
 1

Scalable Dataspace Construction
Shibwabo K. Bernard, Wanyembi N. Gregory, Ateya L. Ismail and Omwenga O. Vincent

Abstract— This paper proposes the design and implementation of scalable dataspaces based on efficient data structures.

Dataspaces are often likely to exhibit a multidimensional structure due to the unpredictable neighbour relationship between

participants coupled by the continuous exponential growth of data. Layered range trees are incorporated to the proposed

solution as multidimensional binary trees which are used to perform d-dimensional orthogonal range indexing and searching.

Furthermore, the solution is readily extensible to multiple dimensions, raising the possibility of volume searches and even

extension to attribute space. We begin by a study of the important literature and dataspace designs. A scalable design and

implementation is further presented. Finally, we conduct experimental evaluation to illustrate the finer performance of proposed

techniques. The design of a scalable dataspace is important in order to bridge the gap resulting from the lack of coexistence of

data entities in the spatial domain as a key milestone towards pay-as-you-go systems integration.

Index Terms— Dataspaces, Machine learning, Systems integration, Spatial databases, Range Trees, Scalability.

—————————— � ——————————

1 INTRODUCTION

S the amount and complexity of structured and non-
structured data increases in a variety of applications,
there is a growing need to make available a unified

approach of managing data that is contained in existing
heterogeneous application data sources. One modern way
of managing such heterogeneous data is through
dataspaces, which are an abstraction in data management
that aim to overcome some of the problems encountered
in data integration system. They provide a powerful ab-
straction for accessing and managing data that resides in
divergent data sources. Dataspaces have been proposed
[1], [2] as a more appropriate way to provide a co-existing
system of heterogeneous data. Further, the importance of
dataspace systems has already been acknowledged and
emphasized in handling heterogeneous data [3], [4], [5],
[6], [7], [8]. In fact, examples of interesting dataspaces are
currently prevalent, particularly on the Web [9], which
include Google Base and Wikipedia.

Dataspaces are characterized by various aspects. First,
dataspaces must manage all the data that exist in a space.
Second, we expect that dataspaces consist of heterogene-
ous data and applications that could possibly be unstruc-
tured. Third, users of dataspaces need best-effort services
without the concerns for setup time. Finally, the
dataspace support platform (DSSP) which constitutes the
infrastructure that manages a dataspace, does not have
full control over the data unlike database management
systems. They only have access to the data. Dataspaces
therefore, provide data co-existence and not really data

integration which implies that all these services must be
provided without the need for semantic mappings as
prevalent in other data integration approaches.

Dataspaces can be categorized in the same way as in-
formation tends to be classified. Information is often cate-
gorized in relation to various characteristics. Two possi-
ble interrelated characteristics for this categorization are
access and control. We have Personal Information, Group
Information or Public Information. The same categoriza-
tion can be applied to dataspaces as Personal Dataspaces
for Personal Information Management which provide
easy access and updates of all of the information existing
on a user's desktop, Group Dataspaces for an organiza-
tion or group, Public Dataspaces for the global audience.

Personal dataspace is defined by [10] as a dataspace in
which users interact with a set of personal data reposito-
ries. These repositories may be such as private file sys-
tems existing on a user’s desktop and private emails of a
specific user. In personal dataspaces just like in other
dataspaces, users have a hard time understanding which
items spread across their sources are related to each other
in the same context. While users may search their data
sources with search engines, the results returned by these
systems are not enriched with contextual information.
Users may want to access all other versions of a given file
that exist in their dataspace, see files and emails worked
on around the same time, or retrieve emails in the same
project of a given document.

A dataspace available as a public dataspace also called
Google Base is described by [9] as a very large, self-
describing, semi-structured, heterogeneous database. This
database consists of a set of tuples with attribute values
where each entry Ti (see Fig. 1 for illustration) is consid-
ered to consist of several attributes with corresponding
values and can be regarded as a tuple in an existing
dataspace. Due to the heterogeneity of data, which are
contributed by users around the world, the data set is
extremely sparse.

————————————————

• K.B. Shibwabo is with the Faculty of Information Technology, Strathmore
University. E-mail: bshibwabo@ strathmore.edu.

• N.G. Wanyembi is with the Department of Computer Science, Masinde
Muliro University of Science and Technology. E-mail:
g.wanyembi@gmail.com.

• L.I. Ateya is with the Faculty of Information Technology, Strathmore Uni-
versity. E-mail: iateya@ strathmore.edu.

• O.V. Omwenga is with the Faculty of Information Technology, Strathmore
University. E-mail: vomwenga@ strathmore.edu.

Manuscript received (insert date of submission if desired). Please note that all
acknowledgments should be placed at the end of the paper, before the bibliography.

A

2

Also notable in Fig. 1 is that there is need to recognize
the attribute associations in a dataspace, this way it can be
said that the keywords in attributes together with associa-
tions are neighbors in schema level. For example, key-
words, 456 in attributes tel and addr are neighbor key-
words in T1 and T4, since there is apparent correspond-
ence between the attributes tel and addr. Therefore, a
query with keyword neighborhood in schema level is
supposed to not only search for the keywords in the set of
attributes specified in the query, but also match the
neighbor keywords in the attributes with correspondenc-
es. For example, a query predicate (tel : 456) should
search keyword 456 in both the attributes tel and addr,
according to the correspondence between tel and addr [9].
The process of obtaining information from the available
sources can be achieved by the application of information
extraction techniques [11].

A third example of dataspaces also considered as a
public dataspace is observed from Wikipedia where each
available article typically has a tuple with a set of attrib-
utes and values that describe the fundamental structured
information of the entry [9]. For instance, a tuple describ-
ing Justy Abuti may contain typically attributes like
(Born: Nairobi Kenya 1995), (age: 18 years), (Likes:
swimming) . . .}. Once more, the attributes of tuples in
diverse entries are various, while each tuple may only
contain a limited number of attributes. Thereby, all these
tuples from heterogeneous sources form a huge dataspace
in Wikipedia [9].

 Dataspace systems have been envisioned [1] to be an
effective technique for data management which extends
the services that were traditionally offered by legacy sys-
tems which included data integration and data exchange.
It is further considered that the goal of dataspace support
systems is to provide base functionality over all data re-
positories, in spite of how integrated they are.

The introduction of dataspaces addresses the assump-
tion by traditional data integration approaches that there
exists intimate familiarity in semantics of the available
data sources which actually does not hold in practice. It is
therefore not necessary to have upfront data integration
and a better strategy should be able to allow for users and
administrators to decide whether to invest in identifying
semantic relationships or not [1], [12], [13]. Therefore,

dataspaces present a data co-existence approach that em-
phasizes on providing base functionality over all data
sources; regardless of how integrated they are, in an in-
cremental fashion.

Furthermore, due to the potential growth of data, a
scalable dataspace would be ideal in handling heteroge-
neous data sources. The growth of the dataspace should
be properly managed through the provision of efficient
and effective information management techniques. The
development of scalable dataspaces would require a scal-
able algorithm that would maximize on the heterogeneity
in dataspaces.

The aspect of constructing a scalable dataspace re-
quires the development and usage of scalable data struc-
tures and algorithms. The concept of scalability in data
structures was initially identified [14] through the ap-
proach of Range Tree. It is considered that Range trees are
better than quad-trees and k-d trees, whose application
almost require that they be implemented in random ac-
cess memory, since the node sizes are smaller than any
common physical disk storage device data block, and are
therefore inefficient for disk resident indices [14]. He also
notes that K-D-B trees cannot index data elements of fi-
nite spatial extent. Furthermore, Range trees have been
proposed as the only indices in current use that are readi-
ly extensible to more than two dimensions for special ap-
plications [14].

