58 research outputs found

    Guidance, navigation and control system for autonomous proximity operations and docking of spacecraft

    Get PDF
    This study develops an integrated guidance, navigation and control system for use in autonomous proximity operations and docking of spacecraft. A new approach strategy is proposed based on a modified system developed for use with the International Space Station. It is composed of three V-bar hops in the closing transfer phase, two periods of stationkeeping and a straight line V-bar approach to the docking port. Guidance, navigation and control functions are independently designed and are then integrated in the form of linear Gaussian-type control. The translational maneuvers are determined through the integration of the state-dependent Riccati equation control formulated using the nonlinear relative motion dynamics with the weight matrices adjusted at the steady state condition. The reference state is provided by a guidance function, and the relative navigation is performed using a rendezvous laser vision system and a vision sensor system, where a sensor mode change is made along the approach in order to provide effective navigation. The rotational maneuvers are determined through a linear quadratic Gaussian-type control using star trackers and gyros, and a vision sensor. The attitude estimation mode change is made from absolute estimation to relative attitude estimation during the stationkeeping phase inside the approach corridor. The rotational controller provides the precise attitude control using weight matrices adjusted at the steady state condition, including the uncertainty of the moment of inertia and external disturbance torques. A six degree-of-freedom simulation demonstrates that the newly developed GNC system successfully autonomously performs proximity operations and meets the conditions for entering the final docking phase --Abstract, page iii

    Integrated Optimal and Robust Control of Spacecraft in Proximity Operations

    Get PDF
    With the rapid growth of space activities and advancement of aerospace science and technology, many autonomous space missions have been proliferating in recent decades. Control of spacecraft in proximity operations is of great importance to accomplish these missions. The research in this dissertation aims to provide a precise, efficient, optimal, and robust controller to ensure successful spacecraft proximity operations. This is a challenging control task since the problem involves highly nonlinear dynamics including translational motion, rotational motion, and flexible structure deformation and vibration. In addition, uncertainties in the system modeling parameters and disturbances make the precise control more difficult. Four control design approaches are integrated to solve this challenging problem. The first approach is to consider the spacecraft rigid body translational and rotational dynamics together with the flexible motion in one unified optimal control framework so that the overall system performance and constraints can be addressed in one optimization process. The second approach is to formulate the robust control objectives into the optimal control cost function and prove the equivalency between the robust stabilization problem and the transformed optimal control problem. The third approach is to employ the è-D technique, a novel optimal control method that is based on a perturbation solution to the Hamilton-Jacobi-Bellman equation, to solve the nonlinear optimal control problem obtained from the indirect robust control formulation. The resultant optimal control law can be obtained in closedorm, and thus facilitates the onboard implementation. The integration of these three approaches is called the integrated indirect robust control scheme. The fourth approach is to use the inverse optimal adaptive control method combined with the indirect robust control scheme to alleviate the conservativeness of the indirect robust control scheme by using online parameter estimation such that adaptive, robust, and optimal properties can all be achieved. To show the effectiveness of the proposed control approaches, six degree-offreedom spacecraft proximity operation simulation is conducted and demonstrates satisfying performance under various uncertainties and disturbances

    Autonomous Satellite Rendezvous and Proximity Operations with Time-Constrained Sub-Optimal Model Predictive Control

    Full text link
    This paper presents a time-constrained model predictive control strategy for the 6 degree-of-freedom (6DOF) autonomous rendezvous and docking problem between a controllable "deputy" spacecraft and an uncontrollable "chief" spacecraft. The control strategy accounts for computational time constraints due to limited onboard processing speed. The translational dynamics model is derived from the Clohessy-Wiltshire equations and the angular dynamics are modeled on gas jet actuation about the deputy's center of mass. Simulation results are shown to achieve the docking configuration under computational time constraints by limiting the number of allowed algorithm iterations when computing each input. Specifically, we show that upwards of 90% of computations can be eliminated from a model predictive control implementation without significantly harming control performance

    Application of advanced technology to space automation

    Get PDF
    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits

    Model Predictive Control Applications to Spacecraft Rendezvous and Small Bodies Exploration

