
UNIVERSITY OF CAGLIARI

CLOUD-BASED SOLUTIONS SUPPORTING DATA AND

KNOWLEDGE INTEGRATION IN BIOINFORMATICS

by
Gabriele Milia

A thesis submitted for the degree of 
Philosophiæ Doctor 

PhD in Computer Science
XXVII Cycle

Supervisor: Prof. Nicoletta Dessì

PhD Coordinator: Prof. Giovanni Michele Pinna

INF/01

2013 - 2014





Abstract

In recent years, computer advances have changed the way the science progresses and have

boosted studies in silico; as a result, the concept of “scientific research” in bioinformatics

has quickly changed shifting from the idea of a  local  laboratory activity  towards  Web

applications and databases provided over the network as services. Thus, biologists have

become  among  the  largest  beneficiaries  of  the  information  technologies,  reaching  and

surpassing the traditional ICT users who operate in the field of so-called "hard science"

(i.e., physics, chemistry, and mathematics). Nevertheless, this evolution has to deal with

several aspects (including data deluge, data integration, and scientific collaboration, just to

cite a few) and presents new challenges related to the proposal of innovative approaches in

the wide scenario of emergent ICT solutions.

    This thesis aims at facing these challenges in the context of three case studies, being

each case study devoted to cope with a specific open issue by proposing proper solutions in

line with recent advances in computer science.

    The first case study focuses on the task of unearthing and integrating information from

different web resources, each having its own organization, terminology and data formats in

order to provide users with flexible environment for accessing the above resources and

smartly exploring their content. The study explores the potential of cloud paradigm as an

enabling technology to severely curtail issues associated with scalability and performance

of applications devoted to support the above task. Specifically, it presents Biocloud Search

EnGene  (BSE),  a  cloud-based  application  which  allows  for  searching  and  integrating

biological information made available by public large-scale genomic repositories. BSE is

publicly available at: http://biocloud-unica.appspot.com/.
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    The second case study addresses scientific collaboration on the Web with special focus

on  building  a  semantic  network,  where  team members,  adequately  supported  by  easy

access to biomedical ontologies, define and enrich network nodes with annotations derived

from  available  ontologies.   The  study  presents  a  cloud-based  application  called

Collaborative Workspaces in Biomedicine (COWB) which deals with supporting users in

the  construction  of  the  semantic  network  by  organizing,  retrieving  and  creating

connections between contents of different types. Public and private workspaces provide an

accessible  representation  of  the  collective  knowledge  that  is  incrementally  expanded.

COWB is publicly available at: http://cowb-unica.appspot.com/. 

 

    Finally, the third case study concerns the knowledge extraction from very large datasets.

The study investigates the performance of random forests in classifying microarray data. In

particular, the study faces the problem of reducing the contribution of trees whose nodes

are populated by non-informative features. Experiments are presented and results are then

analyzed in order to draw guidelines about how reducing the above contribution.

    With respect to the previously mentioned challenges, this thesis sets out to give two

contributions summarized as follows. First, the potential  of cloud technologies has been

evaluated for developing applications that support the access to bioinformatics resources

and the collaboration by improving awareness of user's contributions and fostering users

interaction. Second, the positive impact of the decision support offered by random forests

has been demonstrated in order to tackle effectively  the curse of dimensionality.
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Chapter 1

Introduction

In recent years, the advent of high-throughput methodologies (~ omics) has favoured the

exponential growth of heterogeneous data in biology. Every year, the cost of generating,

acquiring and spreading data continues to decrease, so biologists and computer scientists

have to cope with processing an increasingly amount of data. Therefore, biology is more

and more a data-intensive science and has to effectively exploit these growing available

pieces of information hosted in vast numbers of independent and heterogeneous resources

spread  all  over  the  Web  [Pas08].  In  this  scenario,  biologists  expect  more  and  more

capabilities from  Web applications and databases. On the other hand, the development of

specialized tools involves several standards, technologies, and frameworks which are often

complex,  expensive  to  develop  and  maintain,  and  require  accurate  planning  and

management [SK10]. In particular, the development of Web applications and databases in

bioinformatics arises several challenges and issues, such as data access, visualization, and

representation (i.e., standards). Solutions, which aim at addressing these problems related

to databases and Web applications for integrating data and knowledge, have to tackle some

challenging  aspects,  including  the  data  deluge,  data  integration,  and  scientific

collaboration.

    In  general,  data  are  currently considered  the  fourth  paradigm in Science  [HGP12,

HTT09, HTT11] being the previous paradigms the empirical science, theoretical science

and computational science. Nowadays, biomedical data are typical of the category of “Big

Data”  [RSK+11];  that  is,  data  which are  characterized by the  so-called 5 Vs:  volume,

velocity, variety, value, and veracity [DdLM14, DgdL+13]. In addition, biomedical data

rely on a wide range of data sources and are easily shared and replicated. On the other

hand, they present significant reuse opportunities which accelerate investigations already

under way by taking advantage of past efforts in science [Lyn08]. Moreover, they present
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many attractive opportunities as regards the knowledge discovery from data (KDD) that

requires more complex and sophisticated tools in order to transform data in meaningful

knowledge  [HKP11].  Therefore,  advances  in  data  mining  technology  are  necessary  to

improve the quality of data and the analysis results. In spite of past research, it is still a

challenge for the scientific community to individuate algorithms to effectively integrate,

clean, and represent data.

    Nowadays,  biological  research  is  becoming  more  and  more  interdisciplinary,  and

searching for information often requires the integration of data with multiple  levels of

granularities and relates data which pertain to different disciplines. Usually, searches are

carried  out  over  resources  distributed  over  the  Web  which  use  different  standards  to

represent data. The Web 2.0 [Mur07] has dramatically changed the way of managing Web

contents and promoted the use of collaborative systems such as wikis, blogs and social

networks.  This  shift  from a  static  web  to  a  dynamic  one  has  pointed  up  two  crucial

bioinformatics  problems.  First,  the  rate  of  growth  of  user-generated  contents  requires

methods to effectively exploit these data which are characterized by rapid-obsolescence

[FNS11]. Second, the success of the Linked Data paradigm [BHL09] is boosting the data-

oriented vision in bioinformatics. Many projects try to promote this vision by releasing,

sharing,  and linking data  by  means  of  URIs,  HTTP and RDF in  order  to  replace  the

conventional  resource-oriented  model  and  get  something  closer  to  a  global  repository

which complies with the Semantic Web paradigm.

    Data  management  is  only  part  of  the  open  issues  in  bioinformatics.  Currently,

researchers need to share their data with the whole scientific community throughout the

world in order to yield new useful information and hypotheses derived from processing

existing  public  datasets.  Web  2.0  technologies  allow researchers  to  interact  with  their

colleagues, in that transcending traditional data integration technologies [SK10]. Unlike

Web 1.0 that was static, these technologies make the Web highly collaborative and allow

users  to  create  large  network of  academic  peers.  Nonetheless,  data  originate  problems

related to their semantic heterogeneity, integrity and formats (i.e., interoperability) which

prevent researchers to exchange information and use different tools [Mar13]. However, the

main problem in bioinformatics remains the lack of integration between different resources

such as ontologies, databases or individual resources.
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    In order to face the above-mentioned issues and challenges, recent advances in computer

science  continue  to  significantly  influence  the  development  of  databases  and  Web

applications in bioinformatics.

    Specifically, the service-oriented computing (SOC) [SQV+14] has paved the way for

thinking biomedical resources in terms of computational infrastructures by posing services

as  primary  functional  elements  for  data  integration,  delivery  and  usage.  Many

bionformatics  institutes,  such  as  Swiss  Insitute  of  Bioinformatics  (SIB)  [SIB14]  and

European Bioinformatics Institute (EBI) [EBI14], make available their scientific databases

and software  tools  (i.e.,  resources)  as  Web services  through exposing Web application

programming interfaces (API).

    Web  2.0  exploits  Web services  to  get  interoperability  between data  resources  and

software, and programming techniques such as AJAX (Asyncronous JavaScript and XML)

to  support  dynamic  user  interaction  on  the  Web  [SK10].  The  exponential  growth  of

biomedical information over the Internet dramatically increases the benefits of using Web

2.0 applications which rely on services available on the Web in form of APIs.

    Cloud  computing  [LFZ+09,  BYV+09]  and  non-relational  databases  (i.e.,  NoSQL

databases) [HHL+11] are two significant components of the Web 2.0 era and seem to offer

interesting features in order to meet some crucial requirements of large-scale applications.

Cloud  computing  is  a  set  of  technologies  which  allows  service  providers  to  delivery

services  over  a  network in  a  pay-as-you-go manner. Although applications  that  exploit

cloud computing are still at a preliminary stage in bioinformatics, their number is rapidly

increasing  [SOH14,  CQY+13].  However,  most  of  computing  applications  deal  with

processing and analysing large datasets [WKF+10, HGV+09, GTB+08, AGT+08], while

few work has  been done to  explore different  architectural  solutions  [QEG+10,  WN11,

FPG+11]. As regards NoSQL databases, they represent the next generation of databases

that  mostly  addresses  some  crucial  points  in  data  management,  including  horizontal

scalability, flexibility, and weak consistency. They are getting more and more attention

since they are schema-free; that is, they have a flexible structure [CZ14]. This feature is

extremely  attractive  for  domains  as  biology  because  biological  data  are  very

heterogeneous.
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    The  remainder  of  this  dissertation  is  organized  as  follows.  Chapter  2  provides  a

background on some relevant  technologies in  bioinformatics.  In Chapter 3,  I  present  a

cloud-based  application  (BSE)  which  provides  a  comprehensive  environment  for

capturing,  integrating,  and searching genetic  and genomic  data  coming from resources

distributed over the Web. COWB, a cloud-based application which relies on an extensible

framework for handling collaborative biomedical knowledge, is discussed in Chapter 4.

Chapter 5 presents an experimental analysis about the effect of a filtering process on the

predictive performance of a random forest classifier and its critical parameters. Finally,

Chapter 6 presents concluding remarks. 
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Chapter 2

Emerging Technologies and Trends in 
Bioinformatics

 This chapter presents the state of the art about some emerging technologies and trends that

support scientific advances in bioinformatics. First, cloud computing is introduced with

focus  on  its  essential  characteristics,  service  models,  and  deployment  models.  Next,

advantages  of  cloud computing  in  bioinformatics  are  highlighted.  Second,  this  chapter

discusses  the  basic  features  of  the  next  generation  databases  also  known  as  NoSQL

databases and outlines their potential in the context of bioinformatics. Finally, advantages

and drawbacks of ontologies are outlined, especially in life science domains.

2.1 Cloud Computing

According to  National  Institute  of  Standards  and  Technology  (NIST)  [NIST15],  cloud

computing can be defined as follows [MG11]:

Cloud computing is a model for enabling  ubiquitous, convenient, on-demand 

network access to a shared pool of configurable computing resources (e.g., 

networks, servers, storage, applications, and services), that can be rapidly 

provisioned and released with minimal management effort or service provider 

interaction.

    This definition points out that these resources are quickly provided in a pay-as-you-go

fashion (i.e.,  consumers pay only for what  they use)  as it  happens for public  utilities.
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Moreover, they are subjected to Quality of Service (QoS) parameters that are defined in

Service Level Agreements (SLA).

Hence, cloud computing has the following characteristics: 

• On-demand self-service. A customer can unilaterally get computing resources (e.g.,

storage) without interacting with a service provider.

• Broad  network  access. Resources  are  made  available  over  the  network  using

standard mechanisms in order to allow both thin or thick devices (e.g., smartphone

or Personal Computer) to access these capabilities.

• Resource  pooling.  A service  provider  uses  a  multi-tenant  model  for  serving

multiple consumers; thus, it guarantees that customers and their data are protected

from each other. Both physical and virtual resources are provided and released as

user computing requirements change. Actually, nobody has the knowledge over the

exact location of the computing resources but it may be possible to specify location

(e.g., country or data center).

• Rapid elasticity. Computational resources are elastically assigned and released in

order  to  scale  rapidly.  From  the  consumer  point  of  view,  capabilities  appear

unlimited and always available. 

• Measured Service. Service provider monitors and reports the capability usage to the

customer in a transparent way.

    Since cloud computing virtualizes the resources, users consider the offered resources as

something unlimited. Consequently, they do not have to plan in advance the amount of

resources  they  need.  Moreover,  users  avoid  up-front  investments  and  rent  resources

according to their real needs. 

