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Abstract

We introduce the concept of weighted skeleton of a polygon and present various decomposition and optimality results for this
skeletal structure when the underlying polygon is convex.
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1. Introduction

Polygon decomposition is a major issue in computational geometry. Its relevance stems from breaking complex
shapes (modeled by polygons) into sub-polygons that are easier to manipulate, and from subdividing areas of interest
into parts that satisfy certain containment requirements and/or optimality properties. We refer to [13] for a nice survey
on this topic. In particular, a rich literature exists on decomposition into convex polygons. Convex decompositions are
most natural in some sense. They have many applications and can be computed efficiently; see e.g. [7,14,16].

In this paper, we focus on the problem of decomposing a convex polygon such that predefined constraints are met.
More specifically, the goal is to partition a given convex n-gon P into n convex parts, each part being based on a
single side of P and containing a specified ‘share’ of P . The share may relate, for example, to the spanned area, to
the number of contained points from a given point set, or to the total edge length covered from a given set of curves.
Possible applications of such fixed-share decompositions include priority-based or fair facility allocation, which may
concern real estate or access to power lines, aquafers, or oil wells.

We introduce the concept of weighted skeleton for a convex polygon P and exploit it to prove existence of vari-
ous types of fixed-share decompositions of P . Moreover, the decompositions induced by weighted skeletons will be
shown to have several optimality properties. For instance, the average normal distance to the respective sides of P

is minimized, among all decompositions of P into polygons with fixed areas. Our approach is inspired by results on
power diagrams in [5]. However, these substantially differ from our setting because of the boundary conditions im-
posed by P . Algorithmic methods in [5] can be generalized to compute fixed-share decompositions but are inherently
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slow, at least from the theoretical point of view. For this reason, we outline a simple and efficient divide-and-conquer
algorithm that produces such decompositions, but without further optimality properties.

Weighted skeletons are generalizations of the straight skeleton of a polygon introduced in [2]. They can be defined
for arbitrary simple polygons, by individually tuning the translation speed of polygon sides in the defining shrinking
process. For a restricted class of non-convex polygons, such skeletons have been used in [3] for different purposes. Un-
fortunately (for reasons to be explained later), weighted skeletons do not lead to corresponding decomposition results
when convexity of the input polygon is dropped. However, generalizations to convex polytopes in R

d are possible;
our methods for proving the existence of fixed-share decompositions do not depend on the underlying dimension.

2. Weighted skeletons

We start with recalling the definition of a straight skeleton. Weighted versions of this structure are then introduced,
and some of their basic properties discussed.

Let P be a polygon with n sides in the plane. The straight skeleton [2] of P is a skeletal structure in the interior of P

which is defined procedurally as follows. Move inwards the boundary of P in a self-parallel fashion and at constant
speed, until it contracts to area zero, possibly after having split at places of prior self-contact. During this shrinking
process, the breakpoints of the boundary of P trace out the edges of the skeleton, which are pieces of angle bisectors
for P . The straight skeleton exists for arbitrary simple polygons P . If P is convex then exactly the medial axis [15]
of P is obtained: For each point x on an edge of the skeleton, the minimum distance from x to the boundary of P is
realized by two or more points.

For the purposes of the present paper, a weighted version of straight skeleton for a convex polygon is required.
Let W = (w1, . . . ,wn) be an n-tuple that assigns an individual weight wi � 0 to each side ei of the given convex
polygon P . Weight wi expresses the speed at which (the current portion of) ei is translated in the shrinking process.
The structure resulting from this process is termed the weighted skeleton of P , denoted by SKW(P ). The portion of
the plane swept out by a given side ei is called the region, reg(ei), of ei . We have reg(ei) = ei if and only if wi = 0.
(We say that reg(ei) is degenerate in this case.) Clearly, SKW(P ) is the classical straight skeleton of P if and only if
all weights are positive and equal. Fig. 1 illustrates a weighted skeleton for a convex polygon with six sides. Numbers
at sides denote side weights.