    Get PDF
    The overarching goal of this thesis is the design of model predictive control algorithms for spacecraft proximity operations. These include, but it is not limited to, spacecraft rendezvous, hovering phases or orbiting in the vicinity of small bodies. The main motivation behind this research is the increasing demand of autonomy, understood as the spacecraft capability to compute its own control plan, in current and future space operations. This push for autonomy is fostered by the recent introduction of disruptive technologies changing the traditional concept of space exploration and exploitation. The development of miniaturized satellite platforms and the drastic cost reduction in orbital access have boosted space activity to record levels. In the near future, it is envisioned that numerous artificial objects will simultaneously operate across the Solar System. In that context, human operators will be overwhelmed in the task of tracking and commanding each spacecraft in real time. As a consequence, developing intelligent and robust autonomous systems has been identified by several space agencies as a cornerstone technology. Inspired by the previous facts, this work presents novel controllers to tackle several scenarios related to spacecraft proximity operations. Mastering proximity operations enables a wide variety of space missions such as active debris removal, astronauts transportation, flight-formation applications, space stations resupply and the in-situ exploration of small bodies. Future applications may also include satellite inspection and servicing. This thesis has focused on four scenarios: six-degrees of freedom spacecraft rendezvous; near-rectilinear halo orbits rendezvous; the hovering phase; orbit-attitude station-keeping in the vicinity of a small body. The first problem aims to demonstrate rendezvous capabilities for a lightweight satellite with few thrusters and a reaction wheels array. For near-rectilinear halo orbits rendezvous, the goal is to achieve higher levels of constraints satisfaction than with a stateof- the-art predictive controller. In the hovering phase, the objective is to augment the control accuracy and computational efficiency of a recent global stable controller. The small body exploration aims to demonstrate the positive impact of model-learning in the control accuracy. Although based on model predictive control, the specific approach for each scenario differs. In six-degrees of freedom rendezvous, the attitude flatness property and the transition matrix for Keplerian-based relative are used to obtain a non-linear program. Then, the control loop is closed by linearizing the system around the previous solution. For near-rectilinear halo orbits rendezvous, the constraints are assured to be satisfied in the probabilistic sense by a chance-constrained approach. The disturbances statistical properties are estimated on-line. For the hovering phase problem, an aperiodic event-based predictive controller is designed. It uses a set of trigger rules, defined using reachability concepts, deciding when to execute a single-impulse control. In the small body exploration scenario, a novel learning-based model predictive controller is developed. This works by integrating unscented Kalman filtering and model predictive control. By doing so, the initially unknown small body inhomogeneous gravity field is estimated over time which augments the model predictive control accuracy.El objeto de esta tesis es el dise˜no de algoritmos de control predictivo basado en modelo para operaciones de veh´ıculos espaciales en proximidad. Esto incluye, pero no se limita, a la maniobra de rendezvous, las fases de hovering u orbitar alrededor de cuerpos menores. Esta tesis est´a motivada por la creciente demanda en la autonom´ıa, entendida como la capacidad de un veh´ıculo para calcular su propio plan de control, de las actuales y futuras misiones espaciales. Este inter´es en incrementar la autonom´ıa est´a relacionado con las actuales tecnolog´ıas disruptivas que est´an cambiando el concepto tradicional de exploraci´on y explotaci´on espacial. Estas son el desarrollo de plataformas satelitales miniaturizadas y la dr´astica reducci´on de los costes de puesta en ´orbita. Dichas tecnolog´ıas han impulsado la actividad espacial a niveles de record. En un futuro cercano, se prev´e que un gran n´umero de objetos artificiales operen de manera simult´anea a lo largo del Sistema Solar. Bajo dicho escenario, los operadores terrestres se ver´an desbordados en la tarea de monitorizar y controlar cada sat´elite en tiempo real. Es por ello que el desarrollo de sistemas aut´onomos inteligentes y robustos es considerado una tecnolog´ıa fundamental por diversas agencias espaciales. Debido a lo anterior, este trabajo presenta nuevos resultados en el control de operaciones de veh´ıculos espaciales en proximidad. Dominar dichas operaciones permite llevar a cabo una gran variedad de misiones espaciales como la retirada de basura espacial, transferir astronautas, aplicaciones de vuelo en formaci´on, reabastecer estaciones espaciales y la exploraci ´on de cuerpos menores. Futuras aplicaciones podr´ıan incluir operaciones de inspecci´on y mantenimiento de sat´elites. Esta tesis se centra en cuatro escenarios: rendezvous de sat´elites con seis grados de libertad; rendezvous en ´orbitas halo cuasi-rectil´ıneas; la fase de hovering; el mantenimiento de ´orbita y actitud en las inmendiaciones de un cuerpo menor. El primer caso trata de proveer capacidades de rendezvous para un sat´elite ligero con pocos propulsores y un conjunto de ruedas de reacci´on. Para el rendezvous en ´orbitas halo cuasi-rectil´ıneas, se intenta aumentar el grado de cumplimiento de restricciones con respecto a un controlador predictivo actual. Para la fase de hovering, se mejora la precisi´on y eficiencia computacional de un controlador globalmente estable. En la exploraci´on de un cuerpo menor, se pretende demostrar el mayor grado de precisi´on que se obtiene al aprender el modelo. Siendo la base el control predictivo basado en modelo, el enfoque espec´ıfico difiere para cada escenario. En el rendezvous con seis grados de libertad, se obtiene un programa no-lineal con el uso de la propiedad flatness de la actitud y la matriz de transici´on del movimiento relativo Kepleriano. El bucle de control se cierra linealizando en torno a la soluci´on anterior. Para el rendezvous en ´orbitas halo cuasi-rectil´ıneas, el cumplimiento de restricciones se garantiza probabil´ısticamente mediante la t´ecnica chance-constrained. Las propiedades estad´ısticas de las perturbaciones son estimadas on-line. En la fase de hovering, se usa el control predictivo basado en eventos. Ello consiste en unas reglas de activaci´on, definidas con conceptos de accesibilidad, que deciden la ejecuci´on de un ´unico impulso de control. En la exploraci´on de cuerpos menores, se desarrolla un controlador predictivo basado en el aprendizaje del modelo. Funciona integrando un filtro de Kalman con control predictivo basado en modelo. Con ello, se consigue estimar las inomogeneidades del campo gravitario lo que repercute en una mayor precisi´on del controlador predictivo basado en modelo

