
Querying Regular Languages over Sliding Windows
Moses Ganardi1, Danny Hucke2, and Markus Lohrey∗3

1 University of Siegen, Germany
ganardi@eti.uni-siegen.de

2 University of Siegen, Germany
hucke@eti.uni-siegen.de

3 University of Siegen, Germany
lohrey@eti.uni-siegen.de

Abstract
We study the space complexity of querying regular languages over data streams in the sliding
window model. The algorithm has to answer at any point of time whether the content of the
sliding window belongs to a fixed regular language. A trichotomy is shown: For every regular
language the optimal space requirement is either in Θ(n), Θ(logn), or constant, where n is the
size of the sliding window.
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1 Introduction

Streaming algorithms, i.e. algorithms that process a non-terminating stream a1a2a3 · · · of
data values and which have at time t only direct access to the current symbol at, received a
lot of attention in recent years, see [1] for a general reference. Two variants of streaming
algorithms can be found in the literature:

In the standard model the algorithm computes at time t a value f(a1 · · · at) that depends
on the whole history.
In the sliding window model the algorithm computes at time t a value f(at−n+1 · · · at)
that depends on the n last symbols (we should assume t ≥ n here). The value n is also
called the window size.

For many applications, the sliding window model is more appropriate. Quite often data
items in a stream are outdated after a certain time, and the sliding window model is a simple
way to model this. The typical application is the analysis of a time series as it may arise
in medical monitoring, web tracking, or financial monitoring. In all these applications, the
most recent data items are more important than older ones.

A general goal in the area of sliding window algorithms is to avoid the explicit storage of
the whole window, and, instead, to work in considerably smaller space, e.g. polylogarithmic
space. In the seminal paper of Datar et al. [9], where the sliding window model was
introduced, the authors prove that the number of 1’s in a 0/1-sliding window of size n can
be maintained in space 1

ε · log2 n if one allows a multiplicative error of 1± ε. A matching
lower bound is provided as well in [9]. Other algorithmic problems that were addressed in
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18:2 Querying Regular Languages over Sliding Windows

the extensive literature on sliding window streams include the computation of statistical data
(e.g. computation of the variance and k-median [4], and quantiles [3]), optimal sampling from
sliding windows [7], database querying (e.g. processing of join queries over sliding windows
[12]) and graph problems (e.g. checking for connectivity and computation of matchings,
spanners, and minimum spanning trees [8]) . The reader can find further references in the
surveys [1, Chapter 8] and [6]. Another natural problem, whose investigation has so far
been surprisingly neglected for the sliding window model, is the membership problem for a
language or, equivalently, the computation of Boolean queries on the sliding window. In its
general form, one fixes a language L over the alphabet of the data stream, and asks for an
algorithm that can check at any time whether the content of the sliding window belongs to
L. In this paper, we are mainly interested in the case, where L is a regular language.

Note that in the standard streaming model, it is trivial to solve the membership problem
for a regular language L in constant space. For a data stream a1a2a3 · · · the algorithm
simply runs a deterministic finite automaton for L and only stores the current state (which
needs constant space since we assume the automaton to be fixed and not part of the input).
This obvious fact might explain why the membership problem for regular languages in the
streaming model has not received any attention so far. In contrast, there exist papers that
deal with membership problems for (restricted classes of) context-free languages in the
standard streaming model, see the paragraph on related work below.

Note that in the sliding window model the above algorithm (simulation of a DFA on
the data stream) does not work. The problem is the removal of the left-most symbol from
the sliding window in each step. A naïve approach is to store the whole window in O(n)
bits and simulate the DFA on this word. In fact, there exist very simple languages L for
which this is the best possible solution in order to be able to decide at any point of time
whether the current content of the sliding window belongs to L. An example is the language
a{a, b}∗ of all words that start with a. The point is that by repeated checking whether the
sliding window content belongs to a{a, b}∗, one can recover the exact content of the sliding
window, which implies that every sliding window algorithm for querying a{a, b}∗ has to use
n bits of storage (where n is the window size). The main result of this paper is a trichotomy:
The optimal space needed for querying a regular language L in the sliding window model
falls into three classes with respect to its growth rate: constant space, Θ(logn), and Θ(n),
where n is the window size. We characterize the regular languages by its optimal growth
rate algebraically in terms of the syntactic homomorphism and the left Cayley graph of the
syntactic monoid of a regular language. The precise characterizations are a bit technical and
will be presented in Section 4.

The sliding window model we have talked about so far is also known as the fixed-size
model, since the sliding window has a fixed size n. In the literature there exists a second
model as well which is known as the variable-size model, see e.g. [3]. In this model, the arrival
of new data items and the expiration of old items can happen independently, which means
that the sliding window can grow and shrink. We also determine the space complexity of
querying a regular language for the variable-size model. Again, we prove the same trichotomy
as above (constant space, Θ(logn), and Θ(n)), but the corresponding three classes of regular
languages differ slightly from the situation in the fixed-size model.

Related work. In [5] the authors consider the problem of membership checking for various
subclasses of context-free languages in the standard streaming model (where the whole history
is checked for membership). For deterministic linear languages, a randomized streaming
algorithm is presented which works in space O(logn) and has an inverse polynomial one-sided
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error. On the other hand, a visibly pushdown language L exists, for which every randomized
streaming algorithm with an error probability < 1/2 must use space Ω(n) [5].