The translate of a side ei of P cannot re-appear after having shrunk to length zero. This implies that reg(ei) is a
connected set. If reg(ei) is non-degenerate then it has ei as a boundary edge. We conclude that the edges of SKW(P )

form a tree with exactly n leaf vertices (the vertices of P ) and at most n − 2 non-leaf vertices.
When all weights are positive then SKW(P ) can be interpreted as a weighted medial axis of P . Define the weighted

distance of a point x ∈ P to a side ei as d(x, ei) = ν(x, ei)/wi , where ν(x, ei) denotes the normal distance of x from
the line supporting ei . Then, for any i �= j , the two regions reg(ei) and reg(ej ) are separated by the straight line
defined by all points x of equal weighted distance from both ei and ej . This shows that each region reg(ei) is the

Fig. 1. Weighted skeleton for a convex 6-gon.
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Fig. 2. Discontinuous region change.

intersection of n halfplanes, n− 1 coming from other sides, and one coming from the line supporting ei . We conclude
that reg(ei) is either degenerate or a convex polygon with at most n edges. By convention, regions are considered as
closed sets.

The shrinking process we used above to define SKW(P ) generalizes directly for arbitrary simple polygons P .
A tree-like structure that decomposes P into (possibly non-convex) polygonal regions is obtained. However, when
altering the weights for the individual sides of P , we face the following peculiarity: The shape of regions does not
change continuously with the weights. Fig. 2 gives an example. The entire shaded area displays reg(e1) for a given
tuple (w1,w2,w3,w4,w5) of weights. A slight increase of w5 clips off from reg(e1) the portion shaded in light grey,
and enlarges the regions of e5, e4, and e3 accordingly. This effect cannot be observed when P is a convex polygon—a
property that will be crucial for the proof of Theorem 1 in the subsequent section.

3. Decomposition results

Weighted skeletons are capable of generating tailor-made decompositions of convex polygons. In particular, as will
be shown in this section, fixed-share decompositions of various kinds can be obtained.

Let ρ be any continuous density function on a given convex polygon P , and let μ be the measure defined by ρ

on P . We have the following general theorem.

Theorem 1. Let P be a convex polygon in the plane, having sides e1, . . . , en. For any non-negative real numbers
A1, . . . ,An whose sum is 1, there exists an n-tuple W of weights such that μ(reg(ei)) = Ai holds for each region
of SKW(P ).

Proof. For any positive number λ ∈ R, we have SKλ·W(P ) = SKW(P ). This directly follows from the procedural
definition of a weighted skeleton. Restricting the domain of weights D ⊂ R

n by requiring
∑n

i=1 wi = 1 thus means no
loss of generality. Note that, by non-negativity of weights, D is just the convex hull spanned by the n unit vectors of R

n.
In particular, D is a bounded and closed set. Observe next that, for each fixed index i, the region reg(ei) continuously
expands when wi is increased. This property is evident from the distance-based definition of SKW(P ). Thus, by the
assumed continuity of ρ, the measure μ(reg(ei)) is a continuous function of wi . Consider the function Ψ :D → R,
given by

Ψ (W) =
n∑

i=1

|�i |, where �i = μ
(
reg(ei)

) − Ai.

Ψ is a continuous and non-negative function on a compact domain, so Ψ achieves a global minimum. Let W ∗ be
a corresponding n-tuple. We are left with proving Ψ (W ∗) = 0. Assume, to the contrary, that Ψ (W ∗) > 0. Then,
as

∑
Ai = ∑

μ(reg(ei)) = 1, there exist indices j and k such that �j < 0 and �k > 0. Consider all the regions of the
former type (i.e., whose measures are too small), and let Q be the unique connected component of their union which
contains reg(ej ). Expand Q by multiplying the weight for each region in Q by a fixed factor of c > 1, where c is
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chosen such that μ(Q) increases by an arbitrarily small amount. This is possible because μ(Q) continuously grows
with c. Thereby, some regions adjacent to Q (which have been too large) decrease in measure, whereas regions
in Q only can increase, because separators between them do not change. For the resulting n-tuple W ′, we thus have
Ψ (W ′) < Ψ (W ∗). But this contradicts our assumption that W ∗ is a global minimum. �

If the density function ρ is non-vanishing all over P , then the weighted skeleton that achieves the required measures
in Theorem 1 is unique: Any change in ratio between weights results in a change of measure for at least two regions.
Taking ρ as a suitable constant gives uniform distribution on P , and we obtain:

Corollary 1. For any choice of n areas that sum up to the area of P , there exists a unique weighted skeleton for P

whose regions realize this choice.