    Infrared based monocular relative navigation for active debris removal

    No full text
    In space, visual based relative navigation systems suffer from the harsh illumination conditions of the target (e.g. eclipse conditions, solar glare, etc.). In current Rendezvous and Docking (RvD) missions, most of these issues are addressed by advanced mission planning techniques (e.g strict manoeuvre timings). However, such planning would not always be feasible for Active Debris Removal (ADR) missions which have more unknowns. Fortunately, thermal infrared technology can operate under any lighting conditions and therefore has the potential to be exploited in the ADR scenario. In this context, this study investigates the benefits and the challenges of infrared based relative navigation. The infrared environment of ADR is very much different to that of terrestrial applications. This study proposes a methodology of modelling this environment in a computationally cost effective way to create a simulation environment in which the navigation solution can be tested. Through an intelligent classification of possible target surface coatings, the study is generalised to simulate the thermal environment of space debris in different orbit profiles. Through modelling various scenarios, the study also discusses the possible challenges of the infrared technology. In laboratory conditions, providing the thermal-vacuum environment of ADR, these theoretical findings were replicated. By use of this novel space debris set-up, the study investigates the behaviour of infrared cues extracted by different techniques and identifies the issue of short-lifespan features in the ADR scenarios. Based on these findings, the study suggests two different relative navigation methods based on the degree of target cooperativeness: partially cooperative targets, and uncooperative targets. Both algorithms provide the navigation solution with respect to an online reconstruction of the target. The method for partially cooperative targets provides a solution for smooth trajectories by exploiting the subsequent image tracks of features extracted from the first frame. The second algorithm is for uncooperative targets and exploits the target motion (e.g. tumbling) by formulating the problem in terms of a static target and a moving map (i.e. target structure) within a filtering framework. The optical flow information is related to the target motion derivatives and the target structure. A novel technique that uses the quality of the infrared cues to improve the algorithm performance is introduced. The problem of short measurement duration due to target tumbling motion is addressed by an innovative smart initialisation procedure. Both navigation solutions were tested in a number of different scenarios by using computer simulations and a specific laboratory set-up with real infrared camera. It is shown that these methods can perform well as the infrared-based navigation solutions using monocular cameras where knowledge relating to the infrared appearance of the target is limited

