compared high school degree and 

lower) is associated with lower odds of being overweight. However, a significant association 

between BMI-unhealthy food environment exposure and overweight status is observed for only 

three of the models (ISDD100T10, ISDD100T30, and NEDD100T10). Higher unhealthy food 

environment exposure is found to be significantly associated with higher odds of being overweight 

in models ISDD100T10 (odds ratio (OR): 6.81; 95% confidential interval (CI): 1.76, 45.3; p-value 

< 0.01), ISDD100T30 (OR: 4.35; CI: 1.27, 22.62; p-value < 0.1) and NEDD100T10 (OR: 3.13; 

CI: 1.08, 11.47; p-value < 0.1). Referring to the performance of models discussed above, these 
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three models are also the most robust models with the lowest AIC and highest LR χ2, as well as 

the highest explanation rate of the variance in participants’ overweight status.  

Table 4.4 The association between food environment exposure and overweight status analyzed 

by binary logistic regression models with food environment exposure measured by different 

ECCs. 

Variables Model a, b β (95% CI) OR (95% CI) Model a, b β (95% CI) OR (95%) 

Gender 
(Female) 

KD100T10 

2.56 *** 
(0.97, 4.63) 

12.97 *** 
(2.64, 102.57) 

KD100T30 

2.57 ** 
(0.97, 4.63) 

13.01 ** 
(2.65, 102.77) 

Age 
0.05 

 (−0.02, 0.14) 

1.05  

(0.98, 1.14) 

0.05  

(−0.02, 0.14) 

1.05  

(0.98, 1.15) 
Education 

(≥ College Degree) 
−2.37 ** 

( −4.46, −0.72) 

0.09 ** 

 (0.01, 0.49) 

−2.37 ** 

(−4.47, −0.73) 

0.09 ** 

(0.01, 0.48) 

Env. Exp. 
0.28 

 (−0.64, 1.27) 

0.09  

(0.01, 0.49) 

0.29  

(−0.64, 1.28) 

1.34  

(0.53, 3.60) 

Gender 
(Female) 

KD150T10 

2.53 *** 
(0.91, 4.63) 

12.62 *** 
(2.49, 102.72) 

KD150T30 

2.54 ** 
(0.92, 4.64) 

12.73 ** 
(2.51, 103.68) 

Age 
0.05  

(−0.02, 0.14) 

1.05 

(0.98, 1.15) 

0.05  

(−0.02, 0.14) 

1.05  

(0.98, 1.14) 
Education 

(≥ College Degree) 
−2.43 *** 

(−4.56, −0.76) 

0.09 *** 

(0.01, 0.47) 

−2.42 ** 

(−4.55, −0.76) 

0.09 ** 

(0.01, 0.47) 

Env. Exp. 
0.06  

(−0.94, 1.04) 

1.06  

(0.39, 2.82) 

0.08  

(−0.90, 1.04) 

1.08  

(0.41, 2.83) 

Gender 
(Female) 

KD200T10 

2.54 *** 
(0.94 4.62)  

12.68 *** 
(2.56, 101.55) 

KD200T30 

2.53 ** 
(0.94, 4.61 

12.57 ** 
(2.56, 100.23) 

Age 
0.05  

(−0.02, 0.13) 

1.05 

(0.98, 1.14) 

0.05  

(−0.02, 0.14) 

1.05 

(0.98, 1.14) 
Education 

(≥ College Degree) 
−2.44 *** 

(−4.53, −0.83) 

0.09 *** 

(0.01, 0.44) 

−2.45 ** 

(−4.53, −0.83) 

0.09 ** 

(0.01, 0.43) 

Env. Exp. 
0.11 

(−0.84, 1.02) 

1.12  

(0.43, 2.77) 

0.08 

(−0.87, 0.99) 

1.09 

(0.42, 2.69) 

Gender 
(Female) 

ISDD100T10 

3.61 *** 
(1.58, 6.37) 

36.83 *** 
(4.87, 584.49) 

ISDD100T30 

3.30 ** 
(1.41, 5.84) 