Franklin, Halevy and Maier [2] describe dataspaces as
consisting of participants and relationships (see Fig. 2). A
dataspace should contain all of the information relevant
to a particular organization regardless of its format and
location, and model a rich collection of relationships be-
tween data repositories. The components of a dataspace
support infrastructure interact to provide search and que-
ry over the Range Tree implementation.

Franklin, Halevy and Maier [1] summarizes, the dis-
tinguishing properties of dataspace systems to be:

1. A DSSP must deal with data and applications in a
wide variety of formats accessible through many
systems with different interfaces. All the data and
applications must be supported through a com-

Fig. 1. An Example of Dataspace

Fig. 2. An Example Dataspace and the Components of a Dataspace
System.

SHIBWABO ET AL.: SCALABLE DATASPACE CONSTRUCTION 3

mon interface as an abstraction of the underlying
differences.

2. A DSSP is not in full control of its data. Although
a DSSP offers an integrated means of interacting
with the dataspace, often the same data may also
be accessible and modifiable through an interface
native to the system hosting the data. Database
Management Systems (DBMS) on the other hand
usually have full control of their data.

3. Queries to a DSSP may offer varying levels of
service, and in some cases may return best-effort
or approximate answers. For example, when in-
dividual data sources are unavailable, a DSSP
may be capable of producing the best results it
can, using the data accessible to it at the time of
the query.

4. A DSSP must offer the tools to create tighter inte-
gration of data in the space as necessary.

1.1 Contribution

This paper endeavors to extensively address the chal-
lenge of scalability on dataspaces from the standpoint of a
range tree. Special consideration is given towards the de-
sign and implementation of a dataspace coupled with the
fact that data volumes grow exponentially. Following the
contributions made by Blackwell [14], the range tree is
utilized in this study. The proposed approach is suitable
for representing both structured and semi-structured da-
ta. The world is short of a global dataspace and so is the
case of large corporations. Fulfilling this need is im-
portant in order to ensure transparent access to all the
available data. This paper addresses this need extensive-
ly. Our main contributions in this paper are summarized
by:

1. We study the representation of important com-

ponents of a dataspace. Dataspaces are known to
consist of participants and their relationships [1],
[2], [3], [4]. Modelling these components for ex-
tensibility requires a thorough examination of
each of these components. We provide a scalable
way of representing participants as well as fur-
ther work on representing the relationships.

2. We determine and examine the characteristics of
a dataspace. Important aspects which are critical
to the design and implementation of a scalable
dataspace are identified and applied to the solu-
tion.

3. We critically examine and introduce a new cate-
gorization of dataspaces that improves on the ex-
isting dataspace classification that has been found
to be insufficient.

4. We explore an application of the range tree which
is a special data structure that is best suited to
address the current challenges in storage pro-
cessing. This data structure has not been fully uti-
lized in most common applications, and there-
fore, we demonstrate how useful and necessary
this data structure can be.

5. We propose a technique of designing dataspace

support systems with key scalability and access
concerns being addressed. In order to achieve
this, we map the dataspace components and
characteristics to real data structures and associ-
ate the appropriate algorithms to the process. As
a starting point, we evaluate the existing attempts
to construct a dataspace support system and
summarize the challenges with more specifically
in relation to scalability.

6. We report an extensive experimental evaluation.
Both the performance and completeness of
dataspace support systems are evaluated. More
importantly, the search and query as well as
space complexity are experimented in order to
guarantee a more reasonable solution. Our ap-
proach which combines the appropriate data
structures and algorithms together can always
achieve the best performance and scales well un-
der large data sizes. Moreover, the experimental
results also confirm our conclusions of cost anal-
ysis, that is, we can improve the query perfor-
mance by deploying the use of range trees. Mod-
ern techniques like fractional cascading have
been confirmed to reinforce the performance.

The remainder of this paper is organized as follows:

first, in Section 2 we present background material that
is used in subsequent sections. Section 3 develops the
design and implementation of a dataspace support sys-
tem using scalability parameters. In Section 4, we pre-
sent reports on extensive experimental evaluation of
the proposed techniques. We also prove that the pro-
posed techniques are optimal. We discuss the related
work in Section 5. Finally, we recap, summarize, and
describe directions for future work in section 6 as a
conclusion to this paper.

2 PRELIMINARIES

This section introduces some preliminary settings of exist-
ing literature and relates them to the purpose of this pa-
per. The settings include the data model, the search and
query model and Participant associations. Definitions,
notations, and background are further provided as pre-
requisites for subsequent sections.

2.1 Data Model

A data model is an abstract model that describes how
data are represented and accessed. Definition 2.1 provides
the data representation as a starting point for represent-
ing the data fetched into the dataspace from the various
data repositories. For the purpose of this paper, a set is a
collection of distinct yet related objects (further presented
as nodes), considered as an object in its own right.

Definition 2.1 (Data Representation). The data in the
dataspace is defined by a set D represented by a range tree
which is consists of v points in d-space. Each node in a
range tree is a set of attribute-value pair. Each value can
take any form of data type. The dimensions of any D or a
sub-tree of D is denoted as d. A key assumption is that no

4

two or more points in the set D have equal coordinates in
any dimension at the same time. The data range or range
tree is denoted as R and R∈ D, Such that R ⊆ D (vd), for
which (vd) ⊆ N, where N is a set of dataspace nodes i.e. N
⊆ D.

For example, when representing a database as our
dataspace D, the number of records is represented by v
while the number of fields is represented by d.

2.2 Search and Query Model

We consider queries with a set of attribute and keyword
predicates of which the query inputs can resemble tuples
in data repositories. For the purposes of this paper, we
will use the following simple keyword and path lan-
guage.

Definition 2.2 (Query Model). Queries are typically consid-
ered to run through an axis-aligned range. A query Q is
typically an expression that selects a set Q (N) ⊆ D. The
query inputs are typically n points in d dimensions.

 As discussed by [10], it is expected that a Keyword
query expression should return the set containing nodes
such that the keyword exists in any of their attribute-
value pairs. Given an attribute Xi, an operator op and a
value dt, an attribute-value expression on the other hand
denoted Xi op dt should return the set containing nodes
such that the condition on the attribute Xi with operator
op and value dt is true.

It is important to describe the query building process
as a critical component of the query model. An example
to demonstrate the process of building queries can be pre-
sented as to consider a two dimensional (2D) plane with X
and Y as the axis. Assuming a range tree can be build
from the plane, queries executed on the range tree for the
plane will constitute the set of coordinate values given by
[xi, xj] X [yi, yj] where xi and xj denote values on the X axis
while yi and yj denote values on the Y axis. Combining
these four values gives us the range. The execution of
these queries will use the following approach: execute a
search for [xi, xj] first on the main level tree; then for each
node v belonging to the total O(log v) nodes that consti-
tute [xi, xj], execute a total of two binary searches for the
points yi and yj that are inside Y(v) in order to find the
adjacent sequence of points that are contained inside the
range [yi, yj]. We can then report or count all these points.

