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Sommario

La NASA ha identificato gli algoritmi per la guida relativa nello spazio come una

delle tecnologie chiave per lo sviluppo delle missioni future. Ogni qualvolta due o

più veicoli spaziali debbono coordinare il loro moto, oppure deve essere eseguita

una manovra di rendezvous terminale, è richiesto l’utilizzo di una legge di controllo

robusta per governare il moto relativo tra gli oggetti. Questa legge dovrà garantire

la sicurezza delle operazioni e minimizzare il consumo di carburante, vista l’impos-

sibilità di rifornimenti in orbita. In questa tesi, la tecnica di linearizzazione estesa

è stata utilizzata per lo sviluppo di leggi pseudo-ottime e robuste per il controllo

delle equazioni non lineari di moto relativo. Sono state inoltre considerate le pertur-

bazioni tipiche delle orbite terrestri basse per analizzare la fisibilità dei controllori

proposti. Tutte le simulazioni sono state condotte utilizzando dati provenienti da

missioni reali.

Abstract

Relative guidance algorithms for space applications were identified by NASA as

an enabling technology for future missions development. Whenever two or more

space vehicles must coordinate their motion or a terminal rendezvous has to be per-

formed, a robust control of the relative motion occurring between the two objects is

requested. Control must guarantee operation safety and minimize fuel consumption,

since refuelling operations are currently too expensive. In this thesis, the extend lin-

earization technique was adopted to design pseudo-optimal and robust control laws

for nonlinear equations of relative motion. Typical perturbations of low Earth orbits

were considered, in order to understand the feasibility of the developed controllers.

Simulations were performed using data from real missions.
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Chapter 1

Introduction

Relative guidance is a key technology for the development of future space missions.

Operations such as rendezvous and docking, inspection and servicing require the

on-board presence of a relative guidance and control system, that, given in input

the relative position and attitude estimations, steers the spacecraft ensuring the

safety of the involved vehicles and fuel consumption optimization. Nowadays, these

operations are performed with the human intervention, except few cases (e.g. ESA’s

ATV). In order to lighten control station workload and to start developing new and

ambitious space missions for deep space exploration, space vehicles autonomy must

increase. The identification of robust control laws for relative motion in space is a

fundamental step towards the development of relative guidance and control systems

for space.

In this thesis, the relative motion problem is studied an the SDRE method

(State-Dependent Riccati Equation) was applied in order to identify a new suitable

control law for the development of a relative guidance system. Simulations were set

up using data taken from real missions. Space perturbations were also considered

to understand the potentialities of the SDRE method and its applicability to real

situations.

The thesis is organized as follows. Space flight mechanics and relative motion

are introduced in Chapter 2. The two body problem and Keplerian motion are dis-

1



Chapter 1. Introduction 2

cussed. The most important perturbations for low Earth orbits are also presented.

After introducing the main concepts of space flight mechanics, equations for relative

motion description are developed. Two formalisms are considered: the Cartesian

and the orbital element differences descriptions.

In Chapter 3 the relative motion problem is stated, followed by a discussion

about application and control requirements. A literature review of the solutions

proposed during the years is presented, supported by a classification based on the

control approach used and by a series of references to the most important works.

A recently developed near-optimal control law is then presented in Chapter 4.

This solution is currently one of the closest to optimality, thanks to a series of

mathematical tools developed by the authors.

The control method object of this thesis, the State-Dependent Riccati Equation

control, is discussed in Chapter 5. SDRE theory is presented with its most important

contributes. The main theorems for proving control stability and optimality are

there proposed and a brief discussion about resolution methods for algebraic Riccati

equation, which is at the base of the SDRE control, is offered. The chapter ends

with a summary of some SDRE-based solutions proposed in literature for relative

motion control.

In Chapter 6 the SDRE control is applied to the relative motion problem. Three

different controllers are developed, using three possible parametrizations of the non-

linear equation of unperturbed relative motion. Controllers performance are then

compared to the near-optimal control presented in Chapter 4.

Using the extended linearization technique, a nonlinear H∞ controller is pro-

posed in Chapter 7 for relative motion control in presence of perturbations. In

particular, an SDRE-H∞ controller is developed and compared to a typical SDRE

controller based on nonlinear equations of relative perturbed motion. The use of a

simpler SDRE controller using linearized equations is also considered.

Chapter 8 concludes the thesis with a discussion of the work presented and the

results achieved by the proposed solutions.



Chapter 2

Space Flight Mechanics and

Relative Motion

The aim of this chapter is to introduce the unfamiliar reader to the essential ele-

ments of the space flight mechanics, in order to understand the development of the

equations of relative motion, subject of this thesis. The chapter is organized in two

main sections.

In Section 2.1 the two body problem is discussed and the Keplerian motion is

introduced. The orbital elements, a set of parameters for orbit description, are

presented and a brief introduction to the main space perturbations for lower Earth

orbits is proposed. The section ends with a mathematical model for propulsion, that

will be used to account for satellite mass variation due to propellant consumption.

Section 2.2 presents the main formalization used for space relative motion de-

scription. The Cartesian representation is the most diffused, since it allows the use

of sensors measurements for relative position and velocity without the introduc-

tion of any transformation or coordinate change. Orbit elements difference may be

used to describe relative motion too. the result is the orbital elements difference

description.

The theory and the results proposed in this chapter were developed using [1–4]

as reference textbooks, whereas propulsion modelling was adapted from [5].

3



2.1. Essential Orbital Mechanics 4

2.1 Essential Orbital Mechanics

2.1.1 The Two-Body Problem and the Keplerian Motion

Consider two point masses in an inertial reference frame. The masses are attracted

to each other according to Newton’s Law of Universal Gravitation. In particular,

the attraction force exerted by body i on body j is given by

Fgi = −Gmimj

r3
ij

rji

where rji = ri − rj with ri position of body i with respect to the origin of the

inertial reference frame, G = 6.6726× 10−11 m3/(kg s2) is the universal gravitational

constant and mi is the mass of body i.

Assuming that the only force acting on the two point masses is the gravitational

force, equation of motion for the two bodies can be computed using Newton’s Second

Law,

m1
d2

dt2
r1 = G

m1m2

r3
r

m2
d2

dt2
r2 = −Gm1m2

r3
r

having introduced the relative position vector r = r2−r1. The relative acceleration

of the bodies is given by

d2

dt2
r =

d2

dt2
r2 −

d2

dt2
r1 = −Gm1 +m2

r3
r (2.1)

During the study of the motion of a satellite around a planet (or a primary body),

the satellite mass is often negligible. The gravitational parameter µ , GM is then

introduced, where M is the planet mass, and Equation (2.1) can be written in the

following form,

d2

dt2
r = − µ

r3
r (2.2)

Equation (2.2) describes the motion of a small body around a primary body in
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Figure 2.1: Ellipse geometry.

absence of perturbations. This type of motion is usually referred to as Keplerian

motion. In the following, it will be assumed that the primary body is the Earth,

which astronomical symbol is ⊕. In this case M = 59.736× 1023 kg and µ =

398 600 km/s2.

An important property of the Keplerian motion is the massless angular momen-

tum conservation. Satellite’s massless angular momentum is defined as

h , r × v

where v = d
dtr. Left multiplication of Equation (2.2) by r (cross product) yields

r × d2

dt2
r + r × µ

r3
r = 0 ⇐⇒ r × d

dt
v = 0 (2.3)

Left side of previous equation can be written as

r × d

dt
v =

d

dt
(r × v) =

d

dt
h

and together with Equation (2.3) proves that h is constant.

Satellite’s trajectory equation may be obtained by integration of Equation (2.2).

Different solutions were proposed during the years (a summary of classical solutions
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can be found in [2]). All the possible trajectory are represented by the conic polar

equation1,

r =
p

1 + e cos f
(2.4)

where e and p are respectively the conic eccentricity and semilatus rectum and f is

the satellite true anomaly (see Figure 2.1).

Two useful expressions for p are the following. The first one valid when e 6= 1

p = a
(
1− e2

)
(2.5)

where a is the conic semi-major axis; the second one as a function of satellite’s

angular momentum

p =
h2

µ
(2.6)

The eccentricity defines the type of conic and thus the orbit shape. In particular

• e = 0→ circumference;

• 0 < e < 1→ ellipse;

• e = 1→ parabola;

• e > 1→ hyperbola.

In this thesis only elliptical and circular orbits are considered. The ellipse will be

considered as the general orbit shape.

The primary body occupies one of the conic focus: the primary focus. The

closest point on the ellipse to the primary focus is called periapse, whereas the

furthest point is the apoapse.

The true anomaly is measured from periapse and its time derivative can be

computed using h. Let introduce a Cartesian coordinate system, with a radial and

a perpendicular unit vector, respectively îr and î⊥ (Figure 2.2). The position vector

1cfr. Kepler’s First Law: the orbit of each planet is an ellipse with the sun at one focus.
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Figure 2.2: Definition of radial and perpendicular unit vectors.

can be written as r = rîr and the velocity vector obtained by derivation,

v =
d

dt
r = ṙîr + r

d

dt
îr

Time derivative of radial unit vector can be computed using satellite’s angular

velocity, that is directed along the unit vector îθ = îr × î⊥. Therefore,

d

dt
îr = ḟ îθ × îr = ḟ î⊥

and satellite’s velocity can be rewritten as

v = ṙîr + rḟ î⊥

Satellite’s angular momentum is thus

h = r × v = r2ḟ îθ

and true anomaly time derivative is given by

ḟ =
h

r2
(2.7)

Other important quantities are the orbital period and the mean motion. The orbital
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period is the time taken for a satellite to make one complete orbit around the primary

body and is given by,

T = 2π

√
a3

µ

Satellite’s mean motion is the average angular speed in an elliptic orbit and is

defined as

n ,
2π

T
=

√
µ

a3
(2.8)

2.1.2 Orbital Elements

The position of a satellite can be described in different ways. The first and most

simple solution is the use of a Cartesian coordinate system centred in the principal

body center of mass, such as the Earth-centred inertial coordinate frame (ECI):

{I} =
{
îI , ĵI , k̂I

}

In this system, the unit vector îI points toward the first point of Aries2, k̂I goes

through the geographic North Pole and ĵI completes the reference frame lying in the

equatorial plane. The adoption of a Cartesian reference frame allows the complete

description of satellite’s state by two R3 vectors: its position r and velocity v.

However, visualization of satellite’s orbit is difficult using such a type of coordi-

nate system. Therefore, the orbit is usually described by means of six parameters

shown in Figure 2.3, the classical orbital elements:

e =
[
a e i Ω ω f

]
The first five elements are constant in case of Keplerian motion and represent the

shape, size and orientation of the orbit, whereas the sixth element locates the satel-

2For an observer on the Earth the Sun motion on the celestial sphere is the result of the
day-night cycle and of its motion along the ecliptic. The Sun describes a circumference on the
celestial sphere called ecliptic moving towards east with an average speed of 1 ◦/d. The ecliptic
plane intersects the equatorial plane in two points: the first point of Aries and the first point of
Libra. The first one is occupied by the Sun during the vernal equinox, whereas the point of Libra
is occupied at autumnal equinox
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Figure 2.3: Classical orbital elements definition.

lite on the orbit.

Before giving a description of the orbital elements, some parameters and partic-

ular points must be introduced. In the general case, satellite’s orbit intersects the

equatorial plane in two points. In the ascending node the satellite crosses the equa-

torial planes south to north, whereas in the descending node the plane is crossed

north to south. The line that passes through the ascending and the descending node

is called nodal line. The unit vector n̂ has the same direction of the nodal line, it

is centred in the primary focus and points the ascending node. It is defined as

n̂ =
k̂I × h∥∥k̂I × h∥∥

The eccentricity vector e (the symbol must not be confused with the orbital elements

vector defined above) lies on the line that connects the primary focus to the periapse

and is defined by the following formula,

e =
1

µ

(
v × h− µr

r

)
(2.9)
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The eccentricity unit vector is shown in Figure 2.3.

The classical orbital elements can now be described. Some of them were already

introduced in Section 2.1.1.

• Semi-major axis a: describes the size of the ellipse;

• Eccentricity e: describes the shape of the ellipse;

• Inclination i ∈ [0, π]: the angle between the orbital and the equatorial planes;

• Right ascension of the ascending node Ω ∈ [0, 2π]: the angle from vector îI to

the nodal line n̂;

• Argument of perigee ω ∈ [0, 2π]: the angle from the ascending node to the

periapse (or perigee).

• True anomaly f ∈ [0, 2π]: the angle between satellite’s current position and

periapse.

