
Oberlin Oberlin

Digital Commons at Oberlin Digital Commons at Oberlin

Honors Papers Student Work

2015

Selfish Routing on Dynamic Flows Selfish Routing on Dynamic Flows

Christine Marie Antonsen
Oberlin College

Follow this and additional works at: https://digitalcommons.oberlin.edu/honors

 Part of the Computer Sciences Commons

Repository Citation Repository Citation
Antonsen, Christine Marie, "Selfish Routing on Dynamic Flows" (2015). Honors Papers. 249.
https://digitalcommons.oberlin.edu/honors/249

This Thesis is brought to you for free and open access by the Student Work at Digital Commons at Oberlin. It has
been accepted for inclusion in Honors Papers by an authorized administrator of Digital Commons at Oberlin. For
more information, please contact megan.mitchell@oberlin.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons at Oberlin (Oberlin College)

https://core.ac.uk/display/354496704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.oberlin.edu/
https://digitalcommons.oberlin.edu/honors
https://digitalcommons.oberlin.edu/students
https://digitalcommons.oberlin.edu/honors?utm_source=digitalcommons.oberlin.edu%2Fhonors%2F249&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.oberlin.edu%2Fhonors%2F249&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.oberlin.edu/honors/249?utm_source=digitalcommons.oberlin.edu%2Fhonors%2F249&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:megan.mitchell@oberlin.edu

Oberlin College

Computer Science Department

Honors Thesis

Selfish Routing on Dynamic Flows

Author:

Christine Antonsen

Supervisor:

Alexa Sharp

May 22, 2015

Abstract

Selfish routing on dynamic flows over time is used to model scenarios that vary

with time in which individual agents act in their best interest. In this paper we

provide a survey of a particular dynamic model, the deterministic queuing model,

and discuss how the model can be adjusted and applied to di↵erent real-life scenarios.

We then examine how these adjustments a↵ect the computability, optimality, and

existence of selfish routings.

Contents

1 Introduction 2

1.1 Static Selfish Routing . 2

1.2 Algorithmic Game Theory Basics . 3

2 The Deterministic Queuing Model 3

2.1 The Model . 3

2.2 Objective Functions . 4

2.3 Prices of Anarchy . 4

2.4 Applications . 5

2.4.1 Building Evacuations . 5

2.4.2 Tra�c Forecasting . 5

3 Modifications of the Deterministic Queuing Model 6

3.1 Shortest Paths Networks . 6

3.1.1 Atomic Shortest Paths Network Example 6

3.2 Random Queuing . 7

3.2.1 Random Early Detection . 7

3.3 Atomic Games with a Bottleneck Objective . 8

3.3.1 Live Cargo Transportation . 8

3.3.2 All-Optical Networks . 9

4 Results 9

4.1 Optimal Flow Results . 9

4.2 Basic Deterministic Queuing Model and Shortest Paths Network 10

4.2.1 Stackelberg Strategy . 10

4.3 Random Queuing . 10

4.4 Atomic Games with a Bottleneck Objective . 11

5 Conclusion 12

6 Acknowledgments 12

1

1 Introduction

Dynamic flow networks can model tra�c, optical networks, building evacuations, and more. In

many of these situations individual agents using a network, road, or trying to escape a building

want to maximize their personal welfare, and thus act selfishly. In the field of algorithmic game

theory we measure the loss in quality of a solution where everyone acts selfishly compared to

some optimal solution to a given objective function. For example, how bad is it when everyone

chooses their own evacuation route from a building compared to a fire marshal directing everyone

out of the building? Already there is a great deal of research on selfish routing on flows, but

these flows have been static, meaning the model does not take into account time as a variable

and flow traverses edges instantaneously. In dynamic flows it takes time for flow to traverse an

edge, and the amount of flow, amongst other parameters, can vary with time. Only recently have

people started to study selfish routing on these dynamic flow models. In this paper we focus

on selfish routing in the deterministic queuing model and how minor changes in the model can

a↵ect the computability, optimality, and existence of selfish routings.

