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Abstract—This paper proposes and develops a novel, 

iterative model for resource aware- ubiquitous data stream 
querying (RA-UDSQ). Our model provides timely results to 
mobile users at regular time intervals specified by the user, 
thereby executing continuous stream queries. This model is 
capable of adapting to high data rates of streams and limited 
memory resources available on a mobile device while executing 
continuous queries. We have experimentally compared our 
resource-aware ubiquitous data stream querying model with 
data stream querying without the adaptation. Our comparative 
analysis has shown that our RA-UDSQ can perform better in 
terms of memory and battery without compromising on 
accuracy of results when data rates are high and available 
resources are critically low. 
 

I.  INTRODUCTION 

In the recent past, applications such as wireless sensor 
networks, click streams, web page visits [2] have emerged 
that produce data in the form of rapid flowing and 
unbounded streams. The data arriving in these streams are 
“digitally encoded” and are continuous in nature [GKZ04b] 
[9]. The continuous nature of these data streams makes it 
challenging to store and manipulate such data formats in 
traditional databases for future analysis. Therefore, systems 
such as STREAM [2] and Aurora [1] have been designed for 
managing data streams. These systems are called Data 
Stream Management Systems (DSMS). The main challenge 
faced by these data stream management systems is to design 
and implement algorithms that are capable of performing the 
desired operation on the data streams in a “single pass”, 
given the infeasibility of persistent storage of data streams. 

Recently, efforts have been made in performing data 
stream mining in a ubiquitous environment and thus, leading 
to ubiquitous data stream mining. This extension has been 
made possible due to the improvement in the wireless 
communications and increase in the usage of mobile devices. 
Many algorithms have been developed to perform ubiquitous 
data stream mining (UDM) on mobile devices by adapting to 
high data rates and coping with various resource constraints 
such as available memory, battery and less computational 

capabilities. These algorithms are useful for the mobile users 
in decision making by performing fast data stream analysis 
in wireless sensor networks and discovering the hidden 
patterns and behaviors that exist between data items of rapid 
streams. 

Ubiquitous data streams processing capabilities has been 
extended to only one direction till now in the form of UDM. 
The other principal form of data stream processing is 
querying which has not been focused upon in applying it in 
the ubiquitous environments. Although, ubiquitous data 
stream querying has potential benefits supplementary to 
UDM such as querying data streams using a known 
threshold that has been discovered by UDM and providing 
results to the mobile users at regular time intervals. 

To perform ubiquitous data stream mining in resource 
constrained environment such as on tablets, mobile phone 
and PDA’s, a concept called Algorithm Output Granularity 
(AOG) [4] has been developed to perform resource-aware 
Ubiquitous Data Stream Mining (RA-UDM) by enabling 
data stream mining algorithms to adapt to high data rates and 
resource limited constraints such as available memory and 
battery life [5]. 

In this paper, we propose that supplementary to mining, 
ubiquitous data stream querying can be performed on 
wearable and handheld computing devices to monitor data 
streams. Ubiquitous data stream querying can support and 
enhance UDM applications as follows: 

•  Monitoring the number of items a specific stock price 
goes above a specified threshold and informing a mobile 
stock broker at regular intervals. 

• Counting the number of heavy vehicles that drive at a 
specific speed through a given intersection every hour. 

• Monitoring the ticket availability of the flights that goes 
to specified destination and informing a mobile user at 
regular time intervals. 

These above listed applications and the concept of 
adaptation of a stream process to available resources 
provides the motivations to develop a resource aware 
ubiquitous data stream querying model. Thus, in summary: 
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• Ubiquitous data stream querying is useful in providing 
important and timely information to the users on their 
mobile devices. The concept of continuous queries has 
already been developed for data streams in general. 
There is significant potential to leverage this work and 
adapt it to ubiquitous environments. 

• Considerable amount of work has been done in the field 
of ubiquitous data stream mining but no such efforts have 
been shown in applying data stream querying to 
ubiquitous environment. Thus, there is potential to 
supplement UDM through ubiquitous data stream 
querying. 

• The development of AOG concept provides a sound 
theoretical framework to develop data stream querying 
algorithms that can run successfully on resource 
constrained devices as it addresses the issues of high data 
rates and resource constraints. 

• To increase the range of data stream management 
capabilities in ubiquitous environment provides another 
motivation for applying data stream querying to 
ubiquitous environment. 