However, this set of parameters is affected by a series of singularities. For example,

in case of equatorial orbits, i.e. i = 0, Ω and ω are not defined (the equatorial plane

coincides with the orbit plane). When the orbit is circular the eccentricity vector

cannot be defined (the periapse is not defined). In these cases, other parameters

are introduced (see for example [1], Chapter 3) or other set of orbital elements are

used (such as the equinoctial element set, see [2], or the orbital elements that will

be introduced in Section 2.2.5).

2.1.3 From Orbital Elements to (r,v) and Vice Versa

The orbital elements introduced in the previous section can be computed using

satellite’s position and velocity vectors. In particular,

• the eccentricity norm e may be computed using Equation (2.9);

• using Equation (2.5) and Equation (2.6) the semi-major axis a is given by

p = a
(
1− e2

)
=
h2

µ
⇐⇒ a =

h2

µ (1− e2)
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• inclination i can be computed using the dot product between k̂I and h

cos i =
k̂I · h
h

⇐⇒ i = arccos

(
k̂I · h
h

)

• the same procedure can be followed for the right ascension of the ascending

node Ω, remembering that, unlike inclination, Ω ∈ [0, 2π],

cos Ω = îI · n̂ ⇐⇒ Ω =


arccos

(
îI · n̂

)
, n̂ · ĵI > 0

2π − arccos
(
îI · n̂

)
, n̂ · ĵI < 0

• the argument of perigee can be computed using unit vectors ê and n̂,

cosω = n̂ · ê ⇐⇒ ω =


arccos (n̂ · ê) , e · k̂I > 0

2π − arccos (n̂ · ê) , e · k̂I < 0

• finally, as for ω and Ω, the true anomaly can be computed as the angle between

ê and the position unit vector r̂ = r/r.

cos f = ê · r̂ ⇐⇒ f =


arccos (ê · r̂) , r · v > 0

2π − arccos (ê · r̂) , r · v < 0

The inverse transformation, from orbital elements to (r,v), needs the definition

of a new coordinate systems, the perifocal reference frame,

{P} =
{
P̂ , Ŵ , Q̂

}

The perifocal coordinate system, shown in Figure 2.4, is centred in the primary

focus. The unit vectors P̂ and Q̂ lies in the orbital plane with P̂ pointing to the

periapse. Ŵ has the same direction of the angular momentum vector h and Q̂

completes the coordinate system.
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Figure 2.4: Perifocal reference frame.

The position r in the perifocal reference frame has the following expression,

r = r cos fP̂ + r sin fQ̂ (2.10)

Using Equation (2.4) and Equation (2.5), it is possible to express r as a function of

the orbital elements.

rP = r


cos f

sin f

0

 =
a
(
1− e2

)
1 + e cos f


cos f

sin f

0


In case of Keplerian motion the orbit does not change with time, thus the perifocal

coordinate system is inertial and

d

dt
P̂ =

d

dt
Q̂ = 0

Velocity v may be obtained by derivation of Equation (2.10),

v =
dr

dt
=
(
ṙ cos f − rḟ sin f

)
P̂ +

(
ṙ sin f + rḟ cos f

)
Q̂ (2.11)
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Time derivative of position norm can be computed as follows,

ṙ =
∂r

∂f
ḟ =

pe sin f

(1 + e cos f)2 ḟ =
rḟe sin f

1 + e cos f
(2.12)

and using Equation (2.6) and Equation (2.7), the expression of ṙ as a function of

the orbital parameters is given by

ṙ =
rḟe sin f

1 + e cos f

r

r
=

√
µpe sin f

r (1 + e cos f)
=

√
µ

p
e sin f (2.13)

Introducing Equation (2.13) in Equation (2.12) gives the expression for rḟ ,

rḟ =

√
µ

p
(1 + e cos f) (2.14)

Substituting Equations (2.13)-(2.14) in Equation (2.11) gives the expression of v in

the perifocal frame,

vP =

√
µ

p


− sin f

e+ cos f

0


Finally, the expression of the position and velocity vectors in the ECI frame can be

obtained using the coordinate change matrix CI
P (i,Ω, ω) : {P} → {I},

rI = CI
P (i,Ω, ω)rP , vI = CI

P (i,Ω, ω)vP

Its transpose, CP
I (i,Ω, ω) : {I} → {P} may be computed as composition of elemen-

tary rotation,

CP
I (i,Ω, ω) = Cz(ω)Cx(i)Cz(Ω)
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where the elementary rotation matrices are defined as follows,

Cx(α) =


1 0 0

0 cosα sinα

0 − sinα cosα

 , Cy(α) =


cosα 0 − sinα

0 1 0

sinα 0 cosα



Cz(α) =


cosα sinα 0

− sinα cosα 0

0 0 1


2.1.4 Space Perturbations

In the previous sections the gravitational attraction between two point masses was

considered and a basic mathematical model for satellite motion description was

developed. However, during its motion in space a satellite is subjected not only

to the gravitational force, but to many other forces that might change its orbit.

The forces not considered in the Keplerian motion model are usually referred to as

perturbation forces.

Perturbations are usually quantified in terms of accelerations, in order to write

Equation (2.2) as

r̈ = − µ
r3
r + ap (2.15)

introducing the perturbation acceleration ap. Numerical integration must be per-

formed in order to compute satellite’s trajectory, since closed form solutions for the

considered perturbations often do not exist.

In this section, two of the most important perturbations for lower Earth orbits

(LEO), orbits with altitude lower than 800 km and semi-major axis lower than

7178 km, are presented: atmospheric drag and J2 perturbation.

Atmospheric Drag

In case of low orbits, which altitude is lower than 600 km, Earth’s residual atmo-

sphere produces a drag effect on the satellite. Exact quantification of the atmo-
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spheric drag is difficult for different reasons. Atmosphere characteristics at high

altitudes are extremely variable and change according to solar and geomagnetic

activity. Moreover, drag magnitude and direction depends on satellites shape and

orientation with respect to the surrounding atmosphere.

A simplified model for preliminary mission study is the following,

aAtm = −ρvr
2cb
vr (2.16)

where vr is the relative velocity of the satellite with respect to the atmosphere. An

approximation is

vr = v − vAtm ≈ v − ω⊕ × r

where ω⊕ is the Earth angular velocity vector. The average Earth angular velocity

is usually adopted: ωI⊕ = 7.292115 × 10−5k̂I rad/s. Satellite’s shape and weight

is considered by the parameter cb, the ballistic coefficient, expressed in kg/m2 and

defined as

cb ,
m

CDA

where m is the satellite mass in kg, CD is the drag coefficient and A is the satellite’s

transversal section average area measured in m2.

The term ρ is the local atmosphere density, measured in kg/m3. This term is

the most difficult to estimate, since the high variability of atmosphere. A model

usually employed for preliminary mission study is the atmosphere exponential model.

Denoting with h satellite’s altitude, the local atmosphere density is given by

ρ = ρ0 exp

(
−h− h0

H

)

where ρ0 and h0 are two reference values, respectively for atmosphere density and

altitude, and H is a scale factor. Their values can be found in [1]. Local atmosphere

density variation as a function of the altitude is shown in Figure 2.5.

In Section 2.2.4 the time derivative of aAtm will be needed. Equation (2.16) can
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Figure 2.5: Atmosphere exponential model, density.

be written as

aAtm = KAtmvrvr

where KAtm = − ρ
2cb

, and its time derivative is

d

dt
aAtm = KAtm

(
v̇rvr + vr

d

dt
vr

)

Using the average Earth angular velocity ω⊕, relative acceleration can be computed

as follows,

d

dt
vr =

d

dt
v − d

dt
ω⊕ × r − ω⊕ ×

d

dt
r =

d

dt
v − ω⊕ × v

since d
dtω⊕ = 0. It should be noted that satellite’s acceleration is needed for

time derivative computation of atmospheric drag acceleration.

In order to compute relative velocity norm time derivative, the following result

must be introduced. Time derivative of a general vector’s norm, e.g. w ∈ R3 with

components wx, wy and wz in a given reference system, can be computed using the
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following relationship,

ẇ =
d

dt

√
w2
x + w2

y + w2
z =

1

w

(
w · d

dt
w

)
(2.17)

Note that this results is independent from the chosen coordinate system, since the

norm is a scalar. Thus, vector w can be derived in any type of reference frame.

Using Equation (2.17), relative velocity norm time derivative is given by

v̇r =
1

vr

(
vr ·

d

dt
vr

)

and drag atmosphere perturbation acceleration can be finally computed.

J2 Perturbation

An important source of perturbations for satellites in orbit around the Earth is

caused by the non-spherical mass distribution of the planet and its non-uniform

density. The equipotential surfaces of Earth’s gravitational field are not spherical,

but can be approximated as ellipsoids.

This approximation allows the mathematical description of the gravitational

potential associated to the Earth. In particular, modelling Earth as an ellipsoid

with equatorial radius Req = 6378.136 km, approximately twenty kilometres greater

than polar radius, its gravitational potential Ug is given by,

Ug =
GM

r

(
1−

+∞∑
n=2

Jn

(
Req

r

)n
Pn(sin δ)

)

The distance of a point P from the body center of mass is denoted with r, M is the

Earth mass, δ is the declination (the angle between the equatorial plane and the

vector that describes the position of P with respect to the Earth center of mass),

Jn is the zonal harmonic of order n and Pn(x) is the Legendre polynomial of order

n defined as

Pn(x) =
1

2nn!

dn

dxn
((
x2 − 1

)n)
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Table 2.1: Zonal harmonics of Earth gravitational field.

J2 1.0826× 10−3 J8 −2.0480× 10−7

J3 −2.5327× 10−6 J9 −1.2062× 10−7

J4 −1.6196× 10−6 J10 −2.4115× 10−7

J5 −2.2730× 10−7 J11 2.4440× 10−7

J6 5.4068× 10−7 J12 −1.8863× 10−7

J7 −3.5236× 10−7 J13 −2.1979× 10−7

As can be seen in Table 2.1, J2 is the predominant zonal harmonic, thus for a

preliminary analysis it can be considered the following potential,

Ug

∣∣∣
n=2

=
µ

r

(
1− J2

(
Req

r

)2(3

2
sin2 δ − 1

2

))

Noting that µ/r is the gravitational potential of a spherical body, J2 potential can

be isolated,

UJ2 = −µ
r
J2

(
Req

r

)2(3

2
sin2 δ − 1

2

)
and integrated in order to obtain the perturbation acceleration,

aJ2 = ∇UJ2

Denoting with rI = [rx, ry, rz]
T the spacecraft position in the ECI frame, J2 per-

turbation acceleration is given by

aIJ2 = −3

2
J2

( µ
r2

)(Req

r

)2


(

1− 5
(
rz
r

)2) rx
r(

1− 5
(
rz
r

)2) ry
r(

3− 5
(
rz
r

)2) rz
r

 (2.18)

Again, in Section 2.2.4 the expression of the J2 perturbation acceleration time
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derivative will be required. Equation (2.18) can be written as

aIJ2 =
KJ2

r5


rx

ry

3rz

− 5
KJ2

r7


rxr

2
z

ryr
2
z

r3
z


where the constant KJ2 = −3

2J2µR
2
eq is introduced. Derivation with respect to time

of the previous equation gives

d

dt
aIJ2 =

KJ2

r5



ṙx

ṙy

3ṙz

− 5ṙ

r


rx

ry

3rz

− 5

r2


r2
z ṙx + 2rxrz ṙz

r2
z ṙy + 2ryrz ṙz

3r2
z ṙz

+
35ṙ

r3


rxr

2
z

ryr
2
z

r3
z




Gauss Variational Equations

Gauss variational equations describe the orbital elements variation in presence of

perturbations. The equation set needs the introduction of a new coordinate system,

the RTN reference frame. The frame will be denoted with

{R} =
{
îR, îT , îN

}

with unit vectors defined as

îR = r/r, îN = h/h, îT = îN × îR

and its origin is in the satellite’s center of mass. The acronym RTN comes from

unit vectors definition: radial, transversal and normal. In order to express the

perturbation acceleration in the RTN frame, the coordinate change matrix from

ECI to RTN, CR
I (r,v) : {I} → {R} must be introduced,

CR
I (r,v) =

[
îIR îIT îIN

]
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Writing the perturbation acceleration in this frame,

aRp =


apR

apT

apN

 = CR
I (r,v)aIp

the orbital elements change according to the following equations.

da

dt
=

2a2

h
(e sin f apR + apT )

de

dt
=

1

h
(p sin f apR + ((p+ r) cos f + re) apT )

di

dt
=
r cos θ

h
apN

dΩ

dt
=
r sin θ

h sin i
apN

dω

dt
= − p

eh
cos fapR +

p+ r

eh
sin f apT −

r sin θ cos i

h sin i
apN

df

dt
=

h

r2
+

1

eh
(p cos f apR − (p+ r) sin f apT )

In the previous equations a new orbital element, the true latitude θ = ω + f , was

introduced.

