
Proceedings of the International Conference on Information and Automation, December 15-18, 2005, Colombo, Sri Lanka.

Abstract—This paper proposes and develops a novel,

iterative model for resource aware- ubiquitous data stream
querying (RA-UDSQ). Our model provides timely results to
mobile users at regular time intervals specified by the user,
thereby executing continuous stream queries. This model is
capable of adapting to high data rates of streams and limited
memory resources available on a mobile device while executing
continuous queries. We have experimentally compared our
resource-aware ubiquitous data stream querying model with
data stream querying without the adaptation. Our comparative
analysis has shown that our RA-UDSQ can perform better in
terms of memory and battery without compromising on
accuracy of results when data rates are high and available
resources are critically low.

I. INTRODUCTION

In the recent past, applications such as wireless sensor
networks, click streams, web page visits [2] have emerged
that produce data in the form of rapid flowing and
unbounded streams. The data arriving in these streams are
“digitally encoded” and are continuous in nature [GKZ04b]
[9]. The continuous nature of these data streams makes it
challenging to store and manipulate such data formats in
traditional databases for future analysis. Therefore, systems
such as STREAM [2] and Aurora [1] have been designed for
managing data streams. These systems are called Data
Stream Management Systems (DSMS). The main challenge
faced by these data stream management systems is to design
and implement algorithms that are capable of performing the
desired operation on the data streams in a “single pass”,
given the infeasibility of persistent storage of data streams.

Recently, efforts have been made in performing data
stream mining in a ubiquitous environment and thus, leading
to ubiquitous data stream mining. This extension has been
made possible due to the improvement in the wireless
communications and increase in the usage of mobile devices.
Many algorithms have been developed to perform ubiquitous
data stream mining (UDM) on mobile devices by adapting to
high data rates and coping with various resource constraints
such as available memory, battery and less computational

capabilities. These algorithms are useful for the mobile users
in decision making by performing fast data stream analysis
in wireless sensor networks and discovering the hidden
patterns and behaviors that exist between data items of rapid
streams.

Ubiquitous data streams processing capabilities has been
extended to only one direction till now in the form of UDM.
The other principal form of data stream processing is
querying which has not been focused upon in applying it in
the ubiquitous environments. Although, ubiquitous data
stream querying has potential benefits supplementary to
UDM such as querying data streams using a known
threshold that has been discovered by UDM and providing
results to the mobile users at regular time intervals.

To perform ubiquitous data stream mining in resource
constrained environment such as on tablets, mobile phone
and PDA’s, a concept called Algorithm Output Granularity
(AOG) [4] has been developed to perform resource-aware
Ubiquitous Data Stream Mining (RA-UDM) by enabling
data stream mining algorithms to adapt to high data rates and
resource limited constraints such as available memory and
battery life [5].

In this paper, we propose that supplementary to mining,
ubiquitous data stream querying can be performed on
wearable and handheld computing devices to monitor data
streams. Ubiquitous data stream querying can support and
enhance UDM applications as follows:

• Monitoring the number of items a specific stock price
goes above a specified threshold and informing a mobile
stock broker at regular intervals.

• Counting the number of heavy vehicles that drive at a
specific speed through a given intersection every hour.

• Monitoring the ticket availability of the flights that goes
to specified destination and informing a mobile user at
regular time intervals.

These above listed applications and the concept of
adaptation of a stream process to available resources
provides the motivations to develop a resource aware
ubiquitous data stream querying model. Thus, in summary:

Resource-Aware Ubiquitous Data Stream
Querying

Iti Agarwal*, Shonali Krishnaswamy+, and Mohamed Medhat Gaber++
School of Computer Science and Software Engineering

Monash University, Melbourne, Victoria 3145
*Email: iaga1@student.monash.edu.au

 +Email: Shonali.Krishnaswamy@infotech.monash.edu.au
++Email: Mohamed.Medhat.Gaber@infotech.monash.edu.au

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29578656?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Proceedings of the International Conference on Information and Automation, December 15-18, 2005, Colombo, Sri Lanka.