Based on the above, our objective is to propose and 
develop a resource aware ubiquitous data stream querying 
algorithm (RA-UDSQ) that can execute continuous queries, 
and adapt to and cope with the high incoming data rates 
according to memory availability. The paper is organized as 
follows. Section 2 presents literature review of data stream 
management systems. Section 3 proposes our resource-
aware ubiquitous data stream querying model (RA-UDSQ). 
Experimental evaluation is presented in Section 4. Finally 
the paper is concluded in Section 5. 

II.  DATA STREAM MANAGEMENT SYSTEMS 

Traditional Database Management Systems (DBMS) are 
capable of managing and manipulating the data that is static 
in nature and stored in the database. However, there is an 
emerging focus on applications that require processing of 
data streams that are generated continuously such as sensor 
readings [6] [2], visits to the websites [2] and online 
transactions [6]. This in turn has necessitated development 
of systems that are capable of handling and processing these 
continuous and unbounded data streams. Data Stream 
Management Systems (DSMSs) have been proposed and 
developed to manage and process data streams [2]. DSMSs 
face many challenges posed by the high data rates and 
continuous nature of streams and management of buffers 
based on arrival of new data taking into account available 
main memory. We provide a brief review of two such 
DSMSs: STREAM [2] and Aurora [1].  

The DSMS developed at Stanford University is called 
STanford StREam DatA Manager (STREAM) [2]. This 
DSMS uses a variant of SQL as its query language with 
allocations of time stamps. Queries are processed using 
operators on queues whose partial results can be stored in a 
synopsis structure for further updates. Algorithms have also 

been developed that can allocate resources to queries in 
order to maximize the query result and to perform 
scheduling in order to reduce the queue sizes for inter-
operator queries [10]. The current limitations faced by the 
STREAM DSMS are the centralization of the system and 
inefficiency in generation of query plans [10].  

The Aurora Data Stream Management System developed 
by [1] is mainly used by applications for monitoring 
purposes. This DSMS can query a large number of data 
streams. It also allows permanent storage of data in two 
ways: 
(i) to store the block of streams that is in a queue on the 
secondary storage if that block has to be processed later. 
(ii) to store the intermediate results of the query execution in 
the form of synopses on the disk for future reference [1]. 

The main issue of DSMS is to design and implement 
algorithms which are capable of reading data streams in one 
pass, evaluating data items against queries and providing an 
approximate output based on the data items. Techniques that 
have been used in such algorithms include sampling, 
sketching, histograms, wavelets, sliding windows and 
negative results [2]. 

Data Stream Querying is a fundamental operation 
performed by the Data Stream Management Systems on 
continuous data streams. Querying on data streams can be of 
two types: one time or continuous. A one time query means 
that the given query will compute on the data stream at the 
specified time when it was specified and provide the output 
based on the data items of the stream at that particular time. 
On the other hand, a continuous query continues to operate 
on the data arriving in streams and provides the output at 
specified time intervals [2]. Thus the result of continuous 
queries is mainly approximate. Such queries can be stored 
and updated to provide some new results. The queries can 
also be defined in advance to operate on data streams and 
are termed as predefined continuous queries. Continuous 
queries on the data streams pose many challenges that are 
described in the following [2]. 
Restricted memory for computations: Querying data 
streams is computationally hard because the data streams are 
unbounded and continuous in nature which makes it 
impossible to store them for the purpose of querying. This 
results in computational limitations due to memory 
restrictions. 
Less computation time: Another challenge in querying data 
streams is the computation time as the data rates of streams 
are very high and multiple passes algorithms for querying 
data streams would result in compromising the accuracy and 
appropriateness of results. Therefore, new algorithms are 
required which can query data streams in one pass. 
Results based on approximation: The most important 
challenge of querying data streams is that we cannot get 
accurate results as the data is not static. The results of 
querying data streams are based on approximation at the cost 
of accuracy loss. Therefore the algorithms should be 
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designed such that the difference between the approximated 
result and the actual result is minimized. 

Some of the techniques reviewed in [2] for providing 
approximate results include: 
Sliding Windows is a conditional timestamp and the query 
operates only on those data stream items which pertain to 
that timestamp. 
Batch Processing involves computing the query in batches 
over a specified time. 
Sampling involves selecting data items randomly from the 
stream and evaluating only those items against the query. 
Synopsis data structures are a summary of the data streams 
which are stored in the main memory and used in evaluating 
the query. 