2.1.5 Continuous-Thrust Propulsion

In presence of propulsion, satellite’s mass changes according to the burnt propellant.

Hence, a mathematical model for propulsion is needed in order to compute mass

variation during maneuvering.

Introducing the propulsion thrust force T , satellite’s equation of motion becomes

d2

dt2
r = − µ

r3
r +

T

m

where now the satellite’s mass m is a time varying parameter. A simplified model

for thrust magnitude is given by the following formula,

T = g0Ispṁprop
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Table 2.2: Performance for some classes of engines.

Technology Isp [s] T [N]

Cold gas 60 - 250 0.1 - 50
Chemical 140 - 350 0.1 - 12 000 000
Nuclear 800 - 6000 up to 12 000 000

Electrical 500 - 10 000 0.0001 - 20

where it was introduced the specific impulse Isp, g0 is the gravity acceleration at

sea level (for Earth, g0 = 9.8066 m/s2) and ṁprop is propellent mass flow rate.

The specific impulse is measured in s and cahnge according to the engine tech-

nology (typical values are given in Table 2.2, adapted from [1]).

If the propellent consumption is the only cause of mass variation, then satellite’s

mass changes according to

dm

dt
= −ṁprop = − T

g0Isp

During the development of a control law, the control vector u can be either the

thrust requested to the propulsion system, u = T , or the acceleration that must be

imparted to the satellite, u = T /m.

2.2 Relative Motion in Space

Whenever two object must meet in space (e.g. a service vehicle headed to the

International Space Station or a spacecraft deployed to repair a satellite) or two or

more satellites must keep a formation, a proper mathematical model of the relative

motion describing the relative position and velocity of the two bodies is needed.

Two different representations can be used to model the relative motion dynamic.

The Cartesian representation is one of the most used, since it allows the direct use of

sensors measurements of relative position and velocity and gives quick information

about the position of the incoming vehicle. Starting from the most general vectorial

expression, different sets of equations can be developed that may take or not in
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account perturbations.

Orbital elements introduced in Section 2.1.2 can be used too. In particular, the

difference between the orbit elements of the two objects is a measure of the error,

that must be driven to zero by a proper control law.

In this section a brief introduction to both the representations is proposed. In

the following, the target spacecraft will be denoted with the term chief, whereas the

spacecraft that must chase or follow the chief will be referred to as the deputy and

its parameters will be differed from chief’s ones using the subscript d.

2.2.1 General Cartesian Expression of Relative Motion

The Cartesian formulation of the relative equations of motion is developed in the

local-vertical local-horizontal frame (LVLH), also known as Hill frame:

{L} =
{
î, ĵ, k̂

}

The origin of the LVLH reference system is the chief’s center of mass and its unit

vectors are defined as follows (Figure 2.6).

î = r/r, k̂ = h/h, ĵ = k̂ × î

Thus, the LVLH frame rotates as the chief rotates about the primary body and

consequently it is a non-inertial frame. The deputy motion in this frame is divided

in two components: the in-plane motion, along î and ĵ, and the out-of-plane motion,

along k̂.

Let ρ and ρ̇ denote, respectively, deputy’s relative position and velocity vectors

with respect to the chief,

ρ = xî+ yĵ + zk̂, ρ̇ = ẋî+ ẏĵ + żk̂

and ω and ω̇ denote the angular velocity and acceleration of the LVLH frame with
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Figure 2.6: Local-vertical local-horizon frame.

respect to the ECI frame,

ω = ωxî+ ωy ĵ + ωzk̂, ω̇ = ω̇xî+ ω̇y ĵ + ω̇zk̂

where the dot operator indicates the derivation with respect to time in the moving

frame LVLH.

The absolute position of the deputy expressed in the LVLH frame is then

rd = r + ρ = (r + x) î+ yĵ + zk̂ (2.20)

and the distance from the chief is given by

rd =
√

(r + x)2 + y2 + z2

Deputy’s absolute velocity can be obtained deriving with respect to time Equa-

tion (2.20),

d

dt
rd =

d

dt
r +

d

dt
ρ =

d

dt
r + ρ̇+ ω × ρ (2.21)

The derivation with respect to time in the inertial frame is denoted with the operator

d
dt . Further derivation of Equation (2.21) leads to the deputy’s vectorial equation
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of motion.

d2

dt2
rd =

d2

dt2
r +

d

dt
(ρ̇+ ω × ρ)

=
d2

dt2
r +

d

dt
ρ̇+

d

dt
ω × ρ+ ω × d

dt
ρ

=
d2

dt2
r + ρ̈+ ω × ρ̇+ ω̇ × ρ+ ω × (ρ̇+ ω × ρ)

=
d2

dt2
r + ρ̈+ 2ω × ρ̇+ ω̇ × ρ+ ω × (ω × ρ)

Introducing deputy’s and chief’s equations of perturbed motion using Equation (2.15),

d2

dt2
rd = − µ

r3
d

rd + ap,d + u,
d2

dt2
r = − µ

r3
r + ap,c

where ap,c and ap,d are the perturbation accelerations exerted respectively on chief

and deputy and u is the control vector, writing the position as r = rî and defining

the differential perturbation acceleration,

∆ap , ap,d − ap,c = ∆apx î+ ∆apy ĵ + ∆apz k̂

the general vectorial expression for the relative motion is given by

ρ̈+ 2ω × ρ̇+ ω̇ × ρ+ ω × (ω × ρ)− µ

r3
r +

µ

r3
d

(r + ρ) = ∆ap + u (2.22)

This equation is the staring point for the derivation of the nonlinear equations of

relative motion in the unpertubed and perturbed cases.

The components of vectors ρ and ρ̇ can be also computed using chief’s and

deputy’s absolute position and velocity vectors expressed in the inertial frame, as

shown in [6].

Let δr and δv be the inertial relative displacement and velocity, defined as

δr = rd − r, δv = vd − v

Then, the components of the relative position and velocity vectors can be computed
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using the following equations set.

x =
δrTr

r

y =
δrT (h× r)

‖h× r‖

z =
δrTh

h

ẋ =
δvTr + δrTv

r
−
(
δrTr

) (
δrTv

)
r3

ẏ =
δvT (h× r) + δrT

(
ḣ× r + h× v

)
‖h× r‖

−
δrT (h× r) (h× r)T

(
ḣ× r + h× v

)
‖h× r‖3

ż =
δvTh+ δrT ḣ

h
−

(
δrTh

) (
hT ḣ

)
h3

These equations allow the simulation of relative motion in presence of perturbation,

avoiding the integration of Equation (2.22). Deputy and chief motion can be simu-

lated separately and then relative motion can be computed using Equations (2.23).

2.2.2 Nonlinear Equations of Relative Motion

In absence of perturbation, i.e. ∆ap = 0, the angular velocity ω becomes

ω = ḟ k̂ =
h

r2
k̂

and recalling that the angular momentum h is constant in case of Keplerian motion,

i.e. ḣ = 0, the angular acceleration is given by,

ω̇ = −2hṙ

r3
k̂ = −2ḟ

ṙ

r
k̂

Thus, the terms appearing in Equation (2.22) become

2ω × ρ̇ = −2ḟ ẏî+ 2ḟ ẋĵ
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ω̇ × ρ = 2ḟ
ṙ

r
yî− 2ḟ

ṙ

r
xĵ

ω × (ω × ρ) = −ḟ2xî− ḟ2yĵ

The nonlinear equations of relative motion in the unperturbed case (in the following

denoted with the acronym NERM) are obtained substituting the terms in Equa-

tions (2.24) into Equation (2.22) and writing the motion along the LVLH unit

vectors separately.

ẍ = 2ḟ

(
ẏ − ṙ

r
y

)
+ ḟ2x+

µ

r2
− µ

r3
d

(r + x) + ux (2.25a)

ÿ = −2ḟ

(
ẋ− ṙ

r
x

)
+ ḟ2y − µ

r3
d

y + uy

z̈ = − µ
r3
d

z + uz

This set of equations is a nonlinear time-varying system with state

x =
[
x y z ẋ ẏ ż

]T
and time-varying coefficients r, ṙ, ḟ . The components of the control vector u

influence the time derivative of the relative position vector, ensuring the full con-

trollability of the system. This system is affine in the control, as it will be shown

in Section 6.1.1.

2.2.3 Linear Equations of Relative Motion

The nonlinear equations of motion developed in the previous section can be lin-

earized if it is assumed that the distance between the chief and the deputy is suf-

ficiently small with respect to the distance of the two satellites from the primary

body’s center of mass, i.e. ρ� r and ρ� rd. Assuming that, the norm rd may be
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written as follows

rd =
√

(r + x)2 + y2 + z2

= r

√
1 +

2x

r
+
x2 + y2 + z2

r2

≈ r
√

1 +
2x

r

≈ r
(

1 +
x

r

)
where the first order approximation (1+α)n ≈ 1+nα, valid when α� 1, was intro-

duced in the last step. The previous result is used to simplify deputy’s gravitational

acceleration µ
r3d
rd appearing in Equations (2.25):

µ

r3
d

rd =
µ

r3
d

(
(r + x)î+ yĵ + zk̂

)
≈ µ

r3

(
1− 3x

r

)(
(r + x)î+ yĵ + zk̂

)
≈ µ

r3

(
(r − 2x)î+ yĵ + zk̂

)
=
( µ
r2
− 2

µ

r3
x
)
î+

µ

r3
yĵ +

µ

r3
zk̂

=

(
µ

r2
− 2

r

p
ḟ2x

)
î+

r

p
ḟ2yĵ +

r

p
ḟ2k̂

(2.26)

In the last step, Equation (2.6) was introduced to rewrite the gravitational param-

eter as µ = h2

p = r4ḟ2

p .

The linear equations of relative motion in the unperturbed case (LERM) can be

obtained introducing Equation (2.26) into Equations (2.25),

ẍ = ḟ2

(
1 + 2

r

p

)
x+ 2ḟ

(
ẏ − ṙ

r
y

)
+ ux

ÿ = −2ḟ

(
ẋ− ṙ

r
x

)
+ ḟ2

(
1− r

p

)
y + uy

z̈ = −r
p
ḟ2z + uz

With these approximations the system becomes linear time-varying.

A remarkable simplification of this mathematical model can be obtained assum-
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ing that the chief’s orbit is circular. In this case ṙ = 0, p = r and ḟ is constant.

Rewriting ḟ using Equation (2.6) and Equation (2.8),

ḟ =
h

r2
=

√
µp

p2
=

√
µ

p3
=

√
µ

a3
= n

the Hill - Clohessy - Wiltshire equations set (HCW) can be obtained,

ẍ = 3n2x+ 2nẏ + ux

ÿ = −2nẋ+ uy

z̈ = −n2z + uz

This new set of equations forms a linear time-invariant system, allowing the design

of linear optimal controllers.

Equations (2.28) made their first appearance in [7]. In this work, dated 1878,

Hill studied the motion of the Moon around the Earth, inspired by Euler’s “Theoria

motuum lunae nova methodo pertractata” of 1772 [8]. Clohessy and Wiltshire in

1960 take the credit for using for the first time LERM equations to address the

terminal guidance problem [9] and for this reason sometimes Equations (2.27) are

known as Clohessy - Wiltshire equations. Other textbook, such as Schaub’s [2]

and Alfriend’s [4], denote with the name Clohessy - Wiltshire equations the Equa-

tions (2.28). To avoid confusion, in this thesis Equations (2.27) will be referred with

the acronym LERM, whereas linear time-invariant Equations (2.28) will be denoted

with the acronym HCW, following Schaub’s and Alfriend’s nomenclature.

2.2.4 Nonlinear Equations of Relative Perturbed Motion

In presence of perturbations chief’s angular momentum is no longer constant and

the expression of the angular velocity ω changes. It can be proved that [10, 11]

ωx =
dΩ

dt
sin i sin θ +

di

dt
cos θ
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ωy =
dΩ

dt
sin i cos θ − di

dt
sin θ

ωz =
dΩ

dt
cos i+ θ

where θ = ω+f is the chief’s true latitude (here ω denotes the argument of perigee).

Using Gauss variational equations, Equations (2.19), for i and Ω, noting that the

LVLH frame coincides with chief’s RTN frame,

di

dt
=
r

h
cos θ ap,cz

dΩ

dt
=
r sin θ

h sin i
ap,cz

the components of ω in the LVLH reference system becomes

ωx =
r

h
ap,cz , ωy = 0, ωz =

h

r2
(2.31)

It is worth of note that ωy will always be zero due to the choice of the LVLH frame

unit vectors (î always points to the primary body).