• Ubiquitous data stream querying is useful in providing
important and timely information to the users on their
mobile devices. The concept of continuous queries has
already been developed for data streams in general.
There is significant potential to leverage this work and
adapt it to ubiquitous environments.

• Considerable amount of work has been done in the field
of ubiquitous data stream mining but no such efforts have
been shown in applying data stream querying to
ubiquitous environment. Thus, there is potential to
supplement UDM through ubiquitous data stream
querying.

• The development of AOG concept provides a sound
theoretical framework to develop data stream querying
algorithms that can run successfully on resource
constrained devices as it addresses the issues of high data
rates and resource constraints.

• To increase the range of data stream management
capabilities in ubiquitous environment provides another
motivation for applying data stream querying to
ubiquitous environment.

Based on the above, our objective is to propose and
develop a resource aware ubiquitous data stream querying
algorithm (RA-UDSQ) that can execute continuous queries,
and adapt to and cope with the high incoming data rates
according to memory availability. The paper is organized as
follows. Section 2 presents literature review of data stream
management systems. Section 3 proposes our resource-
aware ubiquitous data stream querying model (RA-UDSQ).
Experimental evaluation is presented in Section 4. Finally
the paper is concluded in Section 5.

II. DATA STREAM MANAGEMENT SYSTEMS

Traditional Database Management Systems (DBMS) are
capable of managing and manipulating the data that is static
in nature and stored in the database. However, there is an
emerging focus on applications that require processing of
data streams that are generated continuously such as sensor
readings [6] [2], visits to the websites [2] and online
transactions [6]. This in turn has necessitated development
of systems that are capable of handling and processing these
continuous and unbounded data streams. Data Stream
Management Systems (DSMSs) have been proposed and
developed to manage and process data streams [2]. DSMSs
face many challenges posed by the high data rates and
continuous nature of streams and management of buffers
based on arrival of new data taking into account available
main memory. We provide a brief review of two such
DSMSs: STREAM [2] and Aurora [1].

The DSMS developed at Stanford University is called
STanford StREam DatA Manager (STREAM) [2]. This
DSMS uses a variant of SQL as its query language with
allocations of time stamps. Queries are processed using
operators on queues whose partial results can be stored in a
synopsis structure for further updates. Algorithms have also

been developed that can allocate resources to queries in
order to maximize the query result and to perform
scheduling in order to reduce the queue sizes for inter-
operator queries [10]. The current limitations faced by the
STREAM DSMS are the centralization of the system and
inefficiency in generation of query plans [10].

The Aurora Data Stream Management System developed
by [1] is mainly used by applications for monitoring
purposes. This DSMS can query a large number of data
streams. It also allows permanent storage of data in two
ways:
(i) to store the block of streams that is in a queue on the
secondary storage if that block has to be processed later.
(ii) to store the intermediate results of the query execution in
the form of synopses on the disk for future reference [1].

The main issue of DSMS is to design and implement
algorithms which are capable of reading data streams in one
pass, evaluating data items against queries and providing an
approximate output based on the data items. Techniques that
have been used in such algorithms include sampling,
sketching, histograms, wavelets, sliding windows and
negative results [2].

Data Stream Querying is a fundamental operation
performed by the Data Stream Management Systems on
continuous data streams. Querying on data streams can be of
two types: one time or continuous. A one time query means
that the given query will compute on the data stream at the
specified time when it was specified and provide the output
based on the data items of the stream at that particular time.
On the other hand, a continuous query continues to operate
on the data arriving in streams and provides the output at
specified time intervals [2]. Thus the result of continuous
queries is mainly approximate. Such queries can be stored
and updated to provide some new results. The queries can
also be defined in advance to operate on data streams and
are termed as predefined continuous queries. Continuous
queries on the data streams pose many challenges that are
described in the following [2].
Restricted memory for computations: Querying data
streams is computationally hard because the data streams are
unbounded and continuous in nature which makes it
impossible to store them for the purpose of querying. This
results in computational limitations due to memory
restrictions.
Less computation time: Another challenge in querying data
streams is the computation time as the data rates of streams
are very high and multiple passes algorithms for querying
data streams would result in compromising the accuracy and
appropriateness of results. Therefore, new algorithms are
required which can query data streams in one pass.
Results based on approximation: The most important
challenge of querying data streams is that we cannot get
accurate results as the data is not static. The results of
querying data streams are based on approximation at the cost
of accuracy loss. Therefore the algorithms should be

Proceedings of the International Conference on Information and Automation, December 15-18, 2005, Colombo, Sri Lanka.

designed such that the difference between the approximated
result and the actual result is minimized.