Theorem 1 can be shown to hold for certain non-continuous density functions as well. Let S be an arbitrary subset
of P , and consider the indicator function ψ of S in P . That is, ψ(x) = c > 0 if x ∈ S, and ψ(x) = 0, otherwise. The
constant c is chosen such that ψ is indeed a density function on P . We may express ψ as the limit of a series of
continuous density functions (ρj )j�1 as follows. Let Kj(x) be a vertical and downwards directed cone, with aperture
angle 1

j
and apex at (fixed) height h above the point x ∈ P . The upper envelope of the cones Kj(x), for all x ∈ S, is

the graph of a continuous function, κj , on the plane. For a suitable choice of h, the pointwise maximum of κj with
the zero function gives a continuous density function, ρj , on P , and we have

lim
j→∞ρj = ψ.

We conclude that Theorem 1 is valid for the measure μ defined by ψ .
Various implications are obtained when the dimension of the point set S that underlies ψ is varied. For example,

S may be the union of finitely many two-dimensional objects, like triangles or disks. A prescribed assignment of their
areas to the sides of P exists—a result with possible applications for priority-based (or fair) facility allocation. This
also applies to one-dimensional objects, for instance, to a finite set of length-measurable curves that might model
power lines or aquafers to be accessed. The measure μ(Q) of a subset Q ⊆ P then becomes the total curve length
in Q. More specifically, we have:

Corollary 2. Let μ be defined by a finite set of curves (of total length 1) in a convex n-gon P . For any non-negative real
numbers 	1, . . . , 	n that sum up to 1, there exists a weighted skeleton SKW(P ) with μ(reg(ei)) � 	i , for i = 1, . . . , n.

Observe that inequality arises above because portions of curves might have to be shared by two (closed) regions
of SKW(P ). Finally, in the case where S is a finite point set, the quantity μ(Q) · |S| counts the points of S in a given
subset Q of P .

Corollary 3. Let a convex polygon P enclose a set S of m points. For every choice of non-negative integers m1, . . . ,mn

whose sum is m, there exists a weighted skeleton SKW(P ) such that |reg(ei) ∩ S| � mi , for i = 1, . . . , n.

4. Optimality properties

Fixed-share decompositions of a convex polygon are, in general, not unique, even when decomposition into convex
pieces is required. Interestingly, those obtained from weighted skeletons show several optimality properties. The
present section addresses this issue.

Let us call a decomposition of a convex n-gon P proper if it consists of (exactly n) simple polygons, each having
a single side in common with P . Clearly, every weighted skeleton for P gives rise to a proper decomposition of P ,
provided there are no degenerate regions. Corollary 3 implies a result proved earlier, and by different means, in [10]:
Given P and a finite set S of points inside P , there always exists a proper decomposition of P into convex polygons,
each containing a prescribed number of points from S. Points of S on polygon boundaries may have to be assigned
appropriately. Even when boundary ambiguities do not arise, such fixed-cardinality decompositions need not be unique
with respect to the assignment of points in S to polygons. In fact, the decompositions constructed in [10] induce
assignments which are, in general, different from those we obtain via weighted skeletons.
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Fig. 3. Fixed-area decompositions are not unique.

As has to be expected, prescribing the areas of the polygons in a proper and convex decomposition also does not
lead to a unique solution. Fig. 3 exemplifies this fact. It shows, in full lines, some proper decomposition Π of P .
Dashed lines delineate the (unique) weighted skeleton of P that realizes the same polygon areas. The fact that Π is
not a weighted skeleton of P can also be seen from Lemma 1 given at the end of this section: The three straight lines
through edge b, side e1, and side e3, respectively, do not concur in a point.