The angular acceleration ω̇ can be computed deriving with respect to time

Equations (2.31). But first, it is necessary to compute the time derivative of the

angular momentum magnitude.

Chief’s angular momentum time derivative in presence of perturbations is

d

dt
h =

d

dt

(
r × d

dt
r

)
= r × d2

dt2
r = r ×

(
− µ
r3
r + ap,c

)
= r × ap,c

that resolved in the LVLH frame becomes

ḣ = rî×
(
ap,cx î+ ap,cy ĵ + ap,cz k̂

)
= −rap,cz ĵ + rap,cy k̂ (2.32)

Remembering the expression of h in the LVLH reference systems, h = hk̂, and

using Equation (2.17) and Equation (2.32), chief’s angular momentum magnitude
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time derivative can be computed as follows,

ḣ =
1

h

(
hk̂ ·

(
−rap,cz ĵ + rap,cy k̂

))
= rap,cy

The angular acceleration ω̇ is then given by,

ω̇ = ω̇xî+ ω̇zk̂

=
1

h2

((
ṙap,cz + rȧp,cz

)
h− rap,cz ḣ

)
î+

1

r4

(
ḣr2 − 2hrṙ

)
k̂

=
1

h

(
ṙap,cz + rȧp,cz − ωxḣ

)
î+

1

r2

(
ḣ− 2ωzrṙ

)
k̂

=
1

h

(
ṙap,cz + rȧp,cz − ωxrap,cy

)
î+

1

r

(
ap,cy − 2ωz ṙ

)
k̂

In this expression the time derivative of the perturbation acceleration along k̂ ap-

pears. A possible way to compute the perturbation acceleration time derivative in

the LVLH frame exploits the relationship existing between a time-derived vector in

an inertial frame and the same vector time-derived in a moving frame,

d

dt
ap = ȧp + ω × ap ⇐⇒ ȧp =

d

dt
ap − ω × ap

Finally, the terms appearing in the general vectorial equation of relative motion (2.22)

can be computed for the perturbed case,

2ω × ρ̇ = −2ωz ẏî+ 2 (ωzẋ− ωzẋ) ĵ + 2ωxẏk̂

ω̇ × ρ = −ω̇zyî+ (ω̇zx− ω̇xz) ĵ + ω̇xyk̂

ω × (ω × ρ) =
(
ωxωzz − ω2

z

)
î−

(
ω2
x + ω2

z

)
yĵ +

(
ωxωzx− ω2

xz
)
k̂

The nonlinear equation of relative perturbed motion (in the following referred to sim-

ply as perturbed NERM) can be obtained introducing the terms in Equations (2.33)

into Equation (2.22), substituting the remaining vectors with their LVLH expres-
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sions and writing the motion components along LVLH unit vectors separately.

ẍ =

(
ω2
z −

µ

r3
d

)
x+ ω̇zy − ωxωzz + 2ωz ẏ + µ

(
1

r2
− r

r3
d

)
+ ∆apx + ux

ÿ = −ω̇zx+

(
ω2
x + ω2

z −
µ

r3
d

)
y + ω̇xz − 2ωzẋ+ 2ωxż + ∆apy + uy

z̈ = −ωxωzx− ω̇xy +

(
ω2
x −

µ

r3
d

)
z − 2ωxẏ + ∆apz + uz

In Section 2.1.4 the expressions in the ECI frame for the most important space

perturbations were introduced. In order to compute the differential perturbation

acceleration ∆ap these accelerations must be expressed in the LVLH frame.

Therefore, once the rotation matrix CL
I (r,v) : I → L is introduced,

CL
I (r,v) =

[
îI ĵI k̂I

]T

the differential perturbation can be computed as follows.

∆aLp = CL
I

(
aIp,d − aIp,c

)
2.2.5 Orbital Element Differences

Another possible way to describe relative motion makes use of the orbital elements

of the two spacecraft. Let the following set of orbital elements describe chief’s orbit

about the primary body,

e =
[
a θ i q1 q2 Ω

]T
θ = ω + f, q1 = e cosω, q2 = e sinω

Again, the parameter θ is the chief’s true latitude. This set of orbital parameters

was introduced by Deprit and Rom in [12] to alleviate the singularity of the classical

elements for circular orbits. However, this set is still singular for equatorial orbits.

If the deputy’s orbit is described using the same set of parameters, denoted with
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ed, then the orbital element differences vector δe can be introduced,

δe = ed − e =
[
δa δθ δi δq1 δq2 δΩ

]T
The use of orbital element differences has several advantages. In absence of pertur-

bations and control thrust, all the parameters, except δθ, are constant. The true

latitude difference variation can be computed using chief’s and deputy’s orbital

elements [2],

δθ̇ =ḟd − ḟ =
hd
r2
d

− h

r2
=

√
µ

p3
d

(1 + ed cos fd)
2 −

√
µ

p3
(1 + e cos f)2

=

√
µ (1 + (q1 + δq1) cos (θ + δθ) + (q2 + δq2) sin (θ + δθ))2√

(a+ δa)3
(

1− (q1 + δq1)2 − (q2 + δq2)2
)3

+

−
√
µ (1 + q1 cos θ + q2 sin θ)2√

a3
(
1− q2

1 − q2
2

)3
Instead, if perturbations are considered then chief’s and deputy’s orbital elements

will change slowly. However, the components of the Cartesian relative motion state

x are fast variables even in the unperturbed case. Therefore, orbit element differ-

ences are always preferable from a computing point of view.

The orbit element differences must be computed carefully, since they involve the

computation of angle differences. Choosing the domain [0, 2π] for the angles and

[−π, π] for their difference, the difference between two angles α1 and α2 is given by3

α2 − α1 = mod (α2 − α1, 2π)− π (2.35)

A complete discussion about orbital element differences can be found in [13, 14].

The NERM state vector x can be transformed into the orbital element differences

vector δe using a nonlinear transformation function and vice versa. Let g(·) and

3mod is the MATLAB modulus function mod.
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k(·) denote the the two transformation function,

x = g(e, δe), δe = k(e,x)

Algorithmically, the transformation function k(·) is composed by the following steps.

1) Compute chief’s position in the inertial frame rI using e (see Section 2.1.3).

2) Compute deputy’s position and velocity, respectively rId and vId, using NERM

solution x =
[
ρL, ρ̇L

]T
and rI ,

rId = rI +CI
L(r,v)ρL, vId = vI +CI

L(r,v)ρ̇L + ωI ×CI
L(r,v)ρL

3) Compute deputy’s orbital element vector ed using rId and vId (see Section 2.1.3).

4) Compute orbital elements difference vector δe = ed − e, using for angles

differences Equation (2.35).

The transformation function g(·) can be obtained adapting the precedent algorithm

and following the steps in opposite order, inverting each one.

A linear transformation between NERM solution and orbit element differences

was proposed by Schaub et al. in [2, 15, 16]. Assume that the relative orbit radius

ρ is smaller than the chief orbit radius r. Then, the components of x can be written

in terms of orbit element differences vector components as follows,

x =
r

a
δa+

vr
vt
rδθ − r

p
(2aq1 + r cos θ) δq1 −

r

p
(2aq2 + r sin θ) δq2

y =rδθ + r cos i δΩ

z =r sin θ δi− cos θ sin i δΩ

ẋ =− vr
2a
δa+

(
1

r
− 1

p

)
hδθ + (vraq1 + h sin θ)

δq1

p
+

+ (vraq2 − h cos θ)
δq2

p
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ẏ =− 3vt
2a
δa− vrδθ + (3vtaq1 + 2h cos θ)

δq1

p
+

+ (3vtaq2 + 2h sin θ)
δq2

p
+ vr cos i δΩ

ż = (vt cos θ + vr sin θ) δi+ (vt sin θ − vr cos θ) sin i δΩ

where chief’s radial vr and transversal vt velocity components were introduced,

vr =
h

p
(q1 sin θ − q2 cos θ) , vt =

h

p
(1 + q1 cos θ + q2 sin θ)

The transformation operated by Equations (2.36) can also be expressed by an orbit-

dependent matrix G(e),

x = G(e)δe

and the inverse mapping is given by the inverse of G(e).



Chapter 3

Relative Motion Control

Relative motion control was studied extensively during the years, since its impor-

tance for future missions development. Robust and optimal control techniques are

sought in order to improve spacecraft autonomy during common operations, such

as rendezvous and docking with an another spacecraft, primitive body inspection

and so on. However, solutions proposed so far do not seem fully mature, as proved

by the numerous glitches and anomalies occurred during the various demonstration

missions. Thus, great efforts are being made by the scientific community to find a

reliable solution for relative motion control problem.

In this chapter, relative motion control is discussed. The problem is stated

and application and control requirements discussed. The chapter ends with a brief

survey of the proposed solutions that can be found in literature. The discussion

here offered is based principally on [17].

3.1 Problem Statement

Relative motion control may be classified as a classical problem of guidance, navi-

gation and control (GN&C), since the objective is to pursue a moving target and

to keep a specific position with respect to this. Optimal GN&C problems require

35
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the minimization of a cost function,

min
tf ,u

{
ψf (x(tf )) +

∫ tf

t0

ψ(x(t),u(t)) dt

}

subject to the following constraints ∀t ∈ [t0, tf ]

ẋ(t) = f(t,x(t),u(t))

x(t) ∈ X (t)

u(t) ∈ U(t)

Here x ∈ Rn is the state of the spacecraft, u ∈ Rm is the control vector, t0 and tf

are respectively initial and final time, ψ : Rn × Rm → R and ψf : Rn → R are cost

functions, f : R×Rn×Rm → Rn is the system dynamic, X (t) ⊆ Rn and U(t) ⊆ Rm

define control and state constraints that depend on time.

As seen in Chapter 2, numerous dynamical models for relative motion descrip-

tion exist, with different degree of accuracy. Optimal closed-form solutions can be

found if linear time-invariant models (e.g. HCW equations) without constraints on

control and state are chosen. However, they might not be of interest for a real

implementation, since constraints are ignored and error might grow significantly

as a result of linear approximation. If constraints are introduced, then numerical

methods are required in order to find a solution. Adoption of nonlinear models

increases control algorithm computational cost. Since control action must be com-

puted quickly, resolution of nonlinear optimal control problem might be infeasible,

especially if several constraints are introduced. Hence, a trade-off between solution

requirements (optimality, constraints, accuracy) and computational cost must be

found.
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3.2 Application Requirements

Space missions design usually deals with lot of different requirements, in order to

achieve mission’s goals and guarantee safety of involved vehicles during the oper-

ations. Moreover, space is an harsh environment characterized by many sources

of disturbance (e.g. solar radiation, rarefied atmosphere at low Earth orbits, etc.)

and, in the last decades, by a growing number of debris in orbit. All this problems

must be addressed during spacecraft development and mission planning.

The relative guidance problem shares some of the requirements of a general space

mission, but is demanded to satisfy specific constraints according to the mission

(proximity operations for primitive bodies, autonomous rendezvous and docking,

autonomous inspection and servicing). Minimization of fuel consumption is the most

important, in order to extend as much as possible mission lifetime. Well defined

approaching maneuvers characterize automatic rendezvous and docking missions

(e.g. V-bar maneuver), as well as collision avoidance with the target spacecraft.

Here a non exhaustive list of the most common requirements is proposed. Math-

ematical expressions are developed when possible.

• Fuel consumption minimization: Mission lifetime is strictly related to fuel

consumption. Spacecraft refuel and resupply is currently impossible due to

the high cost to access space, thus minimization of propellent usage is a key

factor.

• Limitations on thrusters and silence times handling: Proper han-

dling of thrusters capability is essential to improve spacecraft performance.

Thrusters have finite upper bounds on force they can provide, due to limi-

tation on fuel storage and nozzle design constraints. Moreover, they cannot

exert arbitrarily small forces. These limitations affect the accuracy of critical

operations, such as docking and proximity flight, if not proper handled. Con-

trol must also guarantee silence times between thrusters firings. During firing

noise is introduced in the state estimation. Silence periods give to the state
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estimator time to cut off this noise and reacquire a proper degree of accuracy.

Thruster limitation can be easily described as follows,

uT,j(t) ∈ {0} ∪ [uT,j , uT,j ], 0 < uT,j < uT,j ∀j = 1, . . . , nT

whereas silence times can be modelled as null control during prescribed time

periods,

uT,j(t) = 0 ∀j = 1, . . . , nT when t ∈
⋃

j=1,...,ns

Tj

where uT,j is the thruster j command signal, nT is the number of thrusters

and Tj are a disjoint set of ns silence time intervals.