    Suboptimal LQR-based spacecraft full motion control: Theory and experimentation

    Get PDF
    Abstract This work introduces a real time suboptimal control algorithm for six-degree-of-freedom spacecraft maneuvering based on a State-Dependent-Algebraic-Riccati-Equation (SDARE) approach and real-time linearization of the equations of motion. The control strategy is sub-optimal since the gains of the linear quadratic regulator (LQR) are re-computed at each sample time. The cost function of the proposed controller has been compared with the one obtained via a general purpose optimal control software, showing, on average, an increase in control effort of approximately 15%, compensated by real-time implementability. Lastly, the paper presents experimental tests on a hardware-in-the-loop six-degree-of-freedom spacecraft simulator, designed for testing new guidance, navigation, and control algorithms for nano-satellites in a one-g laboratory environment. The tests show the real-time feasibility of the proposed approach

    GPS receiver self survey and attitude determination using pseudolite signals

    Get PDF
    This dissertation explores both the estimation of various parameters from a multiple antenna GPS receiver, which is used as an attitude sensor, and attitude determination using GPS-like Pseudolite signals. To use a multiple antenna GPS receiver as an attitude sensor, parameters such as baselines, integer ambiguities, line biases, and attitude, should be resolved beforehand. Also, due to a cycle slip problem a subsystem to correct this problem should be implemented. All of these tasks are called a self survey. A new algorithm to estimate these parameters from a GPS receiver is developed usingnonlinear batch filteringmethods.For convergence issues, both the nolinear least squares (NLS) and Levenberg-Marquardt (LM) methods are applied in the estimation.Acomparison ofthe NLSand LMmethods shows that the convergence of the LM method for the large initial errors is more robust than that of the NLS. In the proximity of the International Space Station (ISS), Pseudolite signals replace the GPSsignals since almostallsignals are blocked.Since the Pseudolite signals have spherical wavefronts, a new observation model should be applied. A nonlinear predictive filter, an extended Kalman filter (EKF), and an unscented filter (UF) are developed and compared using Pseudolite signals. A nonlinear predictive filter can provide a deterministic solution; however, it cannot be used for the moving case. Instead, the EKF or the UF can be used with the angular rate measurements. A comparison of EKF and UF shows that the convergence of the UF for the large initial errors is more robust than that of the EKF. Also, an alternative global navigation constellation is presented by using the Flower Constellation (FC) scheme. A comparison of FC global navigation constellation and other GPS constellations, U.S. GPS, Galileo, and GLONASS, shows that position and attitude errors of the FC constellation are smaller that those of the others

    Nonlinear Control of Relative Motion in Space using Extended Linearization Technique

    Get PDF
    Relative guidance algorithms for space applications were identified by NASA as an enabling technology for future missions development. Whenever two or more space vehicles must coordinate their motion or a terminal rendezvous has to be performed, a robust control of the relative motion occurring between the two objects is requested. Control must guarantee operation safety and minimize fuel consumption, since refuelling operations are currently too expensive. In this thesis, the extend linearization technique was adopted to design pseudo-optimal and robust control laws for nonlinear equations of relative motion. Typical perturbations of low Earth orbits were considered, in order to understand the feasibility of the developed controllers. Simulations were performed using data from real missions

    Flight Mechanics/Estimation Theory Symposium, 1989

    Get PDF
    Numerous topics in flight mechanics and estimation were discussed. Satellite attitude control, quaternion estimation, orbit and attitude determination, spacecraft maneuvers, spacecraft navigation, gyroscope calibration, spacecraft rendevous, and atmospheric drag model calculations for spacecraft lifetime prediction are among the topics covered
    corecore