    The cloud services are broadly divided into four abstract layers:

• Infrastructure as a Service (IaaS). This layer  provides  the physical  assets  (e.g.,

servers)  as  a  metered  service  using  a  pay-as-you-go fashion.  Resources  can  be

accessed by consumers without knowing where they are physically hosted. At IaaS

layer, Amazon EC2 [Ama14] is a famous case in the industry.
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• Platform  as  a  Service  (Paas). This  layer  provides  programming  languages,

libraries,  APIs,  environments  and  tools  (i.e.,  a  platform)  in  order  to  enable

developers to build applications onto the cloud infrastructure. User does not handle

the underlying cloud infrastructure but manages deployed applications and settings

of the app. Examples of PaaS are Google App Engine [AE14], Microsoft Azure

[MA14] and Heroku [Her14].

• Software as a Service (SaaS). It delivers software services on-line; therefore, SaaS

eliminates  the  need  for  local  installation  and  both  software  maintenance  and

updates  are  easier  than on-premises  software.  As a successful  example,  Google

Drive [GD15] allows users to create and share documents online for accessing them

“anywhere, anytime”.

• Data as a Service (DaaS). It supplies dynamic data access on-demand. Data are up-

to-date  and  accessible  by  heterogeneous  thin  or  thick  client  platforms  that  are

connected over the Internet [DGG+12]. Current example of DaaS is Amazon Web

Service  (AWS) [AWS14],  one unit  within  Amazon.com which hosts  and makes

available a variety of public datasets,  including  1000 Genomes Project [GPA14],

Ensembl  Annotated  Human  Genome  Data  [EAH14]   and  Human  Microbiome

Project [HMP14] (available on AWS at http://aws.amazon.com/public-data-sets/).

    These services are usually represented as a stack because each service is built upon the

previous layer (Figure 2.1).
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    Depending on their deployment, cloud infrastructures can broadly classified as follows:

• Public cloud. Data centers (i.e.,  hardware and software) are made available in a

pay-as-you-go fashion to the public [AFG+09].

• Private cloud. This service deployment model indicates internal data centers of a

single business, government, or academic organization which are not provided to

the public. Note that a private cloud may be managed by the organization itself, a

third party, or some combination of them.

• Community  cloud.  The  cloud  infrastructure  is  made  available  to  a  specific

community  of  users  with  similar  requirements.  A  community  cloud  is  a

generalization  of  a  private  cloud  where  consumers  may  belong  to  different

organizations which share concerns such as mission or policy.

• Hybrid cloud. The cloud infrastructure consists of two or more mixed models (e.g.,

private and public). These distinct data centers exploit standardized or proprietary

technology in order to work together and get data/application portability. Hybrid

cloud aims at addressing the limitations of public and private clouds offering more

flexibility. The hybrid model's shortcoming is that determining the best trade-off

between public and private cloud component is a difficult task.

• Virtual Private Cloud. A Virtual Private Cloud (VPC) builds an infrastructure on a

Public Cloud by exploiting Virtual Private Network technology [ZCB10].

    For  small  organizations,  institutes  and laboratories,  cloud computing  offers  to  the

following advantages:

• Lower entry cost to use compute-intensive resources available only to the largest

organizations.

• Cost-effective pay-per-use utility computing model.

• High scalability dynamically adjusted according to user demand.

• Immediate access to hardware resources with no upfront capital investment.
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    A lot of work on bioinformatics [HGV+09, KJD+12, TOG+10, ZGL+11] makes use of

IaaS for deploying data-intensive applications which address issues related to large-scale

data  processing.  Indeed,  recent  research  [DG10]  has  shown the  utility  of  MapReduce

[DG04],  a  programming  model  for  processing  vast  amounts  of  data  in  a  parallel  and

distributed  manner.  By  partitioning  data  on  different  servers,  this  programming  model

allows for the parallel, distributed processing of large datasets across clusters of computer.

Hadoop [Had15], an open-source implementation of MapReduce, has effectively seen a

widespread  adoption  in  bioinformatics  [ODS13].  However,  MapReduce  is  especially

suitable for cloud platforms because they make available scalable clusters of nodes; in fact,

there are many services which make use of MapReduce on top of their cloud platforms.

For example, Amazon provides Amazon Elastic MapReduce (Amazon EMR) [EMR15], a

Web service that exploits Hadoop and allows users to quickly and cost-effectively process

large datasets  by distributing data  across  a  resizable cluster  of  Amazon EC2 [Ama14]

instances. Currently, Amazon EMR is employing in a variety of applications, including

data warehousing, machine learning, and bioinformatics. Further examples are App Engine

MapReduce [GMP15] and HDInsight [HDI15], respectively an open source library built on

top of the PaaS provided by Google (i.e., Google App Engine [AE14]) and a framework for

the Microsoft Azure [MA14] cloud implementation of Hadoop. 

    A less explored layer of cloud services is PaaS. As far as I know, few work has been

done to  investigate  the potential  of bioinformatics  applications  developed at  this  layer.

Undergoing  studies  include  two recent  projects  developed at  the  Institute  for  Systems

Biology [ISB14]: Regulome Explorer [RE14] and Pubcrawl [PC14], respectively deployed

on App Engine and Amazon Web Services. Specifically, Regulome Explorer supports the

exploration  of  datasets  which  give  information  about  common gene disruptions  across

different  cancers,  whereas  Pubcrawl  is  an  application  that  combines  literature  based

semantic  distances  with  protein  domain  interactions  to  dynamically  create  network

topologies  of  terms.  However,  creating,  deploying  and  managing  a  scalable  Web

application in  the cloud at  PaaS layer  seems interesting,  particularly in bioinformatics.

Indeed,  PaaS,  which  relies  on  a  cloud  infrastructure,  facilitates  the  development,

maintenance,  and  update  of  an  application  by  making  available  several  programming

languages,  standard  protocols,  libraries,  relational  and  non-relational  databases,  and

frameworks. In  addition,  PaaS  avoids  to  think  in  terms  of  virtual  machines  [Sur12].
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Finally, PaaS seems to address the challenge of facilitating the development of applications

as a distributed, scalable and widely-accessible service in the Web [SLB+11].

    As regards bioinformatics, the interest in investigating PaaS layer is also motivated by

the fact that this kind of platform often adopts non-relational databases whose models meet

the need of organizing loosely structured and heterogeneous data, as it often happens in

bioinformatics. To better explain this interest, the next section details the basic features of

this kind of databases.

2.2 NoSQL Databases

Featured by a well-structured and rigid model, relational database systems have serious

problems in coping with large datasets that change quickly and are mostly unstructured and

connected.  Nowadays,  relational  DMBS are  still  very  popular  in  the  database  market;

indeed, they are a mature technology which represent a lot of investments by vendors,

users,  and developers  in  terms of money and technical  know-how. With the advent  of

distributed architectures and cloud computing, alternative models for storing and managing

data have been proposed in order to address challenges mainly originated from Web 2.0

requirements. These solutions do not replace relational databases, but they are adopted for

specialized projects such as those that are distributed, that involve large datasets, or that

need scalability [Lea10].

    These solutions are generally referred to as NoSQL databases. The term “NoSQL” is an

acronym which stands for “Not Only SQL” and denotes the “Next Generation Databases

mostly addressing some points, such as being non-relational, distributed, and horizontally

scalable” [Nos14].

    NoSQL solutions have been developed as in-house custom solutions by companies such

as Google, Amazon, LinkedIn in order to solve their real specific problems which arose

from three broad issues: unprecedented transaction volumes, expectations of low-latency

access  to  large amounts of data  and availability  in an unreliable  environment  [Bur11].

Projects/products include BigTable (provided by Google) [CDG+06], Amazon DynamoDB

[DDB15],  LikedIn  Voldemort  (LinkedIn)  [Vol15],  and  Apache  Cassandra  (Facebook)

[AC15].  
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    The main feature of NoSQL systems is that they generally do not guarantee ACID

(atomicity, consistency, isolation and durability) properties. Since these properties are not

essential  in  some  applications  [ABR14,  HWC+14],  NoSQL  databases  relax  these

properties in favor of the following BASE properties:

• Basically Available (BA). The system works most of the time.

• Soft-state (S). The system is not write-consistent; consequently, different replicas

can be not mutually consistent at some point.

• Eventual  consistency  (E). The  system  eventually  reaches  consistency;  in  other

words, it does not guarantee the consistency at a specific time.

    Differently from the ACID properties, the co-existence of the above properties must

comply with  the CAP theorem [Bre00] which states that every networked shared-data

system can retain at most two of the following properties:

• Consistency  (C). It  indicates  that  after  an  update  operation  of  some writers  all

readers see the updates of the shared-data system; that is, all client always have the

same up-to-date copy of the data.

• Availability (A).  It means that a system is designed and implemented in order to

keep working in case of problems. For example, a system must cope with crash or

hardware/software  update  without  stopping  its  tasks.  Therefore,  each  client  can

always read and write.

• Partition (P).  This property is referred to the ability of system to operate in the

presence of physical network partitions.

     The CAP theorem results in a shift from the strong consistency guaranteed by ACID

properties to a weak consistency (e.g., eventual consistency) provided by BASE approach

(see Figure 2.2).
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    Figure 2.3 shows the well-known triangle which is usually used to explain the CAP

theorem. It details the properties (consistency, availability and partition) preserved by some

commercial databases such as MySQL and PostgreSQL (CA), and NoSQL solutions (CP or

PA).

    NoSQL databases can broadly classified into the following categories:

• Wide Column Store / Column Families. Column family stores have been designed

after  Google's  BigTable  [CDG+06].  They  consist  of  a  sparsely  populated  table

whose rows can contain arbitrary columns [RWE13]. Therefore, column stores are
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column-centric; that is, they handle data by column instead of by row as it happens

in traditional  relational  databases.  Row keys are  used in  order  to build column

indexes.  This category includes several famous databases such as BigTable (via

Google  App  Engine  [AE14]),  Apache  Cassandra   [AC15],  and  Apache  Hbase

[AHB15].

• Document store or Document-oriented storage.  Document databases handle semi-

structured data; specifically, they store and retrieve documents which organize data

according to several standard formats, including JSON, XML, and YAML. Each

document  has  an  ID  and  is  considered  as  an  independent  entity.  In  general,

document databases rely on indexes which allow for retrieving documents based on

their attributes [RWE13].  Document-oriented storage is the most popular paradigm

for managing hierarchically structured documents. Examples of document store are

MongoDB  [Mon15], CouchDB [Cou15], and RavenDB [Rav15].

• Key  Value  /  Tuple  Store.  Key-value  stores  can  be  considered  cousins  of  the

document store family. As the name suggests, they store data as a collection of key-

value  pairs  (i.e.,  a  dictionary)  [GRR14];  therefore,  key-value  stores  are  large,

distributed hashmaps which allow for retrieving values by means of keys [RWE13].

Amazon DynamoDB [DDB15] and the Oracle NoSQL database [Ora15] are two

popular databases of this category.

• Graph  databases. Graph  databases  rely  on  a  graph  for  representing  data  and

making available CRUD functions (Create, Read, Update, and Delete). Specifically,

there are several types of graph data model, including property graph, hypergraphs,

and triples [RWE13]. Therefore, this kind of database is well suited to store data

and their relationships (e.g., data from social networks). It is worth noticing that

graph databases use graph algorithms for optimising traversal performance. A good

example of this category is Neo4J [Neo15].

• Multi-Model  Databases.  Multi-Model  databases  have  schemas  with  several

different features.  For example,  OrientDB [Ori15] can store documents like any

other document database, but also handles relationships such as a graph database.

Therefore, it aims at exploiting both the advantages of a distributed graph database

engine and the flexibility of a document database. As a result, OrientDB maintains

constant the traversing speed regardless of the database size.

13



    However, bioinformaticians often need to cope with the following types of data [AD11]

simultaneously:

◦ Structured data. They have a well-defined schema which allows for querying

data  by  means  of  a  structured  query  language  (e.g.,  SQL).  The  schema  is

defined  according  to  a  data  model;  for  example,  the  relational  model.  The

drawback of this kind of data arises when it is necessary to change the schema

in order to meet new requirements.

◦ Unstructured data. This type of data does not have a schema which organizes

information; therefore, unstructured data are not arranged in accordance with a

data model. Examples of unstructured data are pictures, digital audio and video,

text documents, and emails.

◦ Semi-structured data. They refer to data that have themselves some pieces of

information to convey their schema (e.g., XML tags or RDF statements).

◦ Partially structured data. These data comprise both free text and information

which complies with a schema; in other words, information is partly formatted

according to metadata encoded as a database schema and partly in the form of

free text [KP00].