• Plume impingement avoidance: Thrusters pointing at close objects must

not fire, in order to avoid plume impingement. As a matter of fact, thrusters

plume can damage spacecraft sensors and coatings and also introduce distur-

bance forces and torques. Moreover, during docking operations target vehicle

can be damaged or, in case the target is a primitive body like an asteroid,

plume impingement can seriously contaminate the examination area.

Constraint for avoiding plume impingement can be stated in the following

form,

uT,j = 0 if ρL ·CL
B(q)t̂Bj ≥ ρ cosβp and ρ ≤ Rp

Here ρ is the vector of relative position, CB
L (q) is the coordinate transfor-

mation matrix from body frame {B} to LVLH frame {L} that depends on

spacecraft attitude quaternion q, t̂j is the unit vector denoting firing direc-

tion of thruster j, βp is the plume cone angle and Rp is the maximum effective

plume radius.

• Collision avoidance: Collision with target and other obstacles along the

approaching path must be avoided. A collision can seriously damage the

spacecraft or other participating vehicles, resulting in an immediate mission
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failure.

Denoting with r the spacecraft position and with rO,j the position of obsta-

cle j, assuming the presence of nO obstacles, to avoid collision the following

expressions must hold,

∣∣∣∣r − rO,j∣∣∣∣ > RO,j ∀j = 1, . . . , nO

For the sake of simplicity, here it is assumed that all the obstacles are sur-

rounded by a sphere of radius RO,j . This radius is different for every obstacle,

in order to account for its dimensions and shape.

• Constraint on sensor field-of-view: Several sensors need to face the target

in order to acquire its position and attitude (e.g. vision and laser based

systems). Therefore, spacecraft must keep a proper attitude while approaching

the target.

Mathematically, this requirement can be expressed as follows,

ρL ·CL
B(q)n̂B ≥ ρ cos

α

2

where n̂ and α are, respectively, the field-of-view direction and aperture angle.

• Uncertainties handling: Relative motion equations used for control design

usually do not consider the several disturbances present in the space environ-

ment. Moreover, the accuracy of linearized models (e.g. HCW and LERM)

decreases as the relative distance between chief and deputy increases. Sensors

measurements may become an additional problem when significantly affected

by noise or show large errors. All these uncertainties should be modelled as

much as possible and considered during control design.
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3.3 Control Algorithm Requirements

Autonomy is a key enabling factor for future space missions. Currently most mis-

sions rely on ground-in-the-loop architectures but this will not be sustainable in

future, since the growing number of spacecraft in orbit and the delays that af-

fect communication. Significant improvements in spacecraft autonomy were made

during the years (Mars Curiosity mission is the most important result), but re-

cent anomalies on autonomous demonstration missions (e.g. NASA’s DART space-

craft [18], AVGS test on DARPA’s Orbital Express [19]) points out the technology

immatureness. The National Research Council identified robotics and autonomous

systems as an high-priority technology area [20].

Reliable and fault-tolerance control techniques are required to increase auton-

omy. Thus, control algorithms must satisfy the following requirements:

• Robustness: The algorithm should find a feasible solution if one exists, pos-

sibly an optimal one.

• Real-time implementability: The control law must be implementable and

able to execute processing operations with certified off-the-shelf components

in a finite and reasonable amount of time.

• Verifiability: Performance and robustness of the proposed algorithm must

be validated using proper metrics.

3.4 Spacecraft Propulsion and Control

Thrusters handling was listed in Section 3.2 among the application requirements.

Different propulsion systems are currently employed, depending on mission require-

ments and goals. From control design point of view, they can be classified in,

• High-thrust systems: In these systems the duration of thrust arcs is short

compared to the mission time. Hence, thruster firings are modelled as isolated
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events, i.e. as impulses. Thrust optimization is then reduced to a discrete-time

optimal control problem.

• Low-thrust systems: Conversely, low-thrust propulsion systems are em-

ployed for a significant part of the overall mission time. Control then is mod-

elled as a continuous function and a continuous-time optimal control problem

need to be set up and resolved.

Examples of high-thrust propulsion system are rocket engines, instead among

low-thrust system the most diffused are electromagnetic propulsion systems. Com-

pared to low-thrust propulsion systems, optimal solution computation for spacecraft

with high-thrust propulsion is easier, since a discrete optimal control problem need

to be solved. On the other hand, resolution of continuous optimization problem is

not straightforward and might be time-consuming.

In addition to the before mentioned classes, there is a third class of propulsion

systems that do not use any reaction mass to generate thrust. Gravitational and

magnetic fields, electromagnetic waves, solar wind and radiation can be exploited

in order to move a spacecraft, especially inside the Solar System. Two examples of

propulsion without internal reaction mass are solar sails, that use radiation pressure

from electromagnetic energy, and magnetic sails, that use a magnetic field to deflect

charged particles from solar wind. These types of propulsion systems do not require

propellent, thus time minimization is of interest.

3.5 Literature Review

Numerous control laws and techniques were developed for relative motion control

problem during the years. An interesting survey is presented in [21], with emphasis

on the optimization methods currently available. Another reference worth of note

is [17], where the authors propose a classification for current state-of-the-art control

algorithms and discuss their vantages and weak points. The work is focused in

particular on the necessary developments for autonomy improving of future space
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missions, with reference to NASA’s needs for the 2011-2021 decade [20].

Here a possible classification of relative motion control techniques is proposed,

based on the previously cited works.

• Model predictive control.

• Artificial potential functions based controls.

• Motion planning algorithms.

• Optimal and suboptimal control laws.

• Glideslope guidance.

• Other controls.

In the next sections a brief description of these classes of control technique is of-

fered, as well as references to the most representative implementation proposed in

literature.

3.5.1 Model Predictive Control

Model predictive control (MPC) computes a feedback law solving an optimal control

problem at each sample time, using current state as initial state. State evolution

is predicted using a mathematical model of the system and then used to compute

control over a prescribed time period (time horizon). For these characteristics, MPC

is usually referred to as receding (or moving) horizon optimal control. Recalculation

of control law allows disturbance mitigation and error reduction. One of the main

advantages of this method is the framework offered to control designers, that ease the

introduction of constraints on state and control, increasing, however, computational

cost. Closed-loop stability and state convergence can be proved under appropriate

assumptions without prior knowledge of disturbances [22]. A classical reference for

MPC is [23].

MPC was used extensively for relative motion control. The main drawback of

this technique for this kind of problem is its real-time implementation. As a matter
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of fact, many solutions proposed in literature rely on linear or linear time-varying

dynamic models, eluding nonlinear equations that drastically increase optimal con-

trol computation time.

Petersen et al. in [24] propose a rendezvous control algorithm based on MPC and

supported by a collision avoidance routine, using HCW equations as dynamic model.

Another example for rendezvous and proximity operations, using HCW equations, is

proposed in [25], but here with constraints on thrust magnitude, spacecraft position-

ing (chief vehicle must be within deputy’s field-of-view) and soft-docking require-

ment (deputy’s velocity must match chief’s velocity at the end of the maneuver). A

comparison between the use of MPC on NERM equations and a linearized version of

Gauss variational equation is presented in [26], whereas the authors of [27] propose

a framework for MPC design and implementation using LERM equations, dividing

rendezvous operation in four phases, each one with different requirements.

3.5.2 Artificial Potential Functions Based Controls

Artificial potential functions (APF) based controls represent the environment by

potential functions distributed over the state space. Repulsive potentials are used

to represent obstacles, whereas attractive potentials denote goal regions. The path

to the goal is obtained using algorithms based on gradient ascent, or setting up

an optimal control problem. Representation of dynamic environment, where both

obstacles and goals change their positions, could be difficult and computationally

onerous. Another drawback of APF controls is the possible convergence to local

minima if the potential functions are not properly defined. Additional heuristic

techniques are required in order to prevent this phenomenon.

One of the first examples of APF control was presented by Lopez et al. in [28].

Roger et al. in [29] discuss a possible implementation for a free-flying robot camera

aimed at International Space Station inspection. Other important examples of APF

controls can be found in [30], where the technique is employed for construction of

in-orbit structures using swarms of free-flying spacecrafts, and in [31] where it is
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proposed for configuring satellite formations.

3.5.3 Motion Planning Algorithms

A motion planning algorithm generates a sequence of decisions, a plan, that nav-

igate an agent or a group of agents from an initial state to one or more desired

states. During the planning phase, different type of requirements may be taken

in account, e.g. collision avoidance, dynamic constraints of the agent (for example

turning radius), etc. Motion planning can be exact (combinatorial) or approximate

(sampling-based). The former class computes the possible paths using a complete

representation of the configuration space; the latter avoid the explicit construction

of the obstacles configuration space and explores possible paths to the goal via sam-

pling. In this case a collision detection algorithm ensure the safety of the trajectory.

Combinatorial planning always find a solution if one exists, whereas sampling-based

algorithms cannot guarantee the existence of feasible plans in finite time without

drawing an infinite set of samples. However, approximate motion planning demands

less computational resources and has great appeal for real-time implementation.

Although motion planning is widely used in many different fields, few space

applications can be found. As a matter of fact, motion planning finds feasible paths

rather than optimal ones. This limitation has increased the interest in developing

algorithms that can offer some kind of optimality, even weak.

Two interesting spacecraft motion planning algorithms are proposed in [32]

and [33]. The first reference focuses on real-time implementation of sampling-based

planning algorithms able to coordinate multiple spacecraft. Impulsive propulsion

is considered and obstacles avoidance is achieved using a collision avoidance algo-

rithm. Planning algorithm also takes in account plume impingement avoidance.

The second reference split planning in an offline phase, aimed to find a path that

avoids known obstacles and plume impingement, and an online phase, for real-time

avoidance of unaccounted obstacles and error growth mitigation. Between feasible

paths, the optimal one is chosen.
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3.5.4 Optimal and Suboptimal Control Laws

Numerous optimal and suboptimal control laws were proposed during the years,

with particular focus on fuel consumption. Relative motion equations in their non-

linear form are difficult to manipulate, thus most of the solutions proposed in lit-

erature assume chief in circular orbits, or small distance between deputy and chief,

so that HCW and LERM equations can be adopted.

A series of papers worth of note for optimal control were written by Carter

and co-workers. General linear equations of relative motion (either with time or

chief’s true anomaly as independent variable, see Section 4.1) are used to develop

fuel-optimal control [34], accounting for spacecraft mass change due to fuel con-

sumption [35] and constraints on thruster power [36, 37]. Proposed controls are

extended to the nonlinear case updating the gain matrix periodically.

Recent works consider more difficult scenarios and other type of constraints.

For example in [38] rendezvous with an uncontrolled tumbling object is considered.

The authors develop controls for relative motion and attitude, using HCW equations

and quaternions. Optimality is achieved through recursive methods. Baldwin et al.

in [39] propose a robust and optimal control, again considering motion governed

by HCW equations. Presence of bounded disturbances is assumed and field-of-view

constraint is taken in account. In [40] an optimal trajectory is computed using

geometric Hermite interpolation and a robust controller for reference tracking is

developed.

When nonlinear equations are considered, numerical methods are required to ob-

tain an optimal solution. Computational cost of these algorithms could significantly

impact real-time implementation. Therefore, control requirements are usually re-

laxed in order to find a trade-off between optimality and real-time implementability.

A survey of optimization methods is proposed in [41] and a framework for optimal

control is developed in [42]. In particular, different types of models for relative mo-

tion are considered and optimal control is the result of recursive resolution methods.

Suboptimal solutions using nonlinear equations may be developed using State-
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Dependent Riccati Equations control (SDRE). The method is discussed in Chap-

ter 5, as well as some of the solutions proposed so far in literature that use this

control technique.

3.5.5 Glideslope Guidance

In the glideslope guidance control technique the controlled vehicle approaches the

target along a straight line. This is one of the most simple control and it is widely

used in current rendezvous and docking operations with the International Space

Station (e.g. H-II Transfer Vehicle (HTV) [43] and Automated Transfer Vehicle

(ATV) [44]). Crew on-board the station can easily monitor the maneuver and

detect anomalies during the approaching. However, glideslope trajectory generally

is not optimal. Still, this guidance technique is valuable for close range rendezvous

when spacecraft is demanded to move along a fixed direction for safety reasons and

for docking procedure.

Glideslope guidance is discussed in detail in [45]. In [46] optimal glideslope

guidance is derived in the case of chief’s circular orbits.

