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Optimal evacuation solutions for large-scale
scenarios∗

Daniel Dressler, Gunnar Flötteröd, Gregor Lämmel, Kai Nagel, Martin Skutella

1 Introduction
Evacuation, the process of moving people out of potentially dangerous areas, is

a key response to many threats. Planning such an evacuation is therefore important,
especially in large-scale emergencies, where routing becomes non-trivial. This pa-
per deals with the optimization and simulation of the evacuation process. We draw
our data from the study of the city of Padang in Indonesia, with its high threat of
tsunami waves.

Ford and Fulkerson (1962) introduced flows over time (dynamic flows), which
have become integral to evacuation planning. In the standard flow over time model,
each arc a has a constant transit time τ(a). Flow entering the tail of the arc at time θ

leaves the head of the arc at time θ + τ(a). Capacity constraints limit the flow rate
on each arc. Hamacher and Tjandra (2002) survey objectives in evacuation planning
and discuss flow over time models in detail. Note that this model can be solved both
deterministically (with every flow unit being deterministically allocated to a unique
path with unique characteristics) and stochastically (with every flow unit selecting a
path from a choice set with a certain probability, and the path characteristics being
stochastic as well). While the former approach is more convenient from a mathe-
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Gregor Lämmel, Kai Nagel
Institute for Land and Sea Transport Systems, TU Berlin, Salzufer 17-19, 10587 Berlin, Germany,
e-mail: {laemmel, nagel}@vsp.tu-berlin.de

∗ Supported by the Federal Ministry for Education and Research (BMBF) under grants 03NAPI4,
03SKPAI6 (“Advest”) and 03G0666E (“last mile”) and by the DFG Research Center MATHEON
Mathematics for key technologies in Berlin.

1



2 D. Dressler, G. Flötteröd, G. Lämmel, K. Nagel, M. Skutella

matical programming perspective, the latter is of greater realism in that it explicitly
accounts for uncertainty in the modeling. We apply both models in that we compute
deterministic flows which we then evaluate in a stochastic simulation environment.
Problem Definition. We consider the EVACUATION PROBLEM (EP), both in a
deterministic and a stochastic setting. An instance consists of a directed graph
G = (V,A), flow rate capacities u : A→ R≥0, travel times τ : A→ R≥0, and op-
tionally time windows W : A→ {[i, j) : i < j}, restricting when an arc is available.
(Outside this time window it has zero capacity.) Demands d : V → R determine
which vertices are sources and which are sinks. We assume that each sink is essen-
tially uncapacitated. The desired output is a feasible flow over time satisfying the
demands of the sources with minimum total travel time. Note that we only consider
flows over time without storage of flow at vertices. The stochastic model differs
from its deterministic counterpart in that flow units are assigned probabilistically to
routes, but no randomness in the network parameters (free flow travel times, capac-
ities) is accounted for.
Literature Overview. The EP can be solved either based on a deterministic or a
stochastic model. We first consider rigorous mathematical programming approaches
that assume a deterministic model and then consider simulation based approaches
that also cope with stochasticity, although merely in a heuristic manner.
Evacuation Planning with Deterministic Models. A justification for the objective of
the EP is given by Jarvis and Ratliff (1982), because minimizing the total travel
time also maximizes the amount of flow that has already reached the sinks at each
time step (if we ignore time windows). This property also defines an Earliest Arrival
Flow (EAF). Most practical approaches to flow over time problems rely on time-
expanded networks, with the notion of time built explicitly into the graph, at the
price of a pseudo-polynomial size. A time-expanded network uses one copy of the
original network per time step, with a copy of an arc a of length τ(a) pointing from
time layer θ ∈ Z to time layer θ + τ(a). Thus, static flows on the time-expanded
network correspond to flows over time and vice versa. Then, a standard MINIMUM
COST FLOW computation on the time-expanded network, with costs equal to the
transit times, yields an answer to the EP.

Tjandra (2001, 2003) considers specialized algorithms for the EP and related
problems, in particular when the network parameters may change over time. Our
combinatorial algorithm uses similar ideas to exploit the repeating structure of
the time-expanded network, but works on different assumptions. Furthermore, our
large-scale instances require additional techniques to achieve acceptable run times.
The QUICKEST TRANSSHIPMENT PROBLEM is a relaxation of the EP, which just
asks for the minimum egress time. A highly non-trivial but polynomial time al-
gorithm for this problem is given by Hoppe and Tardos (2000). Fleischer and
Skutella (2007) present a polynomial time approximation scheme using a coarser
time-expanded network. Their approach also yields approximate EAFs. These re-
sults are certainly useful, but the required precision is higher than we usually require.
Evacuation Planning with Stochastic Models. The EP can also be considered
from the perspective of dynamic traffic assignment (DTA), see, e. g., Peeta and
Ziliaskopoulos (2001). In order to account for stochasticity, we concentrate on
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simulation-based approaches that generate realizations of possible network states.
We consider two possible directions to look into: The simulation of a Nash equilib-
rium (NE) and an approximate simulation-based system optimal (SO) assignment.