    In general, organizations that must cope with storing and processing large collection of

unstructured  data  are  more  and  more  turning  to  NoSQL  databases  [Lea10];  in  fact,

relational DBMSs do not fit well in facing the following issues:

• Data  variety imposes  new requirements  to  data  storage  solutions  and  database

design which should be quite flexible in order to cope with a increasingly number

of data sources with diverse data (e.g., spreadsheets, Web sources, XML, traditional

DBMSs)  [SR13].  RDBMSs  are  recognized  as  optimal  solution  for  handling

structured data; in fact, they gear data to multiple tables and provide excellent data

integrity [MPR+12]. On the contrary, they offer little support for unstructured data,

semi-structured, and partially structured data.
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• RDBMSs usually allow for scaling up (i.e., vertical scaling), but do not allow for

scaling  out  (i.e.,  horizontal  scaling)  [HWC+14].  Therefore,  they  have  problems

with architectures in which nodes or servers can be added in order to increase the

capacity  of  an  application  environment  because  relational  table  joins  across

server/nodes are complicated and expensive [MPR+12]. 

• RDBMSs  are  not  successful  in  processing  large  datasets  quickly  because  they

comply ACID properties in order to guarantee strong consistency; that is, all clients

must see the same data at the same time. The main drawback of strong consistency

is that  it  requires time-consuming tasks.  Finally, note that ACID guarantees are

often too pessimistic in many problems (e.g., social networks).

    Unlike RDBMSs, NoSQL databases do not have to comply with rigid schemas and scale

out  easier  than  traditional  RDBMSs.  These  features  are  particularly  attractive  in

bioinformatics  to  build   specialized  tools  [MPR+12].   Some bioinformatics  tools  have

already  been  developed  by  exploiting  NoSQL  databases  such  as  Hbase  [OMN10],

CouchDB [MPR+12], App Engine Datastore [WN11].  Despite their relative immaturity,

NoSQL  databases,  such  as  graph  databases,  are  considered  ready  for  bioinformatics

[HJ13].  For  example,  Bio4j  [PTPT+13]  exploits  Neo4j  [Neo15]  in  order  to  provide  a

powerful  framework  for  protein  which  integrates  most  data  available  in  UniProt  KB

(SwissProt  +  Trembl),  Gene  Ontology  (GO),  UniRef  (50,  90,  100),  RefSeq,  NCBI

taxonomy, and Expasy Enzyme DBs.

   Recent achievements of some bioinformatics institutes, such as  EMBL-EBI, seem to

confirm  that  NoSQL is  a  frontier  research  in  bioinformatics.  Specifically, EMBL-EBI

databases  group  acquired  MongoDB  [Mon15]  skills  and  started  to  plan  a  central

infrastructure in order to make available this document database as a service [EMB13].

2.3 Semantic Web technologies: Ontologies

In recent years, the Semantic Web technologies [WS14] have played a key role in many

scientific  disciplines  (e.g.,  bioinformatics)  which  rely  heavily  on  computational

infrastructures  for  managing  large-scale  data  [LKN+13].  This  preeminent  role  mainly
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arises from their suitability in supporting knowledge management [OLe98]. Perhaps the

most important benefit of Semantic Web technologies is the use of ontologies for defining

the  concepts  and relationships  (also known as  “terms”)  used  to  formally  describe  and

represent an area of interest [WO15]. 

    The role of ontologies on the Semantic Web is to support machines in understanding the

meaning  (i.e.,  the semantics) of information on the World Wide Web; in other words,

ontologies must enable machines to reason about the semantics of terms automatically.

Therefore,  machine-readable ontologies  play  a  key role  in  Semantic  Web development

[XMR+11]  since  they  are  the  fundamental  building  blocks  which  support  inference

techniques on the Semantic Web [WO15].  Furthermore, since ontologies organise data in a

form that allows for integrating pieces of information, they facilitate data integration when

ambiguities can arise from  terms used in different datasets. Combining the knowledge

from various datasets enables a whole range of applications such as decision support tools,

advanced web search engine, and Web applications that support scientific collaboration.

    As observed by recent research [DW12], ontologies are not only powerful but also

complex resources.  Moreover, the success of ontologies in integrating data has led to an

uncontrolled  proliferation  of  ontologies  [SAR+07].  Nowadays,  several  ontologies  are

available, but merging information from different ontologies still requires knowledge about

ontologies or at least about how to reuse conceptual descriptions provided by others and

how to publish new ones. However, the relevance of ontologies has widely acknowledged

in bioinformatics. Some projects, such as OBO foundry [SAR+07], aim at overcoming the

before-mentioned  problems  by  establishing  a  set  of  design  principles  that  can  boost

interoperability  of  ontologies.  In  fact,  these  principles  want  to  ensure  a  gradual

improvement  of  quality  and  formal  precision  in  ontologies.  Nevertheless,  designing,

creating and publishing a set of interoperable ontologies in the biomedical domain is still a

challenge.

    Currently, a lot of ontologies are written in RDF [RDF15] and RDF-based semantic

languages such as OWL [OWL15]. Unfortunately, to become familiar with RDF syntax

requires a steep learning curve. For this reason, different repositories provide services with
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the  aim  of  facilitating  the  exploitation  of  public  ontologies.  For  example,  BioPortal

[WNS+11], which is a repository of biomedical ontologies, currently contains 105 OBO,

31 UMLS, and 273 OWL ontologies. It allows for browse public biomedical ontologies

and  provides  many  services  for  working  with  them  (e.g.,  an  annotator  that  extracts

annotations  for  biomedical  text  with  concepts  from  the  biomedical  ontologies).

Furthermore,  BioPortal  provides  REST  API  to  access  ontologies  programmatically.

Another interesting service is OBA [DW12] that provides a connector for embedded usage

of ontologies in applications in order to help developers in building an applications based

on information available in ontologies  without  being familiar  with ontologies or query

languages to process them.

    Biomedical ontologies are gaining a fundamental role in enabling researchers and their

tools the exchange of interoperable data with minimum ambiguity.  Moreover, ontologies

can meet the increasing requirements of data and knowledge integration in the biomedical

domain. Finally,  by exploiting ontologies, data generated by biomedical research could

form a single,  coherent,  expandable,  and manageable comprehensive knowledge which

would represent a great added value for biomedical data.

2.4 Concluding Remarks 

Nowadays, traditional centralized computing platforms not only are expensive but also risk

to become increasingly inadequate to meet the application requirements. According to a

recent poll on biomedical research facilities [CJL+13], a significant number of research

institutes are experiencing the capacity limits of their computing facilities. Collecting and

configuring tools and resources for certain research purposes is a non-trivial job, even for

expert developers and  technicians.  Furthermore, functionalities and capabilities expected

from  bioinformatics  Web  application  and  databases  are  becoming  more  and  more

sophisticated; thus, flexibility, scalability and interoperability have to be placed at the core

of expected features for bioinformatics tools. Therefore, bioinformaticians call for a new

stack  of  technologies  that  exploits  interoperable  technologies  and  highly  scalable

computing models, frameworks, and platforms. As outlined in this chapter, this new stack

can rely on three emerging technologies.  The first  technology is  cloud computing that
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offers  a  feasible  platform  with  demonstrated  elasticity  and  parallelism  capacity  for

managing large  datasets  [CSP13 ,CQY+13].   The second technology refers  to  NoSQL

databases which provide modern web-scale databases for fast and efficient queries on huge

amount of data. Finally, the last technology is represented by ontologies that enable both

scientists and tools to convey with minimum ambiguity, especially in challenging domains

such as bioinformatics.
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Chapter 3

Data Integration on the Cloud: a Case 
Study

Currently, there is a large number of databases and gene annotation resources which are

greatly  relevant  in  the  genetics  and  genomics  communities  since  each  one  presents  a

particular aspect regarding available gene notations. For instance, the 2014 Nucleic Acids

Research (NAR) Database Issue [SRG13]  expounded 181 articles of molecular biology

databases,  sixty-eight percent  of  which  provided  updates  on  the  databases  previously

presented in NAR and other journals.

    For investigating a concept, scientists usually have to deal with a set of untied data

sources, but at the same time, they want to search information in the whole collection of

data without having a deep knowledge about information sources [MHF06]. In acquiring

information from web resources, they merely retrieve a small amount of information about

a particular concept; as a result, they must filter huge pieces of data available in different

web  resources  to  get  the  information  of  interest.  Since  biology  spreads  over  multiple

domains, scientists have to search information stored in several databases and web sites for

each concept they investigate. Each system presents a different user interface, terminology

and data formats; therefore, the quality of the search depends on user ability to exploit

these distributed resources over the Web. Hence, the discovery of specialized information

can be difficult for three reasons. First, researchers have to remember how to navigate each

specific  web site  and this  task can be time-consuming and daunting.  Second,  different

systems  implement  the  same  functionalities  in  different  ways  and  often  deal  with

overlapping data. Finally, a lot of identifiers are used to pinpoint the same concept.
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   In order to search effectively in biomedical databases and cope with the growing number

of resources available worldwide, it is necessary to answer three basic questions.

• How  to  integrate  structured,  semi-structured,  partially  structured,  and

unstructured available data with diverse and sparse schemas? 

• How to retrieve meaningful information in an easy and efficient way?

• How to implement a searching infrastructure which has to scale, hence change,

in order to meet new requirements stemming from the growth of its searching

domain?

    Computational solutions, which range from database to data warehouse, poorly adapt to

face the above questions for the following reasons: 

• Many resources are large in size, dynamic, and physically distributed; as a result, it

is necessary to implement mechanisms that can efficiently extract the relevant data

from disparate sources on demand.

• Searching strategies must be devised for obtaining the necessary information within

constraints imposed by the different owners of the data source in order to comply

with the various policies.

• Being heterogeneous in structure and content, resources represent data according to

their own schema which defines its concepts and relationships among concepts.

• Searching  happens  in  different  contexts  and  from  different  user  perspectives;

therefore, it is necessary to implement mechanisms for mining context-dependent

information.
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    This first case study present an application which aims at proposing a feasible solution

to above  questions and focuses on genomics, a key area of biology which places stress on

trying to solve the problem of gathering and processing large amounts of biological data.

Specifically,  this  case  study  presents BioCloud  Search  EnGene  (henceforth  BSE)

[DPM+13],  a  comprehensive  searching  environment  which  facilitates  the  versatile

integration  of  existing  genetic  and  genomic  information  from  multiple  heterogeneous

resources. The key idea is to conceive BSE as a cloud-based application which essentially

rents  its  capacity  from  a  cloud  computing  platform  and  relies  on  a  new  operational

framework in which genetic information and computing technologies are reshaping each

other. Like popular online gene portals, BSE adopts a gene-centric approach: researchers

can find information by means of  a  simple query interface that  accepts  standard gene

identification as keywords. Moreover, by using advanced searching and tools, users are

enabled to explore many resources via high quality, interoperable services offered in a

“neutral”  space.  As it  happens for  web search engines  which are designed to look for

information on the World Wide Web, several services act as specialists which extract data

available in many databases or open directories and return real-time information. They are

a mean of organizing and integrating information from different web sources and making

them manageable and satisfactory for the user.

    BSE is publicly available at http://biocloud-unica.appspot.com.

3.1 Architectural aspects

BSE grounds on the dataspace paradigm [FHM05, HFM06], a new scenario for handling

information relevant to a particular organization (e.g. enterprises, government agencies,

universities),  regardless  of  its  format  and  location  in  a data co-existence perspective

[MHF06].  Dataspace  paradigm  indicates  a  set  of  principles  which  aim  at  enhancing

traditional technology [Jef08]. Dataspaces set out to provide an alternative to classical data

integration  methods  by  reducing  up-front  costs  and  integrating  data  in  an  incremental

manner. A dataspace consists of a set of participants (i.e., individual data sources) and the

relationships  among  them  [HFM06].  Specifically,  a  dataspace  is  an  abstraction  of  a

database  that  does  not  require  structured  data  and  has  a  base  “off-the-shelf”  set  of
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functionalities  over  all  data  sources.  The  key  idea  is  to  enhance  the  quality  of  data

integration and the semantic meaning without defining a schema for all the data sources in

advance [ DH07, HMR+08, AD11].

    In contrast to the traditional data integration approaches, a dataspace integrates data

according to a very loosely structured data model (hence, data co-existence) which allows

the system to manage heterogeneous data coming from a diverse set of sources. The core

of a dataspace is a catalogue which contains both information about participants and their

relationships. In addition, the catalogue provides operations to extend and update itself in

an incremental fashion. Advanced DBMS-like operations, queries and mappings are made

available over time by different components. Unified views over participants are provided

following the pay-as-you-go principle that is currently getting more and more attention on

the Web [JFH08, HBP+11]. In fact, this principle is especially attractive in order to get data

integration on the Web because  pay-as-you-go systems attempt to provide services on a set

of heterogeneous data with a limited up-front effort [DHZ12].