3.5.6 Other Controls

A lot of different techniques were used during the years to address the rendezvous

problem, coming from different fields and sometimes inspired by nature, as in the

case of [47], where the hoverfly mating is analysed. This particular mating is char-

acterized by trajectories that do not require acceleration. The idea is to find a way

to generate this trajectory for space rendezvous, mimicking the hoverfly behaviour.

Use of classical robotics control methods, such as computed torque, is proposed

in [48] where NERM equations are manipulated and written in Lagrange form.

Neural networks use was also investigated. In [49] a finite-horizon optimal control

is developed, based on approximate dynamic programming. A fuzzy controller is

presented in [50]. An extended command governor is proposed in [24] to generate a

reference trajectory that takes in account control requirements. An LQR controller
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is then developed in order to track the generated trajectory.

3.6 Comment on Proposed Solutions

Relative motion control demands an optimal and robust solution in order to meet

the application requirements and operate in a dynamic environment autonomously.

Many of the proposed solutions are computationally expensive or based on linearized

equations that might be inaccurate for large separations. Moreover, introduction

of constraints in optimal and suboptimal problems is not straightforward. Other

techniques were developed to cope with constraints integration and to reduce com-

putational costs, but they often lack of optimality.

Two promising techniques are MPC and SDRE. The first one offers a ready-

to-use framework that considers optimality, constraints, disturbances, and collision

avoidance, but, again, it could be time-consuming if it is not proper designed.

SDRE controls, among the techniques analysed here, are the closest to the sought

optimality. However, constraints integration it is not easy and ARE resolution need

to be proper handled for real-time implementation.



Chapter 4

A Near-Optimal Control Law

for Relative Motion

In this section a recently proposed near-optimal control law for relative motion is

presented. Sinclair and co-workers developed, in a series of papers, tools aimed to

extend linear optimal control laws, designed using HCW equations, to LERM and

NERM equations of motion. The result is a near-optimal controller for nonlinear

equations of relative motion. By means of Lyapunov - Floquet theory, it is possible

to find several transformation functions that relate HCW equations to LERM so-

lution and vice versa. Moreover, a calibration process for LERM state vector was

developed to reduce the error introduced by the assumptions at the base of NERM

linearization (small distance between chief and deputy). Combining this two results,

the authors obtained a control architecture that currently is one of the most close

to the optimality. Therefore, it is a good reference for drawing a comparison with

the controllers that will be developed in the next sections.

The Lyapunov-Floquet transformation matrices are discussed in Section 4.1.

The calibration process is presented in Section 4.2 and in Section 4.3 a series of

simulations are proposed to show the advantages of using the calibrated state rather

than the true state.

48
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4.1 HCW to LERM Transformation Matrices

According to the Lyapunov - Floquet theory, it is possible to introduce a change of

coordinates that reduces a linear time-periodic autonomous system, i.e. a system

of the form ẋ = A(t)x where A(t) is T periodic such that A(t) = A(t + T ), to

a system of constant coefficients (see [51] and reference therein). Sherrill et al.

in [51, 52] exploit the instruments offered by this theory and develop a series of

transformations functions that relate HCW solutions to LERM solutions in a one-

by-one manner. The transformations make use of LERM and HCW state transition

matrices, that are here briefly introduced.

HCW equations set is linear time-invariant and it may be written in the form

ẋH(t) = AxH(t) +Bu(t)

where xH is the HCW state vector. The state transition matrix ΦHCW is given by

xH(t) = eA(t−t0)xH(t0) = ΦHCW (t, t0)xH(t0)

LERM equations are instead linear time-varying. The state transition matrix

ΦLERM may be obtained by means of an another set of equations for relative mo-

tion: the Tschauner - Hempel equations set (TH) [53]. This set is the result of

a coordinate change operated by the transformation matrix T (f) on LERM state

vector,

xT = T (f)xL, T (f) =

(1 + e cos f) I3×3 03×3

−e sin fI3×3
p2

h(1+e cos f)I3×3


TH state vector or solution is denoted with xT, whereas xL is LERM state vector.

Applying the transformation to LERM equations results in the Tschauner-Hempel
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equations set,

x′′T =
3

1 + e cos f
xT + 2y′T

y′′T = −2x′T

z′′T = −zT

The operator (·)′ denotes the derivation with respect to the true anomaly f . This

new set of equations is nonlinear and it is a function of f instead of the time.

Different solutions were proposed in literature (a review can be found in [54]).

Sherrill et al. in [52] adopt the following solution that consists in a matrix Ψ and

in a vector k defined as

Ψ(f) =
[
ψ1 ψ2 ψ3 ψ4 ψ5 ψ6

]
, k = Ψ−1(f)T (f)x(t)

The columns of Ψ are

ψ1 =



(1 + e cos f) sin f

2 cos f − e sin2 f

0

cos f + e cos 2f

−2 (1 + e cos f) sin f

0


, ψ2 =



(1 + e cos f) cos f

−2 sin f − e sin f cos f

0

− sin f − e sin 2f

e− 2 (1 + e cos f) cos f

0



ψ3 =



1− 3
2Ke (1 + e cos f) sin f

−3
2K (1 + e cos f)2

0

−3
2Ke (cos f + e cos 2f)− 3e sin f

2(1+e cos f)

3Ke (1 + e cos f) sin f − 3
2

0


, ψ4 =



0

1

0

0

0

0


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ψ5 =



0

0

sin f

0

0

cos f


, ψ6 =



0

0

cos f

0

0

− sin f


where it was introduced

K ,
M

(1− e2)
3
2

with M chief’s mean anomaly defined as

M(t) , nt

where n is chief’s orbit mean motion, Equation (2.8). Solution of Equations (4.1)

is then

xT = Ψ(f)k

and after evaluating k at t0 the solution of LERM equations can be constructed

exploiting the relationship with the TH equations,

xL(t) = T−1(f)Ψ(f)Ψ−1(f0)T (f0)xL(t0) = ΦLERM(f, f0)xL(t0)

Having introduced HCW and LERM state transition matrices, it is now possible to

present the Lyapunov - Floquet transformation matrices developed by Sherrill.

The first transformation provides exact matching between the position compo-

nents of xH and xL at periapse and thus it was named periapse-matching transfor-

mation,

xL = P (f)xH, P (f) = ΦLERM(f, 0)P0Φ
−1
HCW(t, 0)

It was assumed that f(t0) = 0 and t0 = 0. P0 is a constant matrix that depends on
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chief’s orbit:

P0 =



2(1−e2)
5
2

(e+1)3(e+2)
0 0 0

(1−e2)
5
2

n(e+1)3(e+2)
− 1

2n 0

0 1 0 0 0 0

0 0 1 0 0 0

0 eh(e+1)
p2

0 np2(e+1)2

h(1−e2)
5
2

0 0

0 0 0 0 h(e+1)(e+2)
2np2

0

0 0 0 0 0 1


The apoapse-matching transformation provides instead an approximate position

matching at apoapse. The transformation matrix P (f) is given by the following

formula,

xL = P (f)xH, P (f) = ΦLERM(f, π)P 0Φ
−1
HCW

(
t,
π

n

)
where P 0 is defined as

P 0 =



2(1−e2)
5
2

(e−1)3(e−2)
0 0 0

(1−e2)
5
2

n(e−1)3(e−2)
− 1

2n 0

0 1 0 0 0 0

0 0 1 0 0 0

0 eh(e−1)
p2

0 4e+ 1 0 0

0 0 0 0 h(e−1)(e−2)
2np2

0

0 0 0 0 0 1


These transformations can be used to extend control laws developed for HCW

equations to LERM equations. Assume to control HCW equations using a lin-

ear quadratic regulator (LQR) characterized by a gain matrix K. By means of the

following formula it is possible to extend the control law to LERM equations,

u(t) = −
(
BTB

)−1
BTP (t)BKP−1xL(t) (4.2)

In this way a pseudo-optimal control law was obtained for LERM equations.
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Figure 4.1: Relative motion control using calibrated state.

4.2 State Calibration

Control law presented in Equation (4.2) can be also used to control NERM equa-

tions. In order to mitigate the linearization error, Sinclair et al. developed in [55]

a state calibration procedure.

The calibration process is based on the nonlinear and linear transformation func-

tions that relates orbital element differences and Cartesian state vector, introduced

in Section 2.2.5. In particular, the state calibration is performed combining the

transformation function k(e,x) and the transformation matrix G(e),

x̃N = G(e)k(e,xN)

NERM state vector is denoted with xN, whereas x̃N is the calibrated state. After

the calibration process, x̃N is given in input to the control law described by Equa-

tion (4.2) (Figure 4.1). In [55] it is shown that the state calibration process improves

the accuracy and expands the domain of validity of the linearized approximation. In

the following section the use of the calibrated state for NERM control is compared

against the use of the true state.

4.3 True State vs. Calibrated State Feedback

The performance of the calibrated state feedback controller was analysed and com-

pared against the use of the true state in [56]. The following chief’s orbit around
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Table 4.1: Test cases, e = 0.

Orbital element Cartesian state vector x

differences δe x (km) y (km) z (km) ẋ (km/s) ẏ (km/s) ż (km/s)

δe = 0.01, δi = 0.01 rad −110 0 0 0 0.120 0.061

δe = 0.1, δi = 0.1 rad −1100 0 0 0 1.204 0.664

δe = 0.2, δi = 0.2 rad −2200 0 0 0 2.410 1.465

δΩ = δω = 0.01 rad −1.476 147.617 −103.356 2.658 · 10−6 2.658 · 10−4 6.624 · 10−4

δΩ = δω = 0.1 rad −147.131 1471.245 −1025.021 0.003 0.026 0.066

δΩ = δω = 0.2 rad −582.658 2912.806 −1998.634 0.021 0.104 0.261

Table 4.2: Test cases, e = 0.3.

Orbital element Cartesian state vector x

differences δe x (km) y (km) z (km) ẋ (km/s) ẏ (km/s) ż (km/s)

δe = 0.01, δi = 0.01 rad −110 0 0 0 0.208 0.083

δe = 0.1, δi = 0.1 rad −1100 0 0 0 2.118 0.918

δe = 0.2, δi = 0.2 rad −2200 0 0 0 4.359 2.071

δΩ = δω = 0.01 rad −1.033 103.332 −72.350 3.622 · 10−6 3.622 · 10−4 9.027 · 10−4

δΩ = δω = 0.1 rad −102.992 102.871 −717.515 0.004 0.036 0.090

δΩ = δω = 0.2 rad −407.860 2038.964 −1399.044 0.029 0.142 0.356

the Earth was chosen,

a = 11 000 km, e = {0, 0.3}, i = 70◦, Ω = 45◦, ω = 0, f(t0) = 0

Six different initial condition in terms of orbit element differences and two different

chief’s orbit eccentricity were considered, resulting in twelve test cases. These are

shown in Tables 4.1 and 4.2, along with the equivalent Cartesian state.

A linear quadratic regulator was designed using HCW equations, choosing the

following weighting matrices,

Q =

I3×3 03×3

03×3
1
n2 I3×3

 , R =
100

n4
I3×3

Controllers performance were evaluated over two chief’s orbit periods and simula-

tions were performed using Simulink, choosing 4th order Runge - Kutta integration

algorithm with step size 60 s. Three indexes were used to compare the two con-
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trollers:

• The norm of the difference between the position components of controlled

NERM equations using both control laws, denoted here with ρnl(t), and the

position components of controlled LERM equations using control in Equa-

tion (4.2), denoted with ρl(t).

ε(t) = ‖ρnl(t)− ρl(t)‖

• Total control usage.

∆v =

∫ tf

0
u(t)dt (4.3)

• Integral time square error.

ITSE2 =

∫ tf

0
tρ(t)2dt

Tables 4.3, 4.4 and 4.5 resumes indexes values at the end of the simulations.

Calibrated state shows better performance in almost all the simulations, in particu-

lar in those where orbits difference is significant. Linearization error and total error

at end of simulation are significantly lower than values shown by true state feedback

control, as well as total control usage during the manoeuvre. In Figures 4.2 and 4.3

the trajectories of the deputy in the LVLH frame are shown. Calibrated state feed-

back law always converges to the origin, whereas sometimes true state feedback law

is unstable and the deputy drifts away from the chief.
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Table 4.3: Average ε and total control usage for e = 0.

Case
Average ε (km) ∆v (m/s)

True Calibrated True Calibrated

δe = 0.01, δi = 0.01 rad 6.26 1.03 61.45 61.87

δe = 0.1, δi = 0.1 rad 905.52 109.16 813.37 625.37

δe = 0.2, δi = 0.2 rad 11 359.53 467.96 46 680.29 1281.33

δΩ = δω = 0.01 rad 7.38 2.02 47.26 46.59

δΩ = δω = 0.1 rad 727.68 197.93 603.46 466.35

δΩ = δω = 0.2 rad 8020.57 768.57 22 913.54 944.34

Table 4.4: Average ε and total control usage for e = 0.3.