27.13 ** 
(4.10, 342.79) 

Age 
0.03  

(−0.04, 0.12) 

1.04  

(0.96, 1.13) 

0.03  

(−0.05, 0.12) 

1.03  

(0.95, 1.12) 
Education 

(≥ College Degree) 
−2.13 ** 

(−4.42, −0.31) 

0.12 ** 

(0.01, 0.74) 

−1.93 * 

(−4.09, −0.19) 

0.14 * 

(0.02, 0.83) 

Env. Exp. 
1.92 ** 

(0.57, 3.81) 

6.81 ** 

(1.76, 45.3) 

1.47 * 

(0.24, 3.12) 

4.35 * 

(1.27, 22.62) 

Gender 
(Female) 

ISDD150T10 

2.90 *** 
(1.12, 5.23) 

18.14 *** 
(3.06, 186.21) 

ISDD150T30 

2.92 ** 
(1.17, 5.21) 

18.48 ** 
(3.21, 182.24) 

Age 
0.04  

(−0.03, 0.13) 

1.04  

(0.97, 1.14) 

0.04  

(−0.03, 0.13) 

1.05  

(0.97, 1.14) 
Education 

(≥ College Degree) 
−2.34 ** 

(−4.42, −0.71) 

0.10 ** 

(0.01, 0.49) 

−2.36 * 

(−4.45, −0.72) 

0.09 * 

(0.01, 0.48) 

Env. Exp. 
0.45  

(−0.44, 1.42) 

1.57  

(0.64, 4.12) 

0.51  

(−0.31, 1.47) 

1.67 

(0.73, 4.36) 

Gender 
(Female) 

ISDD200T10 

2.68 *** 
(1.03, 4.86) 

14.61 *** 
(2.80, 129.08) 

ISDD200T30 

2.57** 
(0.96, 4.68) 

13.09 ** 
(2.62, 107.41) 

Age 
0.05  

(−0.02, 0.13) 
1.05  

(0.98, 1.14) 
0.05  

(−0.02, 0.13) 
1.05  

(0.98, 1.14) 

Education 

(≥ College Degree) 
−2.60 *** 

(−4.77, −0.94) 

0.07 *** 

(0.01, 0.39) 

−2.47 ** 

(−4.55, −0.85) 

0.09 ** 

(0.01, 0.43) 

Env. Exp. 
0.49  

(−0.41, 1.46) 

1.63  

(0.66, 4.31) 

0.19  

(−0.69, 1.11) 

1.21  

(0.50, 3.04) 

Gender 

(Female) 

NEDD100T10 

2.81 *** 

(1.10, 5.04) 

16.55 *** 

(3.02, 154.12) 

NEDD100T30 

2.57 ** 

(0.98, 4.64) 

13.07 ** 

(2.66, 103.57) 

Age 
0.05  

(−0.03, 0.13) 
1.05  

(0.97, 1.14) 
0.05  

(−0.02, 0.13) 
1.05  

(0.98, 1.14) 

Education 

(≥ College Degree) 
−1.98 ** 

(−4.13, −0.26) 

0.14 ** 

(0.02, 0.77) 

−2.20 * 

(−4.35, +0.49) 

0.11 * 

(0.01, 0.61) 

Env. Exp. 
1.14 * 

(0.08, 2.44) 

3.13 * 

(1.08, 11.47) 

0.37  

(−0.51, 1.40) 

1.44  

(0.60, 4.06) 
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Table 4.4 (continued) 

Variables Model a, b β (95% CI) OR (95% CI) Model a, b β (95% CI) OR (95%) 

Gender 
(Female) 

NEDD150T10 

2.90 *** 
(1.15, 5.19) 

18.25 *** 
(3.17, 180.20) 

NEDD150T30 

3.00 ** 
(1.25, 5.29) 

20.09 ** 
(3.49, 199.09) 

Age 
0.04  

(−0.04, 0.12) 

1.04  

(0.96, 1.13) 

0.04  

(−0.04, 0.12) 