    According to the dataspace paradigm, BSE undertakes the responsibility of coordinating

and organizing the search across a dataspace whose participants are a set of distributed

resources. In addition, BSE indexes these resources by a catalogue which represents the

core of the dataspace. Data integration expects no data transfer to any central repository,

except for the data stored in BSE catalogue which is initially built and gradually updated.

In some way, the catalogue has the same role of the table of facts in a data warehouse

system where the dimension table are distributed across several web resources. However,

compared to a data warehouse schema, the catalogue presents the following differences:

• It avoids the definition of an a priori schema.

• It  stores pieces of information about dataspace participants instead of relational

tables.

• Besides storing and indexing participants, the catalogue provides mechanisms for

creating new relationships among participants.
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    From a logical point of view, the catalogue is a multi-level index that indicates how data

from various web resources is captured and tied together. Physically, it is implemented by

an object-oriented, NoSQL database which stores gene annotations, acquires and combines

data from external resources which participate in the dataspace.

     The current version of BSE implements a dataspace which counts 34 participants.

According to their role in supplying data these participants are divided in three categories:

• Local  participants.  Resources  from which  some useful  content  is  captured  and

permanently stored into the catalogue.

• Service-based participants. Resources whose content is captured at running time by

specific BSE services in a pay-as-you-go fashion according to user demands.

• External  participants.  Resources  whose  web  links  are  dynamically  built  and

activated on demand.

    The catalogue organizes objects in classes, each corresponding to one local participant.

In details,  a  local  participant  is  mapped in a  repository  of  objects  associated with the

catalogue and relationships among participants are expressed by means of key-value pairs.

Table 3.1 shows the list of local participants and the corresponding catalogue content.

    The schema-free structure of the catalogue makes possible to implement new ways for

querying and extracting information based on the notion of context. Specifically, a context

is a logical structure that supports queries about common points of interest that users share

in surfing dataspace participants. For example, if a user wants to search information about

genes associated with a specific disorder, he/she refers to the context 'Human Mendelian

Genetic disorder'. Contexts are the only way to query the catalogue. Each context presents

a gene-centric view where the users can easily identify the relevant resources and browse

the content of the resources to which the context relates. Contexts hide the complexity of

underlying  dataspace  by  exploiting  BSE  services  which  capture  and  present  the

information of interest.
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Dataset Catalogue content

Entrez Gene

homo sapiens gene info [MOP+11, 

BHK+14]

Main annotations about 

human genes

Entrez Gene Relations

human gene relations [MOP+11, 

BHK+14]

Gene to gene relationships

Manually Annotated Targets and Drugs 

Online Resource (M.A.T.A.D.O.R) 

[GKD+08]

Gene drug relationships

Entrez  gene ID  to pathways [COW+11]
Human genes pathways 

according to Reactome

Entrez gene ID to Mendelian Phenotype 

[McK98]

Human Mendelian Phenotypes

and their gene associations

Entrez gene ID to RefSeq [PTB+12]
Cumulative set of transcripts 

and proteins

Human Ageing Genome Resource 

[TCB+13]
Ageing-Related humans genes

Wellcome Trust Sanger Institute - Cancer

genomics annotations [YSP+13]

Cancer Drug sensitivity 

Annotated genes

Table 3.1. Local participants and corresponding catalogue content.

    From a technical point of view, contexts identify specific perspectives on dataspace

participants that are kept in the catalogue. These perspectives resemble views in relational

databases. However, being the catalogue implemented by a NoSQL database, they do not

result from joining relational tables, but from relationships expressed by key-value pairs. In

addition, contexts take very little space to be stored since the catalogue contains only the

definition of contexts without a copy of all the data that the context relates to. 

    The current version of BSE implements the following contexts:

• Query  by  gene.  It  allows  users to  search  information  about  a  specific  gene  by

means of standard identifiers.
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• Query by Human Mendelian Genetic disorder. This context permits users to extract

a list of genes by specifying the name of a certain phenotype associated with a

genetic disorder with Mendelian transmission character. 

• Query by pathway. It  allows users to extract a list of human genes annotated in a

given biological pathway. Specifically, a pathway is  a set  of chemical reactions

related to one or more processes within a cell.  It  results in expression products

whose knowledge is very important in the study of biological phenomena. 

• Bulk queries. This context allows users to extract a list of human genes which abide

by  the  following  criteria:  gene  type,  chromosome,  ageing  related  annotation,

chemotherapeutic  sensitivity  related  to  annotated  genes  according  to  their

mutational status.

• Query  by  drug.  It  permits  users  to  search  information  about  a  specific  drug.

Therefore, it shifts the query focus from a purely genetic perspective to a context

which deals with the relationships between pharmacologically active molecules and

the human genome expression products.

3.2 BSE Functionalities

BSE provides a simple graphical user interface (GUI) that takes account of user experience

and usability  in  presenting  information.  In  particular,  BSE GUI exploits  a  set  of  user

interface interactions, effects and widgets, including accordions, tabs and tooltips in order

to address the problem of presenting a lot of information in a scarce space. Specifically, an

accordion is a widget which organizes a web page for showing a lot of contents in a limited

amount of space. The contents are broken into logical sections which are visualized in

collapsible  panels.  By  clicking  headers,  each  panel  is  expanded/collapsed  in  order  to

show/hide a specific section. Tabs are used to further arrange pieces of information inside

the  accordions;  indeed,  a  tab  is  a  single  content  area  that  can  break  information  into

multiple  panels.  In  some  way,  an  accordion  splits  information  vertically,  whereas  tab
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breaks data horizontally. Finally, a tooltip is a widget for providing users with some text

messages in order to help them during the navigation of BSE.

    BSE provides four accordions:

• The  basic accordion allows users to search information in the different contexts

that are made available within the application;

• The gene accordion is displayed whenever the user click on a gene returned by a

query and arranges a lot of detailed information about that gene.

• The drug accordion is visualized whenever the user click on a drug returned by a

query  and  allows  him/her  to  get  information  about  the  drug properties  and

interactions with proteins.

• The tool accordion provides, as its name suggests, two tools. The first one supports

users in looking for overlapping information from a list of genes. The second one

allows users to search articles by specifying a keyword.

    In what follows I present each accordion above mentioned.

    Figure 3.1 shows the basic accordion of BSE. The panel  Search gene by IDs, which

corresponds  to  the context 'Query  by  gene',  is  expanded  and  presents  three  mutually

exclusive text fields where users can type a single identifier in order to search a specific

gene. Within this search context the user can search for genes by Entrez ID, or UNIPROT

accession. The Alias gene identification is supported too.  BSE provides an autocomplete

for each text field in order to help users. For example, in Figure 1 the user is typing the

keyword “tp53” as standard gene identifier  while BSE dynamically provides predictive

suggestions by expanding the keyword “tp53” in a sliding list of its synonyms and variants.

The user chooses the appropriate identifier from the list, submits his/her query and gets

information depicted in Figure 3.2.
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    When the user clicks on the link that represents the gene identifier (e.g., TP53 – Entrez

ID 7157, see Figure 3.2), he/she is redirected to the gene accordion (see Figure 3.3) which

details the context for exploring information about TP53. By expanding the panels of this

accordion, the user can obtain a lot of highly detailed information and investigate every

aspect of its interest in specialized databases with a redirection that is consistent with the

initial query.
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Figure 3.1. The basic accordion of BSE.

Figure 3.2. Example of query results.



    For example, Figure 3.4 shows the effects of expanding the panel “Interaction network

and Structures” (gene accordion). Here, in order to limit the number of query results, the

searching process follows a pay-as-you-go approach; in other words, the user is invited to

load additional information if he/she needs it. In this case, the user can interactively trigger

the capture of  the structures  related to  TP53 by clicking the “Load PDB IDs” button.

Captured information is stored into a distributed RAM cache with high-performance for 24

hours for fast access to cached results of datastore queries; thus, this distributed memory

object caching system improves the responsiveness of the application.

   Figure  3.5  presents  the  results  of  this  capture,  including  PDB IDs,  images  of  3D

structures from Protein Data bank, and FASTA Sequences of the corresponding structure.

As shown on the left of Figure 3.5, images can be expanded. Clicking on the blue arrows

(see Figure 3.5, on the right), the user is redirected to an external web site that provides

more detailed information. 
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Figure 3.3. The gene accordion and its panels.



    The same design logic affects the organization of the other panels of basic accordion

(i.e., Search genes by Human Mendelian Genetic disorder, Search genes by Pathway, Bulk

Queries, Search by Drug), each corresponding to a context.
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Figure  3.4.  Expansion  of  the  panel  “Interaction  network  and
Structures” (gene accordion). The “Load PDB IDs” button triggers
the the capture of data in pay-as-you-go fashion.

Figure 3.5. Data caught in pay-as-you-go fashion.



    As a further example, in the panel  Search by Drug,  which corresponds to the context

'Query by drug', the user types a drug name and BSE provides an autocomplete based on

M.A.T.A.D.O.R.  [GKD+08],  a  public  repository  that  annotates  relationships  between

human genes and drugs. Figure 3.6. shows results of looking for the drug “aspirin”.

    The  drug accordion appears whenever the user clicks on a drug name. As shown in

Figure 3.6,  when the user  clicks on the link “Aspirin  – Pubchem ID 2244” in  the tab

“Results”, he/she is redirected to the drug accordion (Figure 3.7) which presents a lot of

detailed information about this drug.

    

    Figure 3.7 depicts the panel General Information which is expanded by default. It shows

details about the drug “Aspirin” and the related 2D structure. The drug accordion allows

user to search for specific molecular information about drugs. For example, the  Protein

Interactions panel shows the relationships between drugs (i.e., chemicals) and genes (i.e.,

protein-coding genes) as annotated in the M.A.T.A.D.O.R. dataset [GKD+08].
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Figure 3.6.  Search by drug context: query results.



    As illustrated in  Figure 3.8,  the  tool accordion is  divided into two panels:  Search

overlapping information and Search articles.  The first panel makes available a tool for

identifying the overlapping information about shared morbid phenotypes,  pathways and

interacting drugs given a list of genes. The second one provides a tool for searching articles

in Europe PubMed Central  database  by specifying a  keyword.  At  the time of  writing,

Europe PMC consists of 28 million+ abstracts and 2.6 million+ full text research articles

from PubMed and PubMed Central. Unlike PubMed Central, both full-text articles and the

abstracts provided by PubMed are released by Europe PMC in a single point of access.

Note that  the  Search Articles  tool returns  at  most  25 entries  and results  are  sorted by

relevance.

 Finally, BSE takes  advantage  of  Google  Charts  to  summarize  some data  in  order  to

provide some information at a glance such as the gene type distribution (Pie chart in Figure

3.9) or the chromosomal distribution (stepped area chart) given a list of genes.
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Figure 3.7. General information about a specific drug.



3.3 Implementation

BSE is built and run on Google App Engine (henceforth GAE)  [AE14] (see Appendix A).

It  is  written  in  Python  and  the catalogue  of  dataspace  is  stored  into  the  App  Engine

Datastore, a managed, NoSQL, schemaless database.
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Figure  3.8. Tool accordion and its panels.

Figure 3.9. Example of chart about genes.



    As regards the graphical user interface, it was basically implemented using JavaScript

and a feature-rich JavaScript library called jQuery [JQ14].

     The pay-as-you-go approach heavily relies on Biopython [Bio14], a rich set of Python

libraries which provides the ability to deal with “things” of interest to biologists while

working on the cloud.  In details,  the  Entrez  Programming Utilities  provided by NCBI

[NCB14] were accessed by means of the Bio.Entrez  library available in Biopython. This

library was modified to run on the cloud just making some changes in the source code.

BSE also exploits Django [Dja15], a high-level Python web framework, provided by GAE.

 BSE exploits the following external services:

• NCBI Entrez Programming Utilities (E-utilities) [Say13] 

• UniChem RESTful Web Service API [CDG+13] 

• Database identifier mapping [UPA14] 

• STRING API [JKS+09] 

• WikiPathways Webservice/API [KPH+09] 

• REST-style version of KEGG API [KGS+12]

• mygene.info REST web services [WMS+13] 

• RESTful web service Europe PMC [PMC15]

    BSE mainly adopts RESTful Web Services (i,e, web services that comply with the REST

architectural principles [Fie00]) in order to integrate biological data because they are 

lightweight and particularly well suited for ad hoc integration on the Web [SQV+14]. 

3.4 Related Work

Among the closest works to BSE, I cite  BioGPS [WOB+09],   MyGene.info  [WMS+13],

and EntrezAJAX [LP10]. BioGPS makes available a centralized gene portal for integrating
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distributed  gene  annotations.  It  uses  PostgreSQL  [Pos15]  as  the  database  backend.