2.3 Participant Associations

Entities existing in a dataspace are called participants.
The relationships between participants are defined by the
associations. An association in this case is therefore, a
mapping between entities in a dataspace. The design and
implementation of a DSSP requires the definition and
modeling of these associations. By using the range tree, it
is possible to represent each entity by a node. Recall from
definition 2.1 that, a specific node is denoted vi, which
also represents an entity. Every entity is characterized by
a set of attributes used to build associations using schema
mapping techniques defined in [15]. The attribute corre-
spondence for existing entities in dataspaces has been
described to be developed in a pay-as-you-go fashion [6]

incrementally. One way to develop this is through learn-
ing based on feedback from users.

Let Xd-i be an attribute for any node v where d ≥ 1for
all values of X. Ideally, attributes are identified by an in-
dex beginning from zero to d-1. Given another attribute
Xd-j and a keyword w(Xd-i, , Xd-j) that is used to associate
the attributes Xd-i and Xd-j we proceed to express the
matching between the two attributes as Xd-i ↔ Xd-j. Any
keywords w(Xd-i, , Xd-j) occurring in Xd-i, Xd-j are said to be
neighbors.

2.4 Indexing

An index is a list of data that is stored typically in plain
text format for easy scanning by a search algorithm. With
indexes, searches are done via the index instead of read-
ing through all the data since indexes contain metadata or
keywords. Indexing therefore is a technique that uses
indexes to speed up searching and sorting operations on a
set of data referenced by the index.

Indexing is an important aspect of any dataspace sys-
tem as earlier indicated in Fig. 2. This requires the devel-
opment and usage of indexing structures. In order to fa-
cilitate indexing, we adopt structures that are used in
modern search engines [16].

The proposed approach will make use of the inverted
index, also known as inverted files or inverted lists [16],
[17], [18] which are described as a mapping from key-
word w(Xd-i, , Xd-j) to the list of node identifiers of nodes
containing that keyword. For each item in the inverted
lists, we maintain a pointer denoted p that associates to a
specific list of tuples, where the item occurs. For the pur-
pose of supporting both attribute-value and keyword
expressions, it is possible to implement the inverted index
by concatenating keywords with the attributes in which
those keywords occur. Keyword expressions are then
later converted to prefix queries [19]. The keywords can
constitute any data type with a total order including
floats, strings, dates and integers.

3 DATASPACE CONSTRUCTION WITH SCALABILITY

PARAMETERS

3.1 Node Construction

The construction of a scalable dataspace requires an ap-
proach that guarantees for scalability. One of the main
goals for this paper is therefore to develop an adaptive
algorithm for dataspace construction that offers scalabil-
ity. The range tree is a known data structure that can rep-
resent d-dimensional data in space. Various additional
reasons are provided to support the importance of this
data structure including the ability to implement the data
structure on disk [14]. Combining the power of this struc-
ture with the need to incorporate dataspace components
as proposed by [13] can lead to a higher degree of success
in dataspace construction.

Critical to the design of a dataspace is the representa-
tion of participants (nodes) and their interrelationships
(edges). Participants in a dataspace are called Entities and
they can as well be represented as indicated in Fig. 2
based on the assumption that the basic unit of a dataspace

SHIBWABO ET AL.: SCALABLE DATASPACE CONSTRUCTION 5

is an entity. It is however important to note that the rep-
resentation proposed in Fig. 2 is largely generic with little
if any focus on the practicability of the implementation.
The best approach is to define the structure of a basic par-
ticipant of a dataspace. The node can be represented as
consisting of the attribute and data types as shown on
Table 1.

An entity is therefore represented as a node in the
Range tree. Each node carries the same attributes or prop-
erties as indicated on Table1. Ideally, a node will have
links called pointers to other nodes. The application of
nodes has been used widely on linked lists among other
structures with much greater success. This approach
makes use of a unique node for each entity regardless of
the relationships between nodes. The uniqueness can be
in any of the attributes of the node but a more efficient
attribute for this is the index. The nodes contain pointers
to data objects and can further be made to correspond to
disk pages for disk-resident indexing.

By applying this approach of defining nodes, the range
tree structure can then be used to model the relationships
between dataspace participants with much greater suc-
cess. The following is a description of the attributes of a
dataspace node.

1. Index: Defines the location of the Node within the
Range tree. This requirement is introduced and
supported by Fig. 2., for traversing the dataspace
and to perform further operations like search and
query.

2. Data: Describes the actual set of value(s) that a
node contains.

3. Time created: Refers to a timestamp (t) which
serves the purpose to indicate time zero for a
dataspace node.

4. Dimension: Describes the various perspectives
that a node in the dataspace may possess or lead
to.

5. Parent: Is a set of nodes that a particular node in-

herits attributes from. In more direct terms, these
are nodes that have association with a particular
node as described by wi occurring in Ai, Bi, given
that A and B are schemas.

3.2 Constructing Participant Relationships

Participants in a dataspace are related in one way or the
other. The relationship can exist in one of three ways: one
way, two ways or transitive. Traversing the dataspace in
either direction over a set of participants requires a de-
gree of trust. In order to ensure that the general dataspace
relationship aspect is constructed in a more practical
sense, it is possible to design a model that combines enti-
ties and their relationships considering the security com-
ponent. Fig. 3 presents a proposed model that has a secu-
rity element as a special consideration. A set of three
nodes are used for demonstration purposes. The relation-
ship between any two nodes vi and vj is logical as op-
posed to physical.

The representation of participant relationship as pro-
posed in Fig. 3 is necessary because it determines the abil-
ity of any two nodes vi and vj to exchange messages. The
same behavior is exhibited with files and classes whereby
files that contain defined classed may exist within the
same directory but there are defined restrictions within
each class using the private, public keywords.

It can be said that a node e.g. vnorthNode belonging to a
dataspace is an element of another node e.g. northNode.
This aspect is common in a multidimensional scenario.
The corresponding expression is represented next.

Given: vnorthNode ∈northNode
 veastNode ∈eastNode
 vwestNode ∈westNode

By using the model presented in Fig. 3, it can be stated
that the relationship between any two nodes vwestNode and
veastNode referred to as vwestNode <---> veastNode is transitive
if and only if there exists some commonality in attrib-
ute/value combination between the set of nodes {vwestNode

and vnorthNode} and {vnorthNode and veastNode} in such a way
that a mapping can henceforth be established between
vwestNode and veastNode through veastNode This combination
is such that:

Given:
dtwestNode ∈ vwestNode and,
dteastNode ∈ veastNode and,
dtnorthNode ∈ vnorthNode then,

Fig. 3. Dataspace Participant Relationships.

TABLE 1
DATASPACE NODE (N) ATTRIBUTES

Attribute Data Type

Index – i double

Data - dt double

TimeCreated - t Date/Time (double)

Dimension - d integer

Parent[] –P[P1,P2….Pn] double ptr[]

6

dtwestNode ↔ dtnorthNode

dtnorthNode ↔ dteastNode

Where, dt represents the attribute for an arbitrary
node and ↔ denotes an existing mapping due to the
commonality.

It is important to observe that the relationship can take
any direction. It is expected that two separate nodes may
be similar in all aspects except in two key aspects. These
aspects are node attributes called time and space. Time
refers to the timestamp that the node started to exist.
Space on the other hand is the address or location in
which the entity (node) exists. There is the possibility of
the entity changing its location, and therefore, we need to
allow for location updates. The start time of a node on the
other hand is considered as fixed for the entire lifetime of
the dataspace.