1.04  

(0.96, 1.13) 
Education 

(≥ College Degree) 
−2.19  

(−2.29, −0.52) 

0.11  

(0.01, 0.59) 

−2.21 * 

(−4.31, −0.55) 

0.11 * 

(0.01, 0.58) 

Env. Exp. 
0.57  

(−0.40, 1.62) 

1.76  

(0.67, 5.06) 

0.72  

(−0.17, 1.77) 

2.06  

(0.84, 5.81) 

Gender 
(Female) 

NEDD200T10 

2.53 *** 
(0.94, 4.62) 

12.64 *** 
(2.57, 101.77) 

NEDD200T30 

2.50 ** 
(0.92, 4.57) 

12.22 ** 
(2.51, 96.49) 

Age 
0.05  

(−0.02, 0.13) 

1.05  

(0.98, 1.14) 

0.05 

(−0.02, 0.14) 

1.06  

(0.98, 1.15) 
Education 

(≥ College Degree) 
−2.46 *** 

(−4.54, −0.85) 

0.09 *** 

(0.01, 0.43) 

−2.48 ** 

(−4.57, −0.86) 

0.08 ** 

(0.01, 0.42) 

Env. Exp. 
0.14  

(−0.68, 0.93) 

1.15  

(0.51, 2.54) 

−0.09  

(−0.89, 0.67) 

0.91  

(0.41, 1.95) 

a N = 46 subjects, b Response variable: 0 non-overweight; 1 overweight, *     p-value < 0.1, **   p-value < 0.01, *** p-

value < 0.001, Gender: 0-male, 1-female, Education: 0-without a college degree or higher; 1-with a college degree or 

higher, Env. Exp.: BMI-unhealthy food environment exposure measured by a specific method. 

Table 4.5 lists the results of the binary logistic regression models based on the other four 

widely used methods. The models M-GTP, M-MCP and M-SDE1 indicate that being female is 

associated with higher odds of being overweight while having a college degree and higher is 

associated with lower odds of being overweight. M-SDE2 is the only model that does not find an 

association between education level and overweight status. Interestingly, all these four models did 

not find any significant association between BMI-unhealthy food environment exposure and 

participants’ overweight status. 
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Table 4.5 The association between food environment exposure and overweight status analyzed 

by the binary logistic regression models with the food environment exposure measured by the 

other four widely used methods. 

Variables. Model a, b β (95% CI) OR (95% CI) 

Gender 
(Female) 

M-GTP 

3.12 *** 
(1.29, 5.62) 

22.68 *** 
(3.62, 275.66) 

Age 
0.08 

(0.00, 0.17) 

1.08 

(10.00, 1.19) 
Education 

(≥ College Degree) 
−2.48 ** 

(−4.72, −0.76) 

0.08 ** 

(8.91, 0.47) 

Env. Exp. 
0.29 

(−0.05, 0.69) 

1.34 

(9.52, 2.00) 

Gender 
(Female) 

M-MCP 

2.57 *** 
(0.95, 4.70) 

13.10 *** 
(2.60, 109.75) 

Age 
0.06 

(−0.01, 0.15) 

1.06 

(0.99, 1.17) 
Education 

(≥ College Degree) 

−2.53 *** 

(−4.70, −0.86) 

0.08 *** 

(0.01, 0.42) 

Env. Exp. 
0.56 

(−0.23, 1.53) 

1.74 

(0.79, 4.60) 

Gender 
(Female) 

M-SDE1 

2.32 ** 
(0.66, 4.43) 

10.16 ** 
(1.93, 83.83) 

Age 
0.06 

(−0.02, 0.14) 

1.06 

(0.98, 1.15) 
Education 

(≥ College Degree) 
−2.74 *** 

(−5.03, −0.99) 

0.06 *** 

(0.01, 0.37) 

Env. Exp. 
−0.24 

(−0.90, 0.31) 

0.78 

(0.40, 1.36) 

Gender 
(Female) 

M-SDE2 

2.33 ** 
(0.64, 4.51) 

10.26 ** 
(1.90, 90.62) 

Age 
0.04 

(−0.03, 0.13) 

1.05 

(0.97, 1.14) 
Education 

(≥ College Degree) 
−2.83  

(−5.17, −1.07) 

0.06  

(0.01, 0.34) 

Env. Exp. 
−0.57  

(−1.36, 0.12) 

0.57  

(0.26, 1.12) 

a N = 46 subjects, b Response variable: 0 non-overweight; 1 overweight, **   p-value < 0.01, *** p-value < 0.001. 

