
UNIVERSITY OF CAGLIARI

CLOUD-BASED SOLUTIONS SUPPORTING DATA AND

KNOWLEDGE INTEGRATION IN BIOINFORMATICS

by
Gabriele Milia

A thesis submitted for the degree of
Philosophiæ Doctor

PhD in Computer Science
XXVII Cycle

Supervisor: Prof. Nicoletta Dessì

PhD Coordinator: Prof. Giovanni Michele Pinna

INF/01

2013 - 2014

Abstract

In recent years, computer advances have changed the way the science progresses and have

boosted studies in silico; as a result, the concept of “scientific research” in bioinformatics

has quickly changed shifting from the idea of a local laboratory activity towards Web

applications and databases provided over the network as services. Thus, biologists have

become among the largest beneficiaries of the information technologies, reaching and

surpassing the traditional ICT users who operate in the field of so-called "hard science"

(i.e., physics, chemistry, and mathematics). Nevertheless, this evolution has to deal with

several aspects (including data deluge, data integration, and scientific collaboration, just to

cite a few) and presents new challenges related to the proposal of innovative approaches in

the wide scenario of emergent ICT solutions.

 This thesis aims at facing these challenges in the context of three case studies, being

each case study devoted to cope with a specific open issue by proposing proper solutions in

line with recent advances in computer science.

 The first case study focuses on the task of unearthing and integrating information from

different web resources, each having its own organization, terminology and data formats in

order to provide users with flexible environment for accessing the above resources and

smartly exploring their content. The study explores the potential of cloud paradigm as an

enabling technology to severely curtail issues associated with scalability and performance

of applications devoted to support the above task. Specifically, it presents Biocloud Search

EnGene (BSE), a cloud-based application which allows for searching and integrating

biological information made available by public large-scale genomic repositories. BSE is

publicly available at: http://biocloud-unica.appspot.com/.

i

 The second case study addresses scientific collaboration on the Web with special focus

on building a semantic network, where team members, adequately supported by easy

access to biomedical ontologies, define and enrich network nodes with annotations derived

from available ontologies. The study presents a cloud-based application called

Collaborative Workspaces in Biomedicine (COWB) which deals with supporting users in

the construction of the semantic network by organizing, retrieving and creating

connections between contents of different types. Public and private workspaces provide an

accessible representation of the collective knowledge that is incrementally expanded.

COWB is publicly available at: http://cowb-unica.appspot.com/.

 Finally, the third case study concerns the knowledge extraction from very large datasets.

The study investigates the performance of random forests in classifying microarray data. In

particular, the study faces the problem of reducing the contribution of trees whose nodes

are populated by non-informative features. Experiments are presented and results are then

analyzed in order to draw guidelines about how reducing the above contribution.

 With respect to the previously mentioned challenges, this thesis sets out to give two

contributions summarized as follows. First, the potential of cloud technologies has been

evaluated for developing applications that support the access to bioinformatics resources

and the collaboration by improving awareness of user's contributions and fostering users

interaction. Second, the positive impact of the decision support offered by random forests

has been demonstrated in order to tackle effectively the curse of dimensionality.

ii

Contents
List of Figures...v

List of Tables..vii

1 Introduction...1

2 Emerging Technologies and Trends in Bioinformatics...5

2.1 Cloud Computing..5

2.2 NoSQL Databases..10

2.3 Semantic Web technologies: Ontologies...15

2.4 Concluding Remarks...17

3 Data Integration on the Cloud: a Case Study..19

3.1 Architectural aspects..21

3.2 BSE Functionalities...25

3.3 Implementation..32

3.4 Related Work...33

3.5 Concluding Remarks...34

4 Scientific Collaboration: a Case Study..37

4.1 Modelling Collaborative Knowledge..39

4.2 COWB Architecture and Functionalities...43

4.2.1. Knowledge Exploration...46

4.2.2 Network Editing..48

4.3 Implementation..51

4.4 Related Work...52

4.5 Concluding Remarks...54

5 Knowledge Extraction: a Case Study..57

5.1 Background..58

5.2 Experiments...60

iii

5.2.1 Results About Tuning on the Original Dataset...61

5.2.2 Results About Tuning on Filtered Subsets..63

5.3 Concluding Remarks...66

6 Conclusions...67

Bibliography...69

Appendix A: Google App Engine...83

iv

List of Figures

List of Figures

2.1. Cloud computing: service models..7

2.2. From ACID properties to BASE approach...12

2.3. Visual guide to CAP theorem...12

3.1. The basic accordion of BSE...27

3.2. Example of query results..27

3.3. The gene accordion and its panels..28

3.4. Expansion of the panel “Interaction network and Structures” (gene accordion). The

“Load PDB IDs” button triggers the the capture of data in pay-as-you-go fashion......29

3.5. Data caught in pay-as-you-go fashion..29

3.6. Search by drug context: query results...30

3.7. General information about a specific drug...31

3.8. Tool accordion and its panels..32

3.9. Example of chart about genes...32

4.1. The proposed framework. The bottom layer models the domain knowledge, the

second layer describes the functional resources, and the upper layer contains

collaborative workspaces...40

4.2. The COWB architecture...44

v

4.3. Second level neighbourhood of the concept “Mast cell”. The user selects the link

between the concepts “Osteocytes” and “Connective tissue cells”. The tooltip shows

information about the selected link (predicate label and author)...................................47

4.4. Third level neighbourhood of the concept “mast cell”. A pre-calculated clustering is

visualized...48

4.5. Alice creates the node “plasma”. The wizard helps Alice to choose the proper

ontology for defining the concept of interest...49

4.6. Bob visualizes the node “plasma” created by Alice. By clicking on the node, Bob

visualizes the Alice’s profile..50

4.7. Example of a private workspace. Nodes created by the workspace owner are

visualized in red, whereas nodes created by other users are depicted in blue...............51

5.1. Tuning on Leukemia dataset: AUC versus ntree for mtry equal to 1, 2, 3, 5, 10 (left)

and mtry = 20, 30, 40, 50, 80 (right)..62

5.2. Tuning on Colon dataset: AUC versus ntree for mtry = 1, 2, 3, 5, 10 (left) and mtry

= 20, 30, 40, 50, 80 (right)...63

5.3. Leukemia dataset: (a) AUC versus ntree for some pre-filtered subsets and for the

whole dataset (mtry = 1 for all the curves); (b) AUC versus ntree for the subset TOP20

(mtry = 1) and for the whole dataset (mtry = 40)..65

5.4. Colon dataset: AUC versus ntree for some pre-filtered subsets and for the whole

dataset..65

vi

List of Tables

List of Tables

3.1. Local participants and corresponding catalogue content..24

5.1. Optimal values of mtry and ntree for pre-filtered subsets of increasing size, as

obtained by IG and χ2 ranking methods, for both Leukemia and Colon datasets.........64

5.2. Best results on Leukemia and Colon, both in terms of AUC and accuracy.............66

vii

Acronym

AJAX Asynchronous JavaScript and XML

AUC Area Under the ROC curve

API Application Programming Interface

BSE Biocloud Search EnGene

COWB COllaborative Workspaces in Biomedicine

DaaS Data as a Service

GAE Google App Engine

IaaS Infrastructure as a Service

IG Information Gain

NoSQL Not Only Structured Query Language (i.e., non-relational)

PaaS Platform as a Service

RDF Resource Description Framework

REST REpresentational State Transfer

SaaS Software as a Service

URI Uniform Resource Identifier

viii

ix

Chapter 1

Introduction

In recent years, the advent of high-throughput methodologies (~ omics) has favoured the

exponential growth of heterogeneous data in biology. Every year, the cost of generating,

acquiring and spreading data continues to decrease, so biologists and computer scientists

have to cope with processing an increasingly amount of data. Therefore, biology is more

and more a data-intensive science and has to effectively exploit these growing available

pieces of information hosted in vast numbers of independent and heterogeneous resources

spread all over the Web [Pas08]. In this scenario, biologists expect more and more

capabilities from Web applications and databases. On the other hand, the development of

specialized tools involves several standards, technologies, and frameworks which are often

complex, expensive to develop and maintain, and require accurate planning and

management [SK10]. In particular, the development of Web applications and databases in

bioinformatics arises several challenges and issues, such as data access, visualization, and

representation (i.e., standards). Solutions, which aim at addressing these problems related

to databases and Web applications for integrating data and knowledge, have to tackle some

challenging aspects, including the data deluge, data integration, and scientific

collaboration.

 In general, data are currently considered the fourth paradigm in Science [HGP12,

HTT09, HTT11] being the previous paradigms the empirical science, theoretical science

and computational science. Nowadays, biomedical data are typical of the category of “Big

Data” [RSK+11]; that is, data which are characterized by the so-called 5 Vs: volume,

velocity, variety, value, and veracity [DdLM14, DgdL+13]. In addition, biomedical data

rely on a wide range of data sources and are easily shared and replicated. On the other

hand, they present significant reuse opportunities which accelerate investigations already

under way by taking advantage of past efforts in science [Lyn08]. Moreover, they present

1

many attractive opportunities as regards the knowledge discovery from data (KDD) that

requires more complex and sophisticated tools in order to transform data in meaningful

knowledge [HKP11]. Therefore, advances in data mining technology are necessary to

improve the quality of data and the analysis results. In spite of past research, it is still a

challenge for the scientific community to individuate algorithms to effectively integrate,

clean, and represent data.

 Nowadays, biological research is becoming more and more interdisciplinary, and

searching for information often requires the integration of data with multiple levels of

granularities and relates data which pertain to different disciplines. Usually, searches are

carried out over resources distributed over the Web which use different standards to

represent data. The Web 2.0 [Mur07] has dramatically changed the way of managing Web

contents and promoted the use of collaborative systems such as wikis, blogs and social

networks. This shift from a static web to a dynamic one has pointed up two crucial

bioinformatics problems. First, the rate of growth of user-generated contents requires

methods to effectively exploit these data which are characterized by rapid-obsolescence

[FNS11]. Second, the success of the Linked Data paradigm [BHL09] is boosting the data-

oriented vision in bioinformatics. Many projects try to promote this vision by releasing,

sharing, and linking data by means of URIs, HTTP and RDF in order to replace the

conventional resource-oriented model and get something closer to a global repository

which complies with the Semantic Web paradigm.

 Data management is only part of the open issues in bioinformatics. Currently,

researchers need to share their data with the whole scientific community throughout the

world in order to yield new useful information and hypotheses derived from processing

existing public datasets. Web 2.0 technologies allow researchers to interact with their

colleagues, in that transcending traditional data integration technologies [SK10]. Unlike

Web 1.0 that was static, these technologies make the Web highly collaborative and allow

users to create large network of academic peers. Nonetheless, data originate problems

related to their semantic heterogeneity, integrity and formats (i.e., interoperability) which

prevent researchers to exchange information and use different tools [Mar13]. However, the

main problem in bioinformatics remains the lack of integration between different resources

such as ontologies, databases or individual resources.

2

 In order to face the above-mentioned issues and challenges, recent advances in computer

science continue to significantly influence the development of databases and Web

applications in bioinformatics.

 Specifically, the service-oriented computing (SOC) [SQV+14] has paved the way for

thinking biomedical resources in terms of computational infrastructures by posing services

as primary functional elements for data integration, delivery and usage. Many

bionformatics institutes, such as Swiss Insitute of Bioinformatics (SIB) [SIB14] and

European Bioinformatics Institute (EBI) [EBI14], make available their scientific databases

and software tools (i.e., resources) as Web services through exposing Web application

programming interfaces (API).

 Web 2.0 exploits Web services to get interoperability between data resources and

software, and programming techniques such as AJAX (Asyncronous JavaScript and XML)

to support dynamic user interaction on the Web [SK10]. The exponential growth of

biomedical information over the Internet dramatically increases the benefits of using Web

2.0 applications which rely on services available on the Web in form of APIs.

 Cloud computing [LFZ+09, BYV+09] and non-relational databases (i.e., NoSQL

databases) [HHL+11] are two significant components of the Web 2.0 era and seem to offer

interesting features in order to meet some crucial requirements of large-scale applications.

Cloud computing is a set of technologies which allows service providers to delivery

services over a network in a pay-as-you-go manner. Although applications that exploit

cloud computing are still at a preliminary stage in bioinformatics, their number is rapidly

increasing [SOH14, CQY+13]. However, most of computing applications deal with

processing and analysing large datasets [WKF+10, HGV+09, GTB+08, AGT+08], while

few work has been done to explore different architectural solutions [QEG+10, WN11,

FPG+11]. As regards NoSQL databases, they represent the next generation of databases

that mostly addresses some crucial points in data management, including horizontal

scalability, flexibility, and weak consistency. They are getting more and more attention

since they are schema-free; that is, they have a flexible structure [CZ14]. This feature is

extremely attractive for domains as biology because biological data are very

heterogeneous.

3

 The remainder of this dissertation is organized as follows. Chapter 2 provides a

background on some relevant technologies in bioinformatics. In Chapter 3, I present a

cloud-based application (BSE) which provides a comprehensive environment for

capturing, integrating, and searching genetic and genomic data coming from resources

distributed over the Web. COWB, a cloud-based application which relies on an extensible

framework for handling collaborative biomedical knowledge, is discussed in Chapter 4.

Chapter 5 presents an experimental analysis about the effect of a filtering process on the

predictive performance of a random forest classifier and its critical parameters. Finally,

Chapter 6 presents concluding remarks.

4

Chapter 2

Emerging Technologies and Trends in
Bioinformatics

 This chapter presents the state of the art about some emerging technologies and trends that

support scientific advances in bioinformatics. First, cloud computing is introduced with

focus on its essential characteristics, service models, and deployment models. Next,

advantages of cloud computing in bioinformatics are highlighted. Second, this chapter

discusses the basic features of the next generation databases also known as NoSQL

databases and outlines their potential in the context of bioinformatics. Finally, advantages

and drawbacks of ontologies are outlined, especially in life science domains.

2.1 Cloud Computing

According to National Institute of Standards and Technology (NIST) [NIST15], cloud

computing can be defined as follows [MG11]:

Cloud computing is a model for enabling ubiquitous, convenient, on-demand

network access to a shared pool of configurable computing resources (e.g.,

networks, servers, storage, applications, and services), that can be rapidly

provisioned and released with minimal management effort or service provider

interaction.

 This definition points out that these resources are quickly provided in a pay-as-you-go

fashion (i.e., consumers pay only for what they use) as it happens for public utilities.

5

Moreover, they are subjected to Quality of Service (QoS) parameters that are defined in

Service Level Agreements (SLA).

Hence, cloud computing has the following characteristics:

• On-demand self-service. A customer can unilaterally get computing resources (e.g.,

storage) without interacting with a service provider.

• Broad network access. Resources are made available over the network using

standard mechanisms in order to allow both thin or thick devices (e.g., smartphone

or Personal Computer) to access these capabilities.

• Resource pooling. A service provider uses a multi-tenant model for serving

multiple consumers; thus, it guarantees that customers and their data are protected

from each other. Both physical and virtual resources are provided and released as

user computing requirements change. Actually, nobody has the knowledge over the

exact location of the computing resources but it may be possible to specify location

(e.g., country or data center).

• Rapid elasticity. Computational resources are elastically assigned and released in

order to scale rapidly. From the consumer point of view, capabilities appear

unlimited and always available.

• Measured Service. Service provider monitors and reports the capability usage to the

customer in a transparent way.

 Since cloud computing virtualizes the resources, users consider the offered resources as

something unlimited. Consequently, they do not have to plan in advance the amount of

resources they need. Moreover, users avoid up-front investments and rent resources

according to their real needs.

 The cloud services are broadly divided into four abstract layers:

• Infrastructure as a Service (IaaS). This layer provides the physical assets (e.g.,

servers) as a metered service using a pay-as-you-go fashion. Resources can be

accessed by consumers without knowing where they are physically hosted. At IaaS

layer, Amazon EC2 [Ama14] is a famous case in the industry.

6

• Platform as a Service (Paas). This layer provides programming languages,

libraries, APIs, environments and tools (i.e., a platform) in order to enable

developers to build applications onto the cloud infrastructure. User does not handle

the underlying cloud infrastructure but manages deployed applications and settings

of the app. Examples of PaaS are Google App Engine [AE14], Microsoft Azure

[MA14] and Heroku [Her14].

• Software as a Service (SaaS). It delivers software services on-line; therefore, SaaS

eliminates the need for local installation and both software maintenance and

updates are easier than on-premises software. As a successful example, Google

Drive [GD15] allows users to create and share documents online for accessing them

“anywhere, anytime”.