Some of the techniques reviewed in [2] for providing
approximate results include:
Sliding Windows is a conditional timestamp and the query
operates only on those data stream items which pertain to
that timestamp.
Batch Processing involves computing the query in batches
over a specified time.
Sampling involves selecting data items randomly from the
stream and evaluating only those items against the query.
Synopsis data structures are a summary of the data streams
which are stored in the main memory and used in evaluating
the query.

To query data streams and provide approximate results to
the users, different data stream query languages have been
developed which are explained below.

Readers are referred to [2], [6] and [10] for detailed
explication of these stream query languages. The next
section details the general steps involved in processing of
queries on data streams.

III. RA-UDSQ

We propose and develop a Resource Aware UDSQ model
that applies the concepts of adaptation to resources.

a. Algorithm Output Granularity (AOG)
Our proposed Resource-Aware Ubiquitous Data Stream

Querying (RA-UDSQ) model is based on the concept of
Algorithm Output Granularity (AOG). This concept was
proposed by Gaber et al [7] for mining data streams in a
resource constrained environment where available memory
and battery are major constraints. AOG controls the output
generated by the mining algorithm according to the available
memory and data rate. It operates on the premise that if
memory is low and data rate is high then the mining
algorithm will produce less accurate results and merge
existing knowledge to cope with these constraints.

In this paper, we contend that AOG provides a sound
theoretical framework for performing querying of data
streams in a ubiquitous environment as it addresses the
issues of limited resources and high data rates. Therefore,
we use the concepts of AOG to develop our Resource-Aware
Ubiquitous Data Stream Querying (RA- UDSQ) model.

A. Resource-Aware Ubiquitous Data Stream Querying
(RA-UDSQ) Model
Data stream querying can either be one time queries that

pertain to the current state of data or continuous queries
where the data in the streams are queried continuously and
the results are provided iteratively at specified time intervals
[2]. Our main aim is to perform continuous querying on data
streams in the ubiquitous environment. Data stream querying
in ubiquitous contexts have to address several issues in

addition to the traditional question of high data rates namely
lack of computer resources such as memory and battery.
Therefore, to maintain the continual operation of querying
on data streams in ubiquitous environment, we propose to
use AOG concepts of adapting the query process according
to both the available memory and high data rates.

Figure 1 illustrates the overall model of our RA-UDSQ
algorithm. The five phases of the Resource-Aware UDSQ
algorithm are iterative in nature and are described below
with its formalization.
Phase 1: Identifying User Constraints

In the first phase of the RA-UDSQ algorithm, the user is
asked to provide the query along with either of the two
constraints:
• For a continuous query, a user may specify the time
duration in which the user wants the result. For example, a
user requests for the name of the shares that freezes, (i.e.
reaches the maximum price possible in a day), to be
delivered to him/her every 2 hours.
• The number of results that are required by the user.
Consider a scenario in which the user’s query requires a
notification to be issued for every 50 cars that cross an
intersection with a speed limit greater than 80 km. In this
case the user constraint is not time bound, but rather depends
on the outcome of the query operation.

In this study we limit our focus to the first user constraint
which is the time duration. Therefore in our model, the time
duration specified by the user is denoted by D.