The current literature surrounding selfish routing on dynamic flows is growing, but is hard to

navigate. It is very di�cult to compare results from di↵erent papers which do not use consistent

terminology, keep track of the various modifications and results within a single paper, or even

abstract the results to broader instances. This paper serves to unify the current results on the

deterministic queuing model, deepen the applications of the model, apply the results to broader

categories, and provide some intuition along the way. The rest of this section presents the selfish

routing model in the context without time, and provides definitions for terms that are needed

in the rest of the paper. Section 2 presents the deterministic queuing model and the tools used

to analyze the model, and then discusses several applications of the general model. Section 3

considers ways to modify the deterministic queuing model to better fit more applications. Finally,

Section 4 appertains to the results in optimality, computability, and existence of the deterministic

queuing model and its modifications.

1.1 Static Selfish Routing

An instance of a selfish routing game is given by a directed graph G = (V,E) and a set of

source-sink vertex pairs, (s1, t1), . . . , (sk, tk) called commodities. Each player i is associated with

s t

c(x) = 1

c(x) = x

Figure 1: Atomic Pigou’s Example

one commodity, and they have a specific amount of tra�c

ri, also called flow, that they need to route from si to ti. In

addition each edge e 2 E of the graph has a nonnegative,

continuous, and non-decreasing cost function ce(x), which

represents the cost of traversing the edge when there is

x amount of tra�c on it [7]. Each player wants to mini-

mize their total cost of routing, and we choose an objective

function that minimizes the total cost incurred by all play-

ers. In Figure 1, we can imagine four players each wanting

to route .25 units of flow from the source s, to the sink t.

2

Each player can either take the lower edge and incur a cost of one, as if they are on a super-

highway whose traversal time is independent of the amount of tra�c, or they can take the upper

edge and incur a cost that equals the total amount of flow being routed on that edge. Since each

player wants to minimize their own cost, all the players will use the upper edge: if any one player

is on the lower edge, then the upper edge has total flow less than one, and thus is cheaper. In

this situation the total cost incurred by all of the players is 4 but routing two players on the top

edge and the other two players on the bottom edge minimizes the total cost of all the players, a

total cost of 3. In the field of algorithmic game theory we like to compare how bad a situation

is when everyone acts selfishly compared to some optimal solution to the problem.

1.2 Algorithmic Game Theory Basics

There are two di↵erent types of routing games. In nonatomic routing, there are a large number

of players, each controlling a negligible amount of the total overall flow. In atomic routing, each

player controls a significant amount of the overall flow. Atomic instances can either be weighted

or unweighted; in an unweighted atomic instance every player controls the same amount of

flow, whereas in weighted instances the amount of flow each player controls di↵ers.

A Nash equilibrium is when given every other player’s strategy, no player would be better

o↵ switching their current strategy. In the example given in Figure 1, a Nash equilibrium is all

of the players routing their flow on the top edge. To measure the ine�ciency of selfish routing

we use the price of anarchy, defined as the ratio of the cost of the worst Nash equilibrium

to the cost of an optimal routing. Intuitively, the price of anarchy quantifies the loss in quality

when players act selfishly instead of being forced to behave optimally. The price of anarchy for

the example in Figure 1 is 4
3 because, as we explained in Section 1.1, the total cost of all the

players in the Nash equilibrium is 4 but the minimal cost routing had a total cost of 3.

2 The Deterministic Queuing Model

While selfish routing on static flows is a popular research area in the algorithmic game theory

community, the model is unrealistic. Static flows do not take into account time as a variable and

the flow traverses edges instantaneously; this is where dynamic flows come in. There are many

di↵erent ways to model routing on dynamic flows, and all models incorporate time and parameter

variance over time. We specifically focus on the deterministic queueing model because it can

be modified to fit many di↵erent applications. This section presents the model, the objective

functions and prices of anarchy that are used to analyze the model, and several applications of

the model.

2.1 The Model

Vickrey introduced the deterministic queuing model [11], which Koch and Skutella later made

popular in the field of algorithmic game theory [5]. The model consists of a directed graph

3

G = (V,E), a single source node s, and a single sink node t. Each edge has a non-

negative, Lebesgue integrable capacity function ue : R+ ! R+, where ue(✓) bounds the

rate at which flow is able to leave edge e at time ✓. If more flow particles want to leave an

edge than its capacity allows then they form a waiting queue, which has no physical dimension.