• Data as a Service (DaaS). It supplies dynamic data access on-demand. Data are up-

to-date and accessible by heterogeneous thin or thick client platforms that are

connected over the Internet [DGG+12]. Current example of DaaS is Amazon Web

Service (AWS) [AWS14], one unit within Amazon.com which hosts and makes

available a variety of public datasets, including 1000 Genomes Project [GPA14],

Ensembl Annotated Human Genome Data [EAH14] and Human Microbiome

Project [HMP14] (available on AWS at http://aws.amazon.com/public-data-sets/).

 These services are usually represented as a stack because each service is built upon the

previous layer (Figure 2.1).

7

Figure 2.1. Cloud computing: service models

 Depending on their deployment, cloud infrastructures can broadly classified as follows:

• Public cloud. Data centers (i.e., hardware and software) are made available in a

pay-as-you-go fashion to the public [AFG+09].

• Private cloud. This service deployment model indicates internal data centers of a

single business, government, or academic organization which are not provided to

the public. Note that a private cloud may be managed by the organization itself, a

third party, or some combination of them.

• Community cloud. The cloud infrastructure is made available to a specific

community of users with similar requirements. A community cloud is a

generalization of a private cloud where consumers may belong to different

organizations which share concerns such as mission or policy.

• Hybrid cloud. The cloud infrastructure consists of two or more mixed models (e.g.,

private and public). These distinct data centers exploit standardized or proprietary

technology in order to work together and get data/application portability. Hybrid

cloud aims at addressing the limitations of public and private clouds offering more

flexibility. The hybrid model's shortcoming is that determining the best trade-off

between public and private cloud component is a difficult task.

• Virtual Private Cloud. A Virtual Private Cloud (VPC) builds an infrastructure on a

Public Cloud by exploiting Virtual Private Network technology [ZCB10].

 For small organizations, institutes and laboratories, cloud computing offers to the

following advantages:

• Lower entry cost to use compute-intensive resources available only to the largest

organizations.

• Cost-effective pay-per-use utility computing model.

• High scalability dynamically adjusted according to user demand.

• Immediate access to hardware resources with no upfront capital investment.

8

 A lot of work on bioinformatics [HGV+09, KJD+12, TOG+10, ZGL+11] makes use of

IaaS for deploying data-intensive applications which address issues related to large-scale

data processing. Indeed, recent research [DG10] has shown the utility of MapReduce

[DG04], a programming model for processing vast amounts of data in a parallel and

distributed manner. By partitioning data on different servers, this programming model

allows for the parallel, distributed processing of large datasets across clusters of computer.

Hadoop [Had15], an open-source implementation of MapReduce, has effectively seen a

widespread adoption in bioinformatics [ODS13]. However, MapReduce is especially

suitable for cloud platforms because they make available scalable clusters of nodes; in fact,

there are many services which make use of MapReduce on top of their cloud platforms.

For example, Amazon provides Amazon Elastic MapReduce (Amazon EMR) [EMR15], a

Web service that exploits Hadoop and allows users to quickly and cost-effectively process

large datasets by distributing data across a resizable cluster of Amazon EC2 [Ama14]

instances. Currently, Amazon EMR is employing in a variety of applications, including

data warehousing, machine learning, and bioinformatics. Further examples are App Engine

MapReduce [GMP15] and HDInsight [HDI15], respectively an open source library built on

top of the PaaS provided by Google (i.e., Google App Engine [AE14]) and a framework for

the Microsoft Azure [MA14] cloud implementation of Hadoop.

 A less explored layer of cloud services is PaaS. As far as I know, few work has been

done to investigate the potential of bioinformatics applications developed at this layer.

Undergoing studies include two recent projects developed at the Institute for Systems

Biology [ISB14]: Regulome Explorer [RE14] and Pubcrawl [PC14], respectively deployed

on App Engine and Amazon Web Services. Specifically, Regulome Explorer supports the

exploration of datasets which give information about common gene disruptions across

different cancers, whereas Pubcrawl is an application that combines literature based

semantic distances with protein domain interactions to dynamically create network

topologies of terms. However, creating, deploying and managing a scalable Web

application in the cloud at PaaS layer seems interesting, particularly in bioinformatics.

Indeed, PaaS, which relies on a cloud infrastructure, facilitates the development,

maintenance, and update of an application by making available several programming

languages, standard protocols, libraries, relational and non-relational databases, and

frameworks. In addition, PaaS avoids to think in terms of virtual machines [Sur12].

9

Finally, PaaS seems to address the challenge of facilitating the development of applications

as a distributed, scalable and widely-accessible service in the Web [SLB+11].

 As regards bioinformatics, the interest in investigating PaaS layer is also motivated by

the fact that this kind of platform often adopts non-relational databases whose models meet

the need of organizing loosely structured and heterogeneous data, as it often happens in

bioinformatics. To better explain this interest, the next section details the basic features of

this kind of databases.

2.2 NoSQL Databases

Featured by a well-structured and rigid model, relational database systems have serious

problems in coping with large datasets that change quickly and are mostly unstructured and

connected. Nowadays, relational DMBS are still very popular in the database market;

indeed, they are a mature technology which represent a lot of investments by vendors,

users, and developers in terms of money and technical know-how. With the advent of

distributed architectures and cloud computing, alternative models for storing and managing

data have been proposed in order to address challenges mainly originated from Web 2.0

requirements. These solutions do not replace relational databases, but they are adopted for

specialized projects such as those that are distributed, that involve large datasets, or that

need scalability [Lea10].

 These solutions are generally referred to as NoSQL databases. The term “NoSQL” is an

acronym which stands for “Not Only SQL” and denotes the “Next Generation Databases

mostly addressing some points, such as being non-relational, distributed, and horizontally

scalable” [Nos14].

 NoSQL solutions have been developed as in-house custom solutions by companies such

as Google, Amazon, LinkedIn in order to solve their real specific problems which arose

from three broad issues: unprecedented transaction volumes, expectations of low-latency

access to large amounts of data and availability in an unreliable environment [Bur11].

Projects/products include BigTable (provided by Google) [CDG+06], Amazon DynamoDB

[DDB15], LikedIn Voldemort (LinkedIn) [Vol15], and Apache Cassandra (Facebook)

[AC15].

10

 The main feature of NoSQL systems is that they generally do not guarantee ACID

(atomicity, consistency, isolation and durability) properties. Since these properties are not

essential in some applications [ABR14, HWC+14], NoSQL databases relax these

properties in favor of the following BASE properties:

• Basically Available (BA). The system works most of the time.

• Soft-state (S). The system is not write-consistent; consequently, different replicas

can be not mutually consistent at some point.

• Eventual consistency (E). The system eventually reaches consistency; in other

words, it does not guarantee the consistency at a specific time.

 Differently from the ACID properties, the co-existence of the above properties must

comply with the CAP theorem [Bre00] which states that every networked shared-data

system can retain at most two of the following properties:

• Consistency (C). It indicates that after an update operation of some writers all

readers see the updates of the shared-data system; that is, all client always have the

same up-to-date copy of the data.

• Availability (A). It means that a system is designed and implemented in order to

keep working in case of problems. For example, a system must cope with crash or

hardware/software update without stopping its tasks. Therefore, each client can

always read and write.

• Partition (P). This property is referred to the ability of system to operate in the

presence of physical network partitions.

 The CAP theorem results in a shift from the strong consistency guaranteed by ACID

properties to a weak consistency (e.g., eventual consistency) provided by BASE approach

(see Figure 2.2).

11

 Figure 2.3 shows the well-known triangle which is usually used to explain the CAP

theorem. It details the properties (consistency, availability and partition) preserved by some

commercial databases such as MySQL and PostgreSQL (CA), and NoSQL solutions (CP or

PA).

 NoSQL databases can broadly classified into the following categories:

• Wide Column Store / Column Families. Column family stores have been designed

after Google's BigTable [CDG+06]. They consist of a sparsely populated table

whose rows can contain arbitrary columns [RWE13]. Therefore, column stores are

12

Figure 2.2. From ACID properties to BASE approach.

Figure 2.3. Visual guide to CAP theorem

column-centric; that is, they handle data by column instead of by row as it happens

in traditional relational databases. Row keys are used in order to build column

indexes. This category includes several famous databases such as BigTable (via

Google App Engine [AE14]), Apache Cassandra [AC15], and Apache Hbase

[AHB15].

• Document store or Document-oriented storage. Document databases handle semi-

structured data; specifically, they store and retrieve documents which organize data

according to several standard formats, including JSON, XML, and YAML. Each

document has an ID and is considered as an independent entity. In general,

document databases rely on indexes which allow for retrieving documents based on

their attributes [RWE13]. Document-oriented storage is the most popular paradigm

for managing hierarchically structured documents. Examples of document store are

MongoDB [Mon15], CouchDB [Cou15], and RavenDB [Rav15].

• Key Value / Tuple Store. Key-value stores can be considered cousins of the

document store family. As the name suggests, they store data as a collection of key-

value pairs (i.e., a dictionary) [GRR14]; therefore, key-value stores are large,

distributed hashmaps which allow for retrieving values by means of keys [RWE13].

Amazon DynamoDB [DDB15] and the Oracle NoSQL database [Ora15] are two

popular databases of this category.

• Graph databases. Graph databases rely on a graph for representing data and

making available CRUD functions (Create, Read, Update, and Delete). Specifically,

there are several types of graph data model, including property graph, hypergraphs,

and triples [RWE13]. Therefore, this kind of database is well suited to store data

and their relationships (e.g., data from social networks). It is worth noticing that

graph databases use graph algorithms for optimising traversal performance. A good

example of this category is Neo4J [Neo15].

• Multi-Model Databases. Multi-Model databases have schemas with several

different features. For example, OrientDB [Ori15] can store documents like any

other document database, but also handles relationships such as a graph database.

Therefore, it aims at exploiting both the advantages of a distributed graph database

engine and the flexibility of a document database. As a result, OrientDB maintains

constant the traversing speed regardless of the database size.

13

 However, bioinformaticians often need to cope with the following types of data [AD11]

simultaneously:

◦ Structured data. They have a well-defined schema which allows for querying

data by means of a structured query language (e.g., SQL). The schema is

defined according to a data model; for example, the relational model. The

drawback of this kind of data arises when it is necessary to change the schema

in order to meet new requirements.

◦ Unstructured data. This type of data does not have a schema which organizes

information; therefore, unstructured data are not arranged in accordance with a

data model. Examples of unstructured data are pictures, digital audio and video,

text documents, and emails.

◦ Semi-structured data. They refer to data that have themselves some pieces of

information to convey their schema (e.g., XML tags or RDF statements).

◦ Partially structured data. These data comprise both free text and information

which complies with a schema; in other words, information is partly formatted

according to metadata encoded as a database schema and partly in the form of

free text [KP00].

 In general, organizations that must cope with storing and processing large collection of

unstructured data are more and more turning to NoSQL databases [Lea10]; in fact,

relational DBMSs do not fit well in facing the following issues:

• Data variety imposes new requirements to data storage solutions and database

design which should be quite flexible in order to cope with a increasingly number

of data sources with diverse data (e.g., spreadsheets, Web sources, XML, traditional

DBMSs) [SR13]. RDBMSs are recognized as optimal solution for handling

structured data; in fact, they gear data to multiple tables and provide excellent data

integrity [MPR+12]. On the contrary, they offer little support for unstructured data,

semi-structured, and partially structured data.

14

• RDBMSs usually allow for scaling up (i.e., vertical scaling), but do not allow for

scaling out (i.e., horizontal scaling) [HWC+14]. Therefore, they have problems

with architectures in which nodes or servers can be added in order to increase the

capacity of an application environment because relational table joins across

server/nodes are complicated and expensive [MPR+12].

• RDBMSs are not successful in processing large datasets quickly because they

comply ACID properties in order to guarantee strong consistency; that is, all clients

must see the same data at the same time. The main drawback of strong consistency

is that it requires time-consuming tasks. Finally, note that ACID guarantees are

often too pessimistic in many problems (e.g., social networks).

 Unlike RDBMSs, NoSQL databases do not have to comply with rigid schemas and scale

out easier than traditional RDBMSs. These features are particularly attractive in

bioinformatics to build specialized tools [MPR+12]. Some bioinformatics tools have

already been developed by exploiting NoSQL databases such as Hbase [OMN10],

CouchDB [MPR+12], App Engine Datastore [WN11]. Despite their relative immaturity,

NoSQL databases, such as graph databases, are considered ready for bioinformatics

[HJ13]. For example, Bio4j [PTPT+13] exploits Neo4j [Neo15] in order to provide a

powerful framework for protein which integrates most data available in UniProt KB

(SwissProt + Trembl), Gene Ontology (GO), UniRef (50, 90, 100), RefSeq, NCBI

taxonomy, and Expasy Enzyme DBs.

 Recent achievements of some bioinformatics institutes, such as EMBL-EBI, seem to

confirm that NoSQL is a frontier research in bioinformatics. Specifically, EMBL-EBI

databases group acquired MongoDB [Mon15] skills and started to plan a central

infrastructure in order to make available this document database as a service [EMB13].

2.3 Semantic Web technologies: Ontologies

In recent years, the Semantic Web technologies [WS14] have played a key role in many

scientific disciplines (e.g., bioinformatics) which rely heavily on computational

infrastructures for managing large-scale data [LKN+13]. This preeminent role mainly

15

arises from their suitability in supporting knowledge management [OLe98]. Perhaps the

most important benefit of Semantic Web technologies is the use of ontologies for defining

the concepts and relationships (also known as “terms”) used to formally describe and

represent an area of interest [WO15].

 The role of ontologies on the Semantic Web is to support machines in understanding the

meaning (i.e., the semantics) of information on the World Wide Web; in other words,

ontologies must enable machines to reason about the semantics of terms automatically.

Therefore, machine-readable ontologies play a key role in Semantic Web development

[XMR+11] since they are the fundamental building blocks which support inference

techniques on the Semantic Web [WO15]. Furthermore, since ontologies organise data in a

form that allows for integrating pieces of information, they facilitate data integration when

ambiguities can arise from terms used in different datasets. Combining the knowledge

from various datasets enables a whole range of applications such as decision support tools,

advanced web search engine, and Web applications that support scientific collaboration.

 As observed by recent research [DW12], ontologies are not only powerful but also

complex resources. Moreover, the success of ontologies in integrating data has led to an

uncontrolled proliferation of ontologies [SAR+07]. Nowadays, several ontologies are

available, but merging information from different ontologies still requires knowledge about

ontologies or at least about how to reuse conceptual descriptions provided by others and

how to publish new ones. However, the relevance of ontologies has widely acknowledged

in bioinformatics. Some projects, such as OBO foundry [SAR+07], aim at overcoming the

before-mentioned problems by establishing a set of design principles that can boost

interoperability of ontologies. In fact, these principles want to ensure a gradual

improvement of quality and formal precision in ontologies. Nevertheless, designing,

creating and publishing a set of interoperable ontologies in the biomedical domain is still a

challenge.

 Currently, a lot of ontologies are written in RDF [RDF15] and RDF-based semantic

languages such as OWL [OWL15]. Unfortunately, to become familiar with RDF syntax

requires a steep learning curve. For this reason, different repositories provide services with

16

the aim of facilitating the exploitation of public ontologies. For example, BioPortal

[WNS+11], which is a repository of biomedical ontologies, currently contains 105 OBO,

31 UMLS, and 273 OWL ontologies. It allows for browse public biomedical ontologies

and provides many services for working with them (e.g., an annotator that extracts

annotations for biomedical text with concepts from the biomedical ontologies).

Furthermore, BioPortal provides REST API to access ontologies programmatically.

Another interesting service is OBA [DW12] that provides a connector for embedded usage

of ontologies in applications in order to help developers in building an applications based

on information available in ontologies without being familiar with ontologies or query

languages to process them.

 Biomedical ontologies are gaining a fundamental role in enabling researchers and their

tools the exchange of interoperable data with minimum ambiguity. Moreover, ontologies

can meet the increasing requirements of data and knowledge integration in the biomedical

domain. Finally, by exploiting ontologies, data generated by biomedical research could

form a single, coherent, expandable, and manageable comprehensive knowledge which

would represent a great added value for biomedical data.

2.4 Concluding Remarks

Nowadays, traditional centralized computing platforms not only are expensive but also risk

to become increasingly inadequate to meet the application requirements. According to a

recent poll on biomedical research facilities [CJL+13], a significant number of research

institutes are experiencing the capacity limits of their computing facilities. Collecting and

configuring tools and resources for certain research purposes is a non-trivial job, even for

expert developers and technicians. Furthermore, functionalities and capabilities expected

from bioinformatics Web application and databases are becoming more and more

sophisticated; thus, flexibility, scalability and interoperability have to be placed at the core

of expected features for bioinformatics tools. Therefore, bioinformaticians call for a new

stack of technologies that exploits interoperable technologies and highly scalable

computing models, frameworks, and platforms. As outlined in this chapter, this new stack

can rely on three emerging technologies. The first technology is cloud computing that

17

offers a feasible platform with demonstrated elasticity and parallelism capacity for

managing large datasets [CSP13 ,CQY+13]. The second technology refers to NoSQL

databases which provide modern web-scale databases for fast and efficient queries on huge

amount of data. Finally, the last technology is represented by ontologies that enable both

scientists and tools to convey with minimum ambiguity, especially in challenging domains

such as bioinformatics.