An approximate NE can be simulated by alternately evaluating a route choice
model and a network loading model until mutual consistency is attained. This pro-
cedure has a long history in simulation-based DTA, see Nagel and Flötteröd (2009).
Essentially, each simulated evacuee iteratively optimizes its personal evacuation
plan. After each iteration, every evacuee calculates the cost of the most recently
executed plan. Based on this cost, the evacuee revises the most recently executed
plan. Some evacuees generate new, “best-response” plans using a time-dependent
router. If the cost function uses the travel time of the last iteration, the system con-
verges towards an approximate NE, where the main source of imprecision is due to
the stochastic environment in which the best responses are computed.

Peeta and Mahmassani (1995) show that an identical simulation logic can be
applied to the simulation of a SO assignment if the link travel times are replaced by
the marginal link travel times, which essentially represent the increase in total travel
time generated by a single additional agent entering a link. Lämmel and Flötteröd
(2009) present a both computationally and conceptually very simple approximation
of these marginal travel times.
Our contribution. We investigate evacuation plans with the following objectives:
a Nash Equilibrium (NE), in which no evacuee benefits from choosing a different
but the assigned route and a System Optimum (SO), in which the total travel time
is minimized. The approach taken here is to solve the EP combinatorially using a
customized MINIMUM COST FLOW algorithm. We then proceed to refine the solu-
tion either towards an NE or an SO in the terms of the simulation. This tests and
accounts for the robustness of the deterministically computed plans in a stochastic
environment.

2 The Instance and its Solution
We demonstrate our results on an instance that models a tsunami threatening the

city of Padang in Indonesia. In case of a tsunami, the population should evacuate the
shore line and flee to higher areas. We have a detailed network describing downtown
Padang and trim this to the area below the height threshold. The resulting network
has 4,444 nodes and 12,436 arcs, covering roughly 32 square kilometers.

It is assumed that all inhabitants leave on foot, with an average walking speed
of 1.66 m/s. Derived from this, each arc has a flow rate capacity proportional to the
smallest width of the corresponding street. The simulation uses a storage capacity
that is computed from the area of the street. The scenario assumes a tsunami warning
at 3:00 am, so that the 254,970 inhabitants all start at their respective homes. The
first flooding starts at 3:20 am and water covers almost a third of the modelled area
by 3:40 am. The evacuation plan completes around 3:50 am. The time windows
remove arcs from the network when they are first covered by water.

Optimal Combinatorial Solution. Our algorithm for the EP has the main bene-
fits that it can handle fine discretizations and almost arbitrarily large time horizons,
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and does not require an estimate of the egress time. The memory consumption is
modest compared to standard algorithms. We need to store the underlying instance
for the time-expanded network only once. We can also store the flow over time, i.e.,
the function for each arc, in intervals with constant values. Since by definition the
evacuated areas of the network are never used again, there will at least be long inter-
vals of zeros. Similarly, the flow on bottleneck arcs will usually be at full capacity.
But this not only reduces memory consumption, the intervals also enable a different
algorithmic approach.

The associated MINIMUM COST FLOW PROBLEM in the time-expanded network
can be solved by the SUCCESSIVE SHORTEST PATH algorithm, which starts with a
zero flow and iteratively adds flow on shortest paths to it. In our case, the shortest
path computation only needs to determine what the earliest reachable copy of a
sink is. For this, we need to propagate reachability in the network, which we also
store in intervals: If a vertex v is reachable during some interval [θ1,θ2), and there
is some arc a = (v,w), then w will be reachable at times [θ1 + τ(a),θ2 + τ(a)),
assuming that the copies of arc a are available for the entire interval. If not, only
certain subintervals can be propagated, which can be computed efficiently from the
flow intervals.

We use a breadth-first search starting with reachable intervals [0,∞) from all (not
yet empty) sources. If there are multiple sinks, we can also find multiple shortest
paths, and we can hope to add flow on all of them. We also tried alternative search
styles (e.g., starting at the sinks, or a simultaneous search from the sources and
the sinks), but we found the forward search from the sources to deliver reliably
good results. Dynamically joining consecutive intervals in the search also helps. In
addition, we may guess shortest paths by repeating successful paths that arrived one
time step earlier. Indeed, in the case of a single source, an optimum solution can be
found by repeating a certain set of paths as long as possible. The addition of repeated
paths to our algorithm closely mirrors this behavior. Further, we use heuristics for
choosing which paths to add if they are not all compatible.