Once the user has specified the time duration constraint,
the next phase of the RA-UDSQ will commence.
Phase 2: Optimization

This phase does the following:
(i) Once the time duration is specified in phase 1, the
algorithm divides the time duration into a number of time
frames. Such a strategy enables us to present the results that
are recent and timely to the user while maintaining the user
specified duration because in every time frame the new
fluctuated data rate is considered and it may be possible that
the maximum number of data items arriving in streams
during the last frame satisfies the query. This strategy has
been explained more clearly with a help of an example in the
following discussion. The number of time frames is
calculated based on the time duration specified by the user
and every time frame is of equal unit time. Thus:
· Let TF be the current time frame.
· Let N(TF) be the total number of time frames.
· Let UTF be the unit time frame. It is calculated using the
following formula:
UTF = D / N(TF)
(ii) The algorithm determines the current data rate. It
performs the sampling process using any of the techniques
specified in [2] such as sliding windows and load shedding
to optimize the reading rate, i.e., the actual number of data
items on which the query is executed. [11] explains that
given the time duration at which the user wants the output,

Proceedings of the International Conference on Information and Automation, December 15-18, 2005, Colombo, Sri Lanka.

the rate can be optimized such that it produces the maximum
number of outputs during that time frame. It is
formulated in the following manner:
· Let DR(TF) be the data rate for the time frame TF.
· Let RR(TF) be the count of actual number of data items
read in the time frame TF.

Consider the following illustrative scenario where a user
specifies the time duration for results to be delivered to be
30 minutes. Let the data rate be 100 data items/min. Let the
output rate also be 100 data items/min and the available
memory as 150 blocks where each block can hold up to 10
data items. This would mean that a total of 1500 data items
can be stored in the available memory. Now if the algorithm
reads the data items at the rate at which they are coming then
in 15 minutes the total memory will be occupied but we need
to provide the user with the results only after 30 minutes and
not before that. As mentioned before, this is done to ensure
that user is presented with the most recent and timely results
based on the fluctuating data rate and to include the arrival
of the recent data items in the results. Consider the case
where due to the lack of our optimization strategy, the
memory is occupied with the 1500 results in the first 15
minutes. In the last 15 minutes it is quite possible that 3000
data items arrived that held the potential of satisfying the
query but those data items have to be completely ignored
due to memory unavailability. Thus, the final output in this
case that we will be presenting to the user will not
demonstrate the current situation but would apply to the past
scenario. Therefore, we need to control the rate at which the
algorithm should read the data items using the sampling
method and execute the query on it such that the memory is
utilized for the duration of 30 minutes. This technique is
beneficial in obtaining the output based on the recent data
items. So in this case only 50% of the data rate will be
treated as sampled data items because the calculated
sampling rate will be 0.5. (Note: The determination of the
sampling rate is presented in phase 4).
Phase 3: Executing the Query Using Blocking Operators

In the third phase, all the sampled data items are
processed according to the specific query for providing the
output as per the user requirements at regular time intervals.
This query uses some of the blocking operators such as the
having clause, the group by clause, and the order by clause
in order to select the specific data items that satisfy the
specified clauses as the output. The blocking operators
perform different functions which are explained below:
1. Having Clause: Having clause in the queries is used to
compare the values, obtained either individually or through a
user defined function, with the specified condition. If the
value satisfies the condition then the record is considered as
one of the result.
2. Group By Clause: As the name suggests, the group by
clause is used to group or assimilate the results of the query
based on some attribute.

3. Order By Clause: This clause is used in the query to
arrange the results in ascending or descending order based
on specified attribute before delivering them to the user. In
order to associate the query processing with the adaptation
to resources, we maintain the Output Rate (OR) and the
Output Rate per Time Frame (OR(TF)) as follows:
· Let OR be the output rate. Whenever the sampled record
satisfies the query condition, the output rate is incremented
by 1.
· Let OR(TF) be the count of the total number of results
obtained in the time frame TF.

For each time frame, the results of the query execution
termed as intermediate results, are stored in the memory so
that they can be sent to the user as part of the final results
delivered at the end of the time duration specified by the
user.
Phase 4: Memory Management