MyGene.info  [WMS+13] provides programmatic access to BioGPS resources; that is, it

offers REST Web services to query/retrieve gene annotation data. MyGene.info exploits

CouchDB  [Cou15];  thus,  it  stores  data  as  "key-document"  pairs.  Both  BioGPS  and

MyGEne.info are hosted in Amazon EC2 [Ama14] at IaaS layer. Therefore, BioGPS and

MyGene.info are two interrelated services that provide a remarkable “Gene Annotation

Query as a Service”. Nevertheless, the choice to pose their services directly on the IaaS

layer can result in time-consuming tasks for administrate the server instances and update

libraries, frameworks and so on.

    As regards  EntrezAJAX [LP10],  it  harnesses  GAE [AE14] in  order  to  provide  an

interface  for  accessing  to  biomedical  resources  accessible  via  the  Web.  Specifically, it

returns JSON data from the NCBI e Utils [Say10, Say 13]. EntrezAJAX demonstrates the

usefulness  of  using  AJAX for  data  exchange with  a  server  in  order  to  build  rich  and

interactive applications. However, EntrezAJAX  focuses only on Entrez services provided

by NCBI and essentially aims at representing a stepping-stone along the path of integration

of biomedical resources. In addition, it benefits only minimally from the cloud capabilities

of GAE; for example, it stores only the registry of developer API key and cache query

results. Thus, BSE relying heavily on this stepping-stone makes further efforts in order to

deeply  explore  cloud  computing  at  PaaS  layer  and  NoSQL technologies  in  a  broader

integration perspective.

3.5 Concluding Remarks

BSE is a scalable cloud-based application which allows people involved in the analysis of

biological data (e.g., molecular biologists) to carry out simple and advanced searches in

different  specialized  databases.  Going further  the  integration  of  content  within  genetic

databases,  as  data  warehousing  systems  do,  BSE  considers  dataspaces  and  cloud

computing  the  basic  paradigms  for  effective  searching  information  from  genomic

resources.
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    Specifically, I explored how the convergence of cloud computing and dataspaces can

offer both added-value service components and flexibility, making this  convergence an

attractive  combination  also  for  other  scientific  domains.  BSE  meets  some  important

requirements, including high performance, scalability, and elasticity.

    Most importantly, I tried to identify a set of technologies necessary in order to address

big data  searching issues  in  bioinformatics  and complement  the capabilities  of  genetic

portals. Cloud computing and dataspace are paradigms relatively new; nevertheless, they

seem  to  offer  new  insights  in  bioinformatics.  Finally,  even  though  this  approach  is

implemented for searching data stored in genetic databases, it might reveal new directions

for enhancing web-based exploration of big data in life science.
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Chapter 4

Scientific Collaboration: a Case Study

Despite  the  large  acceptance  of  Semantic  Web  technologies  and  their  key  role  in

bioinformatics, some concerns begin to emerge about their suitability for supporting the

requirements of collaborative environments in which a  research community shares and

creates new knowledge. 

     First of all,  one concern is about the possibility of widening the perspective offered by

ontologies in representing interdisciplinary biomedical knowledge. An ontology provides a

schema  which  expresses  the  model  of  a  knowledge  domain  in  terms  of  concepts,

relationships between concepts, class hierarchies and properties. The most common types

of relationships are “is-a” and “part-of”; as a result, the schemas of biomedical ontologies

do not take account of other important relationships useful to tie concepts that belong to

different ontologies or domains. For example, Gene Ontology (GO) [GO14], which is a de

facto standard  for knowledge representation about gene products,  has developed three

ontologies (i.e., structured, controlled vocabularies) that describe genes in terms of cellular

components, molecular functions, and biological processes.  Being these aspects defined

by three different sub-ontologies,  they seem independent,  but actually, they are not for

scientific communities.

    A second concern is about the limited support offered by ontologies for an effective user

interaction and collaboration.  Moreover, ontologies are powerful but,  at  the same time,

they are also complex resources [DW12] with several thousands of terms. The framework

provided by RDF [RDF15] and SPARQL is effective, but researchers are often requested to

be familiar  with the SPARQL syntax which calls for a steep learning curve. Given the
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availability of several ontologies,  it  is natural that biologists  would create personalized

versions  of  ontologies  which  reflect  their  particular  interests.  However,  the  merge  of

information  from  different  ontologies  still  requires  knowledge  about  how  to  reuse

conceptual knowledge provided by others and how to publish the new one. Within this

regard, it is increasingly hard to extract knowledge by browsing several web sites, each

having its own organization, its terminology and its data formats. Instead of focusing on

their  real  scientific  interests,  researchers  are  often  involved  in  unearthing  specialized

information and remembering the navigation paths of each specific web site. This task is

time consuming and daunting. 

    The third concern is  about the role of the Semantic Web in the context of current

technologies which continues to significantly influence the development of computational

tools in bioinformatics. Specifically, the service-oriented paradigm has provided a new way

of thinking biomedical resources in terms of computational infrastructures by positioning

services  as  primary  functional  elements  for  data  integration.  Many  biomedical

organizations have now started to expose their IT searching services as Web services to

extract valuable information from ontologies. Furthermore, new service-based paradigms

have  been  proposed  [BDP11,  QEG+10]  in  order  to  help  scientists  in  validating  new

collaborative research practices such as workflow systems [WHF+13]. However, despite

their compliance to Semantic Web, many proposals are only suitable for solving specific

problems at  hand and often hinder  the development  of a  common terminology for the

representation of the domain knowledge [BBB13].

    I approach the above concerns in a pragmatic way and propose COWB (COllaborative

Workspaces  in  Biomedicine),  an  extensible  framework  for  managing  biomedical

knowledge. COWB harnesses cloud services to provide a collaborative environment as

SaaS in which biologists are actively supported, rather than just enabled, for representing

and sharing  knowledge about  a  biomedical  domain  they  are  interested  in.  Beyond the

exploitation of  the cloud paradigm, these functionalities  are  also provided by giving a

central role to semantic information: ontologies are at  core of the proposed framework

because they drive the creation, storage and validation of data and metadata. Specifically,

ontologies  are  used  to  define  the  precise  meaning  of  biomedical  concepts  and  their

relationships in order to ensure those who are generating knowledge that they are using the

most up-to-date, unambiguous, and appropriate terms.
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    In designing COWB, I was inspired by the typical behaviour of biomedical researchers

which capture specialized knowledge from the Web. Usually, these scientists begin from

the  centralized  view of  a  biomedical  concept.  Then,  they  seek  to  explore  outward  by

accessing additional information from multiple resources spread all over the Web. The aim

of  COWB  is  to  facilitate  this  approach  by  modelling  and  visualizing  the  domain

knowledge  by  means  of  a  semantic  network;  that  is,  a  graph  where  nodes  designate

biomedical  concepts  and arcs  represent  relationships  between those  concepts.  At  same

time,  collaboration  is  the  main  prerequisite  of  COWB  as  users  in  different  locations

visualize  the  semantic  network,  interact  with  the  same data  and carry  on the  network

implementation while they afford a collaborative environment. Although COWB is geared

towards  biomedical  research,  the  ontology-centric  model  which  supports  knowledge

representation in COWB is domain-independent and can be applied in any scientific area

where the basic concepts can be semantically structured by a semantic network.

    COWB is publicly available at http://cowb-unica.appspot.com.

4.1 Modelling Collaborative Knowledge

From a biomedical perspective, collaboration is very attractive for a lot of circumstances,

including  community  learning,  training  and  scientific  research.  However,  it  is  not

conceivable  to  have  a  single  and  universally  accepted  ontology  which  covers  all

biomedical  domains.  Thus,  it  becomes  almost  impossible  to  manage  the  biomedical

knowledge in a distributed research environment where scientists are independent of each

other.

    To support  autonomy  and  intelligent  coordination  of  researchers  in  creating  and

managing shared knowledge, COWB organizes the knowledge at different levels according

to the framework shown in Figure 4.1. The bottom layer, namely the  domain knowledge

layer, describes the set of meta-concepts relevant for the considered biomedical domain. It

can  be  viewed  as  a  semantic  network  of  concepts  where  nodes  indicate  biomedical

concepts and arcs (i.e., directed links) represent relationships between concepts.
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    The second layer, namely the functional knowledge layer, handles functional resources

(FRs) which extend the  domain knowledge and support its management. The functional

resources can be divided into four categories:

• The COMMUNITY FR that describes individuals or research groups. For

each user, an identifier, personal data, skills, group memberships and topics

of  interest  are  represented.  A group  is  described  through  its  goals,  its

research topics and contains information about its participants.

• The TEMPORAL FR that describes additional knowledge through common

metadata; for example, data of creation of a concept.

• The SEMANTIC FR which allows for defining an unambiguous meaning of

a biomedical concept and its relationships by means of ontologies.

• The DOCUMENTS FR that  relies  on biomedical  documentation such as

abstracts of scientific papers. 
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Figure 4.1.  The proposed framework.  The bottom layer models the
domain  knowledge,  the  second  layer  describes  the  functional
resources, and the upper layer contains collaborative workspaces.



    Annotations can be defined between the FRs and the domain knowledge layer to enrich

the  content  of  a  particular  instance  and establish the  foundation  for  its  retrieval  when

requested. This means that FR instances can be semantically associated with the concepts

of the domain knowledge by following the principle of superimposed information; that is,

data  or metadata  “placed over” existing information sources  [MD99].  For example,  an

annotation  can  associate  a  community  resource  (e.g.,  a  researcher  called  Joe)   with  a

specific domain knowledge instance created by Joe. Thus, this annotation can be exploited

when searching all the domain knowledge created by a specific user or a group.

    The third layer of the framework consists of a set of views over the underlying layers.

These views can be divided into two categories: public workspace and private workspaces.

    The public workspace contains knowledge objects of different granularity which deepen

a  specific  concept  of  the  domain  knowledge  in  which  a  researcher  is  interested.  For

example,  suppose that  a  researcher  wants  to  explore  the  knowledge about  the concept

“mast-cell”. The corresponding knowledge object in the public workspace is a view over

the domain knowledge; that is, a semantic network which contains the node “mast-cell”

and  all  its  arcs  with  the  other  nodes.  Within  this  semantic  network,  each  element  is

annotated with the functional  knowledge (i.e.,  author, data of creation,  URI,  etc.).  The

public workspace can be explored both by the community members and by public users

(i.e., viewer).

     As  regards  the  private  workspace,  COWB  assigns  this  kind  of  space  to  each

community  member  when  a  researcher  joins  the  community.  Therefore,  a  private

workspace, as the name suggests, is exclusively for the use of his/her owner.  It has the

same structure of a public workspace but operates at individual level as semantic support

for personal knowledge management operations. For example, suppose that a researcher

called  Joe  is  interested  in  creating  the  concept  “plasma”.  Joe  accesses  his  private

workspace and creates a knowledge object which contains (1) the meta-concept “plasma”

captured from a specific ontology which guarantees the precise meaning of that concept,

(2) the functional knowledge for its management (i.e., the author, the date of creation, the

ontology which defines the concept, etc). Within his private workspace, Joe creates and

manages his part of the collective knowledge and is enabled to identify the community
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members  which  collaborate  with  him  in  order  to  extend  and  specialize  the  domain

knowledge.

    In a real collaborative Semantic Web environment, it is important to provide means for

knowledge to cross the boundaries of closed local information and make accessible the

broad  community  by  visualizing  the  community  participants  which  are  interested  in

collaborating with a given user. In this way the knowledge produced by each user could be

extended and reused within the community. 

    To tackle collaborative issues COWB provides a community model that distinguishes

between two different user behaviours:

• Users who simply want to explore the semantic network (i.e.,  public users

or viewers).

• Users who want to join the existing community in order to work on the

existing semantic network (i.e., private users).

    A role-based policy prescribes the rules to access to the workspaces; specifically, a role

is a set of rights which determine what operations a user can perform. In agreement with

user behaviours:

• Public user or viewer roles provide the passive access to the only  public

workspace. These roles do not require any approval and may be upgraded

by the application manager. As a result, public users can only explore the

knowledge.

• Private user  roles.  The application manager  assigns  these roles  to  users

which want to collaborate in building and/or editing the semantic network

within the community. As such, a private user can create and modify his/her

own  network.  Furthermore,  a  user  can  connect  his/her  network  to  the

network  of  another  community  member  by  adding  new  relationships

between his/her nodes and nodes that belong to other users. Note that each

private  user  can edit  only his/her  network element;  consequently, he/she
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cannot modify or delete network nodes and relationships created by other

users. 

    Dealing with a potentially large community, COWB tracks the authorship of the pieces

of semantic information that are introduced into the knowledge base. To join a community,

a user must fill in an on-line form in which he/she must indicate some general information

and his/her Google Account. Next, if the application manager assigns the user to the role of

private  user,  COWB  will  exploit  the  Google  Account  for  authentication.  This

authentication option permits COWB to track and verify the authorship of each piece of

semantic network that users create or update.