We are going to prove that weighted skeletons exhibit certain optimality properties. Let ν(x, ei) denote the normal
distance of a point x to the line supporting a given side ei of P . Then the average normal distance is minimized in the
following respect.

Theorem 2. Let Π :P → {e1, . . . , en} be a proper (not necessarily convex) decomposition of the convex polygon P ,
having fixed polygon areas A1, . . . ,An. The weighted skeleton of P that assumes these areas (uniquely) minimizes the
expression∫

x∈P

ν
(
x,Π(x)

)
dx (1)

over all such decompositions Π .

Proof. Let SKW(P ) be the weighted skeleton whose regions achieve the required areas A1, . . . ,An. SKW(P ) unique-
ly exists by Corollary 1. Fix a decomposition Π as above, but different from SKW(P ). For each index i, the
polygon Π−1(ei) as well as the region reg(ei) of SKW(P ) have ei as one side, and both polygons have the same
area, Ai . Thus there exists a cycle of consecutively overlapping polygons reg(ei), Π−1(ei), reg(ej ), Π−1(ej ), reg(ek),
Π−1(ek), . . . , reg(ei). Take some re-assignment of points from each polygon to its successor in the cycle, such that
(1) polygon areas stay unchanged, (2) the area of reg(et ) ∩ Π−1(et ) increases for all indices t involved, and (3) the
resulting decomposition Λ is still proper. This can always be achieved when the intersection of two consecutive
polygons is split appropriately with straight edges. Let now W = (w1, . . . ,wn). By definition, SKW(P ) assigns
each point x ∈ P to the side ei of P that minimizes the weighted distance ν(x, ei)/wi . Thus, when comparing the
decompositions Λ and Π , we have∫

x∈Λ−1(et )

ν(x, et )

wt

dx <

∫

x∈Π−1(et )

ν(x, et )

wt

dx (2)

for the indices t above. Clearly, for all remaining indices, equality holds in (2). Dividing by wt , and summing up over
all sides et , shows that Π does not minimize the integral in (1). The theorem follows. �

Define the altitude of a polygon Q = Π−1(ei) as the maximum normal distance ν(x, ei) that occurs for a point
x ∈ Q. Let the altitude of Π be the largest altitude of a polygon in Π . We have:
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Corollary 4. Among all proper decompositions of P with fixed polygon areas, the weighted skeleton of P that assumes
these areas is minimal in altitude.

Proof. Using the same construction as in the proof of Theorem 2, the cyclic re-assignment of points gives

max
x∈Λ−1(et )

ν(x, et )

wt

� max
x∈Π−1(et )

ν(x, et )

wt

.

Dividing by wt , and taking the maximum over all sides et , implies that the altitude of Π , which is given by
maxx∈P ν(x,Π−1(x)), is minimized if Π = SKW(P ). �

There also exist discrete variants of Theorem 2 and Corollary 4. They assert that the sum (or the maximum) of
the normal distances in a given finite point set S ⊂ P to the respective supporting lines of P is minimized over all
assignments S → {e1, . . . , en} of fixed subset cardinalities. The proofs are similar and are left to the interested reader.

Theorem 2 has an obvious geometric interpretation. The normal distance ν(x, ei) is a linear function, gi , on P .
The corresponding plane z = gi(x) in R

3 has slope 1 and contains the side ei . For any given proper decomposition Π

of P , the integral in (1) gives the sum of the volumes above Π−1(ei) and below gi , for i = 1, . . . , n. In this sense,
SKW(P ) gives minimal volume for fixed region areas.

Related is a three-dimensional interpretation of SKW(P ), namely, as the lower envelope of the linear functions
fi = ν(x, ei)/wi on P (which now correspond to planes with slopes 1/wi through the sides ei ). In particular, if all
weights are equal to 1 then we have fi = gi , and the volume expressed in (1) is minimum possible for all proper
decomposition of P , without restrictions on areas. Clearly, SKW(P ) is just the medial axis of P in this case.