Figure 2: Waiting Queue on an Edge.
Ronald Koch. “Routing games over time”.

PhD thesis. Universitätsbibliothek der Tech-

nischen Universität Berlin, 2012

Figure 2 serves as a visual representation of the

formation of a waiting queue. Each edge also

has a constant free flow transit time ⌧e 2 R+

which represents the time it takes to traverse

edge e if the waiting queue on e is empty. Play-

ers arrive at the source s at a fixed rate d, and

as soon as a flow particle arrives at the source it

determines what s� t path to take and immedi-

ately begins to route its flow on that path. Since

each player wants to arrive at their destination

t as quickly as possible, every flow particle tries

to arrive at t before the particles in front of it,

while not being overtaken by the flow particles

from behind. This results in no flow particle being overtaken, and thus the deterministic queuing

model naturally obeys the first-in-first-out (FIFO) property. This also implies that flow particles

never wait longer than they have to, meaning that they will always exit an edge if the capacity

allows.

2.2 Objective Functions

Dynamic flows have parameters that can vary with time and also include time as a parameter,

allowing for many di↵erent types of objective functions. This paper focuses on three particular

objective functions. Given an amount of flowM , a quickest flow sends that amount of flow from

the source to the sink in the minimal amount of time, T . An earliest arrival flow maximizes

the amount of flow that arrives at the sink for every interval [0, t], where 0 t P , where

P is some specified end time. An earliest arrival flow is also a quickest flow [1, 6]. A player’s

bottleneck value is the highest cost/latency incurred from an edge on their routing path. The

bottleneck of a flow routing is the highest bottleneck value of the players. A narrowest flow is

a flow with minimum bottleneck value [12].

2.3 Prices of Anarchy

In [4, 1], the authors describe three common prices of anarchy that are used to study selfish

routing. The evacuation price of anarchy compares the total amount of flow that has reached

the sink by some time ✓ in the worst equilibrium, to an earliest arrival flow. We might study

the evacuation price of anarchy if we were looking at building evacuation plans. The goal is to

have as many people exit the building at every point in time ✓ because we do not always know

how long we have to evacuate everyone. The evacuation price of anarchy will show us how bad it

4

would be if everyone chose their own evacuation plan instead of listening to a central authority.

The total delay price of anarchy compares the total delay of the worst equilibrium to an

earliest arrival flow, where the total delay is the sum of all the players’ arrival times at the sink.

Given an amount of flow M , the completion time price of anarchy compares the amount of

time it takes to route M amount of flow from the source to the sink in the worst equilibrium to

a quickest flow.

In [12], the authors seek to minimize the bottleneck of the game. For that reason, we

introduce the bottleneck price of anarchy which compares the bottleneck value in the worst

equilibrium to the narrowest flow. When we state that a price of anarchy is bounded above by

some value x, that is saying that the price of anarchy will always be less than or equal to x. This

also means that the value of the worst equilibrium will never be more than x times the optimal

value.

2.4 Applications

2.4.1 Building Evacuations

The deterministic queuing model can be used to model building evacuations. In an emergency

we want to get as many people out of the building as fast as possible. Each individual exiting the

building wants to get out as fast as possible, and thus acts selfishly. We can imagine hallways

and stairways as the edges, and the time it takes to walk down a hallway, or down a flight of

stairs can be depicted through the free flow transit time. Similarly, every single person cannot

try to go through a doorway at the same time to exit a hallway, so people will crowd around the

doorway, i.e., form a waiting queue, until there is room for them to get through. The capacities

of the edges can thus depict the doorways.

2.4.2 Tra�c Forecasting

The tra�c community uses forecasting models to evaluate how changes in transportation fa-

cilities, demographics, and more impact the transportation system of a region. Before the in-

troduction of Dynamic Tra�c Assignment models, transportation planning used static models.