18

Chapter 3

Data Integration on the Cloud: a Case
Study

Currently, there is a large number of databases and gene annotation resources which are

greatly relevant in the genetics and genomics communities since each one presents a

particular aspect regarding available gene notations. For instance, the 2014 Nucleic Acids

Research (NAR) Database Issue [SRG13] expounded 181 articles of molecular biology

databases, sixty-eight percent of which provided updates on the databases previously

presented in NAR and other journals.

 For investigating a concept, scientists usually have to deal with a set of untied data

sources, but at the same time, they want to search information in the whole collection of

data without having a deep knowledge about information sources [MHF06]. In acquiring

information from web resources, they merely retrieve a small amount of information about

a particular concept; as a result, they must filter huge pieces of data available in different

web resources to get the information of interest. Since biology spreads over multiple

domains, scientists have to search information stored in several databases and web sites for

each concept they investigate. Each system presents a different user interface, terminology

and data formats; therefore, the quality of the search depends on user ability to exploit

these distributed resources over the Web. Hence, the discovery of specialized information

can be difficult for three reasons. First, researchers have to remember how to navigate each

specific web site and this task can be time-consuming and daunting. Second, different

systems implement the same functionalities in different ways and often deal with

overlapping data. Finally, a lot of identifiers are used to pinpoint the same concept.

19

 In order to search effectively in biomedical databases and cope with the growing number

of resources available worldwide, it is necessary to answer three basic questions.

• How to integrate structured, semi-structured, partially structured, and

unstructured available data with diverse and sparse schemas?

• How to retrieve meaningful information in an easy and efficient way?

• How to implement a searching infrastructure which has to scale, hence change,

in order to meet new requirements stemming from the growth of its searching

domain?

 Computational solutions, which range from database to data warehouse, poorly adapt to

face the above questions for the following reasons:

• Many resources are large in size, dynamic, and physically distributed; as a result, it

is necessary to implement mechanisms that can efficiently extract the relevant data

from disparate sources on demand.

• Searching strategies must be devised for obtaining the necessary information within

constraints imposed by the different owners of the data source in order to comply

with the various policies.

• Being heterogeneous in structure and content, resources represent data according to

their own schema which defines its concepts and relationships among concepts.

• Searching happens in different contexts and from different user perspectives;

therefore, it is necessary to implement mechanisms for mining context-dependent

information.

20

 This first case study present an application which aims at proposing a feasible solution

to above questions and focuses on genomics, a key area of biology which places stress on

trying to solve the problem of gathering and processing large amounts of biological data.

Specifically, this case study presents BioCloud Search EnGene (henceforth BSE)

[DPM+13], a comprehensive searching environment which facilitates the versatile

integration of existing genetic and genomic information from multiple heterogeneous

resources. The key idea is to conceive BSE as a cloud-based application which essentially

rents its capacity from a cloud computing platform and relies on a new operational

framework in which genetic information and computing technologies are reshaping each

other. Like popular online gene portals, BSE adopts a gene-centric approach: researchers

can find information by means of a simple query interface that accepts standard gene

identification as keywords. Moreover, by using advanced searching and tools, users are

enabled to explore many resources via high quality, interoperable services offered in a

“neutral” space. As it happens for web search engines which are designed to look for

information on the World Wide Web, several services act as specialists which extract data

available in many databases or open directories and return real-time information. They are

a mean of organizing and integrating information from different web sources and making

them manageable and satisfactory for the user.

 BSE is publicly available at http://biocloud-unica.appspot.com.

3.1 Architectural aspects

BSE grounds on the dataspace paradigm [FHM05, HFM06], a new scenario for handling

information relevant to a particular organization (e.g. enterprises, government agencies,

universities), regardless of its format and location in a data co-existence perspective

[MHF06]. Dataspace paradigm indicates a set of principles which aim at enhancing

traditional technology [Jef08]. Dataspaces set out to provide an alternative to classical data

integration methods by reducing up-front costs and integrating data in an incremental

manner. A dataspace consists of a set of participants (i.e., individual data sources) and the

relationships among them [HFM06]. Specifically, a dataspace is an abstraction of a

database that does not require structured data and has a base “off-the-shelf” set of

21

http://biocloud-unica.appspot.com/

functionalities over all data sources. The key idea is to enhance the quality of data

integration and the semantic meaning without defining a schema for all the data sources in

advance [DH07, HMR+08, AD11].

 In contrast to the traditional data integration approaches, a dataspace integrates data

according to a very loosely structured data model (hence, data co-existence) which allows

the system to manage heterogeneous data coming from a diverse set of sources. The core

of a dataspace is a catalogue which contains both information about participants and their

relationships. In addition, the catalogue provides operations to extend and update itself in

an incremental fashion. Advanced DBMS-like operations, queries and mappings are made

available over time by different components. Unified views over participants are provided

following the pay-as-you-go principle that is currently getting more and more attention on

the Web [JFH08, HBP+11]. In fact, this principle is especially attractive in order to get data

integration on the Web because pay-as-you-go systems attempt to provide services on a set

of heterogeneous data with a limited up-front effort [DHZ12].

 According to the dataspace paradigm, BSE undertakes the responsibility of coordinating

and organizing the search across a dataspace whose participants are a set of distributed

resources. In addition, BSE indexes these resources by a catalogue which represents the

core of the dataspace. Data integration expects no data transfer to any central repository,

except for the data stored in BSE catalogue which is initially built and gradually updated.

In some way, the catalogue has the same role of the table of facts in a data warehouse

system where the dimension table are distributed across several web resources. However,

compared to a data warehouse schema, the catalogue presents the following differences:

• It avoids the definition of an a priori schema.

• It stores pieces of information about dataspace participants instead of relational

tables.

• Besides storing and indexing participants, the catalogue provides mechanisms for

creating new relationships among participants.

22

 From a logical point of view, the catalogue is a multi-level index that indicates how data

from various web resources is captured and tied together. Physically, it is implemented by

an object-oriented, NoSQL database which stores gene annotations, acquires and combines

data from external resources which participate in the dataspace.

 The current version of BSE implements a dataspace which counts 34 participants.

According to their role in supplying data these participants are divided in three categories:

• Local participants. Resources from which some useful content is captured and

permanently stored into the catalogue.

• Service-based participants. Resources whose content is captured at running time by

specific BSE services in a pay-as-you-go fashion according to user demands.

• External participants. Resources whose web links are dynamically built and

activated on demand.

 The catalogue organizes objects in classes, each corresponding to one local participant.

In details, a local participant is mapped in a repository of objects associated with the

catalogue and relationships among participants are expressed by means of key-value pairs.

Table 3.1 shows the list of local participants and the corresponding catalogue content.

 The schema-free structure of the catalogue makes possible to implement new ways for

querying and extracting information based on the notion of context. Specifically, a context

is a logical structure that supports queries about common points of interest that users share

in surfing dataspace participants. For example, if a user wants to search information about

genes associated with a specific disorder, he/she refers to the context 'Human Mendelian

Genetic disorder'. Contexts are the only way to query the catalogue. Each context presents

a gene-centric view where the users can easily identify the relevant resources and browse

the content of the resources to which the context relates. Contexts hide the complexity of

underlying dataspace by exploiting BSE services which capture and present the

information of interest.

23

Dataset Catalogue content

Entrez Gene

homo sapiens gene info [MOP+11,

BHK+14]

Main annotations about

human genes

Entrez Gene Relations

human gene relations [MOP+11,

BHK+14]

Gene to gene relationships

Manually Annotated Targets and Drugs

Online Resource (M.A.T.A.D.O.R)

[GKD+08]

Gene drug relationships

Entrez gene ID to pathways [COW+11]
Human genes pathways

according to Reactome

Entrez gene ID to Mendelian Phenotype

[McK98]

Human Mendelian Phenotypes

and their gene associations

Entrez gene ID to RefSeq [PTB+12]
Cumulative set of transcripts

and proteins

Human Ageing Genome Resource

[TCB+13]
Ageing-Related humans genes

Wellcome Trust Sanger Institute - Cancer

genomics annotations [YSP+13]

Cancer Drug sensitivity

Annotated genes

Table 3.1. Local participants and corresponding catalogue content.

 From a technical point of view, contexts identify specific perspectives on dataspace

participants that are kept in the catalogue. These perspectives resemble views in relational

databases. However, being the catalogue implemented by a NoSQL database, they do not

result from joining relational tables, but from relationships expressed by key-value pairs. In

addition, contexts take very little space to be stored since the catalogue contains only the

definition of contexts without a copy of all the data that the context relates to.

 The current version of BSE implements the following contexts:

• Query by gene. It allows users to search information about a specific gene by

means of standard identifiers.

24

• Query by Human Mendelian Genetic disorder. This context permits users to extract

a list of genes by specifying the name of a certain phenotype associated with a

genetic disorder with Mendelian transmission character.

• Query by pathway. It allows users to extract a list of human genes annotated in a

given biological pathway. Specifically, a pathway is a set of chemical reactions

related to one or more processes within a cell. It results in expression products

whose knowledge is very important in the study of biological phenomena.

• Bulk queries. This context allows users to extract a list of human genes which abide

by the following criteria: gene type, chromosome, ageing related annotation,

chemotherapeutic sensitivity related to annotated genes according to their

mutational status.

• Query by drug. It permits users to search information about a specific drug.

Therefore, it shifts the query focus from a purely genetic perspective to a context

which deals with the relationships between pharmacologically active molecules and

the human genome expression products.

3.2 BSE Functionalities

BSE provides a simple graphical user interface (GUI) that takes account of user experience

and usability in presenting information. In particular, BSE GUI exploits a set of user

interface interactions, effects and widgets, including accordions, tabs and tooltips in order

to address the problem of presenting a lot of information in a scarce space. Specifically, an

accordion is a widget which organizes a web page for showing a lot of contents in a limited

amount of space. The contents are broken into logical sections which are visualized in

collapsible panels. By clicking headers, each panel is expanded/collapsed in order to

show/hide a specific section. Tabs are used to further arrange pieces of information inside

the accordions; indeed, a tab is a single content area that can break information into

multiple panels. In some way, an accordion splits information vertically, whereas tab

25

breaks data horizontally. Finally, a tooltip is a widget for providing users with some text

messages in order to help them during the navigation of BSE.

 BSE provides four accordions:

• The basic accordion allows users to search information in the different contexts

that are made available within the application;

• The gene accordion is displayed whenever the user click on a gene returned by a

query and arranges a lot of detailed information about that gene.

• The drug accordion is visualized whenever the user click on a drug returned by a

query and allows him/her to get information about the drug properties and

interactions with proteins.

• The tool accordion provides, as its name suggests, two tools. The first one supports

users in looking for overlapping information from a list of genes. The second one

allows users to search articles by specifying a keyword.

 In what follows I present each accordion above mentioned.

 Figure 3.1 shows the basic accordion of BSE. The panel Search gene by IDs, which

corresponds to the context 'Query by gene', is expanded and presents three mutually

exclusive text fields where users can type a single identifier in order to search a specific

gene. Within this search context the user can search for genes by Entrez ID, or UNIPROT

accession. The Alias gene identification is supported too. BSE provides an autocomplete

for each text field in order to help users. For example, in Figure 1 the user is typing the

keyword “tp53” as standard gene identifier while BSE dynamically provides predictive

suggestions by expanding the keyword “tp53” in a sliding list of its synonyms and variants.

The user chooses the appropriate identifier from the list, submits his/her query and gets

information depicted in Figure 3.2.

26

 When the user clicks on the link that represents the gene identifier (e.g., TP53 – Entrez

ID 7157, see Figure 3.2), he/she is redirected to the gene accordion (see Figure 3.3) which

details the context for exploring information about TP53. By expanding the panels of this

accordion, the user can obtain a lot of highly detailed information and investigate every

aspect of its interest in specialized databases with a redirection that is consistent with the

initial query.

27

Figure 3.1. The basic accordion of BSE.

Figure 3.2. Example of query results.

 For example, Figure 3.4 shows the effects of expanding the panel “Interaction network

and Structures” (gene accordion). Here, in order to limit the number of query results, the

searching process follows a pay-as-you-go approach; in other words, the user is invited to

load additional information if he/she needs it. In this case, the user can interactively trigger

the capture of the structures related to TP53 by clicking the “Load PDB IDs” button.

Captured information is stored into a distributed RAM cache with high-performance for 24

hours for fast access to cached results of datastore queries; thus, this distributed memory

object caching system improves the responsiveness of the application.

 Figure 3.5 presents the results of this capture, including PDB IDs, images of 3D

structures from Protein Data bank, and FASTA Sequences of the corresponding structure.

As shown on the left of Figure 3.5, images can be expanded. Clicking on the blue arrows

(see Figure 3.5, on the right), the user is redirected to an external web site that provides

more detailed information.

28

Figure 3.3. The gene accordion and its panels.

 The same design logic affects the organization of the other panels of basic accordion

(i.e., Search genes by Human Mendelian Genetic disorder, Search genes by Pathway, Bulk

Queries, Search by Drug), each corresponding to a context.

29

Figure 3.4. Expansion of the panel “Interaction network and
Structures” (gene accordion). The “Load PDB IDs” button triggers
the the capture of data in pay-as-you-go fashion.

Figure 3.5. Data caught in pay-as-you-go fashion.

 As a further example, in the panel Search by Drug, which corresponds to the context

'Query by drug', the user types a drug name and BSE provides an autocomplete based on

M.A.T.A.D.O.R. [GKD+08], a public repository that annotates relationships between

human genes and drugs. Figure 3.6. shows results of looking for the drug “aspirin”.

 The drug accordion appears whenever the user clicks on a drug name. As shown in

Figure 3.6, when the user clicks on the link “Aspirin – Pubchem ID 2244” in the tab

“Results”, he/she is redirected to the drug accordion (Figure 3.7) which presents a lot of

detailed information about this drug.

 Figure 3.7 depicts the panel General Information which is expanded by default. It shows

details about the drug “Aspirin” and the related 2D structure. The drug accordion allows

user to search for specific molecular information about drugs. For example, the Protein

Interactions panel shows the relationships between drugs (i.e., chemicals) and genes (i.e.,

protein-coding genes) as annotated in the M.A.T.A.D.O.R. dataset [GKD+08].

30

Figure 3.6. Search by drug context: query results.

 As illustrated in Figure 3.8, the tool accordion is divided into two panels: Search

overlapping information and Search articles. The first panel makes available a tool for

identifying the overlapping information about shared morbid phenotypes, pathways and

interacting drugs given a list of genes. The second one provides a tool for searching articles

in Europe PubMed Central database by specifying a keyword. At the time of writing,

Europe PMC consists of 28 million+ abstracts and 2.6 million+ full text research articles

from PubMed and PubMed Central. Unlike PubMed Central, both full-text articles and the

abstracts provided by PubMed are released by Europe PMC in a single point of access.

Note that the Search Articles tool returns at most 25 entries and results are sorted by

relevance.

 Finally, BSE takes advantage of Google Charts to summarize some data in order to

provide some information at a glance such as the gene type distribution (Pie chart in Figure

3.9) or the chromosomal distribution (stepped area chart) given a list of genes.

31

Figure 3.7. General information about a specific drug.

3.3 Implementation

BSE is built and run on Google App Engine (henceforth GAE) [AE14] (see Appendix A).

It is written in Python and the catalogue of dataspace is stored into the App Engine

Datastore, a managed, NoSQL, schemaless database.

32

Figure 3.8. Tool accordion and its panels.

Figure 3.9. Example of chart about genes.

 As regards the graphical user interface, it was basically implemented using JavaScript

and a feature-rich JavaScript library called jQuery [JQ14].

 The pay-as-you-go approach heavily relies on Biopython [Bio14], a rich set of Python

libraries which provides the ability to deal with “things” of interest to biologists while

working on the cloud. In details, the Entrez Programming Utilities provided by NCBI

[NCB14] were accessed by means of the Bio.Entrez library available in Biopython. This

library was modified to run on the cloud just making some changes in the source code.

BSE also exploits Django [Dja15], a high-level Python web framework, provided by GAE.