To query data streams and provide approximate results to 
the users, different data stream query languages have been 
developed which are explained below. 

Readers are referred to [2], [6] and [10] for detailed 
explication of these stream query languages. The next 
section details the general steps involved in processing of 
queries on data streams. 

III. RA-UDSQ 

We propose and develop a Resource Aware UDSQ model 
that applies the concepts of adaptation to resources. 

a.  Algorithm Output Granularity (AOG) 
Our proposed Resource-Aware Ubiquitous Data Stream 

Querying (RA-UDSQ) model is based on the concept of 
Algorithm Output Granularity (AOG). This concept was 
proposed by Gaber et al [7] for mining data streams in a 
resource constrained environment where available memory 
and battery are major constraints. AOG controls the output 
generated by the mining algorithm according to the available 
memory and data rate. It operates on the premise that if 
memory is low and data rate is high then the mining 
algorithm will produce less accurate results and merge 
existing knowledge to cope with these constraints.  

In this paper, we contend that AOG provides a sound 
theoretical framework for performing querying of data 
streams in a ubiquitous environment as it addresses the 
issues of limited resources and high data rates. Therefore, 
we use the concepts of AOG to develop our Resource-Aware 
Ubiquitous Data Stream Querying (RA- UDSQ) model. 

 

A. Resource-Aware Ubiquitous Data Stream Querying 
(RA-UDSQ) Model 
Data stream querying can either be one time queries that 

pertain to the current state of data or continuous queries 
where the data in the streams are queried continuously and 
the results are provided iteratively at specified time intervals 
[2]. Our main aim is to perform continuous querying on data 
streams in the ubiquitous environment. Data stream querying 
in ubiquitous contexts have to address several issues in 

addition to the traditional question of high data rates namely 
lack of computer resources such as memory and battery. 
Therefore, to maintain the continual operation of querying 
on data streams in ubiquitous environment, we propose to 
use AOG concepts of adapting the query process according 
to both the available memory and high data rates. 

Figure 1 illustrates the overall model of our RA-UDSQ 
algorithm. The five phases of the Resource-Aware UDSQ 
algorithm are iterative in nature and are described below 
with its formalization. 
Phase 1: Identifying User Constraints 

In the first phase of the RA-UDSQ algorithm, the user is 
asked to provide the query along with either of the two 
constraints: 
• For a continuous query, a user may specify the time 
duration in which the user wants the result. For example, a 
user requests for the name of the shares that freezes, (i.e. 
reaches the maximum price possible in a day), to be 
delivered to him/her every 2 hours. 
• The number of results that are required by the user. 
Consider a scenario in which the user’s query requires a 
notification to be issued for every 50 cars that cross an 
intersection with a speed limit greater than 80 km. In this 
case the user constraint is not time bound, but rather depends 
on the outcome of the query operation. 

In this study we limit our focus to the first user constraint 
which is the time duration. Therefore in our model, the time 
duration specified by the user is denoted by D. 

Once the user has specified the time duration constraint, 
the next phase of the RA-UDSQ will commence. 
Phase 2: Optimization 

This phase does the following: 
(i) Once the time duration is specified in phase 1, the 
algorithm divides the time duration into a number of time 
frames. Such a strategy enables us to present the results that 
are recent and timely to the user while maintaining the user 
specified duration because in every time frame the new 
fluctuated data rate is considered and it may be possible that 
the maximum number of data items arriving in streams 
during the last frame satisfies the query. This strategy has 
been explained more clearly with a help of an example in the 
following discussion. The number of time frames is 
calculated based on the time duration specified by the user 
and every time frame is of equal unit time. Thus: 
· Let TF be the current time frame. 
· Let N(TF) be the total number of time frames. 
· Let UTF be the unit time frame. It is calculated using the 
following formula: 
UTF = D / N(TF) 
(ii) The algorithm determines the current data rate. It 
performs the sampling process using any of the techniques 
specified in [2] such as sliding windows and load shedding 
to optimize the reading rate, i.e., the actual number of data 
items on which the query is executed. [11] explains that 
given the time duration at which the user wants the output, 
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the rate can be optimized such that it produces the maximum 
number of outputs during that time frame. It is 
formulated in the following manner: 
· Let DR(TF) be the data rate for the time frame TF. 
· Let RR(TF) be the count of actual number of data items 
read in the time frame TF. 