Dynamic models are more realistic because they incorporate time into the model, and are thus

useful in evaluating travel times and costs to both players and the entire system [2]. An impor-

tant factor of the model is simulating di↵erent types of congestion. One type of congestion is a

bottleneck, in which one road segment leads into another road segment with a smaller capacity

[11]. This type of congestion can be represented through the deterministic queuing model be-

cause the edge capacities limit how many players can exit that edge, and thus replicate a smaller

amount of players being allowed onto the following edge. The use of the deterministic queuing

model in this application would be better if we made the waiting queues have physical dimen-

sion. This way, when the waiting queue reaches its physical dimension it causes longer waiting

on the incoming edges, which is what happens to roads that feed into tra�c jams. Similarly, it

would be interesting to modify the model so that there were multiple edges between two vertices

5

representing di↵erent lanes of tra�c since not all lanes of tra�c move at the same speed, and

because some lanes have better priority, such as an HOV lane.

3 Modifications of the Deterministic Queuing Model

An advantage of using the deterministic queueing model is that it is easily adapted to di↵erent

real-life applications. This section examines di↵erent model modifications and the applications

they pertain to.

3.1 Shortest Paths Networks

A simpler version of the deterministic queuing model is called a shortest paths network and only

involves slight modifications: each edge in the network has constant capacity, and each path

from the source to the sink has the same total free flow transit time, i.e., the sum of the free flow

transit times along the edges in a path from the source to the sink is the same no matter what

path you use. Instead of flow arriving at the source at a fixed rate d, all flow units are present at

the source at time 0. In the example below we consider an atomic instance of a shortest paths

network. In atomic instances there is an initial starting priority which is used for tie-breaking.

If more than one player is trying to leave an edge and the capacity doesn’t allow it, then the

player with the better priority gets to exit first [4, 5].

3.1.1 Atomic Shortest Paths Network Example

Figure 3: Atomic Shortest Paths Network

6

The top left square section of Figure 3 shows a dynamic network where each edge has capacity

1. Free flow transit times are shown next to the edges, and five atomic players are shown in their

initial starting order. Each player controls one unit of flow, thus only one player at a time can

exit a given edge. We show the routing of the players at each point in time ✓ which results in a

Nash Equilibrium. When referring to routes we will consider the s ! u ! t path as the upper

path, the s ! v ! t path as the lower path, and the s ! u ! v ! t path as the zig-zag path.

The green player can choose any route, all result in an earliest arrival time of ✓ = 3. For this

example, the green player takes the upper route. The pink player will take the lower path to

ensure an arrival time of ✓ = 3. The brown player could take any of the three paths for an arrival

time of ✓ = 4 because they must wait to exit either the (s, u) edge or the (s, v) edge because

the pink and the green player are before them in the initial starting order. In this example the

brown player takes the zig-zag path and arrives at t at ✓ = 4. The blue player can either take

the upper or lower path; they cannot take the zig-zag path because then the orange player could

take the lower path and enter the (v, t) edge before them causing an arrival time of ✓ = 6. So

the blue player will take the upper edge for an arrival time of ✓ = 5. Based on the blue player’s

choice of the upper edge, the orange player’s quickest route is the lower edge and experiences an

arrival time of ✓ = 5.

3.2 Random Queuing

Popov and Tatarenko study a nonatomic random queuing model in [10], where the network

consists of a set of parallel paths that go from the source s to the sink t. Similar to the shortest

paths network, each edge has constant capacity, and all players start at the source at time 0.

Players can either traverse an edge, or stay waiting at their current vertex (if the edge capacity

is reached) at each time step �t. While this may seem di↵erent than the DQM at first glance,

we can abstract the model by imagining each edge having a free flow traversal time of 1, and

instead of waiting at vertices players wait at the end of the edge leading into the vertex in which

they would have been waiting at. When the capacity of an edge is reached and a waiting queue

is formed, instead of players being allowed to exit in the normal FIFO manner players are chosen

at random. The probability that a player is able to exit the edge they are at is given by the

direct ratio of the capacity of the edge to the total amount of flow waiting to leave the edge. The

social objective of the game is to minimize the sum of the arrival costs of all the players, where

the cost of a player is their arrival time at the sink.

3.2.1 Random Early Detection

The Random Early Detection (RED) algorithm used for internet quality of service is an appli-

cation of random queues in the deterministic queuing model. If a router is too busy and cannot

deliver data e�ciently, it may drop a packet. Dropping a packet serves as a signal to senders

that the network is congested and they should either reduce the bandwidth they are using or try

sending data along a di↵erent path. RED is used to drop packets before a queue becomes full.