The results indicate that the proposed framework generates better measurements of 

individual food environment exposures when compared to other widely used methods. This 

suggests the inconsistent findings in previous studies may be partly due to the methods used. 

Significant associations between BMI-unhealthy food environment exposures and overweight 

status were found in the three most robust models (ISDD100T10, ISDD100T30, and 

NEDD100T10). Being the most robust model, ISDD100T10 (explained 61.13% of the variance in 

participants’ overweight status) found that higher unhealthy food environment exposure (OR: 

6.81; CI: 1.76, 45.3; p-value < 0.01) is significantly associated with higher odds of being 

overweight.  
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4.4 DISCUSSION 

The proposed framework generated more reasonable and reliable results when compared 

to other methods, and thus obtained more accurate individual food environment exposures 

assessment. Regarding the distance-decay methods for generating the ECC, the ISDD represents 

the dynamic environmental contexts more accurately, and the ECC(ISDD) with a spatial resolution 

of 100 m × 100 m and a temporal resolution of 10 min performs best with the most robust 

regression models. Regarding the spatial and temporal resolution of the ECC, the finer the spatial 

and temporal resolution, the better the performance of the model. This suggests the existence of 

scale effects when using the ECC for measuring individual exposures. Thus, future application of 

the ECC may need to consider a proper spatial and temporal resolution in order to generate reliable 

results. 

The framework proposed in this study can help to mitigate the UGCoP. With respect to the 

spatial dimension, contextual units or areas in the study were not based on arbitrary predefined 

spatial boundaries (e.g., census tracts) but were delineated by ISTTs based on participants’ actual 

movement trajectories (GPS tracks). This is significantly different from the methods used in most 

previous studies, which tended to measure contextual influences based on static residential 

neighborhoods that may not accurately represent the actual areas that exert contextual influences 

on individual behavior or health outcomes (Matthews 2008, Chaix 2009, Kwan 2009a, 2018a). On 

the other hand, temporal variations in relevant environmental contexts were handled dynamically: 

The influence of the food outlets was measured with consideration of their business hours in order 

to more accurately capture their contextual effects. Taking into account the complex spatial and 

temporal configuration of individual contextual exposure, the proposed framework and methods 

help to mitigate UGCoP. 
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The ECEI based on the ECC and ISTT in the study is a quantitative measure of individual 

exposure to environmental contexts in unit time, which may be used as a standard measure of 

individual contextual exposure. It provides a useful standardized tool for environmental exposure 

assessment, while capturing the spatial and temporal variations in environmental contexts. It is 

also flexible to implement the ECEI for different research questions concerning different 

environmental contexts using the two user-defined parameters 𝐵𝑟 and 𝑊𝑖. These two parameters 

can be explored in further studies to fit the research question. The index may be further used for 

comparative analysis of environmental exposures between different individuals or groups. In 

addition, the ECEI may be utilized to examine the relationships between environmental contexts 

and other health outcomes. The observed association may be used to investigate and identify high-

risk environmental contexts and provide decision support for policy-making in public health. 

Lastly, this research has several limitations that need to be addressed in future studies. First, 

this study implemented the proposed framework based on a relatively small sample of participants 

who live near parks. Larger GPS datasets with more subjects from different study sites are thus 

needed in future research to further evaluate the robustness of the framework. Second, this study 

only applied the framework to food environment exposures; further studies are needed to assess 

its effectiveness for addressing other health issues, such as physical activity and mental health. 