This phase is responsible for managing the memory in
such a way that it does not get filled before the time duration
specified by the user. To perform memory management for
each time frame, the estimated output rate is calculated
based on three parameters: the current data rate, the total
output rate till the current time frame and the total data items
read till the current time frame. This is followed by the
computation of the available memory. Once the estimated
output rate and available memory are computed, the
sampling rate is determined for the next time frame. Since
the calculation of the sampling rate depends on the resource
constraints such as available memory, data rate and output
rate, this phase is one of the most important parts of the RA-
UDSQ model. We formulate this phase in the following
manner:
· Let EOR(TF) be the estimated output rate for the current
time frame. EOR(TF) is calculated using the following
equation
EOR(TF) = [[�(OR(TF)) / �(RR(TF))] / TF] * DR(TF)
where OR(TF) is the total number of results in the time
frame TF, RR(TF) is the total number of actual data items
read in time frame TF and DR(TF) is the data rate for the
time frame TF as explained in phases 2 and 3.
· Let M(TF) be the available memory for the current time
frame.
· Let SR be the sampling rate. It is determined by comparing
the estimated output rate with the available memory such
that
SR = 1 when EOR(TF)<M(TF)
otherwise, SR is calculated using the following equation:
SR = M(TF) / EOR(TF) when EOR(TF) > M(TF)

The memory management is an on going process. The
memory is managed in such a way that it will not be
completely occupied before the time duration gets over.
Once the time duration is over and the results are sent to the
user and then the results from the memory will be clear in
order to commence the next cycle.
Phase 5: Delivering

Proceedings of the International Conference on Information and Automation, December 15-18, 2005, Colombo, Sri Lanka.

This is the final phase of the RA-UDSQ model, where all
the intermediate results of the query are collated and
presented to the user after the time duration specified by the
user. In order to determine the completion of time duration,
the count of every time frame is kept by calculating the
starting time at the start of a new time frame and the ending
time at the end of that time frame. The difference is
calculated and if it is equal to the unit time, calculated in
phase 2, it marks the completion of one time frame. Since
continuous queries are intended to execute over an extended
period of time, the delivery of results merely represents the
end of a cycle of the RA-UDSQ process. This process is
iterative and upon delivery of the results a new cycle
commences with the optimization phase followed by the
other phases of the RA-UDSQ model as shown in Figure 1.

Based on the above explanation and formalization, the
RA-UDSQ algorithm has been summarized in Figure 2.

In the following section the implementation of the above
proposed RA-UDSQ algorithm is presented along with its
evaluation to establish its feasibility and benefits for
performing data stream querying on resource constrained
devices in a ubiquitous environment.

Figure 1 Model of RA-UDSQ Algorithm

IV. EXPERIMENTAL RESULTS

The focus of our experimentation has been to investigate the
following:
· Memory savings that our approach can facilitate
· The impact of our approach on battery usage

· The impact of our approach on the accuracy which we
evaluate in terms of the loss in responses to the query due to
adaptation.

Thus, our evaluation strategy has been to execute
continuous queries on a PDA. We evaluate the impact of
performing this query without the resource aware (RA)
aspects of our model (i.e. stand-alone query) and compare
the results with executing the same query under the RA-
UDSQ model. Both the algorithms were executed under the
same experimental conditions and the results were recorded
for comparison. Finally, to ensure the same data stream is
fed to both queries, we generate and re-play the same data
stream for each experimental run.

The experiments were carried out in wireless network
environment on a PDA (i.e. HP iPAQ 3970 model). Both
RA-UDSQ and UDSQ algorithms were developed using the
following configuration: Pentium 4 CPU 1.5 GHz desktop
with 256 MB RAM and running Java (TM) 1 Runtime
Environment, Standard Edition, Version 1.1.8. The RA-
UDSQ and UDSQ algorithms were converted into Jeode and
run on the iPAQ with 64 MB, running Microsoft Windows
CE version 3.0.9348.

The development of data stream management system to
manage and execute random queries is out of our research
scope. Therefore, we implement the following continuous
query for experimental evaluation:
Select * from records
Group by age
Having income>=25000.

The results of the query are grouped together based on the
age parameter. The data rates are fluctuated using a random
number to simulate the real world ubiquitous environment.

The values of the rest of the parameters, which are data
rate, remaining memory, remaining battery and the output
rate, are displayed on the iPAQ screen during program
execution, as shown below in Figure 3, and are recorded in a
separate file for the purpose of comparison.