The use of directional notations in Fig. 3 is not mean-
ingless but rather is a clear indication of the fact that a
node may be related to any other nodes on the Euclidean
space of d dimensions where 0 <= d < ∞. This explains
the need to use a data structure that can handle arbitrary
n dimensions. The range tree is known to be capable of
handling arbitrary dimensions of data representations. A
Range Tree is also appropriate for an implementation of a
dataspace due to its suitability for disk storage as op-
posed to a structure that is memory based. This guaran-
tees a higher degree of scalability considering the fact that
the dataspace could grow to a single global dataspace. We
map the representation in Fig. 3 to a new model in Fig. 4.

A key observation on Fig. 3 is that it is the relation-
ships between dataspace participants that determine the
dimensions of the dataspace. For a dataspace support
platform, the total number of dimensions is often ex-
pected to be unpredictable. This becomes even much
complicated by the learning aspect. As relationships en-
code data semantics, sharp improvements in precision
and recall may be achieved through high-quality relation-
ships. Possible approaches that could be employed to
obtain those relationships including machine learning
techniques.

3.3 Dataspace Implementation

Following the definitions, further analysis and design
components described earlier, an implementation of the
proposed dataspace is achieved using the range tree as
the container representing the set D. Range trees are typi-
cally an extension of a one-dimensional data structure
called the segment tree. The segment tree is a data struc-
ture for intervals on the real line whose extremes belong
to a fixed set of an arbitrary number of abscissae. With the
range tree, we have the capability to pre-process the data
to build a dataspace that allows efficient resolution of
dataspace queries earlier defined as Q (N). The build al-
gorithm is very comparable to merge-sort. For the con-
struction of the tree representing the dataspace or a
dataspace subset Nd ⊂ D, we need to first sort the points.
Each point or coordinate on the tree represents the
dataspace participant on the constructed tree as it was
earlier described as a node (v).

The points being the participants in a dataspace are
sorted with respect to the first node and build recursively
(from top to bottom) the main tree in linear time. For the
associative trees we need not to sort the participants
again. We now build the associative trees in bottom-up
fashion. Every node merges the sorted lists of its children
in linear time starting from the leaves which are trivially
sorted.

Kd-trees, typically have O(√n+k) query time, where k
is the number of reported points and n is a set of points in
the plane. Therefore, in cases where the number of re-
ported points is minimal, the query time is relatively high
[20]. The range tree has a better query time, namely
O(log2 n+k). The cost for this improvement is an increase
in storage from O(n) for kd-trees to O(n log n) for range
trees. A technique called fractional cascading can be ap-
plied to reduce the query time for a range tree. This tech-
nique effectively causes a significant reduction in query
time on range trees to O(log n + k) [21].

The range trees answer a d-dimensional range query
in time O(logd n+k), where n is the whole set of points
and k is the set of reported points. The construction time
and the space the tree consume are O(nlogd−1 n). The
optimal solution to the orthogonal range search problem
is proposed by a structure with time complexity O(logc n
+ k) and O(n(log n/ log log n)d−1) space consumption,
where c is a constant [20].

The updates, insertion and deletion of nodes to the ac-
tual tree are ultimately implemented on disk rather than
on memory, this enhances the capacity for managing
scalability. The approach to access and retrieval is similar
to the case of the current computer file system with the
consideration of the aspect of multi-dimensionality.

3.4 Sample Dataspace Implementation

During the implementing of the dataspace support sys-
tem based on the proposed data structures, we consid-
ered that the key bottleneck in query performance is not
the time for processing but rather the key bottleneck is
memory, bandwidth and latency. Therefore, it is possible
to hit the memory wall [21] in our application if we are
not careful, since it is expected that the disproportional

Fig. 4. Dataspace Entity Association in d-Dimensional Eucleudian
Space.

SHIBWABO ET AL.: SCALABLE DATASPACE CONSTRUCTION 7

increase between memory and processors is wider today
than it was the case three years ago. It has been found
that there exists a disproportional increase between
memory and processors whereby processor speed has
been improving at a significantly higher rate as compared
to memory [21].

Our implementation consists of an application that in-
teracts with a database as the dataset which manages a set
of records representing the points (v). We expect a similar
architecture regardless of whether the data is randomly
queried from the dataset or from a geographical dataset.
The following code segment illustrates a typical imple-
mentation of the dataspace in the C++ language. The
Range tree based dataspace is implemented using binary
search trees. It assumes no two points have the same x or
y coordinate. The example could be made more efficient
by assuming points are given all at once. Then could sort
by x and by y to ensure tree are perfectly balanced. It is
important to note that this implementation is based on
disk.

We recommend that dataspace implementation should
make use of a powerful programming like C or C++. The
sample code provided is modified in order to be more
easily understood by object oriented programming lan-
guage experts.

class Dataspace<Key public Comparable<Key>> {

 private:
 Node root; // root of the primary BST

 public:
 // BST helper node data type
 class Node {
 Key x, y; // x- and y- coordinates
 Node left, right; // Left and right subtrees
 RangeSearch<Key, Key> bst; // Secondary BST
 double i; // Index
 double t;
 double TimeCreated; // Time created

 Node(Key x, Key y) { // Node Constructor
 this.x = x; // x value initialization
 this.y = y; // y value initialization
 this.bst = new RangeSearch<Key, Key>();
 this.bst.put(y, x); // update the tree
 }
 }
 }

3.5 Improving Query Processing Time

A critical aspect to the design and implementation of a
scalable dataspace support platform is the requirement to
develop techniques to improve the time taken to process
queries. A DSSP will typically process requests that are
presented to it in form of queries. The initial stage that
requires query processing is building the DSSP.

One way of improving query processing time is
through parallelism. The build algorithm for a range tree
is very similar to the operation of the merge sort; it is

therefore expected that it can be easily parallelized. In
order to achieve this, there is the requirement to first sort
the available nodes (points). It is considerably practical to
either use a specialized algorithm or for a relatively small
number of cores there is the possibility of just breaking up
the existing data into smaller portions, sort the portions
on multiple cores and finally merge the results [22].

In case we have two cores, we break up the data into
two smaller portions; in practice, this has resulted in a
42% reduction in running time [22]. The remainder (and a
large amount) of the pre-processing time is spent within
the recursive build function; an incredibly practical and
more efficient way to parallelize the build function is to
execute the two recursive calls in multiple threads. This
only needs to be done at the top few levels of the recur-
sion (for dual-core, only the first level is adequate). The
effect is a general improvement in the query processing
time that varies depending on how complex the merge
operation is.

The other available strategy for improve query pro-
cessing time for our approach is through the application
of fractional cascading technique. This technique is
known to speed up a sequence of binary searches for the
same value in a sequence of related data structures. It
works by taking logarithmic time duration for the first
binary search which is often the case for standard binary
searches but any subsequent searches end up taking less
time [20].

With the absence of fractional cascading, it is therefore
expected that queries that the baseline would answer a d-
dimensional range query in time O(logd n +k), where n is
the whole set of points and k is the set of all reported
points. The measured construction time and the space
that the tree consume are O(n logd−1 n). By using the tech-
nique of fractional cascading, we can gain by a log n fac-
tor in the last level of the tree and the result is an im-
proved time complexity of the order O(logd−1 n +k) [20].