The question arises when a given decomposition of a polygon P actually is the weighted skeleton of P , for a
suitable set of weights. Based on their embedding in space, a complete characterization can be given for weighted
skeletons of convex polygons. Let L(s) denote the straight line containing a given line segment s.

Lemma 1. Let Π be a (proper) decomposition of P into convex polygons Q1, . . . ,Qn, such that Qi shares side ei

with P . Then Π is the weighted skeleton of P for some set of weights if and only if, for each edge b = Qi ∩ Qj of Π ,
the condition L(ei) ∩ L(ej ) ∈ L(b) holds.

Proof. Let fi = ν(x, ei)/wi , as before. The condition L(ei) ∩ L(ej ) ∈ L(b) implies that b is contained in the vertical
projection of the intersection line of two planes z = fi and z = fj , for suitable weights wi and wj . Thus the condi-
tion necessarily holds for any weighted skeleton, by the lower envelope picture described above. On the other hand,
given Π with this condition holding for each edge b, we prove the existence of n planes z = fi whose lower envelope
defines Π . This implies Π = SKW(P ) for the resulting tuple W = (w1, . . . ,wn) of weights.

As the edges of Π define a tree inside P , at least one polygon of Π , say Qk , is a triangle. Let side ek be adjacent
to sides ei and ej . Removing ek and prolonging sides ei and ej gives an (n − 1)-gon P ′. (For n � 4, side ek can
always be chosen such that P ′ is bounded.) Consider the edge b = Qi ∩ Qj of Π . We have L(ei) ∩ L(ej ) ∈ L(b),
so prolonging b yields a proper decomposition Π ′ of P ′. Assume inductively that the planes in question do exist
for Π ′and P ′. This is obviously true in the base case n = 3. As Qk has a single vertex v inside P , namely the one
it shares with Qi and Qj , the desired plane z = fk for side ek uniquely exists; it passes through ek and the vertical
projection of v onto the plane z = fi (or, equivalently, onto z = fj ). �

Using their spatial interpretation, we get another property of weighted skeletons, which might be interesting from
the physicist’s (or the architect’s) viewpoint.

Lemma 2. Let SK be any weighted skeleton of a convex polygon P , with non-vanishing region areas. Then each
internal edge e of SK can be associated with a positive tension τ(e) such that all internal vertices of SK are in
equilibrium state.

Proof. The lower envelope of f1, . . . , fn describes (together with P ) the boundary of a convex polyhedron in R
3.

Thus SK, being the vertical projection of this envelope to P , is a so-called Schlegel diagram; see [11]. It is well
known that edge tensions as above do exist for such diagrams [4,9]. �
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Finally, let us mention a negative result. See Fig. 3. In the decomposition drawn in full lines, call it Π again, each
internal vertex is incident to three angles of 2π

3 . Hence, Π is the Steiner minimal tree [12] of the vertices of the
underlying polygon P , the shortest possible connection for the vertices of P . This shows that weighted skeletons, in
general, do not achieve minimum total edge length over all proper decompositions with fixed polygon areas. Observe
that a minimum-length proper decomposition of P (without area restrictions) does not always exist, namely, if the
Steiner minimal tree of P ’s vertices runs via sides of P . Note finally that tensions as in Lemma 2 do exist for the
decomposition Π in Fig. 3; for instance, take τ(ei) = 1 for i = 1, . . . ,4. Thus the existence of such tensions is not
sufficient (but necessary) for a proper decomposition to be a weighted skeleton.

5. Algorithmic aspects

Let us turn to the problem of computing weighted skeletons for convex polygons under given requirements. As the
easiest variant, the weighted skeleton SKW(P ) for a convex n-gon P and a given weight tuple W is to be constructed.
From Section 4, we know an equivalent formulation of this problem: Construct the intersection C of n halfspaces
in R

3, with the property that C intersects the plane containing P just in P . This is exactly the setting where the
deterministic O(n)-time algorithm in [1] applies. Clearly, the halfspace description of C can be derived from P

and W in O(n) time. A linear-time algorithm for computing SKW(P ) follows. From a practical point of view, the
O(n)-time randomized incremental algorithm in [8] may be preferable. Designed for computing the medial axis of a
convex polygon, this algorithm (and its analysis) directly extends to weighted skeletons.