One may consider our streaming algorithms as algorithms for testing membership of a
dynamic word in a language L, where the update operations are restricted. In the variable-size
model, these updates are the removal of the first symbol from the word, and appending a
given symbol a to the word. Membership testing algorithms for regular languages that allow
the replacement of the symbol at a specified position were studied in [11]. The focus of [11]
is on the cell probe complexity of updates and membership queries.

2 Preliminaries

Let Σ be a finite alphabet. For a word w = a1 · · · ak ∈ Σ∗ of length |w| = k we define
w[i] = ai and w[i : j] = ai · · · aj if i ≤ j and w[i : j] = ε if i > j. A word v ∈ Σ∗ is a suffix of
the word w if there exists a word u ∈ Σ∗ such that w = uv.

We assume that the reader is familiar with the basic notions of formal languages, in
particular regular languages. Our query algorithms for regular languages make use of the
description of regular languages by finite monoids; see e.g. the textbook [14] for more details.
A monoid is a set M together with an associative operation · : M ×M →M and an element
1 ∈M satisfying 1 ·x = x · 1 = x for all x ∈M . A function h : M → N between two monoids
M,N is a homomorphism if h(1) = 1 and h(x · y) = h(x) · h(y) for all x, y ∈M . A language
L ⊆ Σ∗ is recognized by a monoid M if there exists a homomorphism h : Σ∗ →M from the
free monoid Σ∗ into a monoid M and a set F ⊆M such that w ∈ L if and only if h(w) ∈ F
for all w ∈ Σ∗. It is well known that the class of regular languages is exactly the class of
languages recognized by finite monoids. For every language L ⊆ Σ∗ the syntactic congruence
≡L on Σ∗ is defined by u ≡L v if and only if for all x, y ∈ Σ∗: xuy ∈ L iff xvy ∈ L. The
set of congruence classes Σ∗/≡L forms a monoid, which is called the syntactic monoid of
L and is denoted by M(L). It is the smallest monoid which recognizes L. The function
h : Σ∗ → M(L) which maps a word u to its congruence class [u]≡L

is a homomorphism,
called the syntactic homomorphism of L.

In this paper all graphs are finite, directed and vertex-colored. For a graph Γ we denote
by V (Γ) and E(Γ) the set of vertices and edges of Γ, respectively. Graphs may have loops,
i.e. E(Γ) is an arbitrary subset of V (Γ) × V (Γ). For graphs Γ and ∆, a homomorphism
from Γ to ∆ is a function ϕ : V (Γ) → V (∆) such that for all v ∈ V (Γ) the vertices v and
ϕ(v) have the same color and (u, v) ∈ E(Γ) implies (ϕ(u), ϕ(v)) ∈ E(∆). We call a graph Γ
homomorphic to ∆ if there exists a homomorphism from Γ to ∆. For a subset S ⊆ V (Γ) we
denote by reachΓ(S) the subgraph of Γ which is induced by all nodes that are reachable from
S. A graph Γ is strongly connected if for all u ∈ V (Γ) we have reachΓ({u}) = Γ. A strongly
connected component, briefly SCC, of Γ is an inclusion maximal subset S ⊆ V (Γ) such that
the subgraph induced by S is strongly connected. The set of SCCs of a graph is partially
ordered by S1 � S2 iff a vertex in S2 is reachable from a vertex in S1. An SCC of Γ is trivial
if it consists of a single node v and (v, v) 6∈ E(Γ), otherwise the SCC is called non-trivial.
A graph is a directed cycle if it is strongly connected and every vertex has outdegree (and
indegree) 1. Our characterizations of regular languages will refer to homomorphisms from
certain graphs (that we define below) to directed cycles. Note that every monochromatic
graph is homomorphic to a directed cycle of size one.

For a monoid M and a subset A of M we denote by Γ(M,A) the (unlabelled) left Cayley
graph over the vertex set M with the edge set {(x, y) | y = a · x for some a ∈ A}. If the
subset A ⊆M generates M , i.e. every element of M is a finite product over A, then y ∈M
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Figure 1 The left Cayley graph Γ(M, A, F ) from Example 1 for the language (aa | bb)∗. Vertices
from F are black and SCCs are shaded.

is reachable from x ∈M in Γ(M,A) if and only if x ≤L y in M , which is defined by

x ≤L y ⇐⇒ ∃` ∈M : x = ` · y. (1)

The L-equivalence is defined by x ≡L y if and only if x ≤L y ≤L x. For a subset F ⊆ M

we denote with Γ(M,A,F ) the graph Γ(M,A), where in addition all vertices from F (resp.,
M \ F ) are colored with 1 (resp., 0).

I Example 1. Consider the regular language L = (aa | bb)∗. Let h : {a, b}∗ → M be the
syntactic homomorphism of L into its syntactic monoid M with 15 elements. Figure 1 shows
the left Cayley graph Γ(M,A,F ), where A = {h(a), h(b)} and F = h(L). Note that every
SCC is homomorphic to a directed cycle.

3 Sliding window models

In the literature, one distinguishes two sliding window models: The fixed-size model and the
variable-size model, see also [3] for a discussion of these models.

3.1 The fixed-size model
A data stream over Σ is an infinite sequence a1a2a3 · · · of symbols ai ∈ Σ. The idea is that
a data stream represents the sequence of data that is produced by some process. At time t,
the observer of this process can only see symbol at.

