60 research outputs found

    Linked Data - the story so far

    No full text
    The term “Linked Data” refers to a set of best practices for publishing and connecting structured data on the Web. These best practices have been adopted by an increasing number of data providers over the last three years, leading to the creation of a global data space containing billions of assertions— the Web of Data. In this article, the authors present the concept and technical principles of Linked Data, and situate these within the broader context of related technological developments. They describe progress to date in publishing Linked Data on the Web, review applications that have been developed to exploit the Web of Data, and map out a research agenda for the Linked Data community as it moves forward

    LinkedScales : bases de dados em multiescala

    Get PDF
    Orientador: André SantanchèTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: As ciências biológicas e médicas precisam cada vez mais de abordagens unificadas para a análise de dados, permitindo a exploração da rede de relacionamentos e interações entre elementos. No entanto, dados essenciais estão frequentemente espalhados por um conjunto cada vez maior de fontes com múltiplos níveis de heterogeneidade entre si, tornando a integração cada vez mais complexa. Abordagens de integração existentes geralmente adotam estratégias especializadas e custosas, exigindo a produção de soluções monolíticas para lidar com formatos e esquemas específicos. Para resolver questões de complexidade, essas abordagens adotam soluções pontuais que combinam ferramentas e algoritmos, exigindo adaptações manuais. Abordagens não sistemáticas dificultam a reutilização de tarefas comuns e resultados intermediários, mesmo que esses possam ser úteis em análises futuras. Além disso, é difícil o rastreamento de transformações e demais informações de proveniência, que costumam ser negligenciadas. Este trabalho propõe LinkedScales, um dataspace baseado em múltiplos níveis, projetado para suportar a construção progressiva de visões unificadas de fontes heterogêneas. LinkedScales sistematiza as múltiplas etapas de integração em escalas, partindo de representações brutas (escalas mais baixas), indo gradualmente para estruturas semelhantes a ontologias (escalas mais altas). LinkedScales define um modelo de dados e um processo de integração sistemático e sob demanda, através de transformações em um banco de dados de grafos. Resultados intermediários são encapsulados em escalas reutilizáveis e transformações entre escalas são rastreadas em um grafo de proveniência ortogonal, que conecta objetos entre escalas. Posteriormente, consultas ao dataspace podem considerar objetos nas escalas e o grafo de proveniência ortogonal. Aplicações práticas de LinkedScales são tratadas através de dois estudos de caso, um no domínio da biologia -- abordando um cenário de análise centrada em organismos -- e outro no domínio médico -- com foco em dados de medicina baseada em evidênciasAbstract: Biological and medical sciences increasingly need a unified, network-driven approach for exploring relationships and interactions among data elements. Nevertheless, essential data is frequently scattered across sources with multiple levels of heterogeneity. Existing data integration approaches usually adopt specialized, heavyweight strategies, requiring a costly upfront effort to produce monolithic solutions for handling specific formats and schemas. Furthermore, such ad-hoc strategies hamper the reuse of intermediary integration tasks and outcomes. This work proposes LinkedScales, a multiscale-based dataspace designed to support the progressive construction of a unified view of heterogeneous sources. It departs from raw representations (lower scales) and goes towards ontology-like structures (higher scales). LinkedScales defines a data model and a systematic, gradual integration process via operations over a graph database. Intermediary outcomes are encapsulated as reusable scales, tracking the provenance of inter-scale operations. Later, queries can combine both scale data and orthogonal provenance information. Practical applications of LinkedScales are discussed through two case studies on the biology domain -- addressing an organism-centric analysis scenario -- and the medical domain -- focusing on evidence-based medicine dataDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação141353/2015-5CAPESCNP

    Quarry: A user-centered big data integration platform

    Get PDF
    Obtaining valuable insights and actionable knowledge from data requires cross-analysis of domain data typically coming from various sources. Doing so, inevitably imposes burdensome processes of unifying different data formats, discovering integration paths, and all this given specific analytical needs of a data analyst. Along with large volumes of data, the variety of formats, data models, and semantics drastically contribute to the complexity of such processes. Although there have been many attempts to automate various processes along the Big Data pipeline, no unified platforms accessible by users without technical skills (like statisticians or business analysts) have been proposed. In this paper, we present a Big Data integration platform (Quarry) that uses hypergraph-based metadata to facilitate (and largely automate) the integration of domain data coming from a variety of sources, and provides an intuitive interface to assist end users both in: (1) data exploration with the goal of discovering potentially relevant analysis facets, and (2) consolidation and deployment of data flows which integrate the data, and prepare them for further analysis (descriptive or predictive), visualization, and/or publishing. We validate Quarry’s functionalities with the use case of World Health Organization (WHO) epidemiologists and data analysts in their fight against Neglected Tropical Diseases (NTDs).This work is partially supported by GENESIS project, funded by the Spanish Ministerio de Ciencia, Innovación y Universidades under project TIN2016-79269-R.Peer ReviewedPostprint (author's final draft