Simulation-based Approach. The simulation framework is based on the MATSim
DTA microsimulation (see, e. g., Lämmel et al (2010) for the evacuation version).
It essentially implements the same network model as assumed in the mathematical
programming approach, only that the integer flow units are now replaced by micro-
scopically simulated agents with potentially complex internal behavioral rules.

When feeding the solution obtained with the combinatorial approach into MAT-
Sim, the solution quality deteriorates because of the stochastic system environment.
We then refine these plans within the simulation-based environment. In particular,
the EAF solution dictates an exit plan for each agent and an order in which they
should leave the sources. These plans become the starting solution for MATSim,
but the order is deliberately removed. We believe this to be more realistic. In effect,
agents following their plans might suddenly meet in a bottleneck, which would not
have occurred with the original departure times.

As mentioned before, we have two possible directions to look into: The sim-
ulation of a Nash equilibrium (NE) and an approximate simulation-based system
optimal (SO) assignment. For the NE, we deploy the iterative technique described
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Instance CPLEX 12.1 our algorithm
step ∆ T ∗ T Time Mem Time Mem

Padang 10s 313 350 0:08:30 0.8 GB 0:19:05 1.1 GB
Padang 3s 1051 1100 0:47:56 2.2 GB 1:03:13 1.1 GB
Padang 1s 3221 3225 4:32:48* 6.8 GB 2:22:09 1.2 GB
Building 1s 809 850 0:23:36 3.2 GB 0:00:20 0.4 GB

Table 1 Reported times are user times in h:mm:ss on a PC with a 2x2.13 GHz Core2Duo CPU,
running openSUSE 11.1 (x86 64). (*Estimated from 3:29:51 on a 2x.3.0 GHz Core2Duo CPU.)

by Nagel and Flötteröd (2009), whereas for the SO, we resort to the approximate
solution procedure of Lämmel and Flötteröd (2009).

3 Results and Conclusion
We implemented our combinatorial algorithm for the EP in Sun Java 1.6 and use

the network simplex implementation of ILOG CPLEX 12.1 for comparison.
We present results for the instance of Padang, as well as another instance model-

ing a 20-story building in high detail. It consists of 5,966 nodes and 21,937 edges,
but only 369 people are inside. Our findings are summarized in Table 1. Note that
in all cases we had to provide CPLEX with a time-expanded network for a specific
time horizon T , which we chose near the optimum T ∗.

The general conclusion is that less agents and a greater time horizon favor our
algorithm. The former effect is seen very clearly in the building instance, the latter
in the Padang series. The following figures for the Padang instance with 1 second
time steps might explain the good results: Despite the time horizon of 3221, in the
worst case the reachability is stored in 85|V | intervals, the flow in 73|A| intervals.
Finally, the many possible sinks (exits to higher ground) let the algorithm find 100
or more suitable paths at once, greatly decreasing the number of iterations required.

We then used the routes computed combinatorially for Padang (∆ = 1s) as initial
routes in MATSim. The computed average travel time was 844s, while the same
routes in MATSim result in 884s. This difference of 5% seems quite acceptable,
and may stem from the rounded capacities and discarded starting times, leading to
additional disturbances.

The iterative process of MATSim then refines this solution, reaching an almost
stable state with avg. travel times 945s (NE) and 935s (SO), respectively. The de-
crease in the solution quality and the fluctuation is due to the continuous stochastic-
ity in the simulation environment that occurs as soon as route-replanning is enabled
(hence it does not take effect in a plain network loading of the optimal plans). The
learning curves for NE and SO are shown in Fig. 1(a). For comparison, the results
for the start solution in MATsim are also plotted over the 500 learning iterations.
Nonetheless, this procedure yields a NE solution that is relatively close to the opti-
mal solution as illustrated in Fig. 1(b).

Concluding, we compute solutions that are optimal in the analytical model, which
differs from the model of the learning framework in some details. We observe that
the EP solution changes only slightly when replayed without the departure times
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Fig. 1 Results of the MATSim simulation for EAF, NE and SO approach.

of the individual flow units in the stochastic simulation environment. This leads
us to believe that it is indeed a good solution. The NE and SO solutions of the
simulation framework are also of good quality, which is evident from the optimum
combinatorial solution. Let us remark that NE and SO solutions of similar quality
can also be obtained by the simulation-framework without optimized initial routes.
This simpler methodology is also robust with respect to almost arbitrary sources of
randomness.
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