Fix an n ∈ N, which is called the window size. Moreover, fix a data stream a1a2a3 · · · .
At time t ≥ 0 the sliding window contains the word at−n+1at−n+2 · · · at consisting of the
n last symbols, where ai = a for a distinguished symbol a ∈ Σ when i ≤ 0. Thus, in the
beginning the sliding window is filled with a’s. Let us denote with Wn(t) the content of the
sliding window at time t.

In the fixed-size sliding-window model we want to answer queries about the window
content Wn(t), where the window size n is fixed. For this, the algorithm has at time t
access to the n-th symbol at and a previously computed data structure, that w.l.o.g. can
be assumed to be a bit string Sn(t) ∈ {0, 1}∗. The goal is to compute the query, based on
at and Sn(t). The simplest solution is to store (a binary coding of) Wn(t) in Sn(t), but in
many cases we can find a better solution, where Sn(t) is considerably smaller than Wn(t).
Moreover, we would like to have such a query algorithm for every window size n. Note that
this is a non-uniform model: For every n we may have a different query algorithm. This will
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not be crucial for our upper bounds, since our algorithms will work for all window sizes n
(which is a parameter in the algorithms). But working with a non-uniform model makes our
lower bounds stronger.

In this paper, we are only interested in Boolean queries, i.e. queries that output a single
bit. Let us fix a language L ⊆ Σ∗. We say that L is streamable in space s(n) in the fixed-size
model if for every window size n there exists an algorithm such that for every input stream
a1a2a3 · · · the following holds:

The algorithm maintains a bit string Sn(t) of length at most s(n), where Sn(0) is an
arbitrary bit string of length at most s(n) (it corresponds to an initial state).
At every time t ≥ 0, the algorithm has only access to Sn(t) and at+1. Based on these
data, the algorithm computes Sn(t+ 1) and decides correctly whether Wn(t) ∈ L.

3.2 The variable-size model
In the fixed-size model, at every time a new data item arrives and the oldest data item
is removed from the window. In contrast, in the variable-size sliding-window model the
arrival of new data items and the expiration of old items is decoupled and can happen
independently. This means that the window can grow and shrink. One can think of an
adversary that executes an infinite sequence of operations op1, op2, op3 · · · , where every opi

is either a pop-operation or a push(a)-operation for a symbol a ∈ Σ. A pop-operation deletes
the first symbol from the window; this corresponds to the situation where the first item in
the window expires and falls out of the window (if the window is already empty it stays
empty after a pop). A push(a)-operation appends the symbol a at the right end of the sliding
window; this corresponds to the arrival of an a in the data stream. In this way we can
define for an infinite sequence op1, op2, op3 · · · of operations opi ∈ {pop} ∪ {push(a) | a ∈ Σ}
the window content W (t) at time t ∈ N, where W (0) = ε. We say that the language L is
streamable in space s(n) in the variable-size model if there exists an algorithm such that for
every infinite sequence op1, op2, op3 · · · of operations the following holds:

At every time t ≥ 0, the algorithm stores a bit string S(t) of length at most s(|W (t)|),
where S(0) = ε.
At time t ≥ 0, the algorithm has only access to S(t) and the operation opt+1. Based on
these data, the algorithm computes S(t+ 1) and decides correctly whether W (t) ∈ L.

Note the uniformity of this definition. There is a single algorithm that has to work for every
window size. Also note that if L is streamable in space s(n) in the variable-size model, then
L is also streamable in space s(n) in the fixed-size model.

The variable-size model captures various other streaming models that appeared in
the literature. For instance, the standard model that was mentioned in the introduction
corresponds to the case where no pop-operations are allowed. Another realistic model is the
time-stamp based model, where the data items arrive at arbitrary time points (which are
real numbers) and the sliding window contains all data values with an arrival time from the
interval [t− τ, t], where t is the current time and τ is a fixed duration. Also the time-stamp
based model can be simulated by the variable-size model, see [3] for details.

4 Streaming algorithms for regular languages

In this section, we will prove our main results. Let L ⊆ Σ∗ be a regular language. We
will query the content of the sliding window for membership in L. Let M = M(L) be the
syntactic monoid of L and h : Σ∗ → M be the syntactic homomorphism. Let F = h(L),
hence L = h−1(F ). We simply write Γ for the two-colored left Cayley graph Γ(M,A,F )
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18:6 Querying Regular Languages over Sliding Windows

Table 1 The trichotomy results for querying regular languages in the sliding window model.

constant space logarithmic space linear space

fixed-size model C1 C2 C3

variable-size model {∅, Σ∗} (C1 ∪ C2) \ {∅, Σ∗} C3

where A = h(Σ). Recall that Γ is a finite directed graph, possibly with loops. For the rest of
this section we fix Σ, L, M , h, A, and Γ. It is important for our results that L is fixed, and
not part of the input. This implies that the monoid M and the graph Γ can be hard-wired
into our algorithms.

We partition the set of all regular languages over Σ into three classes C1, C2, C3, where
L ∈ C1 if and only if for every non-trivial SCC S of Γ the subgraph reachΓ(S) is
homomorphic to a directed cycle,
L ∈ C2 if and only if L /∈ C1 and every SCC of Γ is homomorphic to a directed cycle,
L ∈ C3 if and only if L /∈ (C1 ∪ C2).