Each queue has a minimum threshold and a maximum threshold. No packets are dropped when

7

the average queue size is less than the minimum threshold, and all packets are dropped or marked

when the average queue size is larger than the maximum threshold. When the average queue size

is between the minimum and maximum threshold, packets are marked/dropped probabilistically

based on the average queue size [13]. This can be modeled by random queues in the deterministic

queuing model because when an edge reaches capacity, flow particles are chosen at random to

get to traverse to the next edge on their path. This means that there is a probability that a flow

particle might not ever get chosen to exit an edge when capacity is reached, and would only be

able to exit the edge once the amount of flow trying to exit that edge decreases below capacity,

signifying a decrease in tra�c.

3.3 Atomic Games with a Bottleneck Objective

In [12], Werth, Holzhauser, and Krumke examine the deterministic queuing model under atomic

instances. In particular, they study atomic versions of the model in which players try to minimize

their bottleneck value, and the overall objective is to minimize the bottleneck of the game. Since

this is an atomic game, we need a tie-breaking scheme for when two players arrive at an edge

at the same time and the capacity will not allow them both to exit at the same time. The

tie-breaking scheme associated with this objective is a local tie-breaking scheme. In local tie-

breaking, a priority is assigned to each edge entering a vertex. If more than one player arrives at

the edge at the same time, then the players who are entering from an edge with a better priority

get to exit first. The ordering between players who were on the same edge is carried over from

the previous edges they traversed and each player is given a starting priority at the source vertex.

Another modification made in the study of atomic instances is allowing for multiple sources

and sinks. The regular deterministic queuing model is a single-commodity instance since there

is a single source and single sink. We can also consider instances in which there are multiple

commodities and each player is associated with a commodity, as described in the selfish static

routing model. While multi-commodity instances can be either nonatomic or atomic, [12] was

the only paper to consider multiple commodities in the deterministic queuing model.

3.3.1 Live Cargo Transportation

The European Union has many regulations surrounding the transportation of livestock. The

regulations center around travel times and resting periods, and at each stop the livestock must

be fed and inspected. This can be modeled through the deterministic queueing model, where

an edge represents travel between two stops. The travel time between docks can be reflected in

the free flow transit time, and the wait time reflects waiting in line to be serviced at a dock as

there are many boats that cause congestion at a dock. When there is heavy tra�c at the docks,

there needs to be a way to break ties when boats arrive at the docks at the same time, and the

current tie-breaking rules are similar to local tie-breaking. An indicator of livestock health is

the time spent traveling between docks because it is a period of time that the livestock has to

go without being serviced, and travel can be hard on the animals. Thus a good objective in this

8

scenario is to minimize the bottleneck value, the longest time spent traversing an edge, which in

this scenario would be the longest time the animals have to go without being serviced [12].

3.3.2 All-Optical Networks

In all-optical networks, blocking occurs when more than one data packet arrives at a node at

the same time. At each node, packets can be processed in a FIFO manner, however, sometimes

there are local priorities based on the input ports of a node. This can be modeled with the

local priority tie-breaking scheme. When blocking occurs, instead of a node dropping all but

one packet, fibre delay lines are used to allow the packets to circle around until they can be

forwarded to the next node. Packets deteriorate over time both on fibre delay lines and regular

lines between nodes. Luckily, the packet contents can be regenerated when it is finally forwarded

to the next node. Thus to ensure a good-quality routing, the objective would be to minimize the

bottleneck of the game, i.e., the maximum time spent traveling between nodes and thus time in

which the packet could deteriorate [12].

4 Results

When studying selfish models, we not only want to measure how bad a Nash equilibrium is

compared to optimal, but we want to know if a Nash equilibrium or optimal solution even exists,

and if they can be computed. Even more interesting is how small modifications to the model

or parameters a↵ect these results on existence and computability. This section first examines

results on the three objectives discussed in Section 2.2, and the general deterministic queuing

model. It then investigates how the results change in the modified versions of the model.

4.1 Optimal Flow Results

Quickest flows on a single-commodity network are computed by doing a binary search on time.