4.2 COWB Architecture and Functionalities 

The implementation of COWB in a web server with locally held data presents practical

limitations  not  only  in  terms  of  physical  resources  availability  (e.g.,  to  meet  peak

demands), but also about the following technical concerns:

• Several semantic resources are often large in size and physically distributed; thus,

there  is  the  need  for  developing  mechanisms  that  mine,  on  demand,  only  the

relevant information efficiently. 

• The  resources  of  interest  are  often  heterogeneous  in  structure  and  content.

Furthermore, these resources represent data according to their own schema which

defines  its  own  concepts  and  relationships  between  concepts.  Accordingly,

searching  strategies  have  to  be  designed  for  capturing  information  within  the

constraints imposed by the data source in order to comply with the data policy.

• Collaboration happens in different contexts and from different user perspectives.

Therefore, it is necessary to implement mechanisms for handling and sharing the

collective knowledge effectively.

    The  deployment  of  COWB in  a  PaaS contributes  to  alleviate  these  problems and

severely  curtails  issues  associated  with  scalability  and  performance,  especially  when
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collaboration expands across multiple sites. Being the collaborative environment hosted in

the physical infrastructure of the cloud platform, COWB exploits a close integration with

web servers and standard protocols and facilitates rapid development and updates.

    The COWB architecture is made up of a knowledge base, a procedural component (i.e.,

a set of services) and a user interface as shown in Figure 4.2. 

    In details, the knowledge base takes advantages of a schemaless NoSQL database that

provides  robust  and  scalable  storage.  In  particular,  COWB exploits  an  object-oriented

database which provides a great flexibility in storing the different layers of knowledge

defined by the framework improving the data management tasks in terms of elasticity and

scalability.

    The knowledge base stores the domain knowledge and its annotations from functional

resources into three classes of data objects: the class  Node, the class  Triple and the class

Community.
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Figure 4.2. The COWB architecture.



    Specifically, the class Node describes network nodes which map biomedical concepts.

Each node has a preferred name tied to a specific ontology, a semantic type (if available)

and is labelled with a unique identifier (i.e., a URI). Further pieces of information include

the node author, the date of the node creation and a list of keys: each key identifies a

specific triple to which the node belongs to. 

    As regards the class  Triple, it maps the network structure. Each data object  (i.e., an

entity) stores a single triple; that is, a statement about the domain knowledge in the form of

a subject-predicate-object expression. According to RDF terminology, triple elements are

resources which are identified by means of unique identifiers (URIs). Both the subject and

the  object  describe  resources,  while  the  predicate  expresses  aspects  of  a  relationship

between the subject and the object. Annotations from functional knowledge include the

author and the date of creation of the triple.

    Finally, the class Community stores information about users; that is, this class handles

profiles of users which belong to the community.

    The procedural component exploiting a set of services copes with issues associated with

creation, management and interactive visualization of the knowledge related to public and

private workspaces. It implements the following classes of services:

• Data extraction/management services deal with the accommodation of information

extracted from web resources using services from external partners.

• Task-oriented services support specific procedures for network visualization. 

•  Administrative services support network management; that is, they allow private

users to handle the network. In addition, these services look after security aspects in

order to avoid problems related to the collaboration among users.

    A collaborative environment must deal with ambiguity effectively. In order to avoid this

problem, I chose to exploit the ontologies as basic mechanisms to univocally identify a

concept (i.e., a resource) and efficiently structure the network. Since there is not a single

ontology that contains a comprehensive knowledge to deal with all biological sub-domains,
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COWB  captures  and  integrates  knowledge  from  many  different  sources.  Specifically,

COWB uses BioPortal [WNS+11] and Europe PMC REST services [PMC15]. According

to  the  pay-as-you-go paradigm,  the  database  holds  only  information  about  the  node

properties. COWB exploiting this best-effort approach includes information about nodes

such  as  a  list  of  synonyms,  the  tree  associated  to  node’s ontology, a  list  of  scientific

publications about the considered node when user requests it.

    The user interface makes available some wizards for guiding researcher in managing

domain knowledge and supports him/her within both the public and private workspaces.

Specifically, the user interface provides two interaction modes: knowledge exploration and

knowledge editing. These interactions modes are described in details in what follows.

4.2.1. Knowledge Exploration 

As  previously  mentioned,  COWB  envisions  users  searching,  selecting  and  capturing

domain knowledge from the visual representation of the semantic network (i.e., a graph)

which models the domain knowledge. 

    Within this graph, in order to explore the knowledge, a user must specify a preferred

name of a biomedical concept associated with a network node and a number that indicates

the level of neighbourhood (i.e., the number of hops). However, an autocomplete provides

suggestions while a user types in the research field. Therefore, given a Graph G, the first

level neighbourhood of a node N is a graph composed of all the triples in G that have N as

subject  or  object.  The  second  level  includes  the  first  level  neighbourhood  and  its

neighbourhood at the first level and so on. This strategy allows users to browse a highly

connected network efficiently and improves the readability of the knowledge.

    Figure 4.3 shows a case in which a user has searched for “mast cell” by specifying a

number  of  hops  equal  to  two.  The  concept  of  interest,  in  this  case  “mast  cell”,  is

represented by a triangular node and its neighbours are represented as coloured circles.

Each node is assigned to one of the 15 UMLS semantic groups [MBB01] and its colour

depends on its  semantic group. Tooltip  widgets  show information about  the node (i.e.,

preferred  name,   definition,  author  and  semantic  type)  or  about  the  relationship  (i.e.,
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predicate label and author). Triples which originate the visualized network can be exported

in N-Triples format [NT14].

    

    Since the graphical visualization of a level of neighbours greater than two may be

complex, COWB supports the visualization of a pre-calculated clustering of nodes with a

high number  of  connections  as  depicted in  Figure  4.4.  Here,  the  numbers  on brackets

indicate the existence of clusters and detail the number of hidden connections. A double

click on the cluster centre explodes the cluster and visualizes the original network with all

its nodes and arcs.

    COWB  enables  manipulation  of  the  network  and  interaction  with  dynamic  data.

Therefore, users can move the network, reduce/enlarge the size, and zoom in on selected

portions. These features allow for exploring large amount of data effectively when users

investigate a well-defined network portions. To produce readable views of the network, a

force-direct algorithm models arcs as springs that pull linked nodes together and attempts

to place nodes so that all forces are in equilibrium. This process is visually animated.
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Figure 4.3.  Second level  neighbourhood of the concept  “Mast  cell”.  The user
selects the link between the concepts “Osteocytes” and “Connective tissue cells”.
The  tooltip  shows  information  about  the  selected  link  (predicate  label  and
author).



    

4.2.2 Network Editing

Editing  functionalities  are  strictly  connected  with  the  model  of  collective  knowledge

presented in Section 4.1. Within this model, let us consider a possible scenario where Alice

is a researcher interested in representing knowledge about system biology.

    At  the  beginning,  she  requires  the  private  user  privileges.  Next,  when the  COWB

application manager gives her these privileges, she starts creating from scratch her private

workspace. To create a node, Alice accesses the network editing menu from the COWB

main page,  chooses  to work on a  new empty whiteboard which represents  her private

workspace and clicks in an empty space of the whiteboard. A wizard helps her to choose

the appropriate biomedical ontology for defining the concept of interest. Figure 4.5 shows

an  example  of  such interaction  where  Alice  creates  a  new node  which  represents  the

concept “plasma” and COWB captures, in  pay-as-you-go manner, information about this

concept from Bioportal. Here, the concept “plasma” is defined in four ontologies: NCIT,

MESH,  CRISP, and  PMA.  Since  these  definitions  may  differ,  Alice  must  select  the

ontology which  defines better this concept according to her opinion (e.g., MESH). After
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Figure 4.4. Third level neighbourhood of the concept “mast cell”. A
pre-calculated clustering is visualized.



her selection, a new object is automatically stored into the knowledge base. Hence, this

object represents the concept “plasma” and its functional annotations; that is, the concept

“plasma” is created by Alice (author) and is tied to the selected ontology.

   

    In addition to nodes, Alice can link nodes by selecting an existing node and dragging an

edge from this node to another node of the visualized network. Then, a window appears

which contains the preferred label of the two nodes and a list of predicates. Specifically,

each predicate is associated with a specific URI and a label which describe the relationship

between  the  connected  nodes  (i.e.,  the  subject  and  the  object).  When  Alice  selects  a

predicate from the list, the new drawn link is mapped into a triple (i.e., a subject-predicate-

object  expression)  which  is  automatically  stored  into  the  knowledge  base  with  the

annotated functional knowledge. Alice can now browse her network and modify nodes and

relationships by clicking on their graphical representations. 
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Figure 4.5. Alice creates the node “plasma”. The wizard helps Alice
to choose the proper ontology for defining the concept of interest.



    Now, let us suppose that Alice invites Bob, a colleague, to join the community. Bob

agrees,  fills  in  an  on-line  form  and  receives  the  role  of  private  user  by  the  COWB

application manager. Just  as Alice did,  Bob can now draw on the whiteboard his  own

network. If Bob adds to his network a node which represents a concept already stored by

another  user  (e.g.,  the concept “plasma” that  was stored by Alice),  COWB warns Bob

about this fact and visualizes the node (in this case the Alice's node) on the whiteboard.

Furthermore, clicking on that node, Bob can obtain the annotations about the node. For

example, clicking on the node “plasma” which was created by Alice, Bob can visualize the

Alice’s profile including her photo, her e-mail address, her linkedIn page and her twitter

account (if declared), as shown in Figure 4.6. Besides, Bob can link the node "plasma"

with a node of his own network.

    Finally, Carol, an American biologist, visits by chance the public workspace provided by

COWB. Being a public user, she can only browse the knowledge related to the public

workspace. When she searches for the concept “mast cell”, COWB presents the network

linked to this concept, irrespective of its authors as depicted in Fig 4.3. Note that multiple

semantic  networks can be presented within a  single workspace;  thus,  COWB provides

different views on the same knowledge base.
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Figure 4.6. Bob visualizes the node “plasma” created by Alice. By clicking on the
node, Bob visualizes the Alice’s profile.



    As described so far, while a user manages his personal workspace some information is

stored  into  the  network  and  made  available  for  community  participants  to  further

exploration and download. However, a researcher may be curious; thus, he/she can wonder

if there are other users who have connected nodes to his/her sub-network. To face up to this

problem, COWB defines a special  category of nodes, namely the boundary nodes. For

example, given a node N and a graph G, let us assume that the node N was created by

Alice, whereas the graph G was created by Bob. The node N is a boundary node in respect

to the graph G, if N participates in one or more triples of the graph G; that is, if at least one

triple, which belongs to G, has N as subject or object. Figure 4.7 shows a user sub-network

with its boundary nodes. Nodes that belong to the user are red coloured, while boundary

nodes and external links (i.e., nodes and arcs created by other users) are visualized in blue.

4.3 Implementation

COWB is built  and run on GAE [AE14] (see Appendix A).  At the time of writing,  it

manages a manually-curated semantic network in medical biology which is stored into a

schemaless NoSQL database. 
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Figure 4.7.  Example of a private workspace.  Nodes created by the workspace
owner are visualized in red, whereas nodes created by other users are depicted in
blue.



    For implementing COWB’s core functionalities, I used Phyton, JavaScript/AJAX/jQuery

and  Django  [Dja15].  The  pay-as-you-go approach  is  supported  by  exploiting  REST

services provided by Bioportal and Europe PubMed Central. 

    I developed the Graphical User Interface using JQuery UI [JQ14], a set of dynamic user

interactions, effects, widgets, and themes. Besides, COWB takes advantage of customized

functions  that  I  added  into  vis.js [Vis14],  an  open  source  JavaScript  library  that  is

specifically  suitable  for  handling  large  amounts  of  dynamic  data,  enabling  users  to

manipulate and interact with the data. I implemented these custom functions in order to

save modifications into the database at runtime. The “graph component” made available by

vis.js also includes a force-directed algorithm which was used to generate graphs where

nodes have a minimum distance from each other.

4.4 Related Work 

Related work affects several different aspects. The first aspect concerns how to model and

manage  scientific  collaborative  knowledge.  It  has  been  observed  [LKN+13]  that  the

proposed models are quite verbose; as a result, they are not very suitable for implementing

data  management  systems.  Recently,  some  platforms,  which  implement  collaborative

environments, have been developed in biomedicine. However, they are based on a client-

server model of computing and do not include semantic features. By way of example, I cite

WikiPathways [PKM+08] that is a public, collaborative platform dedicated to curation of

biological  pathways  (i.e.,  networks),  and  BioUML  [BUW14]  which  allows  users  to

collaborate and draw biological maps in a similar way to Google Docs [Doc15].