For instance, the language (aa | bb)∗ from Example 1 belongs to C2. Other examples for
languages in C1 ∪ C2 are open languages, i.e. languages of the form Σ∗L where L is a regular
language over Σ. Examples for languages in C1 are languages of the form Σ∗w for w ∈ Σ∗.

For the fixed-size model we will show that (i) languages in C1 are streamable in constant
space, (ii) languages in C2 are streamable in space O(logn) but not streamable in space
o(logn), and (iii) languages in C3 are not streamable in space o(n). For the variable-size
model, languages in C3 are still not streamable in space o(n), but here only the languages ∅
and Σ∗ are streamable in constant space. The remaining languages (C1 ∪ C2) \ {∅,Σ∗} are
streamable in space O(logn) but not streamable in space o(logn) in the variable-size model.
Table 1 summarizes both trichotomies.

I Example 2. Let L1 = {a, b}∗a be the set of all words that end with an a. Obviously, L1
is streamable in constant space in the fixed-size model: The algorithm has to store nothing.
At each time t one can determine from the current symbol at whether the window content
belongs to L1, which is the case for at = a. Similarly, for every finite word w ∈ {a, b}∗ the
language {a, b}∗w is streamable in constant space in the fixed-size model: The algorithm
has to store the last |w| − 1 symbols from the stream. Note that this argument fails for the
variable-size model: In fact, L1 is not streamable in constant space in the variable-size model;
this follows from Theorem 7 in Section 4.2.

I Example 3. Let L2 = {a, b}∗a{a, b}∗ be the set of all words that contain an a. This
language is streamable in space O(logn) in the variable-size model. The algorithm stores
(i) the current window size n (using O(logn) bits), and (ii) the position p of the right-most
a in the window (using O(logn) bits). We set p to 0 if the window contains no a. This
information can be easily updated: For a pop-operation, the algorithm sets n := max{0, n−1}
and p := max{0, p− 1}. For a push(a)-operation, the algorithm sets n := n+ 1 and p := n.
Finally, for a push(b)-operation only n is incremented.

On the other hand, L2 is not streamable in space o(logn) in the fixed-size model: If L2
would be streamable in space o(logn) then one could represent every number 1 ≤ i ≤ n by a
bit string of length o(logn), namely by the o(logn)-size data structure d(i) obtained after
moving the word bi−1abn−i into the sliding window, where n is the window size. To recover i
from d(i) one continues the stream with b’s and thereby simulates the query algorithm for L2
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starting with the data structure d(i). The smallest number of b’s after which a membership
query for L2 is answered negatively is i.

I Example 4. Let L3 = a{a, b}∗ be the set of all words that start with an a. An argument
similar to Example 3 shows that L3 is not streamable in space o(n) in the fixed-size model.
More precisely, if L3 would be streamable in space o(n) in the fixed-size model, then one
could represent every word w ∈ {a, b}n by a bit string of length o(n), namely by the o(n)-size
data structure d(w) obtained after moving the word w into the sliding window, where n is
the window size. To recover w from d(w) one simulates the query algorithm starting with
the data structure d(w). The query result after seeing i− 1 further symbols from the stream
yields the i-th symbol of w: A positive (resp., negative) query answer yields an a (resp., b).

4.1 Upper bounds
In this section we will prove two upper bounds on the space for querying regular languages
in the sliding window model. First, we show that every language in C1 ∪ C2 is streamable in
logarithmic space in both streaming models.

I Theorem 5. If every SCC of Γ is homomorphic to a directed cycle, then L is streamable
in space O(logn) in the variable-size model and hence also in the fixed-size model.

Proof. Since the fixed-size model can be simulated by the variable-size model, it suffices to
present an algorithm for the variable-size model.

Let w ∈ Σ∗ be a word of length n and Suf(w) be the set of suffixes of w, which includes
the empty word and w itself. Define the preorder � on Suf(w) by u � v iff h(u) ≤L h(v),
where ≤L is defined in (1). This is in fact a total preorder: If v ∈ Suf(w) is a suffix of
u ∈ Suf(w) then u � v. But note that we may have u � v � u for two different suffixes of w.
The word w is a smallest element w.r.t. �. The induced equivalence relation ≡ is defined by
u ≡ v iff u � v � u. Clearly, u ≡ v iff h(u) ≡L h(v). As usual, denote with Suf(w)/≡ the
set of equivalence classes of ≡. Note that |Suf(w)/≡| is bounded by a constant which only
depends on the monoid M and not on the window size n. One can identify the elements of
Suf(w)/≡ with intervals on the set of positions of w. Hence we can represent (Suf(w),�) by
storing a constant number of interval endpoints using O(logn) bits. Our streaming algorithm
(for window size n) stores the following data:

the total preorder (Suf(w),�), using O(logn) bits,
the function f : Suf(w)/≡ →M defined by f(C) = h(v) where v is the shortest suffix in
the equivalence class C, using O(1) bits.

We describe these data conveniently by a sequence

p0,m1, p1,m2, p2, . . . ,mk−1, pk−1,mk, pk (2)

such that the following holds:
1 ≤ k ≤ |M |,
0 = p0 < p1 < · · · < pk−1 < pk = n+ 1,
m1, . . . ,mk ∈M and mk is the unit element of M .