 BSE exploits the following external services:

• NCBI Entrez Programming Utilities (E-utilities) [Say13]

• UniChem RESTful Web Service API [CDG+13]

• Database identifier mapping [UPA14]

• STRING API [JKS+09]

• WikiPathways Webservice/API [KPH+09]

• REST-style version of KEGG API [KGS+12]

• mygene.info REST web services [WMS+13]

• RESTful web service Europe PMC [PMC15]

 BSE mainly adopts RESTful Web Services (i,e, web services that comply with the REST

architectural principles [Fie00]) in order to integrate biological data because they are

lightweight and particularly well suited for ad hoc integration on the Web [SQV+14].

3.4 Related Work

Among the closest works to BSE, I cite BioGPS [WOB+09], MyGene.info [WMS+13],

and EntrezAJAX [LP10]. BioGPS makes available a centralized gene portal for integrating

33

distributed gene annotations. It uses PostgreSQL [Pos15] as the database backend.

MyGene.info [WMS+13] provides programmatic access to BioGPS resources; that is, it

offers REST Web services to query/retrieve gene annotation data. MyGene.info exploits

CouchDB [Cou15]; thus, it stores data as "key-document" pairs. Both BioGPS and

MyGEne.info are hosted in Amazon EC2 [Ama14] at IaaS layer. Therefore, BioGPS and

MyGene.info are two interrelated services that provide a remarkable “Gene Annotation

Query as a Service”. Nevertheless, the choice to pose their services directly on the IaaS

layer can result in time-consuming tasks for administrate the server instances and update

libraries, frameworks and so on.

 As regards EntrezAJAX [LP10], it harnesses GAE [AE14] in order to provide an

interface for accessing to biomedical resources accessible via the Web. Specifically, it

returns JSON data from the NCBI e Utils [Say10, Say 13]. EntrezAJAX demonstrates the

usefulness of using AJAX for data exchange with a server in order to build rich and

interactive applications. However, EntrezAJAX focuses only on Entrez services provided

by NCBI and essentially aims at representing a stepping-stone along the path of integration

of biomedical resources. In addition, it benefits only minimally from the cloud capabilities

of GAE; for example, it stores only the registry of developer API key and cache query

results. Thus, BSE relying heavily on this stepping-stone makes further efforts in order to

deeply explore cloud computing at PaaS layer and NoSQL technologies in a broader

integration perspective.

3.5 Concluding Remarks

BSE is a scalable cloud-based application which allows people involved in the analysis of

biological data (e.g., molecular biologists) to carry out simple and advanced searches in

different specialized databases. Going further the integration of content within genetic

databases, as data warehousing systems do, BSE considers dataspaces and cloud

computing the basic paradigms for effective searching information from genomic

resources.

34

 Specifically, I explored how the convergence of cloud computing and dataspaces can

offer both added-value service components and flexibility, making this convergence an

attractive combination also for other scientific domains. BSE meets some important

requirements, including high performance, scalability, and elasticity.

 Most importantly, I tried to identify a set of technologies necessary in order to address

big data searching issues in bioinformatics and complement the capabilities of genetic

portals. Cloud computing and dataspace are paradigms relatively new; nevertheless, they

seem to offer new insights in bioinformatics. Finally, even though this approach is

implemented for searching data stored in genetic databases, it might reveal new directions

for enhancing web-based exploration of big data in life science.

35

36

Chapter 4

Scientific Collaboration: a Case Study

Despite the large acceptance of Semantic Web technologies and their key role in

bioinformatics, some concerns begin to emerge about their suitability for supporting the

requirements of collaborative environments in which a research community shares and

creates new knowledge.

 First of all, one concern is about the possibility of widening the perspective offered by

ontologies in representing interdisciplinary biomedical knowledge. An ontology provides a

schema which expresses the model of a knowledge domain in terms of concepts,

relationships between concepts, class hierarchies and properties. The most common types

of relationships are “is-a” and “part-of”; as a result, the schemas of biomedical ontologies

do not take account of other important relationships useful to tie concepts that belong to

different ontologies or domains. For example, Gene Ontology (GO) [GO14], which is a de

facto standard for knowledge representation about gene products, has developed three

ontologies (i.e., structured, controlled vocabularies) that describe genes in terms of cellular

components, molecular functions, and biological processes. Being these aspects defined

by three different sub-ontologies, they seem independent, but actually, they are not for

scientific communities.

 A second concern is about the limited support offered by ontologies for an effective user

interaction and collaboration. Moreover, ontologies are powerful but, at the same time,

they are also complex resources [DW12] with several thousands of terms. The framework

provided by RDF [RDF15] and SPARQL is effective, but researchers are often requested to

be familiar with the SPARQL syntax which calls for a steep learning curve. Given the

37

availability of several ontologies, it is natural that biologists would create personalized

versions of ontologies which reflect their particular interests. However, the merge of

information from different ontologies still requires knowledge about how to reuse

conceptual knowledge provided by others and how to publish the new one. Within this

regard, it is increasingly hard to extract knowledge by browsing several web sites, each

having its own organization, its terminology and its data formats. Instead of focusing on

their real scientific interests, researchers are often involved in unearthing specialized

information and remembering the navigation paths of each specific web site. This task is

time consuming and daunting.

 The third concern is about the role of the Semantic Web in the context of current

technologies which continues to significantly influence the development of computational

tools in bioinformatics. Specifically, the service-oriented paradigm has provided a new way

of thinking biomedical resources in terms of computational infrastructures by positioning

services as primary functional elements for data integration. Many biomedical

organizations have now started to expose their IT searching services as Web services to

extract valuable information from ontologies. Furthermore, new service-based paradigms

have been proposed [BDP11, QEG+10] in order to help scientists in validating new

collaborative research practices such as workflow systems [WHF+13]. However, despite

their compliance to Semantic Web, many proposals are only suitable for solving specific

problems at hand and often hinder the development of a common terminology for the

representation of the domain knowledge [BBB13].

 I approach the above concerns in a pragmatic way and propose COWB (COllaborative

Workspaces in Biomedicine), an extensible framework for managing biomedical

knowledge. COWB harnesses cloud services to provide a collaborative environment as

SaaS in which biologists are actively supported, rather than just enabled, for representing

and sharing knowledge about a biomedical domain they are interested in. Beyond the

exploitation of the cloud paradigm, these functionalities are also provided by giving a

central role to semantic information: ontologies are at core of the proposed framework

because they drive the creation, storage and validation of data and metadata. Specifically,

ontologies are used to define the precise meaning of biomedical concepts and their

relationships in order to ensure those who are generating knowledge that they are using the

most up-to-date, unambiguous, and appropriate terms.

38

 In designing COWB, I was inspired by the typical behaviour of biomedical researchers

which capture specialized knowledge from the Web. Usually, these scientists begin from

the centralized view of a biomedical concept. Then, they seek to explore outward by

accessing additional information from multiple resources spread all over the Web. The aim

of COWB is to facilitate this approach by modelling and visualizing the domain

knowledge by means of a semantic network; that is, a graph where nodes designate

biomedical concepts and arcs represent relationships between those concepts. At same

time, collaboration is the main prerequisite of COWB as users in different locations

visualize the semantic network, interact with the same data and carry on the network

implementation while they afford a collaborative environment. Although COWB is geared

towards biomedical research, the ontology-centric model which supports knowledge

representation in COWB is domain-independent and can be applied in any scientific area

where the basic concepts can be semantically structured by a semantic network.

 COWB is publicly available at http://cowb-unica.appspot.com.

4.1 Modelling Collaborative Knowledge

From a biomedical perspective, collaboration is very attractive for a lot of circumstances,

including community learning, training and scientific research. However, it is not

conceivable to have a single and universally accepted ontology which covers all

biomedical domains. Thus, it becomes almost impossible to manage the biomedical

knowledge in a distributed research environment where scientists are independent of each

other.

 To support autonomy and intelligent coordination of researchers in creating and

managing shared knowledge, COWB organizes the knowledge at different levels according

to the framework shown in Figure 4.1. The bottom layer, namely the domain knowledge

layer, describes the set of meta-concepts relevant for the considered biomedical domain. It

can be viewed as a semantic network of concepts where nodes indicate biomedical

concepts and arcs (i.e., directed links) represent relationships between concepts.

39

 The second layer, namely the functional knowledge layer, handles functional resources

(FRs) which extend the domain knowledge and support its management. The functional

resources can be divided into four categories:

• The COMMUNITY FR that describes individuals or research groups. For

each user, an identifier, personal data, skills, group memberships and topics

of interest are represented. A group is described through its goals, its

research topics and contains information about its participants.

• The TEMPORAL FR that describes additional knowledge through common

metadata; for example, data of creation of a concept.

• The SEMANTIC FR which allows for defining an unambiguous meaning of

a biomedical concept and its relationships by means of ontologies.

• The DOCUMENTS FR that relies on biomedical documentation such as

abstracts of scientific papers.

40

Figure 4.1. The proposed framework. The bottom layer models the
domain knowledge, the second layer describes the functional
resources, and the upper layer contains collaborative workspaces.

 Annotations can be defined between the FRs and the domain knowledge layer to enrich

the content of a particular instance and establish the foundation for its retrieval when

requested. This means that FR instances can be semantically associated with the concepts

of the domain knowledge by following the principle of superimposed information; that is,

data or metadata “placed over” existing information sources [MD99]. For example, an

annotation can associate a community resource (e.g., a researcher called Joe) with a

specific domain knowledge instance created by Joe. Thus, this annotation can be exploited

when searching all the domain knowledge created by a specific user or a group.

 The third layer of the framework consists of a set of views over the underlying layers.

These views can be divided into two categories: public workspace and private workspaces.

 The public workspace contains knowledge objects of different granularity which deepen

a specific concept of the domain knowledge in which a researcher is interested. For

example, suppose that a researcher wants to explore the knowledge about the concept

“mast-cell”. The corresponding knowledge object in the public workspace is a view over

the domain knowledge; that is, a semantic network which contains the node “mast-cell”

and all its arcs with the other nodes. Within this semantic network, each element is

annotated with the functional knowledge (i.e., author, data of creation, URI, etc.). The

public workspace can be explored both by the community members and by public users

(i.e., viewer).

 As regards the private workspace, COWB assigns this kind of space to each

community member when a researcher joins the community. Therefore, a private

workspace, as the name suggests, is exclusively for the use of his/her owner. It has the

same structure of a public workspace but operates at individual level as semantic support

for personal knowledge management operations. For example, suppose that a researcher

called Joe is interested in creating the concept “plasma”. Joe accesses his private

workspace and creates a knowledge object which contains (1) the meta-concept “plasma”

captured from a specific ontology which guarantees the precise meaning of that concept,

(2) the functional knowledge for its management (i.e., the author, the date of creation, the

ontology which defines the concept, etc). Within his private workspace, Joe creates and

manages his part of the collective knowledge and is enabled to identify the community

41

members which collaborate with him in order to extend and specialize the domain

knowledge.

 In a real collaborative Semantic Web environment, it is important to provide means for

knowledge to cross the boundaries of closed local information and make accessible the

broad community by visualizing the community participants which are interested in

collaborating with a given user. In this way the knowledge produced by each user could be

extended and reused within the community.

 To tackle collaborative issues COWB provides a community model that distinguishes

between two different user behaviours:

• Users who simply want to explore the semantic network (i.e., public users

or viewers).

• Users who want to join the existing community in order to work on the

existing semantic network (i.e., private users).

 A role-based policy prescribes the rules to access to the workspaces; specifically, a role

is a set of rights which determine what operations a user can perform. In agreement with

user behaviours:

• Public user or viewer roles provide the passive access to the only public

workspace. These roles do not require any approval and may be upgraded

by the application manager. As a result, public users can only explore the

knowledge.

• Private user roles. The application manager assigns these roles to users

which want to collaborate in building and/or editing the semantic network

within the community. As such, a private user can create and modify his/her

own network. Furthermore, a user can connect his/her network to the

network of another community member by adding new relationships

between his/her nodes and nodes that belong to other users. Note that each

private user can edit only his/her network element; consequently, he/she

42

cannot modify or delete network nodes and relationships created by other

users.

 Dealing with a potentially large community, COWB tracks the authorship of the pieces

of semantic information that are introduced into the knowledge base. To join a community,

a user must fill in an on-line form in which he/she must indicate some general information

and his/her Google Account. Next, if the application manager assigns the user to the role of

private user, COWB will exploit the Google Account for authentication. This

authentication option permits COWB to track and verify the authorship of each piece of

semantic network that users create or update.

4.2 COWB Architecture and Functionalities

The implementation of COWB in a web server with locally held data presents practical

limitations not only in terms of physical resources availability (e.g., to meet peak

demands), but also about the following technical concerns:

• Several semantic resources are often large in size and physically distributed; thus,

there is the need for developing mechanisms that mine, on demand, only the

relevant information efficiently.

• The resources of interest are often heterogeneous in structure and content.

Furthermore, these resources represent data according to their own schema which

defines its own concepts and relationships between concepts. Accordingly,

searching strategies have to be designed for capturing information within the

constraints imposed by the data source in order to comply with the data policy.

• Collaboration happens in different contexts and from different user perspectives.

Therefore, it is necessary to implement mechanisms for handling and sharing the

collective knowledge effectively.

 The deployment of COWB in a PaaS contributes to alleviate these problems and

severely curtails issues associated with scalability and performance, especially when

43

collaboration expands across multiple sites. Being the collaborative environment hosted in

the physical infrastructure of the cloud platform, COWB exploits a close integration with

web servers and standard protocols and facilitates rapid development and updates.

 The COWB architecture is made up of a knowledge base, a procedural component (i.e.,

a set of services) and a user interface as shown in Figure 4.2.

 In details, the knowledge base takes advantages of a schemaless NoSQL database that

provides robust and scalable storage. In particular, COWB exploits an object-oriented

database which provides a great flexibility in storing the different layers of knowledge

defined by the framework improving the data management tasks in terms of elasticity and

scalability.

 The knowledge base stores the domain knowledge and its annotations from functional

resources into three classes of data objects: the class Node, the class Triple and the class

Community.

44

Figure 4.2. The COWB architecture.

 Specifically, the class Node describes network nodes which map biomedical concepts.

Each node has a preferred name tied to a specific ontology, a semantic type (if available)

and is labelled with a unique identifier (i.e., a URI). Further pieces of information include

the node author, the date of the node creation and a list of keys: each key identifies a

specific triple to which the node belongs to.

 As regards the class Triple, it maps the network structure. Each data object (i.e., an

entity) stores a single triple; that is, a statement about the domain knowledge in the form of

a subject-predicate-object expression. According to RDF terminology, triple elements are

resources which are identified by means of unique identifiers (URIs). Both the subject and

the object describe resources, while the predicate expresses aspects of a relationship

between the subject and the object. Annotations from functional knowledge include the

author and the date of creation of the triple.

 Finally, the class Community stores information about users; that is, this class handles

profiles of users which belong to the community.

 The procedural component exploiting a set of services copes with issues associated with

creation, management and interactive visualization of the knowledge related to public and

private workspaces. It implements the following classes of services:

• Data extraction/management services deal with the accommodation of information

extracted from web resources using services from external partners.

• Task-oriented services support specific procedures for network visualization.

• Administrative services support network management; that is, they allow private

users to handle the network. In addition, these services look after security aspects in

order to avoid problems related to the collaboration among users.

 A collaborative environment must deal with ambiguity effectively. In order to avoid this

problem, I chose to exploit the ontologies as basic mechanisms to univocally identify a

concept (i.e., a resource) and efficiently structure the network. Since there is not a single

ontology that contains a comprehensive knowledge to deal with all biological sub-domains,

45

COWB captures and integrates knowledge from many different sources. Specifically,

COWB uses BioPortal [WNS+11] and Europe PMC REST services [PMC15]. According

to the pay-as-you-go paradigm, the database holds only information about the node

properties. COWB exploiting this best-effort approach includes information about nodes

such as a list of synonyms, the tree associated to node’s ontology, a list of scientific

publications about the considered node when user requests it.

 The user interface makes available some wizards for guiding researcher in managing

domain knowledge and supports him/her within both the public and private workspaces.

Specifically, the user interface provides two interaction modes: knowledge exploration and

knowledge editing. These interactions modes are described in details in what follows.

4.2.1. Knowledge Exploration

As previously mentioned, COWB envisions users searching, selecting and capturing

domain knowledge from the visual representation of the semantic network (i.e., a graph)

which models the domain knowledge.

 Within this graph, in order to explore the knowledge, a user must specify a preferred

name of a biomedical concept associated with a network node and a number that indicates

the level of neighbourhood (i.e., the number of hops). However, an autocomplete provides

suggestions while a user types in the research field. Therefore, given a Graph G, the first

level neighbourhood of a node N is a graph composed of all the triples in G that have N as

subject or object. The second level includes the first level neighbourhood and its

neighbourhood at the first level and so on. This strategy allows users to browse a highly

connected network efficiently and improves the readability of the knowledge.