Third, we implemented the three distance-decay methods in Euclidean distance without 

considering transport modes and the configuration of road networks. More sophisticated methods 

(Apparicio et al. 2017) that incorporate transport modes in the ECC would help to further the 

application of the framework and has significant potential to better represent the environmental 

context. We will develop the ECC along this line in future studies. Fourth, since there is no data 

on participants’ actual activities, there may be some uncertainty in the exposure measure. For 
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instance, working and eating at a fast-food restaurant may mean different exposure and have 

different effects on a participant’s body weight. If activity diary data are available, activity types 

can be integrated into the calculation of the ECEI by differentiating the contextual effects of 

different types of activity. Fifth, the proposed methodology can only explore the association 

between environmental exposures and health outcomes. Further investigations (e.g., controlled 

experiments or longitudinal studies) are still needed to validate any causal relationships.  
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CHAPTER 5: CONCLUSION AND FUTURE DIRECTIONS 

 

5.1 SUMMARY OF CONTRIBUTIONS 

This dissertation explores methodological issues in environmental health research that 

cause uncertain findings, with a particular focus on how the UGCoP influences research 

findings. As it does, it proposes activity space–based approaches to comprehensively assessing 

individual exposure to environmental contexts and proposes an innovative environmental 

exposure evaluation framework for spatiotemporally assessing individual environmental 

exposure and evaluating environmental effects on health outcomes. Based on empirical analysis 

of real-world applications using GPS tracking data and environmental context data collected in 

Chicago, Illinois, and Columbus, Ohio, these proposed approaches outperform other methods 

currently in wide use and mitigate the effects of the UGCoP. 

The first piece of work (chapter 2) proposed a hexagon-based adaptive crystal growth 

Voronoi diagram–based approach that extends the adaptive crystal growth Voronoi diagrams by 

using a hexagon-based spatial framework instead of a raster grid structure to represent 

environmental context and demand for service. In this study, use of a different representation of 

space (i.e., continuous space covered with hexagonal cells) led to an improvement of service area 

delineation results. The results of the middle school service area delineation reveal the advantage 

of hexagon-based adaptive crystal growth Voronoi diagrams over the raster-based method, 

considering both the degree to which the population in each service area is commensurate with 

the enrollment capacity of the corresponding middle school and the degree to which the middle 

school is accessible within its service area. In the hexagon-based method, the estimated 

continuous socioeconomic weighted plane mitigates the MAUP, and the hexagon grid 

accessibility-weighted plane suffers less from orientation bias and sampling bias caused by edge 
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effects, potentially helping delimit service areas that better match the service capacities of public 

facilities and that improve the accessibility of public facilities within their service areas. Future 

case studies of different kinds of public facilities in various settings and contexts could shed light 

on the generalizability of the conclusion that HACG works better than RACG for service area 

delineation. The proposed method could provide decision support for policymakers in city 

management and urban planning (e.g., educational administration) based on robust quantitative 

analysis results. Although the hexagon-based adaptive crystal growth Voronoi diagrams 

proposed in this study were implemented for the allocation of public service resources, they can 

also be used in environmental health research to delineate individual activity space based on 

subjects’ daily movement patterns as well as environmental context, represented as hexagon-grid 

weighted planes. 

Based on the proposed hexagon-based adaptive crystal growth Voronoi diagrams, the 

second piece of work (chapter 3) develops an innovative method for delineating activity space 

using individual GPS trajectories and a crystal-growth algorithm based on hexagon-grid 

accessibility-weighted planes. Such an approach generates a more reasonable activity space and 

captures individual environmental exposures more accurately than other methods do. This new 

tool for activity space delineation, which can be used to explore the relationships between human 

movement patterns and environmental context as well as environmental effects on health 

outcomes, is potentially groundbreaking in its introduction and development of a new analytical 

framework allowing the examination of activity space and individual environmental exposures 

while mitigating the UGCoP. 