The meaning of this sequence is the following: The equivalence classes of ≡ are the sets
Ci = {w[p : n] | pi−1 < p ≤ pi} for 1 ≤ i ≤ k (the class Ck contains the empty suffix for
p = pk = n+ 1). The monoid element mi is h(w[pi : n]) for 1 ≤ i ≤ k (hence, mk = 1 is the
unit element). Thus, mi = h(v) where v is the shortest suffix in its equivalence class Ci.

On the sequence (2) we can now perform the desired queries: In order to test whether
w ∈ L, one has to check whether h(w) ∈ F . For this we consider the monoid element m1.
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18:8 Querying Regular Languages over Sliding Windows

Note that m1 ≡L h(w). Hence, the vertices h(w) and m1 = h(w[p1 : n]) belong to the same
SCC S of Γ. Note that h(w) = h(w[1 : p1 − 1])m1. We cannot store this word w[1 : p1 − 1],
in fact we do not even store its image under h. But, by assumption, the SCC S of Γ that
contains h(w) and m1 has a homomorphism ϕ onto a directed cycle Θ. Thus, we can compute
ϕ(h(w)) by traversing the cycle from ϕ(m1) for p1 − 1 steps (the homomorphic image of Γ
under ϕ is hard-wired into the algorithm). The color of ϕ(h(w)) in Θ then indicates whether
h(w) ∈ F (i.e. w ∈ L) or h(w) 6∈ F (i.e. w 6∈ L).

For a pop-operation on w and p1 > 1, the algorithm updates the sequence (2) to

p0,m1, p1 − 1,m2, p2 − 1, . . . ,mk−1, pk−1 − 1,mk, pk − 1.

Otherwise, if p1 = 1 then the algorithm updates the sequence (2) to

p1 − 1,m2, p2 − 1, . . . ,mk−1, pk−1 − 1,mk, pk − 1.

Finally, let us consider a push(a)-operation on w. Note that ≡L is a right congruence, i.e.
x ≡L y implies xz ≡L yz for all x, y, z ∈ M . This means that our interval-representation
of (Suf(wa),�) can be obtained from the interval-representation of (Suf(w),�) by possibly
merging successive intervals. In order to detect, which intervals have to be merged, note that
for all u, v ∈ Suf(w) we have

ua ≡ va ⇐⇒ h(u)h(a) ≡L h(v)h(a) ⇐⇒ f([u]≡)h(a) ≡L f([v]≡)h(a),

because h(u) ≡L f([u]≡) and h(v) ≡L f([v]≡), and the fact that ≡L is a right congruence.
Using this, we can detect whether two successive intervals that represent the classes [u]≡
and [v]≡ have to be merged into a single interval. Formally, we process the sequence (2) as
follows: We walk over the sequence from left to right. For every 1 ≤ i ≤ k − 1 we check
whether mih(a) ≡L mi+1h(a). If this is true, then we remove mi, pi from the sequence,
otherwise we replace mi, pi by mih(a), pi. Then we continue with i+ 1 (if i < k− 1). Finally,
we check whether h(a) ≡L 1. If this holds, then we replace mk, pk = 1, n + 1 by 1, n + 2,
otherwise we replace 1, n+ 1 by h(a), n+ 1, 1, n+ 2. J

Next we show that languages in C1 are streamable in constant space in the fixed-size
model.

I Theorem 6. Let reachΓ(S) be homomorphic to a directed cycle for every non-trivial SCC
S of Γ. Then L is streamable in space O(1) in the fixed-size model.

Proof. Observe that every path in Γ of length at least c := |V (Γ)| (a constant) contains
a vertex in a non-trivial SCC S and therefore ends in reachΓ(S). Fix a window size n. If
n < c, we store the window content explicitly and can test whether w ∈ L, e.g. using an
automaton for L. Now assume n ≥ c. For a window content w ∈ Σ∗ we explicitly store the
suffix v of length c. Clearly this suffix can be updated when a new symbol arrives in the
window. Also v suffices to test whether w ∈ L. We compute h(v) and a non-trivial SCC
S such that h(v) is contained in reachΓ(S). Let ϕ : reachΓ(S)→ Θ be the homomorphism
into a directed cycle Θ. Then we compute ϕ(h(w)) by traversing Θ starting from the vertex
ϕ(h(v)) for n− c steps. The color of ϕ(h(w)) determines whether w ∈ L. J

As in most previous work on the sliding window model, our focus is on the space
requirements of query algorithms. But it is also interesting to note that in Theorem 5 and 6
we can achieve constant time for all update and query operations on the RAM model with
register length O(logn). Let us show this for Theorem 5 first. Recall that the sequence
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(2) that we manipulate in the proof of Theorem 5 has constant length. For a pop- or
push(a)-operation, the manipulation of (2) only needs constant time. To see this, note that
the numbers pi in (2) are only incremented or decremented and that all operations in the
monoid M need constant time since M is fixed. Finally, for a membership query we traverse
the cycle Θ starting from ϕ(m1) for p1 − 1 steps. To do this in constant time, we store also
the numbers (pi − 1) mod `(Θ), where `(Θ) is the length of the cycle. We have to maintain
these remainders for all (constantly many) cycle lengths `(Θ1), . . . , `(Θc), where Θ1, . . . ,Θc

are the cycles to which the SCCs of Γ are homomorphic. For Theorem 6 it suffices to traverse
Θ for (n− c) mod `(Θ) steps.