Consider the following illustrative scenario where a user 
specifies the time duration for results to be delivered to be 
30 minutes. Let the data rate be 100 data items/min. Let the 
output rate also be 100 data items/min and the available 
memory as 150 blocks where each block can hold up to 10 
data items. This would mean that a total of 1500 data items 
can be stored in the available memory. Now if the algorithm 
reads the data items at the rate at which they are coming then 
in 15 minutes the total memory will be occupied but we need 
to provide the user with the results only after 30 minutes and 
not before that. As mentioned before, this is done to ensure 
that user is presented with the most recent and timely results 
based on the fluctuating data rate and to include the arrival 
of the recent data items in the results. Consider the case 
where due to the lack of our optimization strategy, the 
memory is occupied with the 1500 results in the first 15 
minutes. In the last 15 minutes it is quite possible that 3000 
data items arrived that held the potential of satisfying the 
query but those data items have to be completely ignored 
due to memory unavailability. Thus, the final output in this 
case that we will be presenting to the user will not 
demonstrate the current situation but would apply to the past 
scenario. Therefore, we need to control the rate at which the 
algorithm should read the data items using the sampling 
method and execute the query on it such that the memory is 
utilized for the duration of 30 minutes. This technique is 
beneficial in obtaining the output based on the recent data 
items. So in this case only 50% of the data rate will be 
treated as sampled data items because the calculated 
sampling rate will be 0.5. (Note: The determination of the 
sampling rate is presented in phase 4). 
Phase 3: Executing the Query Using Blocking Operators 

In the third phase, all the sampled data items are 
processed according to the specific query for providing the 
output as per the user requirements at regular time intervals. 
This query uses some of the blocking operators such as the 
having clause, the group by clause, and the order by clause 
in order to select the specific data items that satisfy the 
specified clauses as the output. The blocking operators 
perform different functions which are explained below: 
1. Having Clause: Having clause in the queries is used to 
compare the values, obtained either individually or through a 
user defined function, with the specified condition. If the 
value satisfies the condition then the record is considered as 
one of the result. 
2. Group By Clause: As the name suggests, the group by 
clause is used to group or assimilate the results of the query 
based on some attribute. 

3. Order By Clause: This clause is used in the query to 
arrange the results in ascending or descending order based 
on specified attribute before delivering them to the user. In 
order to associate the query processing with the adaptation 
to resources, we maintain the Output Rate (OR) and the 
Output Rate per Time Frame (OR(TF)) as follows: 
· Let OR be the output rate. Whenever the sampled record 
satisfies the query condition, the output rate is incremented 
by 1. 
· Let OR(TF) be the count of the total number of results 
obtained in the time frame TF.  

For each time frame, the results of the query execution 
termed as intermediate results, are stored in the memory so 
that they can be sent to the user as part of the final results 
delivered at the end of the time duration specified by the 
user. 
Phase 4: Memory Management 

This phase is responsible for managing the memory in 
such a way that it does not get filled before the time duration 
specified by the user. To perform memory management for 
each time frame, the estimated output rate is calculated 
based on three parameters: the current data rate, the total 
output rate till the current time frame and the total data items 
read till the current time frame. This is followed by the 
computation of the available memory. Once the estimated 
output rate and available memory are computed, the 
sampling rate is determined for the next time frame. Since 
the calculation of the sampling rate depends on the resource 
constraints such as available memory, data rate and output 
rate, this phase is one of the most important parts of the RA-
UDSQ model. We formulate this phase in the following 
manner: 
· Let EOR(TF) be the estimated output rate for the current 
time frame. EOR(TF) is calculated using the following 
equation 
EOR(TF) = [ [ �( OR(TF)) / �(RR(TF) ) ] / TF ] * DR(TF) 
where OR(TF) is the total number of results in the time 
frame TF, RR(TF) is the total number of actual data items 
read in time frame TF and DR(TF) is the data rate for the 
time frame TF as explained in phases 2 and 3. 
· Let M(TF) be the available memory for the current time 
frame. 
· Let SR be the sampling rate. It is determined by comparing 
the estimated output rate with the available memory such 
that 
SR = 1 when EOR(TF)<M(TF) 
otherwise, SR is calculated using the following equation: 
SR = M(TF) / EOR(TF) when EOR(TF) > M(TF) 

