50 research outputs found

    Quickest Flows Over Time

    Get PDF
    Flows over time (also called dynamic flows) generalize standard network flows by introducing an element of time. They naturally model problems where travel and transmission are not instantaneous. Traditionally, flows over time are solved in time‐expanded networks that contain one copy of the original network for each discrete time step. While this method makes available the whole algorithmic toolbox developed for static flows, its main and often fatal drawback is the enormous size of the time‐expanded network. We present several approaches for coping with this difficulty. First, inspired by the work of Ford and Fulkerson on maximal s‐t‐flows over time (or “maximal dynamic s‐t‐flows”), we show that static length‐bounded flows lead to provably good multicommodity flows over time. Second, we investigate “condensed” time‐expanded networks which rely on a rougher discretization of time. We prove that a solution of arbitrary precision can be computed in polynomial time through an appropriate discretization leading to a condensed time‐expanded network of polynomial size. In particular, our approach yields fully polynomial‐time approximation schemes for the NP‐hard quickest min‐cost and multicommodity flow problems. For single commodity problems, we show that storage of flow at intermediate nodes is unnecessary, and our approximation schemes do not use any

    Graph Orientation and Flows Over Time

    Get PDF
    Flows over time are used to model many real-world logistic and routing problems. The networks underlying such problems -- streets, tracks, etc. -- are inherently undirected and directions are only imposed on them to reduce the danger of colliding vehicles and similar problems. Thus the question arises, what influence the orientation of the network has on the network flow over time problem that is being solved on the oriented network. In the literature, this is also referred to as the contraflow or lane reversal problem. We introduce and analyze the price of orientation: How much flow is lost in any orientation of the network if the time horizon remains fixed? We prove that there is always an orientation where we can still send 13\frac{1}{3} of the flow and this bound is tight. For the special case of networks with a single source or sink, this fraction is 12\frac12 which is again tight. We present more results of similar flavor and also show non-approximability results for finding the best orientation for single and multicommodity maximum flows over time

    Optimizing Emergency Transportation through Multicommodity Quickest Paths

    Get PDF
    In transportation networks with limited capacities and travel times on the arcs, a class of problems attracting a growing scientific interest is represented by the optimal routing and scheduling of given amounts of flow to be transshipped from the origin points to the specific destinations in minimum time. Such problems are of particular concern to emergency transportation where evacuation plans seek to minimize the time evacuees need to clear the affected area and reach the safe zones. Flows over time approaches are among the most suitable mathematical tools to provide a modelling representation of these problems from a macroscopic point of view. Among them, the Quickest Path Problem (QPP), requires an origin-destination flow to be routed on a single path while taking into account inflow limits on the arcs and minimizing the makespan, namely, the time instant when the last unit of flow reaches its destination. In the context of emergency transport, the QPP represents a relevant modelling tool, since its solutions are based on unsplittable dynamic flows that can support the development of evacuation plans which are very easy to be correctly implemented, assigning one single evacuation path to a whole population. This way it is possible to prevent interferences, turbulence, and congestions that may affect the transportation process, worsening the overall clearing time. Nevertheless, the current state-of-the-art presents a lack of studies on multicommodity generalizations of the QPP, where network flows refer to various populations, possibly with different origins and destinations. In this paper we provide a contribution to fill this gap, by considering the Multicommodity Quickest Path Problem (MCQPP), where multiple commodities, each with its own origin, destination and demand, must be routed on a capacitated network with travel times on the arcs, while minimizing the overall makespan and allowing the flow associated to each commodity to be routed on a single path. For this optimization problem, we provide the first mathematical formulation in the scientific literature, based on mixed integer programming and encompassing specific features aimed at empowering the suitability of the arising solutions in real emergency transportation plans. A computational experience performed on a set of benchmark instances is then presented to provide a proof-of-concept for our original model and to evaluate the quality and suitability of the provided solutions together with the required computational effort. Most of the instances are solved at the optimum by a commercial MIP solver, fed with a lower bound deriving from the optimal makespan of a splittable-flow relaxation of the MCQPP

    Selfish Routing on Dynamic Flows

    Get PDF
    Selfish routing on dynamic flows over time is used to model scenarios that vary with time in which individual agents act in their best interest. In this paper we provide a survey of a particular dynamic model, the deterministic queuing model, and discuss how the model can be adjusted and applied to different real-life scenarios. We then examine how these adjustments affect the computability, optimality, and existence of selfish routings.Comment: Oberlin College Computer Science Honors Thesis. Supervisor: Alexa Sharp, Oberlin Colleg

    Computing earliest arrival flows with multiple sources

    Get PDF
    Earliest arrival flows are motivated by applications related to evacuation. Given a network with capacities and transit times on the arcs, a subset of source nodes with supplies and a sink node, the task is to send the given supplies from the sources to the sink "as quickly as possible". The latter requirement is made more precise by the earliest arrival property which requires that the total amount of flow that has arrived at the sink is maximal for all points in time simultaneously. It is a classical result from the 1970s that, for the special case of a single source node, earliest arrival flows do exist and can be computed by essentially applying the Successive Shortest Path Algorithm for min-cost flow computations. While it has previously been observed that an earliest arrival flow still exists for multiple sources, the problem of computing one efficiently has been open. We present an exact algorithm for this problem whose running time is strongly polynomial in the input plus output size of the problem

    Optimal Evacuation Solutions for Large-Scale Scenarios

    Get PDF
    Evacuation, the process of moving people out of potentially dangerous areas, is a key response to many threats. Planning such an evacuation is therefore important, especially in large-scale emergencies, where routing becomes non-trivial. This paper deals with the optimization and simulation of the evacuation process. We draw our data from the study of the city of Padang in Indonesia, with its high threat of tsunami waves.BMBF, 03G0666E, Verbundprojekt FW: Last-mile Evacuation; Vorhaben: Evakuierungsanalyse und Verkehrsoptimierung, Evakuierungsplan einer Stadt - Sonderprogramm GEOTECHNOLOGIENBMBF, 03NAPAI4, Transport und Verkehr: Verbundprojekt ADVEST: Adaptive Verkehrssteuerung; Teilprojekt Verkehrsplanung und Verkehrssteuerung in MegacitiesDFG, FZT 86, Matheon - Mathematik fĂŒr SchlĂŒsseltechnologien: Modellierung, Simulation und Optimierung realer Prozess
    corecore