Case
Average ε (km) ∆v (m/s)

True Calibrated True Calibrated

δe = 0.01, δi = 0.01 rad 7.20 1.11 77.30 77.67

δe = 0.1, δi = 0.1 rad 2382.11 118.97 5846.52 781.07

δe = 0.2, δi = 0.2 rad 16 767.48 522.45 91 568.89 1579.97

δΩ = δω = 0.01 rad 8.67 1.62 48.08 47.11

δΩ = δω = 0.1 rad 852.90 157.41 676.12 471.45

δΩ = δω = 0.2 rad 10 769.91 606.58 47 615.82 950.75

Table 4.5: ITSE2 final values.

Case
e = 0 e = 0.3

True Calibrated True Calibrated

δe = 0.01, δi = 0.01 rad 1.1568 · 1012 1.1501 · 1012 1.2605 · 1012 1.2031 · 1012

δe = 0.1, δi = 0.1 rad 4.1329 · 1014 1.1629 · 1014 4.3351 · 1015 1.1068 · 1014

δe = 0.2, δi = 0.2 rad 1.1683 · 1017 4.8419 · 1014 2.3792 · 1017 3.9988 · 1014

δΩ = δω = 0.01 rad 7.5394 · 1011 7.8832 · 1011 1.3215 · 1012 1.4538 · 1012

δΩ = δω = 0.1 rad 1.3223 · 1014 8.0706 · 1013 1.5075 · 1014 1.4935 · 1014

δΩ = δω = 0.2 rad 5.1240 · 1016 3.3545 · 1014 8.1872 · 1016 6.0972 · 1014
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Figure 4.2: True state and calibrated state feedback, trajectories for e = 0.
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Figure 4.3: True state and calibrated state feedback, trajectories for e = 0.3.



Chapter 5

State-Dependent Riccati

Equation Control

The State-Dependent Riccati Equation Control technique (SDRE) is one of the most

powerful and systematic approach for nonlinear systems sub-optimal controller de-

sign. The method is based on the extended linearization process, that transforms

a nonlinear system into a linear-like form. Then, the linear quadratic regulator

control law is mimicked in order to compute a sub-optimal feedback control law.

The SDRE control was born in the late 90s and was applied with success in a lot

of different fields, including advanced guide law development, satellite and space-

craft control, process control, robotics and cybernetics. Moreover, the extended

linearization technique may be used as a starting point for the development of

new nonlinear controllers. Linear control techniques may be used on the linearized

equations, resulting in a nonlinear control law.

In this chapter the SDRE method is presented. Stability and optimality of

SDRE controllers are also discussed, as well as control implementation and issues.

The chapter ends with a presentation of some of the SDRE-based solutions proposed

so far for the relative motion problem.

59
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5.1 Problem Statement

Consider a system nonlinear in the state and affine in the input having dynamics

x = f(x) + g(x)u (5.1)

where x ∈ Rn is the state, u ∈ Rm is the input vector, f : Rn → Rn and g : Rn →

Rn×m, such that g(x) 6= 0 ∀x ∈ Rn, and a cost function

J(x,u) = lim
t→+∞

∫ t

0

[
xTQ(x)x+ uTR(x)u

]
dτ (5.2)

where Q : Rn → Rn×n is the state weighting matrix, that may be factored as

Q(x) = CT (x)C(x), and R : Rn → Rm×m is the input weighting matrix.

Suppose then that f(x) is, at least, a continuous mapping in a bounded open

set Ω ⊆ Rn containing the origin and the initial state x0 = x(0) (i.e. f ∈ Ck(Ω),

k ≥ 0) and that the same holds for the matrix-valued functions g(x), Q(x), and

R(x).

A stabilizing feedback control law

u(x) = k(x)

such that k(0) = 0 and k ∈ C1(Ω) is then sought, that will approximately minimize

the Equation (5.2) and drives the system to the origin ∀x0 ∈ Ω. A possible control

law is the following,

u(x) = −K(x)x

thanks to the assumption of continuity on k(x), where K : Rn → Rm×n.

5.2 Extended Linearization

The extended linearization process aims at finding a linear-like factorization of a

nonlinear system, through the definition of state-dependent coefficient (SDC) ma-
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trices,

ẋ = A(x)x+B(x)u (5.3)

The following proposition guarantees the existence of an SDC parametrization for

f(x) under proper conditions [57].

Proposition 1 (Çimen, 2010). Let f : Ω → Rn be such that f(0) = 0 and f ∈

Ck(Ω), k ≥ 1. Then for all x ∈ Ω an SDC parametrization f(x) = A(x)x always

exits for some A : Ω→ Rn×n.

Some of the linear system properties can be reformulated for the SDC represen-

tation (5.3).

Definition 1. The SDC representation (5.3) is a stabilizable (controllable) parametriza-

tion of the nonlinear system (5.1) in Ω if the pair
{
A(x),B(x)

}
is pointwise stabi-

lizable (controllable) in the linear sense for all x ∈ Ω.

Definition 2. The SDC representation (5.3) is a detectable (observable) parametriza-

tion of the nonlinear system (5.1) in Ω if the pair
{
C(x),A(x)

}
is pointwise de-

tectable (observable) in the linear sense for all x ∈ Ω.

It is worth of note that the parametrization is not unique when n > 1. This

adds an important degree of freedom to the SDRE methodology. Given for example

two different parametrization for f(x), an infinite number of SDC parametrization

can be obtained,

A(x, α) = αA1(x) + (1− α)A2(x), α ∈ [0, 1]

This flexibility may be exploited to achieve better performance or to satisfy specific

design requirements. Usually the coefficient α is tuned to ensure the stabilizability

(controllability) and the detectability (observability) of the parametrization over

the domain of interest. The analysis of this two properties may be carried out using
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the controllability matrix MC(x),

MC(x) =
[
B(x) | A(x)B(x) | . . . | An−1(x)B(x)

]
and the observability matrix MO(x),

MO(x) =
[
CT (x) | AT (x)CT (x) | . . . | (AT (x))n−1CT (x)

]
The SDC representation will be stabilizable if rank(MC(x)) 6= 0 ∀x ∈ Ω and will

be detectable if rank(MO(x)) 6= 0 ∀x ∈ Ω. If C(x) is chosen positive-semidefinite

∀x ∈ Ω, then detectability is guaranteed.

The use of linear control methods on the SDC representation (5.3), treating

A(x) and B(x) as constant matrices at each instant, takes the name of extended

linearization control method.

5.3 SDRE Control Technique

One of the most widely diffused extended linearization control method is the state-

dependent Riccati equation control technique. The nonlinear optimal regulation

problem stated in Section 5.1 is characterized by a state-dependent linear quadratic

cost function, that recall the linear quadratic regulator problem (LQR). Thus, mim-

icking the LQR technique, a controller can be designed that, at each sample time,

computes a matrix gain K treating the SDC matrices as being constant.

Let be f ∈ C1(Ω), B(x) = g(x) ∈ C0(Ω) and B(x) 6= 0 ∀x ∈ Ω. Without loss

of generality, let x = 0 ∈ Ω be an equilibrium of the system with u = 0. Under

this condition the system (5.1) has an SDC representation (5.3) by Proposition 1.

An LQR-like state-feedback controller can be designed

u(x) = −R−1(x)BT (x)P (x)x (5.4)

where P (x) is the unique, symmetric, positive-definite and pointwise stabilizing
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solution of the continuous-time State-Dependent Riccati Equation (SDRE),

AT (x)P (x) + P (x)A(x)− P (x)B(x)R−1(x)BT (x)P (x) +Q(x) = 0 (5.5)

under the following assumptions:

1) The state and input weighting matrices are continuous and symmetric matrix-

valued functions, such that Q(x) ≥ 0 (positive-semidefinite) and R(x) > 0

(positive-definite) ∀x ∈ Ω.

2) The SDC representation is stabilizable and detectable in Ω.

SDRE control is therefore a generalization of the LQR problem, and it collapse to

this when the coefficient and weighting matrices are constant. The resolution of an

algebraic Riccati equation (ARE) simplify the implementation of the controller and

avoid the resolution of the Hamilton-Jacobi-Bellman equation.

5.4 Stability of SDRE control

Local asymptotic stability of the SDRE control can be proved by means of the

following theorem, developed by Mracek et al. in [58].

Theorem 1 (Mracek & Cloutier, 1998). Consider the nonlinear system (5.1) with

feedback control (5.4) applied, where x ∈ Rn with n > 1 and P (x) is the unique,

symmetric, positive-definite and pointwise stabilizing solution of the SDRE (5.5).

Then, if (5.3) is a stabilizable and detectable SDC parametrization such that A(x),

B(x), Q(x) and R(x) are C1(Rn) matrix-valued functions, the SDRE control tech-

nique produces a closed-loop solution which is locally asymptotically stable.

However, the asymptotic stability is limited to a neighbourhood of the origin.

Global asymptotic stability can be proved only for two particular cases by the

following theorems, proposed in [59].

Theorem 2 (Cloutier, D’Souza & Mracek, 1996). If the closed-loop coefficient

matrix ACL(x) = A(x) − B(x)K(x) is symmetric for all x, then if (5.3) is a
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stabilizable and detectable SDC parametrization such that A(x), B(x), Q(x) and

R(x) are C1(Rn) matrix-valued functions, the SDRE closed-loop solution is globally

asymptotically stable.

Theorem 3 (Cloutier, D’Souza & Mracek, 1996). In the scalar case n = 1 the

SDRE closed-loop solution is globally asymptotically stable.

Extension of Theorem 3 to higher order systems is possible but under strong

conditions (see in [59] and references therein).

Alternatively to global stability, it is desirable to estimate the stability region

for the system, i.e. the region of attraction (ROA). A powerful approach to the

systematic estimation of the ROA is proposed by Bracci et al. in [60]:

1) Consider the autonomous system ẋ = f(x) and suppose the origin is an

equilibrium (otherwise translate the state variables). Linearize the system in

the neighbourhood of the origin obtaining the following matrix.

A =
∂f

∂x

∣∣∣
x=0

2) If A is Hurwitz (i.e all its eigenvalues are in the open left half complex plane)

find a Lyapunov function for the system

V (x) = xTPx

using the Lyapunov equation

ATP + PA = −Q

where Q must be chosen positive-definite.

3) Derive V (x) obtaining

V̇ (x) = 2xTPf(x)
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and find the state-space region L defined as follows.

L =
{
x ∈ Rn | V̇ (x) < 0

}

4) Find the lowest value V such that V̇ (x) ≥ 0

V = inf
x∈{Rn−L}

V (x)

and the highest value VM , such that the corresponding level set is entirely

inside L.

VM = sup
V (x)≤VM

V (x)

5) The connected area

E =
{
x ∈ Rn | V (x) ≤ VM

}
belongs to the ROA according to the Lyapunov theorem for local stability.

The algorithm can be easily extended to a system controlled using SDRE technique,

after computing the closed-loop system matrix ACL(x). If K(x) is not available

in closed form, then the state-dependent Riccati equation (5.5) must be computed

pointwise in order to obtain ACL(x), during the evaluation of L.

5.5 Optimality of SDRE Control

As the state x is driven to the origin, A(x)→ ∂f(0)
∂x and the solution of the state-

dependent Riccati equation, P (x), tends to the solution of the ARE for the lin-

earized problem at the origin. Thus, in a small neighbourhood of the origin the

SDRE control law is arbitrary close to the optimal control law. The SDRE con-

trol method is therefore asymptotically optimal, since it converges to the optimal

control law close to the origin as x→ 0.

Some of the necessary conditions for optimality of the SDRE control law may

be verified by the following theorem, presented in [58]. Recalling Pontryagin’s max-
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imum principle, these are,

∂H

∂u
= 0 (5.6a)

λ̇ = −∂H
∂x

(5.6b)

ẋ = −∂H
∂x

where H is the Hamiltonian function defined as

H =
∂V (x)

∂x

T

(f(x) + g(x)u) +
1

2

(
xTQ(x)x+ uTR(x)u

)
and V (x) is the value function given by

V (x) , inf
u(·)∈U

J (x,u(·))

It is assumed that the SDC parametrization (5.3) is pointwise stabilizable and de-

tectable for all x, so that P (x) exists.