Computing weighted skeletons that realize fixed-share decompositions for a convex n-gon P is much harder. The
main problem consists of finding a suitable weight tuple W that makes the regions of SKW(P ) contain the prescribed
shares. (The existence of W is guaranteed by the results in Section 3.) If share is defined as the number of points from
a given m-point set, then the incremental algorithm in [5] can be adapted to compute W . This algorithm inserts the
given points one at a time, and adjusts the weights of P ’s sides such that shares are not exceeded for any region.
It runs in (roughly) O(n2m) time and optimal O(n + m) space.

If share is based on a continuous measure μ on P , then W can be approximated using a gradient-descent method;
see, e.g., [6]. Let us assume that the underlying density function ρ has a constant description within any given tri-
angle � ⊂ P . (For example, let μ measure area.) Recall the function Ψ (W) defined in Section 3. If ρ is continuous
then Ψ can be shown to be convex and smooth. The problem in question now amounts to finding the weight tuple W ∗
where Ψ attains its unique minimum Ψ (W ∗) = 0. To solve this optimization problem, we utilize the gradient ∇Ψ

of Ψ . ∇Ψ is given by (g1, . . . , gn), where gi is the partial derivative of Ψ in the variable wi . That is, gi = (fi)
′, where

fi = |μ(reg(ei)) − Ai | is considered as a function of wi . For fixed W , the functions fi (and thus, gi ) can be derived
from SKW(P ) in time proportional to the number of sides of reg(ei). So we get the gradient ∇Ψ (W) of Ψ at W in
O(n) time. Application of the iteration scheme

Wk+1 = Wk + tk · ∇Ψ (Wk)

for appropriate step sizes tk guarantees convergence of Wk to the optimal solution W ∗ at a superlinear rate [6]. The
iteration is stopped if Ψ (Wk) < ε, for a predefined accuracy ε > 0. As μ(�) can be computed in O(1) time for any
triangle � ⊂ P , we can calculate Ψ (Wk) in O(n) time, which gives linear time per iteration step.

As a nice property, for a fixed-area decomposition of a given triangle with shares A1,A2,A3, corresponding side
weights can be calculated directly, by putting wi = Ai|ei | where |ei | denotes side length. Unfortunately, this property is
lost for n � 4. Still, to get a good starting value for the iteration process above, it seems plausible to take the tuple
W0 = ( A1|e1| , . . . ,

An|en| ) if the measure μ is area.
An alternative to the gradient-descent method is to approximate the given measure μ in a discrete way: Randomly

choose points drawn from the density function ρ, and compute SKW(P ) such that the fractions of points its regions
contain are proportional to the prescribed shares. This approach also works in cases where ρ is discontinuous. The
insertion algorithm mentioned before runs (nearly) linear in the number m of points, so satisfactory approximations
seem achievable in reasonable time, especially when n, the size of P , is small.

If we do not insist on computing fixed-share decompositions via weighted skeletons, then more efficiency is possi-
ble; optimality properties related to weighted skeletons are then, of course, lost. We propose the divide-and-conquer
algorithm below, which can be seen as an extension to general measures of the inductive method used in [10].
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The input consists of a convex polygon P and a measure μ on P , along with non-negative shares A1, . . . ,An, to be
attained by n convex polygons attached to the sides of P . Call a polygon side active if its assigned share is (strictly)
positive.

Base: If P is a triangle, or if P has only two active sides, then construct the decomposition for P and its (at most
three positive) shares for sides directly. Otherwise:

Divide: Split P with a diagonal d that halves the set of its active sides. For the obtained sub-polygons P1 and P2,
calculate the sum of shares for their sides (except d). For one sub-polygon, say P1, this sum is at most μ(P1).
Let A � 0 be the difference between μ(P1) and this sum.

Recur: Construct the decomposition, Π1, for P1 recursively, using A as the share assigned to the side d of P1. Let Pd

be the convex polygon (with measure A) constructed for d .
Recur: Construct the decomposition, Π2, for the convex polygon P2 ∪ Pd recursively, taking share zero for all sides

that came from Pd .
Conquer: Concatenate Π1 and Π2. This yields the required fixed-share decomposition of P .