In a multi-commodity instance computation of a quickest flow is NP-Hard and it is unclear

whether or not they always exist, but there does exist a 2-approximation algorithm for multi-

commodity instances [3, 9]. Earliest arrival flows always exist in the single-commodity instance

and there is an exponential-time algorithm to compute them, there is also a polynomial-time

approximation algorithm. While earliest arrival flows always exist in single-commodity instances,

there are multi-commodity instances in which they do not exist [9, 8]. The results are even worse

for computing a narrowest flow in the atomic instance. In the multi-commodity case, for both

weighted and unweighted players and in both cyclic and acyclic networks, computing a flow

with minimum bottleneck value is NP-complete. This result holds true even for general single-

commodity instances with weighted or unweighted players [12].

9

4.2 Basic Deterministic Queuing Model and Shortest Paths Network

Koch and Skutella prove in [5] that every instance of a Nash flow in the deterministic queuing

model can be seen as a concatenation of “static thin flows with resetting”, and every instance of

a Nash flow in the shortest paths network can be seen as a concatenation of “static thin flows

without resetting”.1 Based on existence results of static thin flows shown in [4], we can conclude

that a Nash equilibrium always exists in instances of the deterministic queuing model and in

instances of shortest paths networks. Since static thin flows without resetting can be computed

in polynomial time, this means that in the nonatomic version of shortest paths network a Nash

equilibrium can be computed in polynomial time. This contrasts the results for an atomic

version of the shortest paths network where there is an algorithm to compute Nash, and while

the algorithm never terminates it can be stopped after exponential time and Nash can be derived

from that with rounding. In shortest paths network not only does a Nash always exist, but that

Nash is optimal (or asymptotically optimal in the atomic case). This means that the evacuation

price of anarchy, total delay price of anarchy, and time price of anarchy are all 1 (asymptotically

1 in the atomic case).

4.2.1 Stackelberg Strategy

Currently, there are no universal bounds on the price of anarchy for the general deterministic

queuing model, but Bhaskar, Fleisher, and Anshelevich generate upper bounds by enforcing a

Stackelberg strategy [1]. A Stackelberg strategy adds a player to the game that acts as a

network manager. This manager gets to route their flow ahead of all the other players, and

thus reduces the capacities of the edges, and routes their flow with the same goal as the social

objective of the game. In this model, the time price of anarchy is bounded from above by e/(e�1)

by having the network manager route an amount of flow that reduces the capacities to the same

value on each edge as the static flow underlying the quickest flow. Such a Stackelberg strategy

always exists and is polynomial-time computable. In the exact same manner, we can bound the

total delay price of anarchy from above by 2e/(e � 1) by having the network manager reduce

the capacities on each edge to the value of that edge in the static flow underlying the earliest

arrival flow. This strategy also always exists and is polynomial-time computable. Essentially,

this strategy ensures that the static flow underlying the quickest (earliest arrival) flow saturates

every edge of the graph. So if this is already the case of a given instance, then these bounds hold

without needing to use this Stackelberg strategy.

4.3 Random Queuing

In the random queuing version of the deterministic queuing model a Nash equilibrium always

exists and can be computed by nonlinear convex programming. These Nash are not unique

though, meaning that the sum of the arrival times of all the players can di↵er between di↵erent

Nash equilibria. Recall that in the random queuing model, each player wants to minimize their

1
For more information on static thin flows, see [4].

10

arrival time at the sink and the social objective of the game is to minimize C, the sum of the

arrival times of all the players. Given each player’s routing path P , we can use a global planner

to force each player to wait at the initial vertex for an amount of time equal to .5 fP
amin(P)�t

before starting their routing, where fP is the number of players using path P , and amin(P)

is the minimum capacity on path P . Such a global planner ensures that one of the Nash

equilibrium resulting from this new routing has a cost within the range [C⇤
, C

⇤ + .5�t], where

C

⇤ is the minimal value of the social cost [10]. Note, that this is not a bound on the price of

anarchy because the price of anarchy looks at the ratio between the worst-valued equilibrium

and optimal, and this bound is only ensured for one resulting Nash, not all Nash equilibria.

4.4 Atomic Games with a Bottleneck Objective

We can categorize di↵erent types of instances of atomic games with a bottleneck objective in

terms of parameters such as whether players are weighted or not, whether the network is acyclic,

and whether it is a multi-commodity or single-commodity instance. We applied theorems from

[12] to broader categories of instances, to obtain the results shown in Figure 4.