The third piece of work (chapter 4) establishes an analytical framework for dynamically 

representing food environment and deriving individual environmental exposures that effectively 
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integrate human movement in space and time (e.g., GPS trajectories). Though designed to 

examine individual food environment exposure, this proposed framework, which incorporates 

the dynamics of a food environment into the ECC, captures individual exposure space using the 

individual space–time tunnel (ISTT), and assesses the effects of individual exposure on people’s 

overweight status using the environmental context exposure index (ECEI), can also be used in a 

wide range of environmental health studies. 

In summary, the contributions of this dissertation are both practical and methodological 

in nature. This research is of practical interest to urban planners, city policymakers, and 

community health practitioners who seek to stem the rise of environmental exposure–related 

chronic diseases, such as obesity and cancer, and to promote public health. The ability to more 

accurately profile environmental context and assess environmental exposures could help 

researchers investigate the association between health outcomes and environmental context with 

a view to developing policies and interventions that promote a healthful environment. Beyond 

environmental interventions and policies, development of innovative exposure and accessibility 

assessment methods could inform new avenues for individually tailored interventions, such as 

real-time warnings of unhealthy exposures via mobile devices. 

Methodologically, this dissertation makes several contributions to environmental health 

studies, offering new tools for spatiotemporally profiling environmental contexts as well as 

innovative methods for assessing environmental exposures—accurately profiled contexts and 

assessments of environmental exposure being two key prerequisites for environmental effects 

analysis. In addition, its conclusions could help scholars analyze and understand the 

methodological uncertainty associated with the inconsistent findings of previous research as a 

result of the UGCoP and the spatial non-stationarity problem. By improving understandings of 
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environmental effects on different health behaviors and outcomes, this research thus provides a 

solid benchmark for future research. 

5.2 FUTURE STUDIES 

In its current form, this dissertation could be expanded in several interrelated directions 

through subsequent studies. First, whereas this study implements the proposed methods based on 

the GPS trajectories of a small sample of participants collected during a relatively short period in 

Chicago, Illinois, and Columbus, Ohio, a larger dataset featuring the GPS trajectories of more 

subjects from different study sites over a longer tracking period would allow further evaluation 

of the robustness of the proposed approaches and provide justification for their use. In addition, 

because this dissertation investigated environmental exposure and its relationship to subjects’ 

levels of physical activity and overweight status, further application of the proposed technique 

for environmental exposure assessment to various environmental factors and health outcomes is 

needed. 

Second, although the methods presented in this study were compared with other existing 

approaches also based on GPS tracking data, still other methods do not rely on GPS or GIS data. 

For example, studies that have used map-based electronic questionnaires, mobility surveys, and 

activity space questionnaires have also yielded useful results. Although these methods are based 

on self-reported information and may thus incorporate recall bias and not be geographically 

accurate, they can capture background information about participants’ activities, such as that 

relating to transportation modes and social interactions. Accordingly, further studies should 

compare or integrate these methods with the proposed CCG activity space and ECC analysis 

framework with a view to generating more accurate exposure assessment. 
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Third, the proposed analytical framework implemented the three distance decay methods 

in Euclidean distance without considering transport modes and road network configuration. More 

sophisticated methods (Apparicio et al. 2017) incorporating transport modes into the ECC would 

advance applications of the framework and would have significant potential to better represent 

environmental context. Furthermore, the ECC used the cube as the basic voxel for representing 

environmental context at a specific time and location, but use of a hexagonal prism instead might 

better represent the environmental context, capitalizing on the benefits of the hexagonal grid in 

spatial analysis. We intend to develop and improve the ECC along these lines in future studies. 

Finally, because the proposed methods did not consider participants’ actual activities at 

different locations, some uncertainty may be attached to the exposure measure. For example, 

working and eating at a fast-food restaurant might well be associated with exposures of different 

natures that could differ in their effects on body weight. In future studies, should activity diary 

data be available, activity types could be integrated into calculations of individual environmental 

exposures by differentiating the contextual effects of different activity types. Furthermore, the 

proposed methods are able to explore only the association between environmental exposures and 

health outcomes; further investigations (e.g., controlled experiments or longitudinal studies) 

would be needed to validate any causal relationships. 
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