The memory management is an on going process. The 
memory is managed in such a way that it will not be 
completely occupied before the time duration gets over. 
Once the time duration is over and the results are sent to the 
user and then the results from the memory will be clear in 
order to commence the next cycle. 
Phase 5: Delivering 
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This is the final phase of the RA-UDSQ model, where all 
the intermediate results of the query are collated and 
presented to the user after the time duration specified by the 
user. In order to determine the completion of time duration, 
the count of every time frame is kept by calculating the 
starting time at the start of a new time frame and the ending 
time at the end of that time frame. The difference is 
calculated and if it is equal to the unit time, calculated in 
phase 2, it marks the completion of one time frame. Since 
continuous queries are intended to execute over an extended 
period of time, the delivery of results merely represents the 
end of a cycle of the RA-UDSQ process. This process is 
iterative and upon delivery of the results a new cycle 
commences with the optimization phase followed by the 
other phases of the RA-UDSQ model as shown in Figure 1. 

Based on the above explanation and formalization, the 
RA-UDSQ algorithm has been summarized in Figure 2. 

In the following section the implementation of the above 
proposed RA-UDSQ algorithm is presented along with its 
evaluation to establish its feasibility and benefits for 
performing data stream querying on resource constrained 
devices in a ubiquitous environment.  

 

 
Figure 1 Model of RA-UDSQ Algorithm 

IV. EXPERIMENTAL RESULTS 

The focus of our experimentation has been to investigate the 
following: 
· Memory savings that our approach can facilitate 
· The impact of our approach on battery usage 

· The impact of our approach on the accuracy which we 
evaluate in terms of the loss in responses to the query due to 
adaptation. 

Thus, our evaluation strategy has been to execute 
continuous queries on a PDA. We evaluate the impact of 
performing this query without the resource aware (RA) 
aspects of our model (i.e. stand-alone query) and compare 
the results with executing the same query under the RA-
UDSQ model. Both the algorithms were executed under the 
same experimental conditions and the results were recorded 
for comparison. Finally, to ensure the same data stream is 
fed to both queries, we generate and re-play the same data 
stream for each experimental run. 

The experiments were carried out in wireless network 
environment on a PDA (i.e. HP iPAQ 3970 model). Both 
RA-UDSQ and UDSQ algorithms were developed using the 
following configuration: Pentium 4 CPU 1.5 GHz desktop 
with 256 MB RAM and running Java (TM) 1 Runtime 
Environment, Standard Edition, Version 1.1.8. The RA-
UDSQ and UDSQ algorithms were converted into Jeode and 
run on the iPAQ with 64 MB, running Microsoft Windows 
CE version 3.0.9348.  

The development of data stream management system to 
manage and execute random queries is out of our research 
scope. Therefore, we implement the following continuous 
query for experimental evaluation: 
Select * from records 
Group by age 
Having income>=25000. 

The results of the query are grouped together based on the 
age parameter. The data rates are fluctuated using a random 
number to simulate the real world ubiquitous environment. 

The values of the rest of the parameters, which are data 
rate, remaining memory, remaining battery and the output 
rate, are displayed on the iPAQ screen during program 
execution, as shown below in Figure 3, and are recorded in a 
separate file for the purpose of comparison. 

As mentioned earlier, our model is based on time duration 
specified by the user and this time duration is divided into 
number of time frames of equal minutes to provide timely 
and most recent results to the user. In our RA-UDSQ 
algorithm we divide the time duration into standard number 
of time frames. In our implementation, we use five time 
frames. Incase the time duration is less than 5 minutes, then 
the number of time frames for our algorithm becomes equal 
to the specified time duration so that unit time frame is of at 
least 1 minute. The sampling process is performed using 
sampling method. A random number is generated between 0 
and 1 using Java randomize function. This number is 
compared with the current sampling rate. If the random 
number is less than the sampling rate then that data item is 
queried otherwise it is ignored. The following section details 
the different experiments conducted and our analysis.  

We have conducted several experiments to evaluate the 
performance of our RA-UDSQ algorithm and compared this 
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approach with executing stream queries in a ubiquitous 
environment without our proposed resource-aware 
adaptation. These experiments measure three main 
parameters: available memory, battery consumption and 
accuracy of the final output. These experiments are 
discussed as follows: 

a. The aim of this experiment is to 
investigate the impact of RA-UDSQ on 
memory usage when compared with the 
memory usage obtained when the same 
query is executed without resource-aware 
adaptation.  