    The second aspect regards the architecture which supports the collaborative knowledge

management. Previous research [ZL07,  Zhu09] has presented some paradigms, based on

P2P  architecture,  to  build  a  semantic  network  among  peers  by  establishing  relations

between semantic nodes. As it happens in COWB, a semantic link represents a semantic

relationship between semantic nodes such as similar-to, cause-effect and so on. Differently

from COWB,  a  semantic  node  can  be  an  entity,  a  concept,  a  schema,  or  a  semantic

community.  Analogous  P2P  solutions  [ETB+03,  BBM+02]  show  that  this  approach
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requires specific algorithms in order to provide consistency among replicas; on the other

hand, it is difficult to guarantee consistency in large-scale dynamic systems. In COWB,

cloud technologies avoid these difficulties. 

    Another central aspect regards the need of promoting interoperability between different

tools that has inspired the creation of graphical standards such as the SBGN notation for

biological diagrams [LNH+09]. However, it has been observed [KCP+13] that there is a

severe lack of adequate software for navigating and querying maps created according to

the systems biology standards, as well as for collecting the  user feedbacks about the map’s

content  in  an  interactive  manner.  A number  of  recently  tools  attempt  to  meet  this

requirement.  In  particular, NaviCell  [KCP+13] relying on Google Maps supports  user-

friendly  exploration  of  large-scale  maps  at  different  scales.  Similarly,  CellPublisher

[FLM+10],  Pathway  Projector  [KAO+09]  and  PathVisio  [IKP+08]  exploit  the

geographical metaphor for navigating within the maps.

    Many tools  have  been developed for  visually  exploring  networks  [SH07,  PWS08,

PHS+11]. Some of them are general-purpose; therefore, they can be used to cope with a

wide range of problems. In contrast, some others are specialized for specific applications

such  as  protein-protein  interactions,  pathways  analysis,  and  gene  networks.  Cytoscape

[LFK+10] is  a  case in point;  in  fact,  it   is  currently a  golden standard for large scale

network  visualization.  It  can  support  directed,  undirected  and  weighted  graphs  and

provides customizable layouts that allow the user to change the properties of nodes or

edges.  Furthermore,  it  incorporates  statistical  analysis  as  well  as  network  filtering

capabilities.  A broad variety of additional  features  are made available  as plug-ins (i.e.,

apps) mainly developed by high-experienced users. 

    The  closest  platform to  COWB is  a  collaborative  Web service  platform for  gene-

regulatory  and  biochemical  pathway  model  curation  called  Payao  [MGK+10].  This

platform combining Web 2.0 technologies and online model visualization functions enables

a community to work on biological models simultaneously. Specifically, Payao reads the

models  in  Systems  Biology  Markup  Language  (SBML)  format,  displays  them with  a

process  diagram  editor  and  provides  access-controlled  community  members  with  an

interface for adding tags and comments to specific parts of the models. The model owner

specifies the basic information about the model and indicates users who have the privileges
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to view, add tags, add comments to its model. However, since PAYAO was not designed to

handle semantic knowledge, I think that the layered organization of knowledge and the

role-based model exploited by COWB are more suited to guarantee both the autonomy of

users and the coordination of their actions.

4.5 Concluding Remarks

In this chapter, I presented a comprehensive overview and a first implementation of the

Semantic  Web  community  scenario  enabled  by  COWB.  I  tried  to  highlight  distinct

challenges  I  tackled  in  the  context  of  the  Web  2.0  and  Semantic  Web  paradigm.  By

showing  some  practical  examples  from  COWB,  I  illustrated  how  problems  may  be

resolved within these challenges. Compared to current centralized approaches, the COWB

framework presents an alternative way to knowledge management and exploits a cloud

platform to share the knowledge collectively created by a community of researchers.

    This case study highlights three points.

• Currently,  it  is  feasible  to  reformulate  the  common  biomedical  investigation

practices  by  combining  different  technologies,  including  Semantic  Web

technologies, NoSQL databases, and cloud computing. Domain experts, rather than

programmers, can be supported to model, store and explore the domain knowledge

in a simple, integrated and intuitive way.

• The proposed ontology-centric approach, which deals with discovering, importing

and publishing new  knowledge from biomedical ontologies, allows for supporting

effectively collective intelligence within biomedical communities. The integration

of external services permit users to capture semantic information in a pay-as-you-

go fashion.

• According to the Web 2.0, the visualization of semantically structured information

is supported by dynamic interfaces which assist users for interactively visualizing,

editing and exploring the semantic contents. Thus, users have a global view of the

knowledge that can embrace  interdisciplinary areas.
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    COWB contrasts sharply with traditional centralized computing platforms which are not

only  costly,  but  risk  to  become  more  and  more  inadequate  to  meet  the  applications

requirements. Being a SaaS, COWB runs in a physical location of the infrastructure which

is determined by the provider (usually, the server that is closest to the user). In addition, the

cloud infrastructure enables the transparent storage of the knowledge base across many

machines. This is beneficial to scale processing tasks when many users join the community

to concurrently share information. Finally, since COWB is provided as SaaS, users avoid

the installation and management  of software on their  own computers and benefit  from

software which is always up-to-date.

  Although COWB is the first attempt to address the challenges discussed in this chapter,

preliminary  results  demonstrate  that  it  is  adequate  for  managing  a  collaborative

environment.  The proposed framework sets out to pave the way development of future

projects and systems that combine the flexibility of the cloud computing approach with the

knowledge provided by ontologies.

    In future, COWB should be extended in order to capture additional domain knowledge

not only from ontologies but also from alternative resources such as well-curated texts as

investigated in recent research [DPP14]. 

    Finally, COWB is not an alternative and complementary tool but occupies an its own

niche, being the proposed approaches interesting per se. Indeed, COWB provides the users

with practical solutions which tackle some Semantic Web open research issues such as

representing and managing knowledge, extracting information from ontologies, integrating

data from different web resources and so on. Although the above solutions can hardly be

considered  as  suitable  for  all  the  possible  collaborative  scenarios,  the  collaborative

workspaces  provided by COWB might  allow biomedical  researchers  to  formulate  new

insights about the Semantic Web opportunities.
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Chapter 5

Knowledge Extraction: a Case Study
    

Microarray  technology  allows  for  collecting  large-scale  gene  expression  data  and  is

currently used in medical diagnosis in order to identify genes that play an important role in

the pathogenesis of complex diseases. Such identification requires facing the challenge of

handling datasets where the number of genes, namely features, is much larger than the

number of samples. Even though thousands of genes are usually investigated only a very

small  number of them show a correlation with the disease in question.  Although many

machine learning methods have been developed, it is still difficult to train and test general

classification methods.

    Decision trees are among the popular machine learning methods. Being produced by a

greedy algorithm, a single tree may generate an unstable classification model with poor

generalization accuracy; indeed, a small change to the data can result in a very different

model. The proposal of random forests  [Bre01], a method for classification based on the

repeated  growing  of  trees  through  the  introduction  of  a  random perturbation,  tries  to

counteract such instability averaging the outcome of a great number of models fitted to the

same dataset.  At  each node of the trees,  a  small  subset  of randomly selected features,

instead of all features, are considered to split the node. As a sub-product of this technique,

the identification of variables that are important in a great number of models provides

suggestions in terms of variable selection. 
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    Good generalization performance is critical for many learning algorithms, in general,

and for microarray data classification in particular, since it remarks on the performance of

the  algorithm  on  new  data.  As  demonstrated  in  previous  research  [Bre01],  the

generalization error is influenced by two factors: the correlation between the random trees

and  their  individual  strengths.  Breiman  [Bre01] further  derives  that  as  the  number  of

random trees becomes large (i.e., it tends to infinity), the generalization error converges to

a limit.

    Random forests have been applied, with promising results, in analysing datasets with

large dimensionality. Extending these studies to develop random forests  for microarray

data analysis presents an interesting research goal [ACL08]:  random forest performance

tends  to  decline  when  the  number  of  features  is  huge  and  the  proportion  of  truly

informative features is small, such as with microarray data. Therefore, the effectiveness of

a random forest classification process is largely dependent on its capability in facing the

curse of dimensionality of gene expression data.

    This case study evaluates the effects of a filtering process on the predictive performance

of a random forest classifier as well as on the choice of its critical parameters. Using two

popular microarray datasets, I carried out a series of classification experiments by growing

random forests both on the whole set of features and on different subsets of pre-filtered

features. Specifically, different parameter settings were explored in order to investigate the

optimal  trade-off  between  the  number  of  trees  and  the  number  of  variables  randomly

chosen at each split. The results suggest that growing few trees on small subsets of pre-

filtered features,  with only one variable randomly chosen at each split,  presents results

which compare very well with state-of-the-art studies in literature.

5.1 Background

Given a training set with N cases and M features, a random tree is built as follows:

1. N cases are randomly sampled with replacement from the original data. These N

cases, which represent the new training set, are used to construct a single tree.

58



2. A number  mtry,  which  is  is  held  constant  during  the  growth  of  the  forest, is

specified. Then, each node is split using the best split among a randomly selected

subset of mtry features. Note that mtry is a number much smaller than M (number

of features).

3. Each tree is built to the largest extent possible without pruning.

    The random forest, in most cases, results more difficult to understand for humans than a

single decision tree [BBH+10] because of its complexity. On the other hand, this algorithm

presents several advantages that make it suitable for analysing microarray data. According

to previous research [Bre01, SLT+03 , SWA08, UA06], it presents the following features:

• It can be used for both binary and multi-category classification.

• It can manage thousands of input features (without feature selection) even when

there are a few cases.

• It runs efficiently on high-dimensional datasets.

• It is relatively insensitive to non-informative features. 

• It makes available an embedded measure of feature importance.

• It is robust against overfitting.

    In more detail, random forests can be trained in less time than a single decision tree

because the method tests only  mtry features (i.e., a small subset of the original features)

and it does not do any pruning [SLT+03].

    As previous mentioned, the critical parameters of a random forest are the number of

trees, namely  ntree, and number of random features to split each node of a tree, namely

mtry. The value of  mtry can range from 1 to M and common default values are √M or

log(M) [CWZ11].

    Breiman [Bre01]  states that  parameters with default  values  often lead to  excellent

performance, but recent studies suggest a fine-tuning of the parameters. As demonstrated

by Zhang and Wang [ZW09], it is not necessary to use the whole forest in order to reach

satisfying prediction performance. In their study the size of the optimal sub-forest is in the
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range of  tens  and some sub-forests  can even overcome the original  forest  in  terms of

prediction accuracy on a breast cancer prognosis dataset. The case study presented in this

chapter sets out to validate this research using both different datasets (e.g., a diagnostic

dataset) and an alternative approach.

    According to  Genuer  et  al.  [GPT08],  applying random forests  to  high-dimensional

classification problems, mtry needs to be sufficiently large for capturing important features

(i.e., variables highly related to the class). As a consequence, if the number of genes is

large and the percentage of meaningful information is small, it is necessary to choose large

values of  mtry in order to  get better  performance  [LW02].  However, trees which made

random splits (i.e.,  mtry equals to 1) can give very good performance for some datasets.

Amaratunga et al. [ACL08] have proposed a filtering approach to decrease the contribution

of trees whose nodes are populated by non-informative features. Specifically, they choose

the splitting subset at each node by using a weighted random sampling instead of a simple

random sampling.

5.2 Experiments

I carried out a series of experiments investigating two public microarray datasets:  Colon

[ABN+99] and  Leukemia [GST+99]. Specifically, the  Colon dataset is made up of  2000

genes  which  were  measured  on 62 patients.  Among them,  40  samples  come are  from

tissues of patients with colon-cancer and 22 come are from healthy parts of the colons of

the  same  patients.  Colon dataset  is  considered  as  one  of  the  noisiest  microarray

benchmarks. As regards the  Leukemia dataset, it consists of 7129 genes and 72 samples.

These samples belong to 47 patients with acute lymphoblastic leukemia (ALL) and 25

patients with acute myeloid leukemia (AML).

    The overall analysis was performed using the Weka data mining software [MEG+09]. I

used  a  leave-one-out  cross-validation  procedure  (LOOCV),  a  well-known and  popular

procedure  in  literature  for  performance estimation,  though it  has  been observed that  a

cross-validation  setting  can  yield  overoptimistic  results  on  small  sample  size  domains

[ND02]. The performance of the method was evaluated using the value of area under the
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curve (AUC) of the receiver operating characteristic (ROC) curve in order to synthesize

the information of sensitivity and specificity. Note that  AUC metric  is  not sensitive to

unbalanced distributions and is more discriminative than the accuracy metric [Faw04].