As mentioned earlier, our model is based on time duration
specified by the user and this time duration is divided into
number of time frames of equal minutes to provide timely
and most recent results to the user. In our RA-UDSQ
algorithm we divide the time duration into standard number
of time frames. In our implementation, we use five time
frames. Incase the time duration is less than 5 minutes, then
the number of time frames for our algorithm becomes equal
to the specified time duration so that unit time frame is of at
least 1 minute. The sampling process is performed using
sampling method. A random number is generated between 0
and 1 using Java randomize function. This number is
compared with the current sampling rate. If the random
number is less than the sampling rate then that data item is
queried otherwise it is ignored. The following section details
the different experiments conducted and our analysis.

We have conducted several experiments to evaluate the
performance of our RA-UDSQ algorithm and compared this

Proceedings of the International Conference on Information and Automation, December 15-18, 2005, Colombo, Sri Lanka.

approach with executing stream queries in a ubiquitous
environment without our proposed resource-aware
adaptation. These experiments measure three main
parameters: available memory, battery consumption and
accuracy of the final output. These experiments are
discussed as follows:

a. The aim of this experiment is to
investigate the impact of RA-UDSQ on
memory usage when compared with the
memory usage obtained when the same
query is executed without resource-aware
adaptation.

From hereon, we term the non resource-aware execution of
ubiquitous data stream querying as UDSQ. Within each
experimental run, we executed the RA-UDSQ and UDSQ
algorithms using the same data rates with the same amount
of initial available memory for the same time duration. We
conducted ten different experimental runs by varying the
data rates, initial available memory and time duration for
each run. The results of this experiment are presented in
Table 1. We record the time duration in minutes, initial
physical available memory for program execution calculated
in MB and the remaining memory calculated in percentage
terms at the end of time duration in case of RA-UDSQ and
UDSQ respectively. The last column indicates the memory
savings obtained with the execution of RA-UDSQ when
compared with UDSQ.

The comparison in memory savings is shown in Table 1.
This illustration shows that the remaining memory in case of
Resource-Aware UDSQ is always more than the remaining
memory in case of without resource aware UDSQ. This
clearly indicates that more memory has been saved with the
execution of resource aware UDSQ than with the execution
of UDSQ algorithm. We also observe from these
experiments that whenever the data rates are very high in
comparison to the available memory then the difference
between the memory savings from RA-UDSQ and UDSQ
tends to be correspondingly high. This shows the capability
of our approach in coping with high data rates through
adaptation.

b. Another set of experiments has been
conducted to assess the battery
consumption in both cases.

The main aim of this experiment is to investigate the
impact on battery consumption with RA-UDSQ as compared
to UDSQ with different data rates, initial available memory
and different time durations.

 After conducting ten similar experiments like part A, we
analyzed that in most cases battery consumption is more
with RA-UDSQ than with UDSQ. This is due to the extra
processing involved in the execution of RA-UDSQ
algorithm as compared to the execution of UDSQ algorithm.
But a reverse situation can be seen in some of the cases
where battery consumption with RA-UDSQ is relatively

lower than with UDSQ because in RA-UDSQ, the sampling
rate is adjusted accordingly on the basis of three constraints
which are available memory, data rate and estimated output
rate to read less number of data items instead of all the data
items. This scenario is presented in Table 2 showing the
values for case 5.

In contrast, in UDSQ the data items are read at the current
data rate irrespective of resource constraints. Therefore, the
processing of the UDSQ algorithm consumes more battery
because a larger number of data items are read and queried
and the output is stored in memory by making internal
adjustments due to less available memory. Therefore, in
critical circumstances resource aware UDSQ proves more
beneficial than non-resource-aware UDSQ, while in general
RA-UDSQ is seen as having a slightly higher energy
consumption profile than UDSQ which is indicated by an
average increase of 1.4%.

The two experiments explained above have shown that in
case of RA-UDSQ algorithm whenever the resources are
critical, the sampling rate is adjusted to cope with high data
rates and less available memory. Our premise is that RA-
UDSQ compromises on the actual output within tolerable
limits.

c. The main aim of this experiment is to
examine the impact on the accuracy of the
final output produced by RA-UDSQ with
respect to UDSQ algorithm.

We term accuracy as the loss in records that are queried to
obtain a positive response due to adaptation and its impact
on the sampling rate.