 Figure 4.3 shows a case in which a user has searched for “mast cell” by specifying a

number of hops equal to two. The concept of interest, in this case “mast cell”, is

represented by a triangular node and its neighbours are represented as coloured circles.

Each node is assigned to one of the 15 UMLS semantic groups [MBB01] and its colour

depends on its semantic group. Tooltip widgets show information about the node (i.e.,

preferred name, definition, author and semantic type) or about the relationship (i.e.,

46

predicate label and author). Triples which originate the visualized network can be exported

in N-Triples format [NT14].

 Since the graphical visualization of a level of neighbours greater than two may be

complex, COWB supports the visualization of a pre-calculated clustering of nodes with a

high number of connections as depicted in Figure 4.4. Here, the numbers on brackets

indicate the existence of clusters and detail the number of hidden connections. A double

click on the cluster centre explodes the cluster and visualizes the original network with all

its nodes and arcs.

 COWB enables manipulation of the network and interaction with dynamic data.

Therefore, users can move the network, reduce/enlarge the size, and zoom in on selected

portions. These features allow for exploring large amount of data effectively when users

investigate a well-defined network portions. To produce readable views of the network, a

force-direct algorithm models arcs as springs that pull linked nodes together and attempts

to place nodes so that all forces are in equilibrium. This process is visually animated.

47

Figure 4.3. Second level neighbourhood of the concept “Mast cell”. The user
selects the link between the concepts “Osteocytes” and “Connective tissue cells”.
The tooltip shows information about the selected link (predicate label and
author).

4.2.2 Network Editing

Editing functionalities are strictly connected with the model of collective knowledge

presented in Section 4.1. Within this model, let us consider a possible scenario where Alice

is a researcher interested in representing knowledge about system biology.

 At the beginning, she requires the private user privileges. Next, when the COWB

application manager gives her these privileges, she starts creating from scratch her private

workspace. To create a node, Alice accesses the network editing menu from the COWB

main page, chooses to work on a new empty whiteboard which represents her private

workspace and clicks in an empty space of the whiteboard. A wizard helps her to choose

the appropriate biomedical ontology for defining the concept of interest. Figure 4.5 shows

an example of such interaction where Alice creates a new node which represents the

concept “plasma” and COWB captures, in pay-as-you-go manner, information about this

concept from Bioportal. Here, the concept “plasma” is defined in four ontologies: NCIT,

MESH, CRISP, and PMA. Since these definitions may differ, Alice must select the

ontology which defines better this concept according to her opinion (e.g., MESH). After

48

Figure 4.4. Third level neighbourhood of the concept “mast cell”. A
pre-calculated clustering is visualized.

her selection, a new object is automatically stored into the knowledge base. Hence, this

object represents the concept “plasma” and its functional annotations; that is, the concept

“plasma” is created by Alice (author) and is tied to the selected ontology.

 In addition to nodes, Alice can link nodes by selecting an existing node and dragging an

edge from this node to another node of the visualized network. Then, a window appears

which contains the preferred label of the two nodes and a list of predicates. Specifically,

each predicate is associated with a specific URI and a label which describe the relationship

between the connected nodes (i.e., the subject and the object). When Alice selects a

predicate from the list, the new drawn link is mapped into a triple (i.e., a subject-predicate-

object expression) which is automatically stored into the knowledge base with the

annotated functional knowledge. Alice can now browse her network and modify nodes and

relationships by clicking on their graphical representations.

49

Figure 4.5. Alice creates the node “plasma”. The wizard helps Alice
to choose the proper ontology for defining the concept of interest.

 Now, let us suppose that Alice invites Bob, a colleague, to join the community. Bob

agrees, fills in an on-line form and receives the role of private user by the COWB

application manager. Just as Alice did, Bob can now draw on the whiteboard his own

network. If Bob adds to his network a node which represents a concept already stored by

another user (e.g., the concept “plasma” that was stored by Alice), COWB warns Bob

about this fact and visualizes the node (in this case the Alice's node) on the whiteboard.

Furthermore, clicking on that node, Bob can obtain the annotations about the node. For

example, clicking on the node “plasma” which was created by Alice, Bob can visualize the

Alice’s profile including her photo, her e-mail address, her linkedIn page and her twitter

account (if declared), as shown in Figure 4.6. Besides, Bob can link the node "plasma"

with a node of his own network.

 Finally, Carol, an American biologist, visits by chance the public workspace provided by

COWB. Being a public user, she can only browse the knowledge related to the public

workspace. When she searches for the concept “mast cell”, COWB presents the network

linked to this concept, irrespective of its authors as depicted in Fig 4.3. Note that multiple

semantic networks can be presented within a single workspace; thus, COWB provides

different views on the same knowledge base.

50

Figure 4.6. Bob visualizes the node “plasma” created by Alice. By clicking on the
node, Bob visualizes the Alice’s profile.

 As described so far, while a user manages his personal workspace some information is

stored into the network and made available for community participants to further

exploration and download. However, a researcher may be curious; thus, he/she can wonder

if there are other users who have connected nodes to his/her sub-network. To face up to this

problem, COWB defines a special category of nodes, namely the boundary nodes. For

example, given a node N and a graph G, let us assume that the node N was created by

Alice, whereas the graph G was created by Bob. The node N is a boundary node in respect

to the graph G, if N participates in one or more triples of the graph G; that is, if at least one

triple, which belongs to G, has N as subject or object. Figure 4.7 shows a user sub-network

with its boundary nodes. Nodes that belong to the user are red coloured, while boundary

nodes and external links (i.e., nodes and arcs created by other users) are visualized in blue.

4.3 Implementation

COWB is built and run on GAE [AE14] (see Appendix A). At the time of writing, it

manages a manually-curated semantic network in medical biology which is stored into a

schemaless NoSQL database.

51

Figure 4.7. Example of a private workspace. Nodes created by the workspace
owner are visualized in red, whereas nodes created by other users are depicted in
blue.

 For implementing COWB’s core functionalities, I used Phyton, JavaScript/AJAX/jQuery

and Django [Dja15]. The pay-as-you-go approach is supported by exploiting REST

services provided by Bioportal and Europe PubMed Central.

 I developed the Graphical User Interface using JQuery UI [JQ14], a set of dynamic user

interactions, effects, widgets, and themes. Besides, COWB takes advantage of customized

functions that I added into vis.js [Vis14], an open source JavaScript library that is

specifically suitable for handling large amounts of dynamic data, enabling users to

manipulate and interact with the data. I implemented these custom functions in order to

save modifications into the database at runtime. The “graph component” made available by

vis.js also includes a force-directed algorithm which was used to generate graphs where

nodes have a minimum distance from each other.

4.4 Related Work

Related work affects several different aspects. The first aspect concerns how to model and

manage scientific collaborative knowledge. It has been observed [LKN+13] that the

proposed models are quite verbose; as a result, they are not very suitable for implementing

data management systems. Recently, some platforms, which implement collaborative

environments, have been developed in biomedicine. However, they are based on a client-

server model of computing and do not include semantic features. By way of example, I cite

WikiPathways [PKM+08] that is a public, collaborative platform dedicated to curation of

biological pathways (i.e., networks), and BioUML [BUW14] which allows users to

collaborate and draw biological maps in a similar way to Google Docs [Doc15].

 The second aspect regards the architecture which supports the collaborative knowledge

management. Previous research [ZL07, Zhu09] has presented some paradigms, based on

P2P architecture, to build a semantic network among peers by establishing relations

between semantic nodes. As it happens in COWB, a semantic link represents a semantic

relationship between semantic nodes such as similar-to, cause-effect and so on. Differently

from COWB, a semantic node can be an entity, a concept, a schema, or a semantic

community. Analogous P2P solutions [ETB+03, BBM+02] show that this approach

52

requires specific algorithms in order to provide consistency among replicas; on the other

hand, it is difficult to guarantee consistency in large-scale dynamic systems. In COWB,

cloud technologies avoid these difficulties.

 Another central aspect regards the need of promoting interoperability between different

tools that has inspired the creation of graphical standards such as the SBGN notation for

biological diagrams [LNH+09]. However, it has been observed [KCP+13] that there is a

severe lack of adequate software for navigating and querying maps created according to

the systems biology standards, as well as for collecting the user feedbacks about the map’s

content in an interactive manner. A number of recently tools attempt to meet this

requirement. In particular, NaviCell [KCP+13] relying on Google Maps supports user-

friendly exploration of large-scale maps at different scales. Similarly, CellPublisher

[FLM+10], Pathway Projector [KAO+09] and PathVisio [IKP+08] exploit the

geographical metaphor for navigating within the maps.

 Many tools have been developed for visually exploring networks [SH07, PWS08,

PHS+11]. Some of them are general-purpose; therefore, they can be used to cope with a

wide range of problems. In contrast, some others are specialized for specific applications

such as protein-protein interactions, pathways analysis, and gene networks. Cytoscape

[LFK+10] is a case in point; in fact, it is currently a golden standard for large scale

network visualization. It can support directed, undirected and weighted graphs and

provides customizable layouts that allow the user to change the properties of nodes or

edges. Furthermore, it incorporates statistical analysis as well as network filtering

capabilities. A broad variety of additional features are made available as plug-ins (i.e.,

apps) mainly developed by high-experienced users.

 The closest platform to COWB is a collaborative Web service platform for gene-

regulatory and biochemical pathway model curation called Payao [MGK+10]. This

platform combining Web 2.0 technologies and online model visualization functions enables

a community to work on biological models simultaneously. Specifically, Payao reads the

models in Systems Biology Markup Language (SBML) format, displays them with a

process diagram editor and provides access-controlled community members with an

interface for adding tags and comments to specific parts of the models. The model owner

specifies the basic information about the model and indicates users who have the privileges

53

to view, add tags, add comments to its model. However, since PAYAO was not designed to

handle semantic knowledge, I think that the layered organization of knowledge and the

role-based model exploited by COWB are more suited to guarantee both the autonomy of

users and the coordination of their actions.

4.5 Concluding Remarks

In this chapter, I presented a comprehensive overview and a first implementation of the

Semantic Web community scenario enabled by COWB. I tried to highlight distinct

challenges I tackled in the context of the Web 2.0 and Semantic Web paradigm. By

showing some practical examples from COWB, I illustrated how problems may be

resolved within these challenges. Compared to current centralized approaches, the COWB

framework presents an alternative way to knowledge management and exploits a cloud

platform to share the knowledge collectively created by a community of researchers.

 This case study highlights three points.

• Currently, it is feasible to reformulate the common biomedical investigation

practices by combining different technologies, including Semantic Web

technologies, NoSQL databases, and cloud computing. Domain experts, rather than

programmers, can be supported to model, store and explore the domain knowledge

in a simple, integrated and intuitive way.

• The proposed ontology-centric approach, which deals with discovering, importing

and publishing new knowledge from biomedical ontologies, allows for supporting

effectively collective intelligence within biomedical communities. The integration

of external services permit users to capture semantic information in a pay-as-you-

go fashion.

• According to the Web 2.0, the visualization of semantically structured information

is supported by dynamic interfaces which assist users for interactively visualizing,

editing and exploring the semantic contents. Thus, users have a global view of the

knowledge that can embrace interdisciplinary areas.

54

 COWB contrasts sharply with traditional centralized computing platforms which are not

only costly, but risk to become more and more inadequate to meet the applications

requirements. Being a SaaS, COWB runs in a physical location of the infrastructure which

is determined by the provider (usually, the server that is closest to the user). In addition, the

cloud infrastructure enables the transparent storage of the knowledge base across many

machines. This is beneficial to scale processing tasks when many users join the community

to concurrently share information. Finally, since COWB is provided as SaaS, users avoid

the installation and management of software on their own computers and benefit from

software which is always up-to-date.

 Although COWB is the first attempt to address the challenges discussed in this chapter,

preliminary results demonstrate that it is adequate for managing a collaborative

environment. The proposed framework sets out to pave the way development of future

projects and systems that combine the flexibility of the cloud computing approach with the

knowledge provided by ontologies.

 In future, COWB should be extended in order to capture additional domain knowledge

not only from ontologies but also from alternative resources such as well-curated texts as

investigated in recent research [DPP14].

 Finally, COWB is not an alternative and complementary tool but occupies an its own

niche, being the proposed approaches interesting per se. Indeed, COWB provides the users

with practical solutions which tackle some Semantic Web open research issues such as

representing and managing knowledge, extracting information from ontologies, integrating

data from different web resources and so on. Although the above solutions can hardly be

considered as suitable for all the possible collaborative scenarios, the collaborative

workspaces provided by COWB might allow biomedical researchers to formulate new

insights about the Semantic Web opportunities.

55

56

Chapter 5

Knowledge Extraction: a Case Study

Microarray technology allows for collecting large-scale gene expression data and is

currently used in medical diagnosis in order to identify genes that play an important role in

the pathogenesis of complex diseases. Such identification requires facing the challenge of

handling datasets where the number of genes, namely features, is much larger than the

number of samples. Even though thousands of genes are usually investigated only a very

small number of them show a correlation with the disease in question. Although many

machine learning methods have been developed, it is still difficult to train and test general

classification methods.

 Decision trees are among the popular machine learning methods. Being produced by a

greedy algorithm, a single tree may generate an unstable classification model with poor

generalization accuracy; indeed, a small change to the data can result in a very different

model. The proposal of random forests [Bre01], a method for classification based on the

repeated growing of trees through the introduction of a random perturbation, tries to

counteract such instability averaging the outcome of a great number of models fitted to the

same dataset. At each node of the trees, a small subset of randomly selected features,

instead of all features, are considered to split the node. As a sub-product of this technique,

the identification of variables that are important in a great number of models provides

suggestions in terms of variable selection.

57

 Good generalization performance is critical for many learning algorithms, in general,

and for microarray data classification in particular, since it remarks on the performance of

the algorithm on new data. As demonstrated in previous research [Bre01], the

generalization error is influenced by two factors: the correlation between the random trees

and their individual strengths. Breiman [Bre01] further derives that as the number of

random trees becomes large (i.e., it tends to infinity), the generalization error converges to

a limit.

 Random forests have been applied, with promising results, in analysing datasets with

large dimensionality. Extending these studies to develop random forests for microarray

data analysis presents an interesting research goal [ACL08]: random forest performance

tends to decline when the number of features is huge and the proportion of truly

informative features is small, such as with microarray data. Therefore, the effectiveness of

a random forest classification process is largely dependent on its capability in facing the

curse of dimensionality of gene expression data.

 This case study evaluates the effects of a filtering process on the predictive performance

of a random forest classifier as well as on the choice of its critical parameters. Using two

popular microarray datasets, I carried out a series of classification experiments by growing

random forests both on the whole set of features and on different subsets of pre-filtered

features. Specifically, different parameter settings were explored in order to investigate the

optimal trade-off between the number of trees and the number of variables randomly

chosen at each split. The results suggest that growing few trees on small subsets of pre-

filtered features, with only one variable randomly chosen at each split, presents results

which compare very well with state-of-the-art studies in literature.

5.1 Background

Given a training set with N cases and M features, a random tree is built as follows:

1. N cases are randomly sampled with replacement from the original data. These N

cases, which represent the new training set, are used to construct a single tree.

58

2. A number mtry, which is is held constant during the growth of the forest, is

specified. Then, each node is split using the best split among a randomly selected

subset of mtry features. Note that mtry is a number much smaller than M (number

of features).

3. Each tree is built to the largest extent possible without pruning.

 The random forest, in most cases, results more difficult to understand for humans than a

single decision tree [BBH+10] because of its complexity. On the other hand, this algorithm

presents several advantages that make it suitable for analysing microarray data. According

to previous research [Bre01, SLT+03 , SWA08, UA06], it presents the following features:

• It can be used for both binary and multi-category classification.

• It can manage thousands of input features (without feature selection) even when

there are a few cases.

• It runs efficiently on high-dimensional datasets.

• It is relatively insensitive to non-informative features.

• It makes available an embedded measure of feature importance.

• It is robust against overfitting.

 In more detail, random forests can be trained in less time than a single decision tree

because the method tests only mtry features (i.e., a small subset of the original features)

and it does not do any pruning [SLT+03].

 As previous mentioned, the critical parameters of a random forest are the number of

trees, namely ntree, and number of random features to split each node of a tree, namely

mtry. The value of mtry can range from 1 to M and common default values are √M or

log(M) [CWZ11].

 Breiman [Bre01] states that parameters with default values often lead to excellent

performance, but recent studies suggest a fine-tuning of the parameters. As demonstrated

by Zhang and Wang [ZW09], it is not necessary to use the whole forest in order to reach

satisfying prediction performance. In their study the size of the optimal sub-forest is in the

59

range of tens and some sub-forests can even overcome the original forest in terms of

prediction accuracy on a breast cancer prognosis dataset. The case study presented in this

chapter sets out to validate this research using both different datasets (e.g., a diagnostic

dataset) and an alternative approach.