The experiments were divided into two broad classes:

• Tuning on the original dataset. I build different random forests using the following

parameters values: (i)  ntree = 10, 20, 30, 50, 100, 200, 300, 500, 1000, 1500; (ii)

mtry = 1, 2, 3, 5, 10, 20, 30, 40, 50, 80. Both the choices (i) and (ii) intend to finely

investigate parameters values smaller than the common default values.

• Tuning on filtered subsets. First, I ranked the features of the original dataset using

two popular ranking methods: Information Gain (IG) and Chi Squared (χ2). Based

on their outputs, I extracted different subsets of highly-ranked features indicated as

TOP10 (i.e., the first 10 top-ranked features), TOP20 (i.e., the first 20 top-ranked

features)  and so on.  Then,  I  used these subsets for  constructing random forests

within the following parameter configurations: (i) ntree = 10, 20, 30, 50, 100, 200,

300;  (ii) mtry = 1, 2, 3, 5, 10, 20, 30.

    The others parameters of the algorithm not mentioned above were used with their default

value [MEG+09].

5.2.1 Results About Tuning on the Original Dataset.

Figure 5.1 and Figure 5.2 depict for different values of mtry, the effects of changes in the

parameter  ntree on the AUC. According to Breiman  [Bre01],  the behaviour of AUC is

asymptotic; that is, as the number of trees increases, the AUC value converges to a limit.

Interestingly, in both  Leukemia and  Colon, I observed this asymptotic trend for  ntree ≥

100, while previous studies  [SWA08,  UA06] on microarray datasets made use of  ntree

values in three order of magnitude. Globally, results in Figure 5.1 and Figure 5.2 suggest

that, even on high-dimensional domains, the choice ntree = 100 can be quite adequate, with
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further increases  having negligible  effects  and smaller values leading to more unstable

AUC performance. 

    As regards the influence of mtry parameter on random forests performance, Figure 5.1

and Figure 5.2 show that, for small values (i.e., values smaller than 50) of ntree, the choice

of high values of mtry (mtry ≥ 30 for Leukemia and mtry ≥ 5 for Colon) results in higher

values of AUC. This seems to suggest that, when I choose to grow a forest with a small

number of trees, I need to set higher values for  mtry in order to rise the probability of

randomly selecting informative variables. On the other hand, if the forest is sufficiently

large (ntree ≥ 100), the influence of mtry parameter declines. In particular, no improvement

in AUC performance can be observed when setting values of mtry > 20 and mtry > 10 for

Leukemia and  Colon respectively.  Therefore,  as  previously  observed  for  the  ntree

parameter, the common default setting of  mtry = √M [SWA08, UA06], where M is the

total number of features, seems to be unnecessary large since smaller values ensuring a

good predictive performance at a lower computational cost.
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Figure 5.1. Tuning on Leukemia dataset: AUC versus ntree for mtry equal to 1, 2,
3, 5, 10 (left) and mtry = 20, 30, 40, 50, 80 (right).



5.2.2 Results About Tuning on Filtered Subsets

As above mentioned,  I applied two ranking methods (IG and χ2) and, for each ranking

method, I performed tuning experiments on pre-filtered subsets of increasing size (TOP10,

TOP20, etc.).  Table 5.1 summarizes the “optimal” values of both parameters  ntree and

mtry; that is, the lowest values leading, on a given subset, to the best AUC result. As shown

in Table 5.1, in most cases, the value  mtry = 1 is sufficient to maximize the predictive

performance of random forests. The optimal number of trees is also quite low, especially

for Leukemia, where the AUC is maximized with at most 30 random trees. More trees (a

few hundred at most) can be needed for  Colon which is recognized to be a more noisy

dataset.  Results  in Table 5.1 globally confirm what previously observed on the overall

datasets:  parameter values lower than common default  values can lead to effective and

more parsimonious classification models. Although surprising, the goodness of the choice

mtry = 1  is also supported (for datasets of low-moderate dimensionality, as the pre-filtered

datasets here considered) by some considerations reported in [Bre01].
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Figure 5.2. Tuning on Colon dataset: AUC versus ntree for mtry = 1, 2, 3, 5, 10
(left) and mtry = 20, 30, 40, 50, 80 (right).



Pre- filtered

subset

Leukemia Colon

IG χ2 IG χ2

mtry ntree mtry ntree mtry ntree mtry ntree

TOP10 1 30 1 20 1 30 10 20

TOP20 1 10 1 10 1 10 1 200

TOP30 1 10 1 10 1 20 1 10

TOP50 1 10 1 20 10 10 1 10

TOP100 1 20 1 20 1 100 1 200

TOP300 1 30 1 20 1 100 1 300

TOP500 1 10 1 20 1 200 3 50

Table 5.1. Optimal values of mtry and ntree for pre-filtered subsets of increasing size, as 
obtained by IG and χ2 ranking methods, for both Leukemia and Colon datasets.

In addition, the pre-filtering process significantly improves the predictive performance.

As regards Leukemia, the experiments presented in this case study gave excellent outcomes

in all the subsets  from TOP10 to TOP500. Only for larger subsets (e.g., TOP1000), the

AUC declines if the number of random trees is not sufficiently large, as shown in Figure

5.3.a, where the AUC behaviour is shown for some subsets filtered by IG (an analogous

trend has been registered for χ2) within the “optimal” setting mtry = 1. 

Figure  3.3  points  up  the  asymptotic  behaviour  of  AUC.  The  effectiveness  of  pre-

filtering process is considerable as the random forests built on the selected subsets greatly

outperform the random forests grown on the original dataset. However, the setting mtry =

1, optimal for the filtered subsets, is not so optimal for the whole dataset, where the best

AUC performance is registered for mtry ≥ 30, as shown in Figure 5.1. Therefore, a further

demonstration of  the  effectiveness  of  the pre-filtering process  is  given in  Figure 5.3.b

where the performance on the TOP20 subset (mtry = 1) is compared with the performance

on the whole dataset (mtry = 40). Note that  mtry = 40  corresponds to the “best” AUC

curve  in  Figure5.1.  The  advantages  deriving  from  pre-filtering  are  confirmed  by  the

analysis on Colon dataset as shown in Figure 5.4. 
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Finally, Table 5.2 shows the effectiveness of the proposed approach when compared to

the most cited works in literature that applied random forests to microarray data [SWA08,

UA06]. Specifically, Dìaz-Utiarte and Alvarez de Andrés [UA06] report an error rate of

0,051 for the  Leukemia dataset (in a slightly different version) using the random forest

method with  mtry =  √M and  ntree  = 5000 and without a preliminary feature selection.

Within  the  same settings,  the  error  rate  reported  for  Colon is  0.127.  By integrating  a

variable selection approach, the best error rates given in [UA06] for Leukemia and Colon

are  0,075 and  0,159,  respectively. In  the  research  study of  Alexander  Statnikov  et  al.

[SWA08] the AUC performance for  Colon is 0.867 on the whole dataset and 0,917 with

gene selection; here, the best-performing configuration is selected among the following

values of parameters: ntree = 500, 1000, 2000 and mtry = 0,5∙√M, 1∙√M, 2∙√M.
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Figure 5.3. Leukemia dataset: (a) AUC versus ntree for some pre-filtered subsets
and for the whole dataset (mtry = 1 for all the curves); (b) AUC versus ntree for
the subset TOP20 (mtry = 1) and for the whole dataset (mtry = 40).

Figure 5.4.  Colon dataset:  AUC versus  ntree  for  some pre-filtered
subsets and for the whole dataset.



Dataset
On the full set of genes Using a filtered subset

AUC Accuracy AUC Accuracy

Leukemia 0,997 0,986 1,00 1,00

Colon 0,911 0,855 0,939 0,903

Table 5.2. Best results on Leukemia and Colon, both in terms of AUC and accuracy

5.3 Concluding Remarks

This case study presented an approach to microarray data classification that builds upon

the  well-known  strengths  of  the  random  forests.  The  proposed  method  attempts  to

eliminate irrelevant variables by pre-filtering. Results on two public microarray datasets

(Colon and  Leukemia) confirm what expected on the basis of similar studies on filtering

methods when applied to microarray data classification. The experimental analysis reveals

that a pre-filtering process positively impacts both on random forest performance and on

its optimal parameterization, leading to very effective and more parsimonious classification

models.
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Chapter 6

Conclusions

The  technological  advancements  of  the  last  decade  have  yielded  a  data  deluge  in

bioinformatics. Accordingly, data integration and scientific collaboration requirements are

dramatically changed. Technological challenges, which range from architectural principles

to the implementation details, call for a complete re-examination about the design of Web

applications  and databases  in  bioinformatics.  The work in  this  thesis  focuses  on some

aspects of current issues and challenges in bioinformatics. Within the above mentioned

challenges, this thesis aims at giving a contribution about the following topics:

• Development  of  bioinformatics  applications  within  a  PaaS:  Currently,  few

bioinformatics  applications  are  built  on  PaaS.  This  thesis  outlines  the  benefits

provided by exploiting Platform as a Service (PaaS) in order to make available

scalable Web applications to biomedical community (Chapter 2).

• Integrating information from different Web resources: An approach is proposed

which  grounds  on  the  dataspace  paradigm,  a  new  abstraction  for  integrating

information from the Web in a  pay-as-you-go fashion. That paradigm is exploited

in  the  context  of  Biocloud  Search  EnGene  (BSE)  [DPM+13],  a  cloud-based

application  for  surfing  web  resources.  This  application  harnesses  several

technologies, including cloud computing, NoSQL databases, and Web services, in

order  to  address  dataspace  requirements  in  terms  of  flexibility  and  scalability

(Chapter 3). 
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• Scientific  collaboration:  A framework is  proposed to  support  the  collaborative

management of shared digital resources in building a semantic network. A major

role,  within  this  framework,  is  played  by  formal  semantic  representations  of

information  objects  which  are  built  up  by groups  of  users  working together  in

collaborative workspaces. Therefore, the framework relying on ontologies provides

a collaborative knowledge management solution for biomedical communities. The

proposed framework is enabled by a cloud-based application developed at  PaaS

layer and using a NoSQL database [DDM+14, DMP+15] (Chapter 4).

• Knowledge  extraction:  The  effectiveness  of  random  forest  method  has  been

evaluated in extracting knowledge from datasets which are affected by the so-called

course of dimensionality; that is,  when  the number of features is huge and the

proportion of truly informative features is small, as it happens with gene expression

data.  Thus,  applying  random  forests  in  microarray  data  analysis  presents  an

interesting research goal due to the additional issue of reducing the contribution of

trees whose nodes are populated by non-informative features [DMP12, DMP13]

(Chapter 5).
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Appendix A: Google App Engine

Google App Engine (GAE) [AE14] is a fully-managed Platform as a Service which allows

developers  to  build,  deploy and run applications  on Google's  Infrastructure.  In  details,

GAE is part of the Google Cloud Platform [GCP14]. GAE is currently used to develop a

wide  range  of  applications  such  as  enterprise  applications,  scalable  web  and  mobile

applications, and games. 

    GAE supports applications written in Python, Java, PHP, and GO. In addition, it makes

available several existing frameworks, including Django, Flask, Spring and webapp2.

    As regards the storage, GAE provides a schemaless NoSQL database. In particular, this

NoSQL  database  is  an  object-oriented  database  called  Datastore.   Unlike  traditional

relational databases, this database makes use of a distributed architecture to automatically

manage scaling to very large amount of data. In addition, it guarantees atomic transactions

and high availability of reads and writes.

 

    According to the GAE documentation [AED15]:

The Datastore holds data objects known as entities. An entity has one or more

properties, named values of one of several supported data types [...] Each

entity is identified by its kind, which categorizes the entity for the purpose of

queries, and a key that uniquely identifies it within its kind. […] Entities of the

same  kind  can  have  different  properties,  and  different  entities  can  have

properties with the same name but different value types.

    The Datastore interface provides a rich set of API for modeling data. In addition,

this  interface  also  include  a  SQL-like  query  language  called  GQL for  retrieving
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objects (i.e., entities) or keys from the App Engine datastore. The Datastore uses by

default a configuration called High Replication Datastore (HRD). This configuration

implies that data is replicated across multiple datacenters exploiting a system based on

the Paxos algorithm in order to guarantee a high level of availability for reads and

writes.  Note  that  most  queries  present  a  weak  consistency;  specifically,  they  are

eventually consistent.

    Finally, it is worth highlighting that GAE runs the apps in a secure sandboxed

environment; therefore, an application exploits a reliable environment independent of

the infrastructure (i.e., physical location of the server) or the operating system. This

“sandbox” environment guarantees not only security but also automatic scaling and

load balancing across multiple servers in order to meet peaks demand.
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