4.2 Lower bounds
In this section, we prove matching lower bounds for the upper bounds from the previous
section. Let us first show that constant space in the variable-size model makes it impossible
to query any non-trivial language. Roughly speaking, the reason is that in order to query a
non-trivial language in the variable-size model one has to know when the sliding window
is empty. But for this, one has to maintain the size of the window, for which logn bits are
needed.

I Theorem 7. If L ⊆ Σ∗ and ∅ ( L ( Σ∗, then L is not streamable in space O(1) in the
variable-size model.

Proof. Towards a contradiction assume that L is streamable in the variable-size model in
space m, where m is a constant, which means that the algorithm has at most 2m pairwise
distinct data structures. We can assume that ε ∈ L, otherwise consider the complement
Σ∗ \ L which is also streamable in space m. Let further w ∈ Σ∗ be a word such that w /∈ L.
Consider the 2m + 1 words w0, w1, w2, . . . , w2m . There are two numbers 0 ≤ i < j ≤ 2m

such that the stream prefixes wi and wj lead to the same data structure. After (j − 1) · |w|
further pop-operations the window contains ε ∈ L and the word w /∈ L, respectively, which
is a contradiction. J

For the remaining lower bounds, we need the following simple graph theoretic lemma:

I Lemma 8. Let Γ be a finite directed vertex-colored graph (possibly with loops) and let s be
a vertex from which all vertices of Γ are reachable. Assume that all vertices have outdegree
≥ 1 and s has indegree ≥ 1. If Γ is not homomorphic to a directed cycle, then there exist
paths π0, π1 of the same length from s to vertices s0, s1 which have distinct colors.

Proof. Let Vn be the set of vertices which are reachable from s via a path of length n for
n ≥ 0. The union

⋃
n≥0 Vn is the set of vertices reachable from s, which by assumption is

V (Γ). Towards a contradiction assume that every set Vn is monochromatic. Let ≈ be the
transitive-reflexive closure of the binary relation R on V (Γ) defined by R =

⋃
n≥0 Vn × Vn.

Then, every equivalence class of ≈ is monochromatic. Hence, we can construct the quotient
graph Γ/≈ = ({[v]≈ | v ∈ V (Γ)}, {([u]≈, [v]≈) | (u, v) ∈ E(Γ)}). Moreover, the equivalence
class [u]≈ has the same color as all its elements. Clearly, Γ is homomorphic to Γ/≈.

We claim that every vertex in Γ/≈ has out-degree 1: Since every vertex in Γ has outdegree
≥ 1, the same holds for Γ/≈. Moreover, if a vertex v is contained in some set Vn, then all
successors of v are contained in Vn+1. This implies that R respects the successor relation, i.e.
whenever (u, v) ∈ R and (u, u′), (v, v′) ∈ E(Γ), then also (u′, v′) ∈ R. Hence, also ≈ respects
the successor relation. This proves that every vertex in Γ/≈ has out-degree 1. Finally, each
node has an incoming edge since s has an incoming edge and all other nodes are reachable
from s. It follows that Γ/≈ must in fact be a directed cycle. J
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Figure 2 The origin of the words used in the proofs of Theorem 9 (left) and Theorem 10 (right).

Now we show that languages in C3 are not streamable in space o(n) in the fixed-size model.

I Theorem 9. If some SCC S of Γ is not homomorphic to a directed cycle, then L is not
streamable in space o(n) in the fixed-size model and hence not streamable in space o(n) in
the variable-size model.

Proof. We apply Lemma 8 with an arbitrary node s ∈ S to the subgraph of Γ induced by
S. Therefore, there exist paths π0 and π1 of the same length k from s to nodes s0, s1 ∈ S,
which are colored differently, say s0 6∈ F and s1 ∈ F . Let u0, u1 ∈ Σk be words representing
the paths π0, π1 and let u ∈ Σ∗ such that h(u) = s, which exists since h is surjective. Since
S is strongly connected, there also exist paths π′0 and π′1 from s0 and s1, respectively, back
to s. This results in words v0, v1 ∈ Σ+ such that h(v0u0u) = h(u) = h(v1u1u), h(u0u) 6∈ F ,
h(u1u) ∈ F . The situation is shown in Figure 2 on the left. Choose numbers p, q > 0 such
that z0 = (v0u0)p and z1 = (v1u1)q have the same length. We get h(z0u) = h(z1u) = h(u).
Let x0, x1 such that z0 = x0u0 and z1 = x1u1 and hence |x0| = |x1|.

Let z = z0 (we could also set z = z1). We have h(u) = h(zmu) for every m. Note that
z 6= ε. By replacing x0 and x1 by zmx0 and zmx1, respectively, for m large enough we can
therefore assume that |x0| = |x1| ≥ |u|. Let z = z′z′′ with |z′′|+ |u| = |x0|.