4 EXPERIMENTS

In this section, we evaluate the query processing tech-
niques of the proposed approach. The main goal of the
experiments is to understand how our approach com-
pares to the other approaches presented in the reviewed
literature. We will evaluate the query performance costs
of as we scale on the number of inputs.

4.1 Setup and Datasets

We base the implementation on the Combined Algorithm
[23] with the range tree in order to build our dataspace on
the available disk. The main evaluation criterion during
experimentation is query time cost. The other criteria for
evaluation include storage cost and build time. We con-
duct the experiments in two common data repositories
PostgreSQL, and MySQL to test the results on various
underlying data models.

MySQL is known to be the most popular open source
database. It is the database for the web. MySQL fully
supports partial indexing through the use of the InnoDB
engine, but not with the MyISAM engine. The MySQL

8

architecture provides Pluggable Storage Engines which
enable MySQL to assume the nature of a variety of differ-
ent databases [24], [25], [26]. PostgreSQL on the other
hand is known to be the world's most advanced open
source database. It is described as the open source Oracle.
It has a very strong security model, provides high levels
of flexibility for programming, and generally exceptional
OLTP performance as well as scalability [24], [25], [26],
[27] all these provided without the need for heavy tuning
and workarounds.

In order to establish and manage connections between
the DSSP and its underlying data repositories for the im-
plementation, the ODBC client connectors are used. Each
of the separate data repository (MyISAM, InnoDB, Post-
greSQL) continue to manage its own data storage mecha-
nisms without any modifications including Spatial Index
support, sub-queries as well as full text search. Additional
connectors supported by the target repositories have been
found to be JDBC, .NET, and C++ Client Connectors [27].

For the purpose of obtaining an accurate comparison
in performance, a very critical consideration has been to
pay special attention to configuration and environment.
This is supported by the fact that, in terms of perfor-
mance, MySQL has been found to do better with simple
queries and 2-core machines [27]. PostgreSQL on the oth-
er hand performs better with complex queries and multi-
core machines. Therefore, it is expected that a dataspace
support system will present varying performance levels
depending on the target repository. It is possible to opti-
mize database management systems according to the en-
vironment in which they have been installed.

The set of the global dataspace D is used to represent
the data contained on all the described data repositories
combined. In this respect, our goal is not to compare per-
formances of databases but the performance of the
dataspace support system. PostgreSQL and MySQL both
fundamentally make use of various mechanisms to im-
prove performance at the basic level which are generally
not compared in this paper.

The actual version of PostgreSQL is 9.1 while the ver-
sion of MySQL used is 5.5.24. These two repositories are
installed on a single machine with each one of them hav-
ing a database created for the purpose of testing. Each
separate database further is comprised of a table consist-
ing of 10.1 million records in two columns (fields or at-
tributes). The two existing fields are pinkness and round-
ness.

Each and every node (v) in the dataspace D is used to
represent objects in a repository. Each object in every da-
tabase has m scores, one for each of (m=2) attributes. A
good example is, an object can have a color score that de-
scribes how pink it is, and a shape grade, that describes
how round it actually is. The values of the scores are ran-
domly generated using the standard SQL random func-
tion and populated to the tables using and during an in-
sert statement. The interaction with the database is en-
forced via a common web portal that facilitates query
execution through the algorithm. The following is a query
that is executed to create each table in the separate data-
bases:

create table dataspace1 (id int,
pinkness INT,
roundess INT);

The attribute id is the primary key for the test table
used to maintain the requirements at the database level
including indexing. The other fields are populated using
the random function as follows:

insert into dataspace1(pinkness, roundness
values(FLOOR(1 + RAND() * 2000199), FLOOR(1 +

RAND() * 2000199));
The process of populating the values to the database

by running the indicated query is performed iteratively in
order to generate and populate a total of 5.1 million rec-
ords. RAND() will result to a value like 0.747969849. It
basically creates a number in the interval [0;1) (meaning it
excludes 1). So 1 * RAND() yields a number in [0, 1).
2000199 * RAND() + 1 is in [1;2000199). By rounding
down we ensure that the resulting integer is within the
range [1;2000199].

We associate objects of attribute-keywords with tf*idf
weight scores [28] as an aggregation function (scoring
function), that combines the pinkness score and the
roundness score to obtain an overall score. During the
evaluation process, we make use of the Structured Query
Language (SQL) random function in order to randomly
select 1,000,000 records (tuples) from each data set using
instance-level matching as the workload of queries. The
mean response time of the executed queries are recorded
and presented when the approach is applied on different
repositories.

All experiments have been run on a Intel Core 2 Duo
CPU (1.5 GHz) T5250 server, with 2 GB of RAM (DDR2
SO-DIMM), and a 160 GB SATA150, 2.5” 5400 rpm hard
disk with 8 MB cache. We run the tests under Windows 7
Ultimate 32 bit, using Microsoft Visual C++ 2008. In the
implementation, we have not utilized the aspect of multi-
threaded parallelism for querying, and therefore, our
code makes explicit usage of only a single core; for the
purpose of indexing.

4.2 Query Processing

This section proceeds to define a query plan as an im-
portant step for query processing. Given a query Q, with
an example described as find the record with the pink-
ness between 590 and 1000 and roundness between 200
and 300. We have denoted this query as Q (N) and it is
expected to return a view or a set of views from the set D
if executed severally. We represent this query as a range
query shown in Fig. 5.

Based on the x-coordinate or y-coordinate values, the
resulting query range denoted as [xi, xj] X [yi, yj] where y
represents pinkness while x represents roundness be-
comes:
[(xi |−∞) : (xj |+∞)] X [(yi |−∞) : (yj|+∞)]

Every point vi is identified by (vx,vy) ∈ [xi : xj] X [yi : yj]

iff
((vx | vy) , (vy | vx)) ∈ [(xi |−∞) : (xj |+∞)] X [(yi |−∞)
: (yj|+∞)]

SHIBWABO ET AL.: SCALABLE DATASPACE CONSTRUCTION 9

Any query Q (N) which is executed on the repository is

expected to return a null result denoted as R or a subset
of D where D is the set of data in a dataspace. The result
is represented by the expression as R ⊆ D which de-
scribes that every element in the query result R is a mem-
ber of the dataspace D which may include all the nodes
present in the dataspace.

4.3 Scalability

The results of the experiments in terms of scalability of a
dataspace support system with regards to query response
time, storage cost and build time need to be discussed. In

order to achieve this, the paper presents further perfor-
mance results when scaling on the data size. The results
existing in this section are recorded and presented using
our synthetic dataset, as it allows us to scale on the data
size. We use our approach that makes use of the existing
range tree construction algorithm with and without frac-
tional cascading as the starting point. Further work can be
done to include other techniques.

4.3.1 Query Response Time

We mainly test the performance of the approach under
various data sizes, so as to evaluate scalability. In cases
when implementing and testing the query time of the
data structures and our algorithms, the O(k) factor exist-
ing in the query time is found to be dominant except
when we restrict to small queries. For this purpose, dur-
ing measuring the query performance of our implementa-
tion, the reporting of the query results has been disabled.
Moreover, queries are confined to only counting the
points existing within the query rectangle. However, the
capability to additionally report the points (nodes) that do
not have any overhead is always maintained. This ap-
proach can be useful in practice for scenarios where we
need to report the resulting points in the query rectangle,
only in cases when they are not too many. This scenario
does not however eliminate the need to determine the
total count. Sometimes, we may need to obtain the out-
put, but only up to some fixed number of points. More
techniques of addressing the counting problem have been
described in detail by [29].