The runtime of this algorithm is determined by the base step and the divide step; the other steps can be handled
in time linear in the size of the objects involved. Let us first analyze the total number of sides of all the polygons
considered. This number is clearly O(n) for the base steps, because the final decomposition, Π , of P , which has
size O(n), is a concatenation of objects constructed in base cases. As for the divide steps, any side considered is either
a diagonal or a side of P , or an (inactive) side showing up in Π . The used diagonals pairwise do not cross, and P

has n sides, so the number of sides constructed is O(n) as well. Once constructed, a fixed side may be considered
O(logn) times, as it can be part of the boundary of O(logn) polygons, at most one for each level of recursion. We
conclude that the total size of all polygons considered in the divide steps is O(n logn).

For decomposition with respect to non-discrete measures μ, suppose for the moment that μ(�) for a given trian-
gle � can be computed in constant time. We show that, under this assumption, O(s) time per polygon Q with s sides
suffices, for both the base step and the divide step. This is obvious for the divide step, because Q can be triangulated
in O(s) time such that a given diagonal is included. For the base case where Q has only two active sides, e and e′
say, we use a triangulation of Q with diagonals incident to the vertex shared by e and e′. In O(s) time, we single out
the triangle � that splits Q into two sub-polygons of measures not exceeding the shares for e and e′, respectively.
For �, an optimization problem of constant size remains, namely, where � has two active sides. Similar is the other
possible base case, where Q already is a triangle, now with three active sides. Both optimization problems can be
solved in O(1) time. We conclude a total running time of O(n logn), as this is the sum of sizes of all the polygons
considered.

To cover more substantial measures, let T denote the maximal time complexity for computing μ(�), over all
triangles � ⊂ P . Along the lines above, the runtime of the algorithm becomes O(T · n logn). This setting now fits
scenarios where shares are to be taken from the union of O(T ) constant-size objects inside P , for example, triangles,

Fig. 4. Equal-area decomposition of a disk.
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disks, or curves of constant degree. Fig. 4 shows how the algorithm decomposes a given disk inside P into pieces
of equal area. The decomposition is drawn in full lines. Note that its convex polygons are not face-to-face. The first
divide step proceeds along the diagonal shown in dashed.

Assume now that the measure concerns the number of points from a given m-point set. Dividing mainly involves
shuffling points from one side of a diagonal to the other. Thereby, each point is considered at most once at each level of
recursion, which gives a total work of O(m logn). For analyzing the base cases, let the current polygon, Q, contain k

points. If Q has only two active sides e and e′, then consider these points in angular order around the vertex v = e∩ e′,
and use an O(k)-time median algorithm to compute the angle of a line through v that splits Q into two sub-polygons
containing the required shares of points. If Q is a triangle with three active sides, then split Q into three triangles
based on these sides and containing the required shares, using the O(k)-time splitting algorithm in [17]. No point is
considered twice during all the base cases, hence they take O(m) time in total. In conclusion, a runtime of O(m logn)

results for the m-point set case.

6. Higher dimensions

The concept of weighted skeleton (or weighted medial axis) is not limited to two dimensions. Given a convex
polytope P in R

d and an assignment of positive weights to its facets, a unique convex cell complex inside P can be
defined, either by the respective shrinking process, or based on weighted distances to the hyperplanes that support P .
In fact, the decomposition and optimality results presented in Section 3 and Section 4, respectively, directly generalize
to higher dimensions. Moreover, a weighted skeleton for a convex polytope in R

d can be computed by intersecting
n halfspaces in R

d+1, one for each polytope facet. Equivalently, the convex hull of n points in R
d+1 has to be

constructed. In the probably most interesting case d = 3, this leads to an O(n2)-time algorithm, which is optimal
in the worst case as such a skeleton may consist of �(n2) components.

The problem of analyzing and constructing weighted or unweighted skeletons for (well-behaved) non-convex poly-
topes in R

d is left as a topic for further research.
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