 According to Genuer et al. [GPT08], applying random forests to high-dimensional

classification problems, mtry needs to be sufficiently large for capturing important features

(i.e., variables highly related to the class). As a consequence, if the number of genes is

large and the percentage of meaningful information is small, it is necessary to choose large

values of mtry in order to get better performance [LW02]. However, trees which made

random splits (i.e., mtry equals to 1) can give very good performance for some datasets.

Amaratunga et al. [ACL08] have proposed a filtering approach to decrease the contribution

of trees whose nodes are populated by non-informative features. Specifically, they choose

the splitting subset at each node by using a weighted random sampling instead of a simple

random sampling.

5.2 Experiments

I carried out a series of experiments investigating two public microarray datasets: Colon

[ABN+99] and Leukemia [GST+99]. Specifically, the Colon dataset is made up of 2000

genes which were measured on 62 patients. Among them, 40 samples come are from

tissues of patients with colon-cancer and 22 come are from healthy parts of the colons of

the same patients. Colon dataset is considered as one of the noisiest microarray

benchmarks. As regards the Leukemia dataset, it consists of 7129 genes and 72 samples.

These samples belong to 47 patients with acute lymphoblastic leukemia (ALL) and 25

patients with acute myeloid leukemia (AML).

 The overall analysis was performed using the Weka data mining software [MEG+09]. I

used a leave-one-out cross-validation procedure (LOOCV), a well-known and popular

procedure in literature for performance estimation, though it has been observed that a

cross-validation setting can yield overoptimistic results on small sample size domains

[ND02]. The performance of the method was evaluated using the value of area under the

60

curve (AUC) of the receiver operating characteristic (ROC) curve in order to synthesize

the information of sensitivity and specificity. Note that AUC metric is not sensitive to

unbalanced distributions and is more discriminative than the accuracy metric [Faw04].

The experiments were divided into two broad classes:

• Tuning on the original dataset. I build different random forests using the following

parameters values: (i) ntree = 10, 20, 30, 50, 100, 200, 300, 500, 1000, 1500; (ii)

mtry = 1, 2, 3, 5, 10, 20, 30, 40, 50, 80. Both the choices (i) and (ii) intend to finely

investigate parameters values smaller than the common default values.

• Tuning on filtered subsets. First, I ranked the features of the original dataset using

two popular ranking methods: Information Gain (IG) and Chi Squared (χ2). Based

on their outputs, I extracted different subsets of highly-ranked features indicated as

TOP10 (i.e., the first 10 top-ranked features), TOP20 (i.e., the first 20 top-ranked

features) and so on. Then, I used these subsets for constructing random forests

within the following parameter configurations: (i) ntree = 10, 20, 30, 50, 100, 200,

300; (ii) mtry = 1, 2, 3, 5, 10, 20, 30.

 The others parameters of the algorithm not mentioned above were used with their default

value [MEG+09].

5.2.1 Results About Tuning on the Original Dataset.

Figure 5.1 and Figure 5.2 depict for different values of mtry, the effects of changes in the

parameter ntree on the AUC. According to Breiman [Bre01], the behaviour of AUC is

asymptotic; that is, as the number of trees increases, the AUC value converges to a limit.

Interestingly, in both Leukemia and Colon, I observed this asymptotic trend for ntree ≥

100, while previous studies [SWA08, UA06] on microarray datasets made use of ntree

values in three order of magnitude. Globally, results in Figure 5.1 and Figure 5.2 suggest

that, even on high-dimensional domains, the choice ntree = 100 can be quite adequate, with

61

further increases having negligible effects and smaller values leading to more unstable

AUC performance.

 As regards the influence of mtry parameter on random forests performance, Figure 5.1

and Figure 5.2 show that, for small values (i.e., values smaller than 50) of ntree, the choice

of high values of mtry (mtry ≥ 30 for Leukemia and mtry ≥ 5 for Colon) results in higher

values of AUC. This seems to suggest that, when I choose to grow a forest with a small

number of trees, I need to set higher values for mtry in order to rise the probability of

randomly selecting informative variables. On the other hand, if the forest is sufficiently

large (ntree ≥ 100), the influence of mtry parameter declines. In particular, no improvement

in AUC performance can be observed when setting values of mtry > 20 and mtry > 10 for

Leukemia and Colon respectively. Therefore, as previously observed for the ntree

parameter, the common default setting of mtry = √M [SWA08, UA06], where M is the

total number of features, seems to be unnecessary large since smaller values ensuring a

good predictive performance at a lower computational cost.

62

Figure 5.1. Tuning on Leukemia dataset: AUC versus ntree for mtry equal to 1, 2,
3, 5, 10 (left) and mtry = 20, 30, 40, 50, 80 (right).

5.2.2 Results About Tuning on Filtered Subsets

As above mentioned, I applied two ranking methods (IG and χ2) and, for each ranking

method, I performed tuning experiments on pre-filtered subsets of increasing size (TOP10,

TOP20, etc.). Table 5.1 summarizes the “optimal” values of both parameters ntree and

mtry; that is, the lowest values leading, on a given subset, to the best AUC result. As shown

in Table 5.1, in most cases, the value mtry = 1 is sufficient to maximize the predictive

performance of random forests. The optimal number of trees is also quite low, especially

for Leukemia, where the AUC is maximized with at most 30 random trees. More trees (a

few hundred at most) can be needed for Colon which is recognized to be a more noisy

dataset. Results in Table 5.1 globally confirm what previously observed on the overall

datasets: parameter values lower than common default values can lead to effective and

more parsimonious classification models. Although surprising, the goodness of the choice

mtry = 1 is also supported (for datasets of low-moderate dimensionality, as the pre-filtered

datasets here considered) by some considerations reported in [Bre01].

63

Figure 5.2. Tuning on Colon dataset: AUC versus ntree for mtry = 1, 2, 3, 5, 10
(left) and mtry = 20, 30, 40, 50, 80 (right).

Pre- filtered

subset

Leukemia Colon

IG χ2 IG χ2

mtry ntree mtry ntree mtry ntree mtry ntree

TOP10 1 30 1 20 1 30 10 20

TOP20 1 10 1 10 1 10 1 200

TOP30 1 10 1 10 1 20 1 10

TOP50 1 10 1 20 10 10 1 10

TOP100 1 20 1 20 1 100 1 200

TOP300 1 30 1 20 1 100 1 300

TOP500 1 10 1 20 1 200 3 50

Table 5.1. Optimal values of mtry and ntree for pre-filtered subsets of increasing size, as
obtained by IG and χ2 ranking methods, for both Leukemia and Colon datasets.

In addition, the pre-filtering process significantly improves the predictive performance.

As regards Leukemia, the experiments presented in this case study gave excellent outcomes

in all the subsets from TOP10 to TOP500. Only for larger subsets (e.g., TOP1000), the

AUC declines if the number of random trees is not sufficiently large, as shown in Figure

5.3.a, where the AUC behaviour is shown for some subsets filtered by IG (an analogous

trend has been registered for χ2) within the “optimal” setting mtry = 1.

Figure 3.3 points up the asymptotic behaviour of AUC. The effectiveness of pre-

filtering process is considerable as the random forests built on the selected subsets greatly

outperform the random forests grown on the original dataset. However, the setting mtry =

1, optimal for the filtered subsets, is not so optimal for the whole dataset, where the best

AUC performance is registered for mtry ≥ 30, as shown in Figure 5.1. Therefore, a further

demonstration of the effectiveness of the pre-filtering process is given in Figure 5.3.b

where the performance on the TOP20 subset (mtry = 1) is compared with the performance

on the whole dataset (mtry = 40). Note that mtry = 40 corresponds to the “best” AUC

curve in Figure5.1. The advantages deriving from pre-filtering are confirmed by the

analysis on Colon dataset as shown in Figure 5.4.

64

Finally, Table 5.2 shows the effectiveness of the proposed approach when compared to

the most cited works in literature that applied random forests to microarray data [SWA08,

UA06]. Specifically, Dìaz-Utiarte and Alvarez de Andrés [UA06] report an error rate of

0,051 for the Leukemia dataset (in a slightly different version) using the random forest

method with mtry = √M and ntree = 5000 and without a preliminary feature selection.

Within the same settings, the error rate reported for Colon is 0.127. By integrating a

variable selection approach, the best error rates given in [UA06] for Leukemia and Colon

are 0,075 and 0,159, respectively. In the research study of Alexander Statnikov et al.

[SWA08] the AUC performance for Colon is 0.867 on the whole dataset and 0,917 with

gene selection; here, the best-performing configuration is selected among the following

values of parameters: ntree = 500, 1000, 2000 and mtry = 0,5∙√M, 1∙√M, 2∙√M.

65

Figure 5.3. Leukemia dataset: (a) AUC versus ntree for some pre-filtered subsets
and for the whole dataset (mtry = 1 for all the curves); (b) AUC versus ntree for
the subset TOP20 (mtry = 1) and for the whole dataset (mtry = 40).

Figure 5.4. Colon dataset: AUC versus ntree for some pre-filtered
subsets and for the whole dataset.

Dataset
On the full set of genes Using a filtered subset

AUC Accuracy AUC Accuracy

Leukemia 0,997 0,986 1,00 1,00

Colon 0,911 0,855 0,939 0,903

Table 5.2. Best results on Leukemia and Colon, both in terms of AUC and accuracy

5.3 Concluding Remarks

This case study presented an approach to microarray data classification that builds upon

the well-known strengths of the random forests. The proposed method attempts to

eliminate irrelevant variables by pre-filtering. Results on two public microarray datasets

(Colon and Leukemia) confirm what expected on the basis of similar studies on filtering

methods when applied to microarray data classification. The experimental analysis reveals

that a pre-filtering process positively impacts both on random forest performance and on

its optimal parameterization, leading to very effective and more parsimonious classification

models.

66

Chapter 6

Conclusions

The technological advancements of the last decade have yielded a data deluge in

bioinformatics. Accordingly, data integration and scientific collaboration requirements are

dramatically changed. Technological challenges, which range from architectural principles

to the implementation details, call for a complete re-examination about the design of Web

applications and databases in bioinformatics. The work in this thesis focuses on some

aspects of current issues and challenges in bioinformatics. Within the above mentioned

challenges, this thesis aims at giving a contribution about the following topics:

• Development of bioinformatics applications within a PaaS: Currently, few

bioinformatics applications are built on PaaS. This thesis outlines the benefits

provided by exploiting Platform as a Service (PaaS) in order to make available

scalable Web applications to biomedical community (Chapter 2).

• Integrating information from different Web resources: An approach is proposed

which grounds on the dataspace paradigm, a new abstraction for integrating

information from the Web in a pay-as-you-go fashion. That paradigm is exploited

in the context of Biocloud Search EnGene (BSE) [DPM+13], a cloud-based

application for surfing web resources. This application harnesses several

technologies, including cloud computing, NoSQL databases, and Web services, in

order to address dataspace requirements in terms of flexibility and scalability

(Chapter 3).

67

• Scientific collaboration: A framework is proposed to support the collaborative

management of shared digital resources in building a semantic network. A major

role, within this framework, is played by formal semantic representations of

information objects which are built up by groups of users working together in

collaborative workspaces. Therefore, the framework relying on ontologies provides

a collaborative knowledge management solution for biomedical communities. The

proposed framework is enabled by a cloud-based application developed at PaaS

layer and using a NoSQL database [DDM+14, DMP+15] (Chapter 4).

• Knowledge extraction: The effectiveness of random forest method has been

evaluated in extracting knowledge from datasets which are affected by the so-called

course of dimensionality; that is, when the number of features is huge and the

proportion of truly informative features is small, as it happens with gene expression

data. Thus, applying random forests in microarray data analysis presents an

interesting research goal due to the additional issue of reducing the contribution of

trees whose nodes are populated by non-informative features [DMP12, DMP13]

(Chapter 5).

68

Bibliography

[ABN+99] Uri Alon, Naama Barkai, Daniel A. Notterman, Kurt Gish, Suzanne Ybarra,
Daniel Mack, and Arnold J. Levine. Broad patterns of gene expression revealed by
clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays.
PNAS 96:6745-6750, 1999.

[ABR14] Paolo Atzeni, Francesca Bugiotti, Luca Rossi. Uniform access to NoSQL
systems. Information Systems 43:117-133, 2014.

[AC15] Apache Cassandra. Retrieved January, 2015. http://cassandra.apache.org.

[ACL08] Dhammika Amaratunga, Javier Cabrera, and Yung-Seop Lee. Enriched
random forest. Bioinformatics 24:2010-2014, 2008.

[AD11] Maurizio Atzori and Nicoletta Dessì. Dataspaces: Where Structure and Schema
Meet. Studies in Computational Intelligence 375:97-119, 2011.

[AE14] App Engine. Retrieved November, 2014. https://cloud.google.com/appengine.

[AED15] App Engine Datastore. Retrieved January, 2015.
https://cloud.google.com/appengine/docs/python/datastore.

[AFG+09] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy
H. Katz, Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, Ion Stoica,
and Matei Zaharia. Above the Clouds: A Berkeley View of Cloud Computing. Technical
Report No. UCB/EECS-2009-28, 2009.

[AGT+08] Maria Susana Avila-Garcia, Anne E. Trefethen, Mike Brady, and Fergus
Gleeson, Daniel Goodman, Lowering the barriers to cancer imaging. In eScience '08:
Proceedings of the 4th IEEE International Conference on eScience, pp. 63-70, 2008.

[AHB15] Apache HBase. Retrieved January, 2015. http://hbase.apache.org.

[Ama14] Amazon EC2. Retrieved November, 2014. http://aws.amazon.com/ec2.

[AWS14] Amazon Web Services. Retrieved November, 2014. https://aws.amazon.com.

[BBH+10] Michael R. Berthold, Christian Borgelt, Frank Höppner, and Frank Klawonn.
Guide to Intelligent Data Analysis. Springer, 2010.

69

[BBM+02] Matteo Bonifacio, Paolo Bouquet, Gianluca Mameli, and Michele Nori.
KEx: A peer-to-peer solution for distributed knowledge management. In Proceedings. of
PAKM’02, pp. 490–500, 2002.

[BDP11] Andrea Bosin, Nicoletta Dessì, and Barbara Pes. Extending the SOA paradigm
to e-Science environments. Future Generation Computer Systems 27:20-31, 2011.

[BHK+14] Garth R. Brown, Vichet Hem, Kenneth S. Katz, Michael Ovetsky, Craig
Wallin, Olga Ermolaeva, Igor Tolstoy, Tatiana Tatusova, Kim D. Pruitt, Donna R.
Maglott, and Terence D. Murphy. Gene: a gene-centered information resource at NCBI.
Nucleic Acids Research, 2014.

[BHL09] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked Data - The Story So
Far. International Journal on Semantic Web and Information Systems 5(3), 2009.

[Bio14] Biopython. Retrieved November, 2014. http://biopython.org/wiki/Biopython.

[Bre00] Eric A. Brewer. Towards Robust Distributed Systems. PODC Keynote,
available from http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf,
2000.

[Bre01] Leo Breiman. Random forests. Machine Learning 45:5-32, 2001.

[Bur11] Greg Burd. NoSQL. Available from
https://www.usenix.org/legacy/publications/login/2011-10/openpdfs/Burd.pdf , 2011.

[BUW14] BioUML wiki Home Page. Retrieved December, 2014.
http://wiki.biouml.org/index.php/BioUML_wiki.

[BYV+09] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and
Ivona Brandic. Cloud computing and emerging IT platforms: Vision, hype, and reality
for delivering computing as the 5th utility. Future Generation Computer Systems
25(6):599-616, 2009.

[CDG+06] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.
Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber.
Bigtable: A Distributed Storage System for Structured Data. OSDI'06: Seventh
Symposium on Operating System Design and Implementation. Available from
http://research.google.com/archive/bigtable.html

[CDG+13] Jon Chambers, Mark Davies, Anna Gaulton, Anne Hersey, Sameer Velankar,
Robert Petryszak, Janna Hastings, Louisa Bellis, Shaun McGlinchey, and John P.
Overington. UniChem: A Unified Chemical Structure Cross-Referencing and Identifier
Tracking System. Journal of Cheminformatics, 5(1):3, 2013.

[CJL+13] Heejoon Chae, Inuk Jung, Hyungro Lee, Suresh Marru, Seong-Whan Lee,
and Sun Kim. Bio and health informatics meets cloud: BioVLab as an example. Health
Information Science and Systems 1:6, 2013.

70

[Cou15] Apache CouchDB. Retrieved January, 2015. http://couchdb.apache.org.