Within each experimental run, we executed the RA-UDSQ
and UDSQ algorithms using the same data rates with the
same amount of initial available memory for the same time
duration. We conducted ten different experimental runs by
varying the data rates, initial available memory and time
duration for each run. Table 3 presents the results of this
experiment. We record the total data rates for the
corresponding cases, which are obtained by adding the
fluctuated data rate over the specified time duration for
every case, and data items that positively answer the query in
percentage terms produced by RA-UDSQ and UDSQ
respectively. The fifth and the last column of the table
indicate the difference in final output of RA-UDSQ and
UDSQ.

Consider case 5 shown in Table 3, where the total data rate
was relatively higher than the available memory, so the
sampling rate became equal to 0.34 in order to cope with the
high data rates and resource constraints. As a result, less
than 50%, i.e., only 2,137 data items were queried.
Therefore, the final output at the end of the execution of RA-
UDSQ algorithm was reduced to 1,581 as compared to the
final output produced by UDSQ algorithm which was equal
to 4,723. Thus, the difference in the outputs of RA-UDSQ
and UDSQ became as high as 17.04%.

Proceedings of the International Conference on Information and Automation, December 15-18, 2005, Colombo, Sri Lanka.

Similarly, in case 7 the difference in final output is
14.92%. This is because unlike UDSQ, in RA-UDSQ the
sampling rate was adjusted to 0.26 and 0.36 concurrently to
adapt to high data rates and less available memory.
Therefore, the output was considerably less in case of RA-
UDSQ algorithm when compared with UDSQ algorithm.

 On the other hand, the readings shown above in case 8 in
table 5b, revealed that whenever the data rate is relatively
less than the available memory, there is less need for the
adjustment of the sampling rate. In this case the sampling
rate was 0.95 and therefore, the difference in final output
between both algorithms was of only 4 data items which is
equal to 0.02%.

To sum up the results of the experiments, the following
points could be concluded:
· Our proposed RA-UDSQ is always more memory efficient
than UDSQ.
· Our proposed RA-UDSQ algorithm performs better than
UDSQ algorithm in terms of memory savings and battery
consumption whenever the data rates are very high and
available memory is critically low.
· In normal circumstances when the adaptation based on
resource constraints is less by RA-UDSQ, it consumes
battery marginally more than UDSQ algorithm because of
additional processing involved in the execution of RA-
UDSQ algorithm.
· Our approach provides approximate results due to the
incorporation of AOG concept. The extent of compromise
on the accuracy of results depends on the data rates and
available resources. However, this not withstanding, the
ability to adapt is of considerable benefit in ubiquitous
environments.

We have presented a comprehensive experimental
evaluation and analysis of the performance of our proposed
RA-UDSQ approach.

V. CONCLUSION

The emerging focus on data stream applications has
necessitated the development of techniques that can analyze
and query these data streams. Data stream processing
capabilities are being developed for performing mining and
querying operations effectively. An increase in wireless
communications and improvement in the resources of
handheld and mobile devices such as increased
computational power and battery life have facilitated the
advancement of ubiquitous computing in the recent years.
This resulted in the extension of current data stream
processing techniques to be performed in ubiquitous context
where this challenge is enhanced due to high data rates of
streams and resource constraints. There have been many
steps taken to realize Ubiquitous Data Stream Mining
through the development of light weight mining algorithms
[5] that can adapt to high data rates and low available
memory to perform mining effectively in the resource
constrained environment and UDM systems. However, no

efforts have focused on performing data stream querying in a
ubiquitous environment. Therefore, this paper has proposed
and developed a model for Resource-Aware Ubiquitous
Data Stream Querying (RA-UDSQ).

Our RA-UDSQ adapts the query process based on data
rate, available memory and the rate at which the memory is
being filled. Our RA-UDSQ model is iterative and time
dependent and is focused towards continuous data stream
queries.

Our experimental evaluation of RA-UDSQ has shown the
benefits of our approach as well as the impact of the
adaptation process on memory savings, battery consumption
and the approximation of results due to adaptation.

APPENDIX

Error!
Figure 2 RA-UDSQ Algorithm

Proceedings of the International Conference on Information and Automation, December 15-18, 2005, Colombo, Sri Lanka.