    Scalable dataspace construction

    Get PDF
    The conference aimed at supporting and stimulating active productive research set to strengthen the technical foundations of engineers and scientists in the continent, through developing strong technical foundations and skills, leading to new small to medium enterprises within the African sub-continent. It also seeked to encourage the emergence of functionally skilled technocrats within the continent.This paper proposes the design and implementation of scalable dataspaces based on efficient data structures. Dataspaces are often likely to exhibit a multidimensional structure due to the unpredictable neighbour relationship between participants coupled by the continuous exponential growth of data. Layered range trees are incorporated to the proposed solution as multidimensional binary trees which are used to perform d-dimensional orthogonal range indexing and searching. Furthermore, the solution is readily extensible to multiple dimensions, raising the possibility of volume searches and even extension to attribute space. We begin by a study of the important literature and dataspace designs. A scalable design and implementation is further presented. Finally, we conduct experimental evaluation to illustrate the finer performance of proposed techniques. The design of a scalable dataspace is important in order to bridge the gap resulting from the lack of coexistence of data entities in the spatial domain as a key milestone towards pay-as-you-go systems integrationStrathmore University;nstitute of Electrical and Electronics Engineers (IEEE

    Cloud-based solutions supporting data and knowledge integration in bioinformatics

    Get PDF
    In recent years, computer advances have changed the way the science progresses and have boosted studies in silico; as a result, the concept of “scientific research” in bioinformatics has quickly changed shifting from the idea of a local laboratory activity towards Web applications and databases provided over the network as services. Thus, biologists have become among the largest beneficiaries of the information technologies, reaching and surpassing the traditional ICT users who operate in the field of so-called "hard science" (i.e., physics, chemistry, and mathematics). Nevertheless, this evolution has to deal with several aspects (including data deluge, data integration, and scientific collaboration, just to cite a few) and presents new challenges related to the proposal of innovative approaches in the wide scenario of emergent ICT solutions. This thesis aims at facing these challenges in the context of three case studies, being each case study devoted to cope with a specific open issue by proposing proper solutions in line with recent advances in computer science. The first case study focuses on the task of unearthing and integrating information from different web resources, each having its own organization, terminology and data formats in order to provide users with flexible environment for accessing the above resources and smartly exploring their content. The study explores the potential of cloud paradigm as an enabling technology to severely curtail issues associated with scalability and performance of applications devoted to support the above task. Specifically, it presents Biocloud Search EnGene (BSE), a cloud-based application which allows for searching and integrating biological information made available by public large-scale genomic repositories. BSE is publicly available at: http://biocloud-unica.appspot.com/. The second case study addresses scientific collaboration on the Web with special focus on building a semantic network, where team members, adequately supported by easy access to biomedical ontologies, define and enrich network nodes with annotations derived from available ontologies. The study presents a cloud-based application called Collaborative Workspaces in Biomedicine (COWB) which deals with supporting users in the construction of the semantic network by organizing, retrieving and creating connections between contents of different types. Public and private workspaces provide an accessible representation of the collective knowledge that is incrementally expanded. COWB is publicly available at: http://cowb-unica.appspot.com/. Finally, the third case study concerns the knowledge extraction from very large datasets. The study investigates the performance of random forests in classifying microarray data. In particular, the study faces the problem of reducing the contribution of trees whose nodes are populated by non-informative features. Experiments are presented and results are then analyzed in order to draw guidelines about how reducing the above contribution. With respect to the previously mentioned challenges, this thesis sets out to give two contributions summarized as follows. First, the potential of cloud technologies has been evaluated for developing applications that support the access to bioinformatics resources and the collaboration by improving awareness of user's contributions and fostering users interaction. Second, the positive impact of the decision support offered by random forests has been demonstrated in order to tackle effectively the curse of dimensionality

    Entity linkage for heterogeneous, uncertain, and volatile data

    Get PDF
    [no abstract

    Visualization of heterogeneous data

    Get PDF
    Abstract — Both the Resource Description Framework (RDF), used in the semantic web, and Maya Viz u-forms represent data as a graph of objects connected by labeled edges. Existing systems for flexible visualization of this kind of data require manual specification of the possible visualization roles for each data attribute. When the schema is large and unfamiliar, this requirement inhibits exploratory visualization by requiring a costly up-front data integration step. To eliminate this step, we propose an automatic technique for mapping data attributes to visualization attributes. We formulate this as a schema matching problem, finding appropriate paths in the data model for each required visualization attribute in a visualization template. Index Terms—Data integration, RDF, attribute inference.

    Exploiting Context-Dependent Quality Metadata for Linked Data Source Selection

    Get PDF
    The traditional Web is evolving into the Web of Data which consists of huge collections of structured data over poorly controlled distributed data sources. Live queries are needed to get current information out of this global data space. In live query processing, source selection deserves attention since it allows us to identify the sources which might likely contain the relevant data. The thesis proposes a source selection technique in the context of live query processing on Linked Open Data, which takes into account the context of the request and the quality of data contained in the sources to enhance the relevance (since the context enables a better interpretation of the request) and the quality of the answers (which will be obtained by processing the request on the selected sources). Specifically, the thesis proposes an extension of the QTree indexing structure that had been proposed as a data summary to support source selection based on source content, to take into account quality and contextual information. With reference to a specific case study, the thesis also contributes an approach, relying on the Luzzu framework, to assess the quality of a source with respect to for a given context (according to different quality dimensions). An experimental evaluation of the proposed techniques is also provide
    corecore