As presented in Fig. 6 and Fig. 7, the time cost of de-
ploying the approach increases logarithmically as the da-
ta size given an original query Q selecting attribute values
in each of our datasets. The proposed approach continues
to scale well under large sizes.

A very imperative fact is that initial binary searches
take less than 12% of the query time. Fractional cascading
improves subsequent query time. Another way of im-
proving the query time has been known to be caching.
Caching require the use of a cache-friendly data structure.
Various experiments have been done when using the
range tree with caching [22] that further indicate that
CSStrees should be used in place of arrays in order to fa-
cilitate caching. This paper does not include the imple-
mentation, experiments and the results of the application
of caching with the main reason being that the significant
proportion of the query response time is always spent on
range-tree searching rather than binary searches as it has
been claimed by [30].

The average query response time for MyISAM storage
engine was found to be quicker than InnoDB and Post-
greSQL. Since all the storage engines were installed with
their default settings, it is expected that the results would
be similar in other experiments. An important observa-
tion is that regardless of the underlying storage, the time
taken for the same number of points tends to increase
logarithmically. This has a benefit on scalability since any
further addition of points after a certain threshold (About
2 million for our case) does not proportionally or substan-
tially increase the time taken to generate a response for

Fig. 6. A Range Query on the two-dimensional axes.

Fig. 7. A Range Query on the two-dimensional axes.

Fig. 5. A Range Query on the two-dimensional axes.

10

the query. It is not usual to expect a decrease in query
response time with an increase in the number of points,
and therefore, comparing our approach with any other
approach that uses data structures that consume linear,
for example [9], quadratic and other time expensive order
yields sufficient justification for adopting the discussed
approach.

4.3.2 Storage Cost

As presented in Fig. 8, it is observed that the storage
cost tends to increase in a linear fashion from a certain
point of storage. The advantage of using this data struc-
ture is that the implementation can be enforced on disk as
opposed to memory. Therefore, this can be managed due
to the current trends of growth on disk storage as com-
pared to memory. Memory growth has been known to
grow at a slower rate as compared to processor speeds as
well as disk storage capacity. The asymptotic complexity
of space for memory based implementation still needs to
consume memory since the data structure needs to be
loaded to memory during query processing. Therefore,
the number of dimensions is determined to be the only
important constraint in case the implementation is done
on memory.

4.3.3 Build Time

The findings presented in Fig. 9 indicate the time taken to

build the dataspace structure. This structure is ideally a
tree structure that maps all the entities (points). The build
time is determined to vary linearly. This result is expected
in typical computing environments as default. The benefit
is that this would not be done every other time. It is ex-
pected that the dataspace will typically be initially built
once and then any necessary updates follow later on de-
mand. A suggestion on this paper is have further experi-
ments on the deployment of distributed computing tech-
niques on this so as to share the load.

5 RELATED WORK

5.1 Spatial Domain and Data Structures

Entities in the real world are known to exist in some
space. Files and objects that exist in devices can in the
same way be defined to exist in some space typically de-
fined on memory or disk. We often have a logical map-
ping to any physical storage area. The process of con-
structing a DSSP requires defining a logical domain for
various entities. This domain is called the spatial domain
for dataspaces. This space therefore ranges from the scope
of a single entity to the entire dataspace set.

A dataspace support system can therefore be said to
manage dataspace domains. The implementation of a
dataspace support system requires the development of
effective and efficient techniques of defining a dataspace.
These techniques are in computer science supported by
algorithms and data structures that work together to
achieve a common goal. Different data structures have
been defined for various applications including the
queue, stack, graphs and tree which are often implement-
ed using the array and linked list among other implemen-
tations.

The unique organization of a dataspace infrastructure
requires the design or selection and application of a suit-
able data structure that can represent the dataspace with
guarantee to scalability, efficiency and practicality. A
dataspace consists of entities that must be interlinked in
order to have a coherent dataspace infrastructure. The
definition of dataspace entities has been discussed by [31]
as similar to the mathematical set.

A dataspace implementation can benefit from the de-
velopments in spatial data structures in order to make the
dataspace vision a reality. Similarly, dataspace design can
use some techniques that are used for spatial indexing
and classification. However, it is important to point out
that a dataspace should contain any information in any
format over and above what is contained in geographical
information systems. This demand to have anything uni-
formly makes dataspace design a more challenging task.
Some attempts have been made in a theoretical sense to
propose the design of a dataspace, however, this paper
would focus on the actual low level implementation of a
dataspace.

5.2 Dataspace Implementation Attempts

Various efforts have been made towards the design and
possible implementation of a dataspace. The discussions

Fig. 8. A Range Query Storage Cost.

Fig. 9. A Range Query Build time.

SHIBWABO ET AL.: SCALABLE DATASPACE CONSTRUCTION 11

in this section analyze the significant attempts and indi-
cate the challenges that this paper intends to address. It is
imperative to understand that we envision a scenario
where the world can integrate into a single global web
dataspace. Desktop dataspaces can still be retained as
private. This vision is not to be ignored due to the fact
that a fundamental principle of dataspaces is the ability to
learn and provide integration on demand. With the de-
velopment of appropriate integration technologies, the
possibility and practicability of integration can surely
become a reality.

Wikipedia and Google Base have been explored by [9]
as dataspace examples and a possible integration solution
provided. Our view is that dataspaces can be broader
than this. Therefore, rather than implementing separate
code and providing specialized solutions in search en-
gines for each of those examples, we should preferably
have a single, exhaustive, and powerful framework to
model all of these different integration needs. Moreover,
the cost in terms of time for processing queries has been
defined by [9] to be linear. There is need to reduce this
time considering the possibility that dataspace is expected
to grow without limits.

Another dataspace implementation has been presented
by [9]. Although the implementation clearly constructs a
dataspace, we have found challenges relating to scaling.
This is because the provided approach heavily depends
on memory and will therefore not be practical for large
dataspaces. The approach models a dataspace based on a
common mathematical and programming construct
called the set. In programming set variables are stored in
computer memory.

Salles [19] presents novel breed of information-
integration architecture that stands in between search
engines and traditional information integration systems.
This architecture is specified as for personal and social
dataspaces. The first requirement for a Personal
Dataspace Management System (PDSMS) is to offer basic
query services on all the data in the data sources from the
start. In a personal and social dataspace scenario, this re-
quirement implies dealing with a highly heterogeneous
collection of data (e.g., files, directories, e-mails, address-
es, music) distributed among a variety of data sources
(e.g., file systems, email servers, databases, web sites). A
key drawback to the suggested approach is that the data
structures are implemented in memory.

Additionally, the query-response time of all indexing
strategies scales linearly with the number of association
trails. Materializing both left-side and right-side queries
as materialized views had slightly better processing times
than materializing the left side as a B+-tree and the right
side as a materialized view for larger number of trails,
though differences are not significant.

5.3 Range Tree

A tree is a widely used data structure that consists of
nodes in a hierarchical tree structure. Different implemen-
tations of the tree data structure exist each with specific
domains of application. Trees provide a default data
structure for the implementation of Dataspace Support

Platforms due to their hierarchical nature. Shibwabo, At-
eya and Wanyembi [31] design a dataspace as exhibiting
this kind of a relationship as well as a possible transitive
relationship that can minimize on the computational
overhead.