Figure 3 Values of data rate, output rate, available

memory and remaining battery

 Table 1 Memory Saving

Table 2 Case 5 RA-UDSQ Statistics

Table 3 Comparison of Final Output
Case
No.

Total Data
Rate (number
of incoming
data items)

Final
Output

(RA-
UDSQ) in

(%)

Final
Output

(UDSQ) in
(%)

Difference of
Final Output

in (%)

1 11350 74.66 75.31 0.65
2 14789 74.72 75.59 0.87
3 27510 72.54 74.62 2.08
4 11320 70.48 75.28 4.80
5 18445 57.95 74.99 17.04
6 32720 67.58 74.97 7.39
7 25780 59.91 74.83 14.92
8 12645 74.36 74.38 0.02
9 33954 72.08 73.74 1.66
10 13515 72.48 75.21 2.73

REFERENCES
[1] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, C.

Erwin, E. Galvez, M. Hatoun, J. Hwang, A. Maskey, A. Rasin, A.
inger, M. Stonebraker, N. Tatbul, Y. Xing, R.Yan and S. Zdonik,
Aurora: A Data Stream Management System (Demonstration)”,
Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD'03), San Diego, CA, June 2003.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani and J. Widom, “Models
and Issues in data stream systems” , Proceedings of 21st ACM
Symposium on Principles of Database Systems (PODS), Madison,
Wisconsin, 2002, Pages: 1 – 16.

[3] M. N. Garofalakis, J. Gehrke, and R. Rastogi, “Querying and mining
data streams: You only get one look (tutorial)” , Proceedings of ACM
SIGMOD International Conference on Management of Data,
Madison, Wisconsin, May 2002, Page: 635.

[4] M. M. Gaber, S. Krishnaswamy and A. Zaslavsky, “Adaptive Mining
Techniques for Data Streams Using Algorithm Output Granularity” ,
The Australasian Data Mining Workshop (AusDM 2003), Held in
conjunction with the 2003 Congress on Evolutionary Computation
(CEC 2003) Canberra, Australia, Springer Verlag, Lecture Notes in
Computer Science (LNCS), December 2003.

[5] M. M. Gaber, S. Krishnaswamy and A. Zaslavsky, “Ubiquitous Data
Stream Mining” , Current Research and Future Directions Workshop
Proceedings held in conjunction with The Eighth Pacific-Asia
Conference on Knowledge Discovery and Data Mining, Sydney,
Australia, May 26 2004.

[6] L. Golab and M. T. Ozsu, “ Issues in Data Stream Management” , In
SIGMOD Record, Volume 32, Number 2, June 2003, Pages: 5-14.

[7] M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy, “Resource-Aware
Knowledge Discovery in Data Streams” , in the Proceedings of First
International Workshop on Knowledge Discovery in Data Streams, in
conjunction with ECML 2004 and PKDD 2004, Pisa, Italy, 20-24
September 2004.

[8] H. Kargupta, B. Park, S. Pittie, L. Liu, D. Kushraj and K. Sarkar,
“MobiMine: Monitoring the Stock Market from a PDA” , ACM
SIGKDD Explorations, Volume 3, Issue 2, ACM Press, January 2002,
Pages: 37-46.

[9] S. Muthukrishnan, “Data streams: algorithms and applications” ,
Proceedings of the fourteenth annual ACM-SIAM symposium on
discrete algorithms, 2003, Page: 413.

[10] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G.
Manku, C. Olston, J.Rosenstein and R. Varma, “Query Processing,
Approximation, and Resource Management in a Data Stream
Management System” , Proceedings of the First Biennial Conference
on Innovative Data Systems Research (CIDR), January 2003, Pages:
245-256.

[11] S. D. Viglas and J. F. Naughton, “Rate-based query optimization for
streaming information sources”, Proceedings of the 2002 ACM
SIGMOD International Conference on Management of data,
Madison, Wisconsin, 03-06 June 2002, Pages: 37 – 48.

Case 5
Time

Frame
Data
Rates

Sampling
Rates

Actual Data
Items Read

1 10,050 0.34 10,050
2 6,225 1 2,137
3 675 1 675
4 1,005 1 1,005
5 490 1 490