From hereon, we term the non resource-aware execution of 
ubiquitous data stream querying as UDSQ. Within each 
experimental run, we executed the RA-UDSQ and UDSQ 
algorithms using the same data rates with the same amount 
of initial available memory for the same time duration. We 
conducted ten different experimental runs by varying the 
data rates, initial available memory and time duration for 
each run. The results of this experiment are presented in 
Table 1. We record the time duration in minutes, initial 
physical available memory for program execution calculated 
in MB and the remaining memory calculated in percentage 
terms at the end of time duration in case of RA-UDSQ and 
UDSQ respectively. The last column indicates the memory 
savings obtained with the execution of RA-UDSQ when 
compared with UDSQ.  

The comparison in memory savings is shown in Table 1. 
This illustration shows that the remaining memory in case of 
Resource-Aware UDSQ is always more than the remaining 
memory in case of without resource aware UDSQ. This 
clearly indicates that more memory has been saved with the 
execution of resource aware UDSQ than with the execution 
of UDSQ algorithm. We also observe from these 
experiments that whenever the data rates are very high in 
comparison to the available memory then the difference 
between the memory savings from RA-UDSQ and UDSQ 
tends to be correspondingly high. This shows the capability 
of our approach in coping with high data rates through 
adaptation.  

b. Another set of experiments has been 
conducted to assess the battery 
consumption in both cases.  

The main aim of this experiment is to investigate the 
impact on battery consumption with RA-UDSQ as compared 
to UDSQ with different data rates, initial available memory 
and different time durations. 

 After conducting ten similar experiments like part A, we 
analyzed that in most cases battery consumption is more 
with RA-UDSQ than with UDSQ. This is due to the extra 
processing involved in the execution of RA-UDSQ 
algorithm as compared to the execution of UDSQ algorithm. 
But a reverse situation can be seen in some of the cases 
where battery consumption with RA-UDSQ is relatively 

lower than with UDSQ because in RA-UDSQ, the sampling 
rate is adjusted accordingly on the basis of three constraints 
which are available memory, data rate and estimated output 
rate to read less number of data items instead of all the data 
items. This scenario is presented in Table 2 showing the 
values for case 5.  

In contrast, in UDSQ the data items are read at the current 
data rate irrespective of resource constraints. Therefore, the 
processing of the UDSQ algorithm consumes more battery 
because a larger number of data items are read and queried 
and the output is stored in memory by making internal 
adjustments due to less available memory. Therefore, in 
critical circumstances resource aware UDSQ proves more 
beneficial than non-resource-aware UDSQ, while in general 
RA-UDSQ is seen as having a slightly higher energy 
consumption profile than UDSQ which is indicated by an 
average increase of 1.4%.  

The two experiments explained above have shown that in 
case of RA-UDSQ algorithm whenever the resources are 
critical, the sampling rate is adjusted to cope with high data 
rates and less available memory. Our premise is that RA-
UDSQ compromises on the actual output within tolerable 
limits.  

c. The main aim of this experiment is to 
examine the impact on the accuracy of the 
final output produced by RA-UDSQ with 
respect to UDSQ algorithm.  

We term accuracy as the loss in records that are queried to 
obtain a positive response due to adaptation and its impact 
on the sampling rate.  

Within each experimental run, we executed the RA-UDSQ 
and UDSQ algorithms using the same data rates with the 
same amount of initial available memory for the same time 
duration. We conducted ten different experimental runs by 
varying the data rates, initial available memory and time 
duration for each run. Table 3 presents the results of this 
experiment. We record the total data rates for the 
corresponding cases, which are obtained by adding the 
fluctuated data rate over the specified time duration for 
every case, and data items that positively answer the query in 
percentage terms produced by RA-UDSQ and UDSQ 
respectively. The fifth and the last column of the table 
indicate the difference in final output of RA-UDSQ and 
UDSQ.  

Consider case 5 shown in Table 3, where the total data rate 
was relatively higher than the available memory, so the 
sampling rate became equal to 0.34 in order to cope with the 
high data rates and resource constraints. As a result, less 
than 50%, i.e., only 2,137 data items were queried. 
Therefore, the final output at the end of the execution of RA-
UDSQ algorithm was reduced to 1,581 as compared to the 
final output produced by UDSQ algorithm which was equal 
to 4,723. Thus, the difference in the outputs of RA-UDSQ 
and UDSQ became as high as 17.04%.  
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Similarly, in case 7 the difference in final output is 
14.92%. This is because unlike UDSQ, in RA-UDSQ the 
sampling rate was adjusted to 0.26 and 0.36 concurrently to 
adapt to high data rates and less available memory. 
Therefore, the output was considerably less in case of RA-
UDSQ algorithm when compared with UDSQ algorithm. 