Range trees were discovered separately by several in-
dividuals including Bentley [32], who additionally dis-
covered K-D trees and Lueker, who further introduces the
technique called fractional cascading for range trees [33].
They were first introduced as a spatial indexing strategy
for multi-dimensional data by Guttman [34]. Their devel-
opment was guided by the inadequacy of other indexing
methods for handling data elements of finite extent and of
arbitrary distribution in a space most common of two
dimensions, but more generally of any number of dimen-
sions. Competing index structures include binary trees,
cell methods, quadtrees, k-d trees, and K-D-B trees. All of
these suffer from one or more severe limitations in spatial
data applications.

Binary trees are based on only one dimension. Even if
multiple trees are built to handle more dimensions, re-
trieval "bands" must be intersected through sequential
comparisons to find the desired data elements. All meth-
ods require specification of boundaries in advance and
are hence inefficient if clustering of data elements occurs,
as it commonly happens with spatial data sets [14]. An
example of the Range tree Spatial Search Index is present-
ed in Fig. 10.

5.4 Fractional Cascading with Range Trees

Fractional cascading is commonly known as a technique
that is usually applied to accelerate a sequence of binary
searches for an identical value in a sequence of related
data structures. A good introduction to orthogonal range
searching, range trees and fractional cascading is de-

Fig. 10. Range tree Spatial Search Index (Adopted from [14]).

12

scribed in [35, 36]. With this technique, the first binary
search in the sequence takes a logarithmic time just as is
the case with basic binary searches but any successive
searches are considered to take faster time. Various stud-
ies have been done towards the issues surrounding the
implementation of range trees with fractional cascading
[20].

The range tree data structure typically answers any d-
dimensional range query in time O(logd n+k), where n is
the whole set of points and k is the set of reported points.
The overall construction time and the space requirement
for the tree are O(nlogd−1 n). By applying fractional cas-
cading techniques, we can consequently gain by a log n
factor in the last level of the tree. This finally leads to a
resulting time complexity of O(logd−1 n+k). Intuitively,
fractional cascading performs one binary search as op-
posed to two in the last level. The optimal solution to the
orthogonal range search problem is contained in a pro-
posed structure with time complexity O(logc n + k) and
O(n(log n/ log log n)d−1) space consumption, where c is
a constant [20].

5.5 Range Tree Operation

A Range tree is a balanced tree structure wherein each
Range Tree node contains a number of entries, and each
entry consists of a pointer to a child node and the mini-
mum bounding rectangle (MBR) of the child node. The
MBR of a node is the least rectangle containing the MBR's
of all its children.

Fig. 11 is an example of a portion of a GIS arc-node da-
tabase. Two levels in the R-tree have special significance.
There is a single node at the beginning of the tree called
the root. At the end level of the tree, the nodes are called
leaves and the child pointers are to database entries
themselves rather than to lower level nodes in the tree.
Recursive algorithms for initially populating, updating,
and searching the R-tree have been well defined [33].

Although, the CGAL library provides some classes for
range trees there is space for optimizations in that pack-
age [22]. Firstly, there is a lack of recursive construction of
d-dimensional range tree and the only way to construct a

range tree of dimension d is to build a tree of dimension 1
and then make this an associative range tree of a new one
which will have dimension 2. Then one must build a tree
of dimension 3 with this tree as an associative tree and
this technique continues until the construction of the
whole d-dimensional tree.

In addition to that, the package uses virtual functions,
which increases the run time and finally there is no frac-
tional cascading. The proposed approach uses nested
templates for the representation of the d-dimensional
range tree which is defined in compilation time. The di-
mension of the tree must be a constant and defined in the
compilation time. In the last level a fractional cascading
structure is constructed [20].

For example a 4-dimensional range tree of size n with
different kind of data at each layer is given by the follow-
ing nested template definition [20].

LayeredRangeTree <DataClass ,

LayeredRangeTree <DataClass ,
LastRangeTree <DataClass>

>
> t r e e (n) ;

5.6 Data Storage Architecture

A critical evaluation into the common database manage-
ment systems architecture indicates that they consist of
two parts: logical and physical architecture. The logical
Database management system architecture manages
techniques to store and present data to the users. The
physical architecture on the other hand concerns more on
the software building blocks to constitute the system.

Fig. 12 presents the physical architecture of a database
management system. In overall, end users use the availa-
ble Application Programming Interface (API) to connect
to the database with different programming languages.

Thereafter, data is ideally processed to the Back End
through an exchange from Query Language Processor to
the DBMS Engine, consequently to the Physical Database.
The end users who only interact with the front end usual-

Fig. 11. Range Tree Example (Adopted from [14]).

Fig. 12. Physical DBMS Architecture (Adopted from [27]).

SHIBWABO ET AL.: SCALABLE DATASPACE CONSTRUCTION 13

ly are not exposed to the back end services which usually
run in the background.

6 CONCLUSION

This paper has shown, through extensive situation analy-
sis, supporting experiments and further existing literature
that data sets can coexist by making use of dataspaces.
Dataspaces are considered as a new approach to data
management that provides a solution to the systems inte-
gration challenge. Dataspaces however, are mainly tar-
geted towards ensuring systems co-existence. The con-
struction of dataspaces requires efficient, effective and
scalable techniques for managing data partly because da-
ta tends to grow exponentially coupled by the continuous
nature of storage. Two of the main services that a
Dataspace Support Platform (DSSP) should support are
search and query. While DBMSs have excelled at provid-
ing support for querying, search has emerged as a prima-
ry mechanism for end users to deal with large collections
of unfamiliar data. A DSSP should enable a user to speci-
fy a search query and iteratively refine it, when appropri-
ate, to a database-style query.

Although Range trees have been existing for decades,
the application to solve real world problems has been rare
due to the fact that most common applications are rela-
tively smaller than dataspaces and geographical infor-
mation systems. As complexity in data management in-
creases, the need to design and adopt a practical ap-
proach to data management rises as well. We design and
implement a dataspace support system supported by
range trees. Each participant in a dataspace is described
as a node that can itself be in arbitrary number of dimen-
sions. The node is a set of attribute-value pair. We also
provide a model to describe the relationships between
dataspace participants. We build the associations using
schema mapping techniques. The inverted indexes are
used to support indexing structures as an important
component of a dataspace system. Our approach is suita-
ble for representing both structured and semi-structured
data with higher degrees of practicability. An important
gain for this Range trees based dataspace construction is
that Range trees are in no way restricted to two-
dimensional spatial indexing. They generalize readily to a
space of any required random number of dimensions.

Finally, we report an extensive experiment to illustrate
the performance of proposed methods. In the method of
materialization, the general query plans show no worse
performance than the standard query plans. When proper
negative merge is applicable, the general plan can achieve
better performance. The hybrid approach with both views
and partitions can always achieve the best performance.
Additionally, the results of our experiments also confirm
our conclusions of performance analysis, that is, it is very
likely that in most applications, the range-tree based im-
plementation will not be the bottleneck; it is expected that
considerable amount of time is spent in transferring the
real query output or in constructing/fetching queries. The
results of this paper offer an interesting example of how
aspects that were trivial over time become important in

designing, implementing and selecting the right data
structures and algorithms.

ACKNOWLEDGMENT

The authors like to thank Strathmore University for the
PhD Scholarship. This work was supported in part by a
grant from The National Council for Science and Tech-
nology (NCST) in the Republic of Kenya grant reference
number NCST/ST&I/RCD/4th Call PhD/213 under the
Science, Technology and Innovations Grant fund (ST&I).
The authors would like to thank NCST.