Assume now that L is streamable in space o(n) in the fixed-size model. We will deduce a
contradiction. Consider an arbitrary bit string α = a1 · · · an ∈ {0, 1}n of length n. We encode
this bit string by the word w(α) = za1za2 · · · zan

z′ of length n′ = Θ(n). Let n′ be the window
size. For n large enough, there must exist bit strings α = a1 · · · an and β = b1 · · · bn of length
n such that α 6= β but after moving w(α) and w(β) into the sliding window, the same internal
data structure arises. Let 1 ≤ i ≤ n be a position such that w.l.o.g. ai = 0 and bi = 1. We
now move the word z′′zi−1u of length (i−1)|z|+ |z′′|+ |u| = (i−1)|z|+ |x0| = (i−1)|z|+ |x1|
into the sliding window. The window contents are then:

u0zai+1 · · · zanz
′z′′zi−1u = u0zai+1 · · · zanz

iu

u1zbi+1 · · · zbnz
′z′′zi−1u = u1zbi+1 · · · zbnz

iu

Of course, the stream prefixes w(α)z′′zi−1u and w(β)z′′zi−1u must still lead to the same
data structure. But we have h(u0zai+1 · · · zan

ziu) = h(u0u) 6∈ F and h(u1zbi+1 · · · zbn
ziu) =

h(u1u) ∈ F , which is a contradiction. J

For a word w ∈ Σ∗ of length k we define the signature δ(w) = b1 · · · bk ∈ {0, 1}∗ such
that bi = 1 if h(w[i : k]) ∈ F and bi = 0 otherwise. To complete our trichotomy, we finally
show that languages in C2 are not streamable in space o(logn) in the fixed-size model.

I Theorem 10. If some SCC S of Γ is non-trivial and reachΓ(S) is not homomorphic to a
directed cycle, then L is not streamable in space o(logn) in the fixed-size model and hence
not streamable in space o(logn) in the variable-size model.
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Proof. Let S be the strongly connected component of Γ which is not trivial and where
reachΓ(S) is not homomorphic to a directed cycle. Pick an arbitrary node s ∈ S. It must
have indegree ≥ 1 since S is non-trivial. Since h is surjective there exists u ∈ Σ∗ with
h(u) = s. We apply Lemma 8 to s and the subgraph reachΓ(S). This yields words x, y ∈ Σ+

of equal length, say k ≥ 1, which correspond to the paths π0, π1 in the lemma, such that
h(xu) ∈ F and h(yu) /∈ F . Further, since S is strongly connected and non-trivial, there
exists a non-trivial path π from s back to s, which yields a word w ∈ Σ+ with h(wu) = h(u).
The situation is shown in Figure 2 on the right. Let ` = |w| and write k uniquely as
k = c · ` + (` − p + 1) = (c + 1) · ` − p + 1 for c ≥ 0 and 1 ≤ p ≤ `. Consider the word
w[p : `]wc. In Γ this word yields the path consisting of c repetitions of the circle π followed
by `− p+ 1 more steps of π such that the whole path has length k. If h(w[p : `]wcu) ∈ F
then we can replace x by w[p : `]wc, otherwise we can replace y by w[p : `]wc. Without
loss of generality we can assume that x = w[p : `]wc. From h(xu) ∈ F and h(yu) /∈ F it
follows that the signatures δ(xu) and δ(yu) differ in the first position. We can assume that
for each position i > 1 we have δ(xu)[i] = δ(yu)[i], otherwise we update the words x and y
to the suffixes x[i : k] and y[i : k], respectively, where i is the maximal position such that
δ(xu)[i] 6= δ(yu)[i].

Now assume that L is streamable in space s(n) ∈ o(logn) in the fixed-size model. We
will deduce a contradiction. For n large enough we consider the n words zi = uwn−iywi

(1 ≤ i ≤ n) of equal length n′ = ` · n+ |u|+ |y| = ` · n+ |u|+ k ∈ Θ(n). Large enough here
means that 2s(n′) < n; such an n exists since s(n) ∈ o(logn) and n′ ∈ Θ(n). We now fix the
window size to n′ and move the words zi (1 ≤ i ≤ n) into the window. Since 2s(n′) < n, there
exist i < j such that after moving zi and zj in the window, the same internal data structure
arises. Hence the two stream prefixes ziw

n−iu and zjw
n−iu also lead to the same internal

data structure. Moreover, after the stream prefix ziw
n−iu = uwn−iywnu the content of the

sliding window is ywnu (the suffix of uwn−iywnu of length n′ = ` · n+ |u|+ k), which does
not belong to L since h(ywnu) = h(yu) 6∈ F . So, it remains to show that the suffix of length
n′ of the stream prefix zjw

n−iu = uwn−jywn+j−iu belongs to L. We distinguish two cases
(recall that k = c · `+(`−p+1)): If j− i ≥ c+1, then the suffix of uwn−jywn+j−iu of length
n′ is w[p : `]wn+cu = xwnu which belongs to L since h(xwnu) = h(xu) ∈ F . If j − i ≤ c,
then the suffix of uwn−jywn+j−iu of length n′ = ` · n+ |u|+ k is y[1 + (j − i)` : k]wn+j−iu.
We have h(y[1 + (j − i)` : k]wn+j−iu) = h(y[1 + (j − i)` : k]u). Now recall that the
signatures δ(xu) and δ(yu) only differ in the first position. Since 1 + (j − i)` ≥ 2 it
follows that h(y[1 + (j − i)` : k]u) ∈ F if and only if h(x[1 + (j − i)` : k]u) ∈ F . Since
x = w[p : `]wc and j − i ≤ c we have x[1 + (j − i)` : k] = w[p : `]wc−j+i. Thus, we have
h(x[1 + (j − i)` : k]u) = h(w[p : `]wc−j+iu) = h(w[p : `]wcu) = h(xu) ∈ F , which finally
show that y[1 + (j − i)` : k]wn+j−iu belongs to L.