 On the other hand, the readings shown above in case 8 in 
table 5b, revealed that whenever the data rate is relatively 
less than the available memory, there is less need for the 
adjustment of the sampling rate. In this case the sampling 
rate was 0.95 and therefore, the difference in final output 
between both algorithms was of only 4 data items which is 
equal to 0.02%. 

To sum up the results of the experiments, the following 
points could be concluded: 
· Our proposed RA-UDSQ is always more memory efficient 
than UDSQ. 
· Our proposed RA-UDSQ algorithm performs better than 
UDSQ algorithm in terms of memory savings and battery 
consumption whenever the data rates are very high and 
available memory is critically low. 
· In normal circumstances when the adaptation based on 
resource constraints is less by RA-UDSQ, it consumes 
battery marginally more than UDSQ algorithm because of 
additional processing involved in the execution of RA-
UDSQ algorithm. 
· Our approach provides approximate results due to the 
incorporation of AOG concept. The extent of compromise 
on the accuracy of results depends on the data rates and 
available resources. However, this not withstanding, the 
ability to adapt is of considerable benefit in ubiquitous 
environments. 

We have presented a comprehensive experimental 
evaluation and analysis of the performance of our proposed 
RA-UDSQ approach.  

V.  CONCLUSION 

The emerging focus on data stream applications has 
necessitated the development of techniques that can analyze 
and query these data streams. Data stream processing 
capabilities are being developed for performing mining and 
querying operations effectively. An increase in wireless 
communications and improvement in the resources of 
handheld and mobile devices such as increased 
computational power and battery life have facilitated the 
advancement of ubiquitous computing in the recent years. 
This resulted in the extension of current data stream 
processing techniques to be performed in ubiquitous context 
where this challenge is enhanced due to high data rates of 
streams and resource constraints. There have been many 
steps taken to realize Ubiquitous Data Stream Mining 
through the development of light weight mining algorithms 
[5] that can adapt to high data rates and low available 
memory to perform mining effectively in the resource 
constrained environment and UDM systems. However, no 

efforts have focused on performing data stream querying in a 
ubiquitous environment. Therefore, this paper has proposed 
and developed a model for Resource-Aware Ubiquitous 
Data Stream Querying (RA-UDSQ). 

Our RA-UDSQ adapts the query process based on data 
rate, available memory and the rate at which the memory is 
being filled. Our RA-UDSQ model is iterative and time 
dependent and is focused towards continuous data stream 
queries. 

Our experimental evaluation of RA-UDSQ has shown the 
benefits of our approach as well as the impact of the 
adaptation process on memory savings, battery consumption 
and the approximation of results due to adaptation. 

APPENDIX 

Error! 
Figure 2 RA-UDSQ Algorithm 
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Figure 3 Values of data rate, output rate, available 

memory and remaining battery 
 

                       Table 1 Memory Saving 

 
Table 2 Case 5 RA-UDSQ Statistics 

Table 3 Comparison of Final Output 
Case 
No. 

Total Data 
Rate (number 
of incoming 
data items) 

Final 
Output 

(RA-
UDSQ) in 

(%) 

Final 
Output 

(UDSQ) in 
(%) 

Difference of 
Final Output 

in (%) 

1 11350 74.66 75.31 0.65 
2 14789 74.72 75.59 0.87 
3 27510 72.54 74.62 2.08 
4 11320 70.48 75.28 4.80 
5 18445 57.95 74.99 17.04 
6 32720 67.58 74.97 7.39 
7 25780 59.91 74.83 14.92 
8 12645 74.36 74.38 0.02 
9 33954 72.08 73.74 1.66 
10 13515 72.48 75.21 2.73 
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Case 5 
Time 

Frame 
Data 
Rates 

Sampling 
Rates 

Actual Data 
Items Read 

1 10,050 0.34 10,050 
2 6,225 1 2,137 
3 675 1 675 
4 1,005 1 1,005 
5 490 1 490 