[COW+11] David Croft, Gavin O’Kelly, Guanming Wu, Robin Haw, Marc Gillespie,
Lisa Matthews, Michael Caudy, Phani Garapati, Gopal Gopinath, Bijay Jassal, et al.
Reactome: a database of reactions, pathways and biological processes. Nucleic Acid
Res. 39:D691-D697, 2011.

[CQY+13] Jiajia Chen, Fuliang Qian, Wenying Yan, and Bairong Shen. Translational
Biomedical Informatics in the Cloud: Present and Future. BioMed Research
International Volume 2013, 2013.

[CSP13] Dunren Che, Mejdl Safran, and Zhiyong Peng. From Big Data to Big Data
Mining. Challenges, Issues, and Opportunities. Database Systems for Advanced
Applications 7827:1-15, 2013.

[CWZ11] Xiang Chen, Minghui Wang, and Heping Zhang. The use of classification
trees for bioinformatics. Wiley Interdisciplinary Rev. Data Mining Knowledge Discov.,
1(1):55–63, 2011.

[CZ14] C.L. Philip Chen, Chun-Yang Zhang. Data-intensive applications, challenges,
techniques and technologies: A survey on Big Data. Information Sciences 275:14–347,
2014.

[DDB15] Amazon DynamoDB. Retrieved January, 2015.
http://aws.amazon.com/dynamodb.

[DdLM14] Yuri Demchenko, Cees de Laat, and Peter Membrey. Defining architecture
components of the Big Data Ecosystem. 2014 International Conference on
Collaboration Technologies and Systems, pp. 104-112, 2014.

[DDM+14] Nicoletta Dessì, Giacomo Diaz, Gabriele Milia, and Emanuele Pascariello.
A Cloud-based Approach to a Semantic Network in Cell Biology. BITS 2014:99-100,
available from http://bits2014.uniroma2.it/Abstract_book.pdf, 2014.

[DG04] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing
on Large Cluster. Sixth Symposium on Operating System Design and Implementation
(OSDI'04), 2004.

[DG10] Jeffrey Dean and Sanjay Ghemawat. MapReduce: a flexible data processing
tool. Communications of the ACM 53(1), pp. 72-77, 2010.

[DGG+12] Lin Dai, Xin Gao, Yan Guo, Jingfa Xiao, and Zhang Zhang. Bioinformatics
clouds for big data manipulation. Biology Direct 7:43, 2012.

[DGdL+13] Yuri Demchenko, Paola Grosso, Cees de Laat, and Peter membrey.
Addressing big data issues in Scientific Data Infrastructure. International Conference
on Collaboration Technologies and Systems (CTS), pp. 48-55, 2013

71

[DH07] Xin Dong and Alon Halevy. Indexing dataspaces. In Proceedings of the 2007
ACM SIGMOD international conference on Management of data, SIGMOD’07, ACM,
pp. 43-54, 2007.

[DHZ12] Anhai Doan, Alon Halevy, and Zachary Ives. Principles of Data Integration.
Morgan Kaufmann, 1st edition, chapter 15, 2012.

[Dja15] Django Web Framework. Retrieved February, 2015.
https://www.djangoproject.com.

[DMP12] Nicoletta Dessì, Gabriele Milia, and Barbara Pes. Pre-filtering Features in
Random Forests for Microarray Data Classification. In Proceedings of the Workshop on
New Frontier in Mining Complex Patterns (NFMCP 2012), 2012.

[DMP13] Nicoletta Dessì, Gabriele Milia, and Barbara Pes. Enhancing Random Forests
Performance in Microarray Data Classification. AIME 2013, pp. 99-103, 2013.

[DMP+15] Nicoletta Dessì, Gabriele Milia, Emanuele Pascariello, and Barbara Pes.
COWB: a cloud-based framework supporting collaborative knowledge management
within biomedical communities. Submitted to Future Generation Computer System on
12/12/2014. Accepted

[Doc15] Google Docs. Retrieved February, 2015. http://www.google.com/intl/en-
GB/docs/about.

[DPM+13] Nicoletta Dessì, Emanuele Pascariello, Gabriele Milia, and Barbara Pes.
BioCloud Search EnGene: Surfing Biological Data on the Cloud. CIBB 2013, Lecture
Notes in Computer Science, pp. 33-48, 2013.

[DPP14] Nicoletta Dessì, Emanuele Pascariello, and Barbara Pes. Integrating
Ontological Information About Genes. In Proceedings of the 2014 IEEE 23rd
International WETICE Conference, pp. 417-422, 2014.

[DW12] Jürgen Dönitz and Edgar Wingender. The ontology-based answers (OBA)
service: a connector for embedded usage of ontologies in applications. Front Genet. 3,
article 197, 2012.

[EAH14] Ensembl Annotated Human Genome Data (MySQL Release 73). Retrieved
November, 2014. https://aws.amazon.com/datasets/2315.

[EBI14] EBI Home Page. Retrieved November, 2014. http://www.ebi.ac.uk.

[EMB13] EMBL-European Bioinformatics Institute Annual Scientific Report 2013.

[EMR15] Amazon EMR. Retrieved February, 2015.
http://aws.amazon.com/elasticmapreduce/

[ETB+03] Marc Ehrig, Christoph Tempich, Jeen Broekstra, Frank van Harmelen, Marta
Sabou, Ronny Siebes, Steffen Staab, and Heiner Stuckenschmidt. SWAP- Ontology-

72

based knowledge management with peer-to-peer technology. In Proceedings of the 4th
European Workshop on Image Analysis for Multimedia Interactive Services, pp. 557-
562, 2003.

[Faw04] Tom Fawcett. ROC Graphs: Notes and Practical Considerations for
Researchers. Technical Report, 2004.

[FHM05] Michael Franklin, Alon Halevy and David Maier: From Databases to
Dataspaces: A New Abstraction for information Management. Sigmod Record 34(4):27-
33, 2005.

[Fie00] Roy Thomas Fielding. Architectural styles and the design of network-based
software architectures. Doctoral dissertation, University of California, Irvine, 2000.

[FLM+10] Lope A. Flórez, Christoph R. Lammers, Raphael Michna, and Jörg Stülke.
Cell Publisher: a web platform for the intuitive visualization and sharing of metabolic,
signalling and regulatory pathways. Bioinformatics 26:2997-2999, 2010.

[FNS11] Alfio Ferrara, Andriy Nikolov, and François Scharffe. Data Linking for the
Semantic Web. International Journal on Semantic Web and Information Systems 7(3),
2011.

[FPG+11] Vincent A. Fusaro, Prasad Patil, Erik Gafni, Dennis P. Wall, and Peter J.
Tonellato. Biomedical cloud computing with Amazon Web Services. PLoS
computational biology 7(8), 2011.

[GCP14] Google Cloud Platform. Retrieved December, 2014. https://cloud.google.com.

[GD15] Google Drive. Retrieved February, 2015. https://www.google.com/intl/en-
GB/drive.

[GKD+08] Stefan Günther, Michael Kuhn, Mathias Dunkel, Monica Campillos,
Christian Senger, Evangelia Petsalaki, Jessica Ahmed, Eduardo Garcia Urdiales,
Andreas Gewiess, Lars Juhl Jensen, et al. Nucleic Acids Res. 36(Database issue):D919-
22, 2008.

[GMP15] MapReduce for App Engine. Retrieved February, 2015.
https://cloud.google.com/appengine/docs/python/dataprocessing/

[GO14] Gene Ontology. Retrieved December, 2014. http://www.geneontology.org.

[GPA14] 1000 Genomes Project and AWS. Retrieved November, 2014.
http://aws.amazon.com/1000genomes.

[GPT08] Robin Genuer, Jean-Michel Poggi, and Christine Tuleau. Random Forests:
some methodological insights. Tech rep, INRIA, 2008.

[GRR14] Venkat N. Gudivada, Dhana Rao, and Vijay V. Raghavan. NoSQL Systems for
Big Data Management. 2014 IEEE World Congress on Services, pp. 190-197, 2014.

73

[GST+99] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P.
Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, et al. Molecular
Classification of Cancer: Class Discovery and Class Prediction by Gene Expression
Monitoring. Science 286:531-537, 1999.

[GTB+08] Maria Susana Avila Garcia, Anne E. Trefethen, Mike Brady, Fergus Gleeson,
and Daniel Goodman. Lowering the barriers to cancer imaging. In Proceedings of the
4th IEEE International Conference on eScience, pp. 63-70, 2008.

[Had15] Apache Hadoop. Retrieved February, 2015. http://hadoop.apache.org.

[HBP+11] Cornelia Hedeler, Khalid Belhajjame, Norman W. Paton, Alvaro A.A.
Fernandes, Suzanne M. Embury, Lu Mao, and Chenjuan Guo. Pay-as-you-go mapping
selection in dataspaces. In Proceedings of the 2011 ACM SIGMOD International
Conference on Management of Data, SIGMOD’11, pp. 1279-1282, 2011.

[HDI15] Microsoft Azure - HDInsight. Retrieved February, 2015.
http://azure.microsoft.com/en-us/services/hdinsight.

[Her14] Heroku home page. Retrieved November, 2014. https://www.heroku.com.

[HFM06] Alon Halevy, Michael Franklin, and David Maier: Principles of dataspace
systems. In Proceedings of PODS’06, ACM, pp. 1-9, 2006.

[HGV+09] Brian D. Halligan, Joey F. Geiger, Andrew K. Vallejos, Andrew S. Greene,
Simon N. Twigger. Low cost, scalable proteomics data analysis using Amazon's cloud
computing services and open source search algorithms. Journal of proteome research
8(6):3148-53, 2009.

[HGP12] Tony Hey, Dennis Gannon, and Jim Pinkelman. The Future of Data-Intensive
Science. IEEE Computer 45(5):81-82 , 2012.

[HHL+11] Jing Han, E. Haihong, Guan Le, and Jian Du. Survey on NoSQL database. In
6th International Conference on Pervasive Computing and Applications (ICPCA), pp.
363-366, 2011.

[HJ13] Christian Theil Have and Lars Juhl Jensen. Are graph databases ready for
bioinformatics?. Bioinformatics 29(24):3107,3108, 2013.

[HKP11] Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and
Techniques. A volume in The Morgan Kaufmann Series in Data Management Systems.
Third Edition, 2011.

[HMP14] Human Microbiome Project. Retrieved November, 2014.
https://aws.amazon.com/datasets/1903160021374413.

[HMR+08] Bill Howe, David Maier, Nicolas Rayner, and James Rucker. Quarrying
dataspaces: Schemaless profiling of unfamiliar information sources. In Proceedings of
ICDEW’08, pp. 270-277, 2008.

74

[HTT09] Anthony J. G. Hey, D. Stewart W. Tansley, and Kristin M. Tolle. Jim Gray on
eScience: a transformed scientific method. The Fourth Paradigm, 2009.

[HTT11] Anthony J. G. Hey, D. Stewart W. Tansley, and Kristin M. Tolle. The Fourth
Paradigm: Data-Intensive Scientific Discovery. Proceedings of the IEEE 99(8), 2011.

[HWC+14] Han Hu,Yonggang Wen, Tat-Seng Chua, and Xuelong Li. Toward Scalable
Systems for Big Data Analytics: A Technology Tutorial. Access, IEEE 2:652 - 687,
2014.

[IKP+08] Martijn P. van Iersel, Thomas Kelder, Alexander R. Pico, Kristina Hanspers,
Susan Coort, Bruce R Conklin and Chris Evelo. Presenting and exploring biological
pathways with PathVisio. BMC Bioinformatics 9:399, 2008.

[ISB14] Institute for Systems Biology Home Page. Retrieved December, 2014.
http://www.systemsbiology.org.

[Jef08] Shawn Jeffery. Pay-as-you-go Data Cleaning and Integration. Doctoral

dissertation, University of California, Berkeley, 2008.

[JFH08] Shawn R. Jeffery, Michael J. Franklin, and Alon Y. Halevy. Pay-as-you-go user
feedback for dataspace systems. SIGMOD, 2008.

[JKS+09] Lars J. Jensen, Michael Kuhn, Manuel Stark, Samuel Chaffron, Chris
Creevey, Jean Muller, Tobias Doerks, Philippe Julien, Alexander Roth, Milan
Simonovic, Peer Bork, and Christian von Mering. STRING 8--a global view on proteins
and their functional interactions in 630 organisms. Nucleic Acids Res., 37(Database
issue):D412-6, 2009.

[JQ14] jQuery User Interface Home Page. Retrived December, 2014.
http://jqueryui.com.

[KAO+09] Nobuaki Kono, Kazuharu Arakawa, Ryu Ogawa, Nobuhiro Kido, Kazuki
Oshita, Keita Ikegami, Satoshi Tamaki, and Masaru Tomita. Pathway projector: web-
based zoomable pathway browser using KEGG atlas and Google Maps API. PLoS One
4(11):e7710, 2009.

[KCP+13] Inna Kuperstein, David P.A. Cohen, Stuart Pook, Eric Viara, Laurence
Calzone, Emmanuel Barillot, and Andrei Zinovyev. NaviCell: a web-based environment
for navigation, curation and maintenance of large molecular interaction maps. BMC
Systems Biology 7:100, 2013.

[KGS+12] Minoru Kanehisa, Susumu Goto, Yoko Sato, Miho Furumichi, and Mao
Tanabe. KEGG for integration and interpretation of large-scale molecular datasets.
Nucleic Acids Res. 40:D109-D114, 2012.

[KJD+12] Insik Kim, Jae-Yoon Jung, Todd F. De Luca, Tristan H. Nelson, and Dennis P.
Wall. Cloud Computing for Comparative Genomics with Windows Azure Platform.
Evolutionary Bioinformmatics 8:527-534, 2012.

75

http://jqueryui.com/
http://www.systemsbiology.org/

[KPH+09] Thomas Kelder, Alexander R. Pico, Kristina Hanspers, Martijn P. van Iersel,
Chris Evelo, and Bruce R. Conklin. Mining Biological Pathways Using WikiPathways
Web Services. PLoS ONE, 4(7):e6447, 2009.

[Lea10] Neal Leavitt: Will NoSQL Databases Live Up to Their Promise?. IEEE
Computer 43(2): 12-14, 2010.

[LFK+10] Christian T. Lopes, Max Franz, Farzana Kazi, Sylva L. Donaldson, Quaid
Morris, and Gary D. Bader. Cytoscape Web: an interactive web-based network browser.
Bioinformatics 26(18):2347-8, 2010.

[LFZ+09] Geng Lin, David Fu, Jinzy Zhu, Glenn Dasmalchi. Cloud Computing: IT as a
Service. IT Professional, Vol. 11, Issue 2: 10-13, 2009.

[LKN+13] Yuan-Fang Lia, Gavin Kennedyb, Faith Ngoranb, Philip Wud, and Jane
Hunter. An ontology-centric architecture for extensible scientific data management
systems. Future Generation Computer Systems 29(2):641-653, 2013.

[LNH+09] Nicolas Le Novère, Michael Hucka, Huaiyu Mi, Stuart Moodie, Falk
Schreiber, Anatoly Sorokin, Emek Demir, Katja Wegner, Mirit I. Aladjem, Sarala M.
Wimalaratne, et al. The systems biology graphical notation. Nat Biotechnol 27:735-741,
2009.

[LP10] Nicholas J. Loman and Mark J. Pallen. EntrezAJAX: direct web browser access
to the Entrez Programming Utilities. Source Code for Biology and Medicine 5(1):6,
2010.

[Lyn08] Clifford Lynch, “Big data: How do your data grow?”, Nature 455:28-29, 2008.

[LW02] Andy Liaw and Matthew Wiener. Classification and Regression by random
forest. R News 2:18-22, 2002.

[MA14] Microsoft Azure. Retrieved November, 2014. http://azure.microsoft.com.

[Mar13] Vivien Marx. The big challenges of big data. Nature 498:255-260, 2013

[MBB01] Alexa T. McCray, Anita Burgun, Olivier Bodenreider. Aggregating UMLS
semantic types for reducing conceptual complexity. Stud Health Technol Inform. 84(Pt
1):216-20, 2001.

[McK98] Victor A. McKusick. Mendelian Inheritance in Man. A Catalog of Human
Genes and Genetic Disorders. Johns Hopkins University Press, 1998.

[MD99] David Maier and Lois Delcambre, Superimposed information for the internet.
In Proceedings of WebDB, pp. 1-9, 1999.

[MEG+09] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H. Witten. The WEKA Data Mining Software: An Update.
SIGKDD Explorations 11(1), 2009.

76

[MG11] Peter Mell, Timothy Grance. The NIST Definition of Cloud Computing. NIST
Special Publication 800-145, 2011.

[MGK+10] Yukiko Matsuoka, Samik Ghosh, Norihiro Kikuchi, and Hiroaki Kitano.
Payao: a community platform for SBML pathway model curation. Bioinformatics
26(10):1381-1383,2010.