Result Type of Instances

There exist instances without a

Nash Equilibrium.

Multi-commodity, cyclic or acyclic networks,

with weighted or unweighted players.

Determining whether a given in-

stance has a Nash equilibrium is

NP-Hard in the strong sense.

Multi-commodity, cyclic or acyclic networks,

with weighted or unweighted players.

Determining whether a given rout-

ing of all the players is a Nash is

Co-NP-Complete.

Multi-commodity, cyclic or acyclic networks,

with weighted or unweighted players. Single

commodity, cyclic networks, with weighted or

unweighted players.

Best Response computation is not

guaranteed to find a Nash in every

instance.

Single-commodity, cyclic or acyclic networks,

with weighted or unweighted players.

Figure 4: Results for Specific Instances of Atomic Games with a Bottleneck Objective

An interesting result from [12] is that for all instances of atomic games with a bottleneck objective,

the (bottleneck) price of anarchy is bounded from above by k, where k is the number of players.

A repercussion of players aiming to minimize their bottleneck value is that it results in an

unbounded time, evacuation, and total delay price of anarchy. This is because when players are

determining what path to take, paths with the same bottleneck value are indistinguishable to

the player, however these paths could have very di↵erent total traversal times.

11

5 Conclusion

This paper presents the deterministic queuing model, its variations, applications, and results.

We note that in some instances the model could be even further modified to better fit certain

applications, and one would need to study how these new modifications a↵ect the results. There

are still gaps to be filled in the results of the deterministic queuing model and its modifications,

along with other dynamic flow over time models. Since dynamic flows include time as a variable

and parameters can vary with time, there is room to create even more models, and tailor those

models to give su�cient solutions to even more real-world problems.

6 Acknowledgments

I am grateful for my advisor Alexa Sharp for her support and wisdom, and to the Oberlin College

Computer Science Department for giving me this research opportunity.

References

[1] Umang Bhaskar, Lisa Fleischer, and Elliot Anshelevich. “A Stackelberg strategy

for routing flow over time”. In: Games and Economic Behavior (2013).

[2] Yi-Chang Chiu et al. “Dynamic tra�c assignment: A primer”. In: Transportation

Research E-Circular E-C153 (2011).

[3] Lisa Fleischer and Martin Skutella. “Quickest flows over time”. In: SIAM Journal

on Computing 36.6 (2007), pp. 1600–1630.

[4] Ronald Koch. “Routing games over time”. PhD thesis. Universitätsbibliothek der

Technischen Universität Berlin, 2012.

[5] Ronald Koch and Martin Skutella. “Nash equilibria and the price of anarchy for

flows over time”. In: Theory of Computing Systems 49.1 (2011), pp. 71–97.

[6] Balázs Kotnyek. “An annotated overview of dynamic network flows”. In: RR-4936

(2003).

[7] Tim Roughgarden. “Routing games”. In: Algorithmic Game Theory. Cambridge

University Press New York, 2007. Chap. 18.

[8] Melanie Schmidt and Martin Skutella. “Earliest arrival flows in networks with

multiple sinks”. In: Discrete Applied Mathematics 164 (2014), pp. 320–327.

[9] Martin Skutella. “An introduction to network flows over time”. In: Research Trends

in Combinatorial Optimization. Springer, 2009, pp. 451–482.

12

[10] Tatiana Tatarenko and Ivan Popov. “Nash equilibrium flow in a routing game

with random queues”. In: Control and Decision Conference (2014 CCDC), The

26th Chinese. IEEE. 2014, pp. 1729–1734.

[11] William S Vickrey. “Congestion Theory and Transport Investment”. In: American

Economic Review 59.2 (1969), pp. 251–60.

[12] TL Werth, M Holzhauser, and SO Krumke. “Atomic routing in a deterministic

queuing model”. In: Operations Research Perspectives 1.1 (2014), pp. 18–41.

[13] Weibin Zhao, David Olshefski, and Henning G Schulzrinne. “Internet quality of

service: An overview”. In: (2000).

13

	Selfish Routing on Dynamic Flows
	Repository Citation

	tmp.1590691364.pdf.p0Z0V