REFERENCES

[1] M. Franklin, A. Halevy, and D. Maier, “Principles of dataspace

systems”, Proc. of Twenty-Fifth ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems (PODS 2006), ACM

Press, p. 1-9., ISBN 1-59593-318-2.

[2] M.J. Franklin, A.Y. Halevy, and D. Maier, “From Databases to

Dataspaces: A New Abstraction for Information Management,”

SIGMOD Record, vol. 34, no. 4, pp. 27-33, 2005.

[3] A.Y. Halevy, M.J. Franklin, and D. Maier, “Principles of

Dataspace Systems,” Proc. 25th ACM SIGMOD-SIGACT-

SIGART Symp. Principles of Database Systems (PODS ’06), pp. 1-9,

2006.

[4] M.J. Franklin, A.Y. Halevy, and D. Maier, “A First Tutorial on

Dataspaces,” Proc. VLDB Endowment, vol. 1, no. 2, pp. 1516-

1517, 2008.

[5] J. Madhavan, S. Cohen, X.L. Dong, A.Y. Halevy, S.R. Jeffery, D.

Ko, and C. Yu, “Web-Scale Data Integration: You can Afford to

Pay as You Go,” Proc. Conf. Innovative Data Systems Research

(CIDR), pp. 342-350, 2007.

[6] S.R. Jeffery, M.J. Franklin, and A.Y. Halevy, “Pay-As-You-Go

User Feedback for Dataspace Systems,” Proc. ACM SIGMOD

Int’l Conf. Management of Data (SIGMOD ’08), pp. 847-860, 2008.

[7] A.D. Sarma, X. Dong, and A.Y. Halevy, “Bootstrapping Pay-As-

You-Go Data Integration Systems,” Proc. ACM SIGMOD Int’l

Conf. Management of Data (SIGMOD ’08), pp. 861-874, 2008.

[8] M.A.V. Salles, J.-P. Dittrich, S.K. Karakashian, O.R. Girard, and

L. Blunschi, “Itrails: Pay-As-You-Go Information Integration in

Dataspaces,” Proc. 33rd Int’l Conf. Very Large Data Bases (VLDB

’07), pp. 663-674, 2007.

[9] S. Song, L.Chen, M. Yuan, "Materialization and Decomposition

of Dataspaces for Efficient Search," Knowledge and Data Engi-

neering, IEEE Transactions on Knowledge and Data Engineer-

ing, vol.23, no.12, pp.1872,1887, Dec. 2011

[10] A. Marcos, S. Vaz, D. Jens, B. Lukas, “Intensional associations in

dataspaces,”In: ICDE 2010, (2010)

[11] R. Grishman, “Information Extraction: Techniques and Chal-

lenges,” in SCIE, 1997.

[12] P. Ziegler, K. Dittrich,”Data Integration — Problems, Ap-

proaches, and Perspectives,” Springer, Berlin Heidelberg, 2007.

[13] J. Pokoryn, “Databases in the 3rd Millenium: Trends and Re-

search Directions,” Journal of Systems Integration vol. 1, no. 1-2,

pp. 3-15, 2010.

[14] B. Blackwell, “The use of range-tree spatial indexing to speed

GIS retrieval,” Proc. AUTO-CARTO 8, 195-200, 1987.

[15] E. Rahm and P.A. Bernstein, “A Survey of Approaches to Au-

tomatic Schema Matching,” Int’l J. Very Large Data Bases, vol. 10,

no. 4, pp. 334-350, 2001.

14

[16] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retriev-

al. Addison-Wesley, 1999.

[17] I.H. Witten, A. Moffat, and T.C. Bell, Managing Gigabytes: Com-

pressing and Indexing Documents and Images, second ed. Morgan

Kaufmann, 1999.

[18] J. Zobel and A. Moffat, “Inverted Files for Text Search En-

gines,”ACM Computing Surveys, vol. 38, no. 2, pp. 1-55, 2006.

[19] M. V. Salles, “Pay-as-you-go Information Integration in Person-

al and Social Dataspaces,” Ph.D. dissertation, ETH Zurich,

2008.

[20] V. Fisikopoulos, “An implementation of range trees with frac-

tional cascading in C++,” arXiv, 2011.

[21] T.M. Chilimbi, J.R. Larus and M.D. Hill. Improving pointer-

based codes through cache-conscious data placement. Technical

report 98, University of Wisconsin-Madison, Computer Science

Department, Madison, Wisconsin, 1998.

[22] R. Berinde, “Efficient implementations of range trees,” 2007.

[23] R. Fagin, “Combining Fuzzy Information: An Overview,” SIG-

MOD Record, vol. 31, no. 2, pp. 109-118, 2002.

[24] EnterpriseDB, “A Comparison of PostgreSQL 9.0 and MySQL

5.5,” 2011. [Online]. Available: http://www.arsys-

eu-

ope.net/EnterpriseDB/White_Papers/White_Papetr_Postgres_

Plus_9.0_vs_MySQL_5.5.pdf

[25] WikiVS, “MySQL vs PostgreSQL,” 2008 . [Online]. Available:

http://www.wikivs.com/wiki/MySQL_vs_PostgreSQL

[26] 2nd Quadrant, “10 reasons why MySQL Users should move to

PostgreSQL,” 2011. [Online]. Available:

http://www.2ndquadrant.com/static/2quad/media/pdfs/10_

reasons_why_mysql_users_should_move_to_postgresql.en.pdf

[27] X. Yang, “Analysis of DBMS: MySQL Vs PostgreSQL,” 2011.

[Online]. Available:

http://publications.theseus.fi/bitstream/handle/10024/27471

/Final_Thesis_Xiaojie_Yang.pdf?sequence=1

[28] G. Salton, “Automatic Text Processing: The Transformation,

Analysis, and Retrieval of Information by Computer,” Addi-

son-Wesley, 1989.

[29] L. Arge, G.S. Brodal, R. Fagerberg. “Cache-Oblivious Planar

Orthogonal Range Searching and Counting,” Proc. of the 21st

Annual Symposium on Computational Geometry, 2005.

[30] J. Rao, K. Ross. Cache Conscious Indexing for Decision-Support

in Main Memory. Proceedings of the 25th International Confer-

ence on Very Large Data Bases, pages 78-89, 1999.

[31] B. Shibwabo, I. L. Ateya and G. W. Wanyembi, “Modelling

Dataspace Entity Association using Set Theorem’” Computer

Technology and Applications, vol. 3, No. 6, (2012).

[32] J. L. Bentley. Multidimensional binary search trees used for

associative searching. Commun. ACM, 18(9):509–517, 1975.

[33] G. S. Lueker. A data structure for orthogonal range queries. In

SFCS ’78: Proceedings of the 19th Annual Symposium on

Foundations of Computer Science (sfcs 1978), pages 28–34,

Washington, DC, USA, 1978. IEEE Computer Society.

[34] A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial

Searching,” Proc. of ACM SIGMOD Conference on Management of

Data, Boston, June 1984.

[35] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarz-

kopf. Computational Geometry: Algorithms and Applications.

Springer-Verlag, second edition, 2000.

[36] D. M. Mount. Lecture notes: Cmsc 754 computational geometry.

lecture 18: Orthogonal range trees, pp. 102–104, 2007.