[MHF06] David Maier, Alon Y. Halevy, and Michael J. Franklin. Dataspaces: Co-
existence with heterogeneity. In KR, page 3, 2006.

[Mon15] Mongo DB home page. Retrieved January, 2015. http://www.mongodb.org.

[MOP+11] Donna Maglott, Jim Ostell, Kim D. Pruitt, and Tatiana Tatusova. Entrez
Gene: gene-centered information at NCBI. Nucleic Acids Res., 39(Database Issue):D52–
D57, 2011.

[MPR+12] Ganiraju Manyam, Michelle A. Payton, Jack A. Roth, Lynne V. Abruzzo,
and Kevin R. Coombes. Relax with CouchDB - Into the non-relational DBMS era of
bioinformatics. Genomics 100:1-7, 2012.

[Mur07] San Murugesan. Understanding Web 2.0. IT Professional 9(4):34:41, 2007.

[NCB14] National Center for Biotechnology Information Home Page. Retrieved
November, 2014. http://www.ncbi.nlm.nih.gov.

[ND02] Ulisse M. Braga-Neto and Edward R. Dougherty. Is cross-validation valid for
small-sample microarray classification?. Bioinformatics 20:374-380, 2004.

[Neo15] Neo4j Home Page. Retrieved January, 2015. http://neo4j.com.

[NIST15] National Institute of Standards and Technology. Retrieved February, 2015.
http://www.nist.gov.

[Nos14] NoSQL databases. Retrieved November, 2014. http://www.nosql-database.org.

[NT14] W3C Recommendation. Retrieved December, 2014. http://www.w3.org/TR/n-
triples.

[ODS13] Aisling O’Driscoll, Jurate Daugelaite, and Roy D. Sleator. ‘Big Data’, Hadoop
and Cloud Computing in Genomics. Journal of Biomedical Informatics 46, pp. 774-
781, 2013.

[OLe98] Daniel E. O’Leary. Using AI in knowledge management: Knowledge bases
and ontologies. IEEE Intelligent Systems 13 (3):34-39, 1998.

[OMN10] Brian D O’Connor, Barry Merriman, and Stanley F. Nelson. SeqWare Query
Engine: storing and searching sequence data in the cloud. In Proceedings of the 11th
Annual Bioinformatics Open Source Conference (BOSC), 2010.

77

[Ora15] Oracle NoSQL database. Retrieved January, 2015.
http://www.oracle.com/technetwork/database/database-
technologies/nosqldb/overview/index.html

[Ori15] OrientDB. Retrieved January, 2015. http://www.orientechnologies.com.

[OWL15] Web Ontology Language (OWL). Retrieved February, 2015.
http://www.w3.org/2001/sw/wiki/OWL.

[Pas08] Claude Pasquier. Biological data integration using Semantic Web technologies.
Biochimie 90:584:594, 2008.

[PC14] Pubcrawl. Retrieved December, 2014. https://code.google.com/p/pubcrawl.

[PHS+11] Georgios A. Pavlopoulos, Sean D. Hooper, Alejandro Sifrim, Reinhard
Schneider, and Jan Aerts. Medusa: A tool for exploring and clustering biological
networks, BMC Research Notes 4:384, 2011.

[PKM+08] Alexander R. Pico, Thomas Kelder, Martijn P. van Iersel, Kristina Hanspers,
Bruce R. Conklin, Chris Evelo. WikiPathways: pathway editing for the people. PLoS
Biology 6:e184, pp. 1403-1407, 2008.

[PMC15] Europe PMC. Retrieved February, 2015.
http://europepmc.org/restfulwebservice.

[Pos15] PostgreSQL. Retrieved February, 2015. http://www.postgresql.org.

[PTB+12] Kim D. Pruitt, Tatiana Tatusova, Garth R. Brown, and Donna R. Maglott.
NCBI Reference Sequences (RefSeq): current status, new features and genome
annotation policy. Nucleic Acids Res., 40(Database issue):D130-135, 2012.

[PTPT+13] Pablo Pareja-Tobes, Eduardo Pareja-Tobes, Marina Manrique, Eduardo
Pareja, and Raquel Tobes. Bio4J: An Open source biological data integration platform.
IWBBIO, 2013

[PWS08] Georgios A. Pavlopoulos, Anna-Lynn Wegener, Reinhard Schneider. A survey
of visualization tools for biological network analysis. BioData Mining 1:12, 2008.

[QEG+10] Judy Qiu, Jaliya Ekanayake, Thilina Gunarathne, Jong Youl Choi, Seung-
Hee Bae, Hui Li, Bingjing Zhang, Tak-Lon Wu, Yang Ruan, Saliya Ekanayake, et al.
Hybrid cloud and cluster computing paradigms for life science applications. BMC
bioinformatics 11(Suppl 12):S3, 2010.

[Rav15] RavenDB. Retrieved January, 2015. http://ravendb.net.

[RDF15] Resource Description Framework (RDF). Retrieved February, 2015.
http://www.w3.org/RDF.

[RE14] Regulome Explorer. Retrieved December, 2014.
https://code.google.com/p/regulome-explorer.

78

[RSK+11] Shoba Ranganathan, Christian Schönbach, Janet Kelso, Burkhard Rost,
Sheila Nathan, and Tin Wee Tan. Towards big data science in the decade ahead from ten
years of InCoB and the 1st ISCB-Asia Joint Conference. BMC Bioinformatics, 12 (suppl
13): S1, 2011.

[RWE13] Ian Robinson, Jin Webber, and Emil Eifrem. Graph databases. O’Reilly
Media, 2013.

[SAR+07] Barry Smith, Michael Ashburner, Cornelius Rosse, Jonathan Bard, William
Bug, Werner Ceusters, Louis J. Goldberg, Karen Eilbeck, Amelia Ireland, Christopher J
Mungall, et al. The OBO Foundry: coordinated evolution of ontologies to support
biomedical data integration. Nature Biotechnology 25:1251-1255, 2007.

[Say10] Eric Sayers. A General Introduction to the E-utilities. In Entrez Programming
Utilities Help [Internet]. Bethesda (MD): National Center for Biotechnology
Information (US), available from http://www.ncbi.nlm.nih.gov/books/NBK25497, 2010.

[Say13] Eric Sayers. E-utilities Quick Start. In Entrez Programming Utilities Help
[Internet]. Bethesda (MD): National Center for Biotechnology Information (US),
available from http://www.ncbi.nlm.nih.gov/books/NBK25500, last update: August 9,
2013.

[SH07] Matthew Suderman and Matthew Hallet. Tools for visually exploring biological
networks. Bioinformatics 23 , pp. 2651-2659, 2007.

[SIB14] Swiss Institute of Bioinformatics Home Page. Retrieved November, 2014.
http://www.isb-sib.ch.

[SK10] Pradeep Kumar Sreenivasaiah and Do Han Kim. Current trends and new
challenges of databases and web application for systems driven biological research.
Front Physiol 1:147, 2010.

[SLB+11] Sherif Sakr, Anna Liu, Daniel M. Batista, and Mohammad Alomari. A Survey
of Large Scale Data Management Approaches in Cloud Environments. Communications
Surveys & Tutorials, IEEE 13(3), 2011.

[SLT+03] Vladimir Svetnik, Andy Liaw, Christopher Tong, J. Christopher Culberson ,
Robert P. Sheridan, and Bradley P. Feuston. Random Forest: A Classification and
Regression Tool for Compound Classification and QSAR Modeling. Journal of
Chemical Information and Computer Sciences 43:1947-1958, 2003.

[SOH14] Hugh P. Shanahan, Anne M. Owen, Andrew P. Harrison. Bioinformatics on
the Cloud Computing Platform Azure. PLoS ONE 9(7), 2014.

[SQV+14] Quan Z. Shenga, Xiaoqiang Qiaob, Athanasios V. Vasilakosc, Claudia
Szaboa, Scott Bournea, and Xiaofei Xu. Web services composition: A decade’s
overview. Information Sciences 280:218-238, 2014.

79

[SR13] Michael Stonebraker and Judy Robertson. Big data is 'buzzword du jour;' CS
academics 'have the best job'. Magazine Communications of the ACM 56(9):10-11,
2013.

[SRG13] Xosé M. Fernández-Suárez, Daniel J. Rigden, and Michael Y. Galperin. The
2014 Nucleic Acids Research Database Issue and an updated NAR online Molecular
Biology Database Collection. Nucleic Acids Research, 2013.

[Sur12] Surajit Chaudhuri. What Next? A Half-Dozen Data Management Research
Goals for Big Data and the Cloud. In Proceedings of the 31st symposium on Principles
of Database Systems (PODS), pp. 1-4, 2012.

[SWA08] Alexander Statnikov, Lily Wang, Constantin F. Aliferis. A comprehensive
comparison of random forests and support vector machines for microarray-based cancer
classification. BMC Bioinformatics 9:319, 2008.

[TCB+13] Robi Tacutu, Thomas Craig, Arie Budovsky, Daniel Wuttke, Gilad Lehmann,
Dmitri Taranukha, Joana Costa, Vadim E Fraifeld, and João Pedro de Magalhães.
Human Ageing Genomic Resources: Integrated databases and tools for the biology and
genetics of ageing. Nucleic Acids Research 41(D1):D1027-D1033, 2013.

[TOG+10] Paolo Di Tommaso, Miquel Orobitg, Fernando Guirado, Fernado Cores, Toni
Espinosa, and Cedric Notredame. Cloud-Coffee: implementation of a parallel
consistency-based multiple alignment algorithm in the T-Coffee package and its
benchmarking on the Amazon Elastic-Cloud. Bioinformatics 26:1903-4, 2010.

[UA06] Ramón Díaz-Uriarte1 and Sara Alvarez de Andrés. Gene selection and
classification of microarray data using random forest. BMC Bioinformatics 7:3, 2006.

[UPA14] Uniprot Programmatic Access. Retrieved November, 2014.
http://www.uniprot.org/help/programmatic_access.

[Vis14] Vis.js Home Page. Retrieved December, 2014. http://visjs.org.

[Vol15] Project Voldemort. Retrieved January, 2015. http://www.project-
voldemort.com/voldemort/

[WHF+13] Katherine Wolstencroft, Robert Haines, Donal Fellows, Alan Williams,
David Withers, Stuart Owen, Stian Soiland-Reyes, Ian Dunlop, Aleksandra Nenadic,
Paul Fisher, et al. The Taverna workflow suite: designing and executing workflows of
Web Services on the desktop, web or in the cloud. Nucleic Acids Research
41(Webserver-Issue):557-561, 2013 .

[WKF+10] Dennis P. Wall, Parul Kudtarkar, Vincent A. Fusaro, Rimma Pivovarov,
Prasad Patil, and Peter J. Tonellato. Cloud computing for comparative genomics. BMC
bioinformatics 11:259, 2010.

80

http://visjs.org/

[WMS+13] Chunlei Wu, Ian MacLeod, Andrew I. Su. BioGPS and MyGene.info:
organizing online, gene-centric information. Nucl. Acids Res. 41(Database issue):D561-
D565, 2013.

[WN11] Paweł Widera and Natalio Krasnogor. Protein Models Comparator: Scalable
Bioinformatics Computing on the Google App Engine Platform. The Computing
Research Repository (CoRR), 2011.

[WNS+11] Patricia L. Whetzel, Natalya F. Noy, Nigam H. Shah, Paul R. Alexander,
Csongor Nyulas, Tania Tudorache, and Mark A. Musen. BioPortal: enhanced
functionality via new Web services from the National Center for Biomedical Ontology
to access and use ontologies in software applications. Nucleic Acids Res. 39:W541-5,
2011.

[WO15] W3C Standards – Ontology. Retrieved February, 2015.
http://www.w3.org/standards/semanticweb/ontology.

[WOB+09] Chunlei Wu, Camilo Orozco, Jason Boyer, Marc Leglise, James Goodale,
Serge Batalov, Christopher L. Hodge, James Haase, Jeff Janes, Jon W. Huss and Andrew
I. Su. BioGPS: an extensible and customizable portal for querying and organizing gene
annotation resources. Genome Biology 10:R130, 2009.

[WS14] Semantic Web. Retrieved December, 2014.
http://www.w3.org/standards/semanticweb.

[XMR+11] Zuoshuang Xiang, Chris Mungall, Alan Ruttenberg, Yongqun He. Ontobee:
A Linked Data Server and Browser for Ontology Terms. In Proceedings of the 2nd
International Conference on Biomedical Ontologies (ICBO), pp. 279-281, 2011.

[YSP+13] Wanjuan Yang, Jorge Soares, Patricia Greninger, Elena J. Edelman, Howard
Lightfoot, Simon Forbes, Nidhi Bindal, Dave Beare, James A. Smith, I. Richard
Thompson, et al. Genomics of Drug Sensitivity in Cancer (GDSC):a resource for
therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 41(D1):D955-D961,
2013.

[ZCB10] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: state-of-the-art
and research challenges. Journal of Internet Services and Applications 1(1):7-18, 2010.

[ZGL+11] Lu Zhang, Shengchang Gu, Yuan Liu, Bingqiang Wang, and Francisco
Azuaje. Gene set analysis in the cloud. Bioinformatics 28:294-295, 2011.

[Zhu09] Hai Zhuge. Communities and emerging semantics in semantic link network:
Discovery and learning. IEEE Transactions on Knowledge and Data Engineering
21(6):785-799, 2009.

[ZL07] Hai Zhuge and Xiang Li. Peer-to-peer in metric space and semantic space. IEEE
Transactions on Knowledge and Data Engineering 19(6):759-771, 2007.

81

[ZW09] Heping Zhang and Minghui Wang. Search for the smallest random forest. Stat
Interface 2:381, 2009.

82

Appendix A: Google App Engine

Google App Engine (GAE) [AE14] is a fully-managed Platform as a Service which allows

developers to build, deploy and run applications on Google's Infrastructure. In details,

GAE is part of the Google Cloud Platform [GCP14]. GAE is currently used to develop a

wide range of applications such as enterprise applications, scalable web and mobile

applications, and games.

 GAE supports applications written in Python, Java, PHP, and GO. In addition, it makes

available several existing frameworks, including Django, Flask, Spring and webapp2.

 As regards the storage, GAE provides a schemaless NoSQL database. In particular, this

NoSQL database is an object-oriented database called Datastore. Unlike traditional

relational databases, this database makes use of a distributed architecture to automatically

manage scaling to very large amount of data. In addition, it guarantees atomic transactions

and high availability of reads and writes.

 According to the GAE documentation [AED15]:

The Datastore holds data objects known as entities. An entity has one or more

properties, named values of one of several supported data types [...] Each

entity is identified by its kind, which categorizes the entity for the purpose of

queries, and a key that uniquely identifies it within its kind. […] Entities of the

same kind can have different properties, and different entities can have

properties with the same name but different value types.

 The Datastore interface provides a rich set of API for modeling data. In addition,

this interface also include a SQL-like query language called GQL for retrieving

83

objects (i.e., entities) or keys from the App Engine datastore. The Datastore uses by

default a configuration called High Replication Datastore (HRD). This configuration

implies that data is replicated across multiple datacenters exploiting a system based on

the Paxos algorithm in order to guarantee a high level of availability for reads and

writes. Note that most queries present a weak consistency; specifically, they are

eventually consistent.

 Finally, it is worth highlighting that GAE runs the apps in a secure sandboxed

environment; therefore, an application exploits a reliable environment independent of

the infrastructure (i.e., physical location of the server) or the operating system. This

“sandbox” environment guarantees not only security but also automatic scaling and

load balancing across multiple servers in order to meet peaks demand.

84

	List of Figures
	List of Tables
	Introduction
	Emerging Technologies and Trends in Bioinformatics
	2.1 Cloud Computing
	2.2 NoSQL Databases
	2.3 Semantic Web technologies: Ontologies
	2.4 Concluding Remarks

	Data Integration on the Cloud: a Case Study
	3.1 Architectural aspects
	3.2 BSE Functionalities
	3.3 Implementation
	3.4 Related Work
	3.5 Concluding Remarks

	Scientific Collaboration: a Case Study
	4.1 Modelling Collaborative Knowledge
	4.2 COWB Architecture and Functionalities
	4.2.1. Knowledge Exploration
	4.2.2 Network Editing

	4.3 Implementation
	4.4 Related Work
	4.5 Concluding Remarks

	Knowledge Extraction: a Case Study
	5.1 Background
	5.2 Experiments
	5.2.1 Results About Tuning on the Original Dataset.
	5.2.2 Results About Tuning on Filtered Subsets

	5.3 Concluding Remarks

	Conclusions
	Bibliography
	Appendix A: Google App Engine