To sum up, we found two stream prefixes ziw
n−iu and zjw

n−iu, which lead to the same
internal data structure, but after seeing ziw

n−iu the window content does not belongs L,
whereas after seeing zjw

n−iu the window content belongs to L. This is a contradiction. J

5 Streaming algorithms for non-regular languages

It would be interesting to know whether our classification can be extended to larger language
classes. As a first step, one might consider deterministic context-free languages or the subclass
of visibly pushdown languages [2]. All visibly pushdown languages that we have considered
so far fall into our trichotomy.
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I Example 11. Let L4 = {akbk | k ≥ 0}. This language is streamable in space O(logn) in
the variable-size model. The algorithm stores (i) the current window length n and the unique
numbers k,m such that akbm is the longest suffix of the window that belongs to a∗b∗. Note
that 1 ≤ k +m ≤ n. This information can be maintained: For a pop-operation, k and m are
not changed unless n = k +m. In this case, k is decremented if k > 0. If k = 0 then m is
decremented. For a push(b)-operation, m is incremented. Finally, for a push(a)-operation,
the algorithm sets k := 1 and m := 0 if m > 0. If m = 0, then k is incremented.

Assume that L4 is streamable in space o(logn) in the fixed-size model. Similar to
Example 3 we would be able to represent every number 1 ≤ i ≤ n by a bit string of length
o(logn), namely by the data structure obtained by inserting the word an+ibn−i into a sliding
window of size 2n.

I Example 12. Let L5 be the Dyck-language over a single pair (, ) of brackets. We claim
that L5 is not streamable in space o(n) in the fixed-size model. In order to get a contradiction,
assume that L5 is streamable in space o(n) in the fixed-size model. As in Example 4 we
deduce that every bit string of length n can be represented with o(n) many bits. For this,
we encode a bit string α = a1a2 · · · an (ai ∈ {0, 1}) by the word u(α) = u1u2 · · ·un, where
ui = ()() if ai = 0 and ui = (()) if ai = 1. Note that |u(α)| = 4n. We then represent α by
the o(n)-size data structure d(α) obtained by moving u(α) in the sliding window, where the
window size is 4n. To recover ai from d(α) one continues the data stream with 2i− 1 many
repetitions of (). Then, the window content belongs to L5 if and only if ai = 0.

The following example shows that there exists a non-context-free language whose optimal
space requirement is Θ(

√
n) in the fixed-size model.

I Example 13. Let L6 = {wk | n ≥ 0, w ∈ {a, b}∗, |w| = k}. We claim that in the fixed-size
model, L6 is streamable in space O(

√
n) but not in space o(

√
n). If the window size n is

not a square, then the query algorithm can always answer with no. So, assume that the
window size is n = m2. The algorithm then stores for the window content w (i) the length-m
suffix s of w and (ii) the largest position p such that m+ 1 ≤ p ≤ n and w[p] 6= w[p−m],
where we set p = m if such a position does not exist. Note that w ∈ L6 if and only if p = m.
This information s, p can be maintained. For s this is clear. To maintain p, the algorithm
checks whether the next symbol in the stream is the first symbol of s. If this is the case, the
algorithm sets p := max{p− 1,m}, otherwise it sets p := n.

The argument that L6 is not streamable in space o(
√
n) in the fixed-size model is similar

to the argument in Example 4. One shows that from the data structure that is obtained by
moving wm (with w ∈ {a, b}m) into the sliding window, one can recover the word w.

In the variable-size model, L6 is not even streamable in space o(n): It is a basic result in
communication complexity that equality checking of two words x and y of length n needs
Ω(n) bits of communication. Assume that L6 is streamable in space o(n) in the variable-size
model. Then Alice, who initially has access to x, and Bob, who has access to y, could check
x = y by exchanging o(n) bits, where n = |x| = |y|: Alice pushes the word x into the window
and then sends the o(n)-size data structure to Bob. Bob then pushes the word yn−1 into the
window and afterwards check whether the window content belongs to L6, which is the case if
and only if x = y.

In the long version of this paper, we will present for every k ≥ 2 an example for a non-
deterministic context-free language that in the fixed-size model is streamable in space O(n1/k)
but not streamable in space o(n1/k) .
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6 Future work

Our results on querying regular languages in the sliding window model open several avenues
for further research. First of all, one might also consider randomized query algorithms for
the sliding window model. For the standard streaming model randomized query algorithms
were studied in [5] for subclasses of context-free languages.

We also plan to investigate whether our trichotomy can be extended to larger language
classes. As remarked above, it fails for non-deterministic context-free languages. But it is
open whether there exists a deterministic context-free language or even a visibly pushdown
language L such that in the fixed-size (resp., variable-size) model L is streamable in space
o(n) but not streamable in space O(logn).

It would be interesting to know the space complexity of querying regular languages in the
sliding window model, when the regular language is part of the input, and, for instance, given
by a deterministic finite automaton (DFA). The syntactic monoid of L(A), where A is an
m-state DFA, can have size mm [13]. This yields the space bound O(log(n) ·m · log(m) ·mm)
in the proof of Theorem 5, where n is the window size. But maybe a better algorithm exists.

Finally, one might also study weighted automata in the sliding window model. A weighted
automaton computes for an input word a value from a semiring, which is the Boolean semiring
for classical finite automata; see [10] for details. The goal would be to maintain the semiring
value to which the sliding window content maps.

Acknowledgements. We thank Philipp Reh for spotting a mistake in an earlier version of
the paper.
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