2,281 research outputs found

    Querying Regular Languages over Sliding Windows

    Get PDF
    We study the space complexity of querying regular languages over data streams in the sliding window model. The algorithm has to answer at any point of time whether the content of the sliding window belongs to a fixed regular language. A trichotomy is shown: For every regular language the optimal space requirement is either in Theta(n), Theta(log(n)), or constant, where nn is the size of the sliding window

    Knowledge-infused and Consistent Complex Event Processing over Real-time and Persistent Streams

    Full text link
    Emerging applications in Internet of Things (IoT) and Cyber-Physical Systems (CPS) present novel challenges to Big Data platforms for performing online analytics. Ubiquitous sensors from IoT deployments are able to generate data streams at high velocity, that include information from a variety of domains, and accumulate to large volumes on disk. Complex Event Processing (CEP) is recognized as an important real-time computing paradigm for analyzing continuous data streams. However, existing work on CEP is largely limited to relational query processing, exposing two distinctive gaps for query specification and execution: (1) infusing the relational query model with higher level knowledge semantics, and (2) seamless query evaluation across temporal spaces that span past, present and future events. These allow accessible analytics over data streams having properties from different disciplines, and help span the velocity (real-time) and volume (persistent) dimensions. In this article, we introduce a Knowledge-infused CEP (X-CEP) framework that provides domain-aware knowledge query constructs along with temporal operators that allow end-to-end queries to span across real-time and persistent streams. We translate this query model to efficient query execution over online and offline data streams, proposing several optimizations to mitigate the overheads introduced by evaluating semantic predicates and in accessing high-volume historic data streams. The proposed X-CEP query model and execution approaches are implemented in our prototype semantic CEP engine, SCEPter. We validate our query model using domain-aware CEP queries from a real-world Smart Power Grid application, and experimentally analyze the benefits of our optimizations for executing these queries, using event streams from a campus-microgrid IoT deployment.Comment: 34 pages, 16 figures, accepted in Future Generation Computer Systems, October 27, 201

    A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures

    Get PDF
    This deliverable is a survey on the IT techniques that are relevant to the three use cases of the project EMILI. It describes the state-of-the-art in four complementary IT areas: Data cleansing, supervisory control and data acquisition, wireless sensor networks and complex event processing. Even though the deliverable’s authors have tried to avoid a too technical language and have tried to explain every concept referred to, the deliverable might seem rather technical to readers so far little familiar with the techniques it describes

    Querying industrial stream-temporal data: An ontology-based visual approach

    Get PDF
    An increasing number of sensors are being deployed in business-critical environments, systems, and equipment; and stream a vast amount of data. The operational efficiency and effectiveness of business processes rely on domain experts’ agility in interpreting data into actionable business information. A domain expert has extensive domain knowledge but not necessarily skills and knowledge on databases and formal query languages. Therefore, centralised approaches are often preferred. These require IT experts to translate the information needs of domain experts into extract-transform-load (ETL) processes in order to extract and integrate data and then let domain experts apply predefined analytics. Since such a workflow is too time intensive, heavy-weight and inflexible given the high volume and velocity of data, domain experts need to extract and analyse the data of interest directly. Ontologies, i.e., semantically rich conceptual domain models, present an intelligible solution by describing the domain of interest on a higher level of abstraction closer to the reality. Moreover, recent ontology-based data access (OBDA) technologies enable end users to formulate their information needs into queries using a set of terms defined in an ontology. Ontological queries could then be translated into SQL or some other database query languages, and executed over the data in its original place and format automatically. To this end, this article reports an ontology-based visual query system (VQS), namely OptiqueVQS, how it is extended for a stream-temporal query language called STARQL, a user experiment with the domain experts at Siemens AG, and STARQL’s query answering performance over a proof of concept implementation for PostgreSQL

    Expressive Stream Reasoning with Laser

    Full text link
    An increasing number of use cases require a timely extraction of non-trivial knowledge from semantically annotated data streams, especially on the Web and for the Internet of Things (IoT). Often, this extraction requires expressive reasoning, which is challenging to compute on large streams. We propose Laser, a new reasoner that supports a pragmatic, non-trivial fragment of the logic LARS which extends Answer Set Programming (ASP) for streams. At its core, Laser implements a novel evaluation procedure which annotates formulae to avoid the re-computation of duplicates at multiple time points. This procedure, combined with a judicious implementation of the LARS operators, is responsible for significantly better runtimes than the ones of other state-of-the-art systems like C-SPARQL and CQELS, or an implementation of LARS which runs on the ASP solver Clingo. This enables the application of expressive logic-based reasoning to large streams and opens the door to a wider range of stream reasoning use cases.Comment: 19 pages, 5 figures. Extended version of accepted paper at ISWC 201

    Automata Theory on Sliding Windows

    Get PDF
    In a recent paper we analyzed the space complexity of streaming algorithms whose goal is to decide membership of a sliding window to a fixed language. For the class of regular languages we proved a space trichotomy theorem: for every regular language the optimal space bound is either constant, logarithmic or linear. In this paper we continue this line of research: We present natural characterizations for the constant and logarithmic space classes and establish tight relationships to the concept of language growth. We also analyze the space complexity with respect to automata size and prove almost matching lower and upper bounds. Finally, we consider the decision problem whether a language given by a DFA/NFA admits a sliding window algorithm using logarithmic/constant space
    corecore