Theorem 4 (Mracek & Cloutier, 1998). In the general multi-variable case, n > 1,

the SDRE nonlinear feedback solution and its associated state and costate trajec-

tories satisfy the first necessary condition for optimality (5.6a) of the nonlinear

optimal regulation problem defined by Equation (5.1)-(5.2).

Additionally, if A(x), B(x), P (x), Q(x) and R(x) are bounded in a neigh-

bourhood Ω about the origin along with their gradients, under asymptotic stability

as the state x is driven to zero the second necessary condition for optimality (5.6b)

is asymptotically satisfied at a quadratic rate.

This theorem represent a sub-optimality property of the SDRE method, since

the second necessary condition for optimality is satisfied only asymptotically. Global

optimality can be proved for scalar systems by the following theorem [58].

Theorem 5 (Mracek & Cloutier, 1998). For scalar system, n = 1, the globally

asymptotically stabilizing SDRE feedback solution of the nonlinear optimal regulator
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problem defined by Equation (5.1)-(5.2) is always globally optimal in R1.

Global optimality in case of multi-variable systems cannot be proved. Huang

and Lu in [61] proved that an SDC representation always exists such that the

SDRE control law produces the optimal feedback control law (see also [62] and

references therein). Nevertheless there are no methods that identify the “optimal”

SDC representation, to the best of the author’s knowledge.

5.6 Algebraic Riccati Equation Online Resolution

The resolution of the ARE at each sampling time is the most expensive step in

terms of computational resources. Several methods were proposed during the years,

that may be categorized in two classes: direct and iterative methods. The former

class returns an exact solution at each execution, whereas the latter, starting from

an initial guess, compute an approximate solution through consecutive iterations

and are usually faster.

ARE solution can be computed using the correspondent Hamiltonian matrix,

H =

 A −BR−1BT

−Q −AT

 ∈ R2n×2n

By similiarity transformation H can be written as

H = TΛT−1 (5.7)

where the first n columns of T are the eigenvectors relative to the eigenvalues of H

with positive real part, whereas the second n columns are the eigenvectors relative

to the eigenvalues with negative real part. T and Λ can then be factorized as

follows,

Λ =

 Λ+ 0n×n

0n×n Λ−

 , T =

[
T+ T−

]
=

T11 T12

T21 T22


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The ARE solution is then given by

P = T22T
−1
12

The Hamiltonian matrix may be balanced before computing the similiarity transfor-

mation in Equation (5.7), for example using the algorithm proposed in [63], Section

11.6.1. The balanced Hamiltonian matrix Hb is given by

H = DHbD
−1 (5.8)

where D is the transformation matrix computed by the balancing process. Trans-

formation in Equation (5.7) can be applied to Hb,

Hb = TbΛT
−1
b (5.9)

Introducing Equation (5.9) in Equation (5.8) gives

T = DTb

A more robust direct numerical procedure is based on the Schur decomposition of

the Hamiltonian matrix,

H = UTLU , L =

L11 L12

L21 L22


where L is the Schur form of H, with L11 possessing all negative real part eigenval-

ues, and the matrix U is orthogonal. The solution of the Riccati equation in this

case is given by

P = UT
12

(
U−1

11

)T
An approximate estimate of the computational cost of Schur method is given in [64].

Solution is found in approximately 75n3 floating point operations.
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Among the iterative methods, the most famous is the Kleinman algorithm [65],

that uses an initial guess of the closed gain to compute P .

Let K0 be such that the closed loop system
(
A+BKT

0

)
has all eigenvalues

with negative real parts. Then, Pi and Ki are defined recursively by

Pi
(
A+BKT

i

)
+
(
A+BKT

i

)T
Pi = −KiRK

T
i −Q

Ki+1 = −PiBR−1

It can be proved that limi→+∞Pi = P and that ‖Pi+1 − P ‖ ≤ c ‖Pi − P ‖2 with

c > 0. Therefore, the convergence of the algorithm is quadratic. The Kleinman

algorithm requires 6n3 floating point operations per iteration and, depending upon

the initial guess, 10 or more iterations may be required to converge to the solution.

Initial guess for K0 can be generated, for example, using pole placement. Al-

ternately, Schur algorithm can be used to obtain a first estimation of P and the

algorithm can start from K0 = −P0BR
−1.

Further information about algorithms for ARE resolution and their computa-

tional costs can be found in [66] and references therein.

5.7 Existing SDRE Controllers for Relative Motion

SDRE control was recently proposed for relative motion problem, even if the first

example of control for both attitude and position is dated 2000 [67]. The control

technique was applied principally for formation flying control. Park et al. in [68]

consider formation reconfiguration and station-keeping maneuvers. J2 perturbation

is taken in account and it is computed using deputy’s orbital elements. Massari et

al. in [69] apply, again, the SDRE method for formation flying and state estima-

tion. Moreover, collision avoidance between the two satellites is considered and the

relative constraint is introduced in the system dynamics equations. Other SDRE

applications on formation flying are proposed in [70–72].

Autonomous rendezvous and docking operation is considered in [73]. The SDRE
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controller was tested on real hardware, using a testbed developed by DLR. In [74,

75] Lee et al. study the relative attitude and position control of a spacecraft ap-

proaching the International Space Station. Atmospheric drag and J2 perturbations

were considered.

Often the proposed solutions do not consider deputy’s mass variation due to

propellant consumption. This aspect is not negligible when the maneuver covers

long distances. Moreover, satellite’s mass variation should be considered also in the

inertia tensor, if relative attitude control problem is considered. Also limitations on

control are usually not taken in account.



Chapter 6

SDRE Control of Relative

Motion

In this chapter the SDRE method is applied to develop controllers for nonlinear

equation of relative unperturbed motion. Three different parametrization were de-

veloped and tested. The tools of the SDRE method were used in order to rewrite

the state-independent parameters, also known as bias terms.

In the first parametrization, bias terms were reformulated and included in the

SDC matrices. In the second one, a fictitious state was introduced and the in-

plane and out-of-plane motion were decoupled, resulting in two different systems

to control. The third parametrization was developed introducing a first control law

that dynamically cancels bias terms, in a computed torque fashion. Again the in-

plane and out-plane components were decoupled, resulting in a time-varying and a

time-invariant systems to control.

The developed SDRE controllers were then compared to calibrated state feed-

back control law presented in Chapter 4. Different tests were performed, in order to

analyse and improve controls performances, introducing also satellite mass variation

due to propellant consumption into the SDC parametrizations.

71
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6.1 SDC Parametrization of NERM

6.1.1 Existence of SDC Parametrizations

Nonlinear equation of relative motion in the unperturbed case can be easily rewrit-

ten in control affine form

ẋ = f(x) + g(x)u

where f(x) : Rn → Rn and g(x) : Rn → Rn have the following expressions,

f(x) =



ẋ

ẏ

ż

2ḟ
(
ẏ − y ṙr

)
+ xḟ2 − µ

r3d
(r + x) + µ

r2

−2ḟ
(
ẋ− x ṙr

)
+ yḟ2 − µ

r3d
y

− µ
r3d
z


, g(x) =

03×3

I3×3



Since f(0) = 0, extended linearization of NERM equations is possible by Propo-

sition 1, even though the fourth element of f(x), Equation (2.25a), presents what

it may be called (abusing of SDRE terminology) a bias term,

µ

r2
− µ

r3
d

r (6.1)

Formally, in the SDRE literature a bias term is a state-independent term which

cause the violation of the requirement f(0) = 0. In this case, the term (6.1)

does not cause the violation of the before mentioned requirement, since rd is state-

dependent (remember that rd =
√

(r + x)2 + y2 + z2) and it is equal to r when

x = 0. Nevertheless, an explicit state-dependent expression must be found in order

to obtain the SDC matrices. Different expressions may be proposed, that lead to

different SDRE controllers.
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6.1.2 Parametrization 1

An explicit linear dependence from the state x of the term (6.1) can be found after

some mathematical manipulations,

µ

(
1

r2
− r

r3
d

)
= µ

r3
d − r3

r2r3
d

= µ
(rd − r)(r2

d + rrd + r2)

r2r3
d

= µ
(r2
d − r2)(r2

d + rrd + r2)

(rd + r)r2r3
d

= µ
((r + x)2 + y2 + z2 − r2)(r2

d + rrd + r2)

(rd + r)r2r3
d

= µ
((2r + x)x+ y2 + z2)(r2

d + rrd + r2)

(rd + r)r2r3
d

= γ(2r + x)x+ γy2 + γz2

(6.2)

In the previous expression it was introduced the time-variant parameter γ, which

was defined as,

γ , µ
r2
d + rrd + r2

(rd + r)r2r3
d

The SDC matrices are then

A(x) =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

ḟ2 − µ
r3d

+ γ(2r + x) −2ḟ ṙr + γy γz 0 2ḟ 0

2ḟ ṙr ḟ2 − µ
r3d

0 −2ḟ 0 0

0 0 − µ
r3d

0 0 0


B =

03×3

I3×3



This SDC representation is a stabilizable (and controllable) parametrization of the

system, since the controllability matrix has rank 6, as can be proved by computing
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its first columns,

det [B | A(x)B] = det



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 2ḟ 0

0 1 0 −2ḟ 0 0

0 0 1 0 0 0


= −1

The SDC matrices here found were already proposed in literature [69, 70].

6.1.3 Parametrization 2

Instead of writing the term (6.1) as a linear function of the state, it can be intro-

duced a fictitious stable state ξ with a slow dynamic, for example ξ̇ = −λξ. Then

Equation (2.25a) can be written as

ẍ =

(
ḟ2 − µ

r3
d

)
x− 2ḟ

ṙ

r
y + 2ḟ ẏ +

(
µ

r2
− µ

r3
d

r

)
1

ξ
· ξ + ux

Introducing the extended state x̃ = [x, y, z, ẋ, ẏ, ż, ξ]T , the SDC matrices are

A(x̃) =



0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

ḟ2 − µ
r3d

−2ḟ ṙr 0 0 2ḟ 0
(
µ
r2
− µ

r3d
r
)

1
ξ

2ḟ ṙr ḟ2 − µ
r3d

0 −2ḟ 0 0 0

0 0 − µ
r3d

0 0 0 0

0 0 0 0 0 0 −λ



B =


03×3

I3×3

01×3



This parametrization decouples the motion into the in-plane, x̃ip = [x, y, ẋ, ẏ, ξ]T ,

and the out-of-plane, x̃op = [z, ż]T , components. Therefore, two different controllers

can be designed: one that controls the in-plane motion through uip = [ux, uy]
T and
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the other one that uses uop = uz to control the out-of-plane motion.

The two motion components are characterized by the following SDC parametriza-

tions.

Aip(x̃ip) =



0 0 1 0 0

0 0 0 1 0

ḟ2 − µ
r3d

−2ḟ ṙr 0 2ḟ
(
µ
r2
− µ

r3d
r
)

1
ξ

2ḟ ṙr ḟ2 − µ
r3d
−2ḟ 0 0

0 0 0 0 −λ


Bip =



0 0

0 0

1 0

0 1

0 0



Aop(x̃op) =

 0 1

− µ
r3d

0

 Bop =

0

1


Proving the controllability of the out-of-plane motion is straightforward. The in-

plane motion is not completely controllable, since the state ξ is not influenced by

inputs or other controllable states. The remaining states are controllable and the

SDC representation is thus stabilizable. The particular expression of the controlla-

bility matrix proves what already said. In particular its last row is null, as can be

seen computing the first columns.

[
B | A(x)B | A2(x)B

]
=



0 0 1 0 0 2ḟ

0 0 0 1 −2ḟ 0

1 0 0 2ḟ −3ḟ2 − µ
r3d

−2ḟ ṙr

0 1 −ḟ 0 2ḟ ṙr −3ḟ2 − µ
r3d

0 0 0 0 0 0


Considering the sub-matrix formed by the first four rows and columns, it can

be shown that rank(MC(x)) = 4.
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6.1.4 Parametrization 3

Controls expression can be chosen to dynamically cancel the nonlinear and bias

terms of Equations (2.25), in a computed torque fashion.

In particular, introducing a new control vector

τ = τxî+ τy ĵ + τzk̂

it can be chosen the following control vector

ux =
µ

r3
d

(r + x)− µ

r2
+ τx

uy =
µ

r3
d

y + τy

uz =
µ

r3
d

z + τz

that transforms the system in a set of linear time-varying equations,

ẍ− 2ḟ

(
ẏ − y ṙ

r

)
− xḟ2 = τx

ÿ + 2ḟ

(
ẋ− xṙ

r

)
− yḟ2 = τy

z̈ = τz

Again, the in-plane and the out-of-plane motion are decoupled. Moreover, the

system describing the out-of-plane motion is a linear time-invariant system (a double

integrator). Once the states of the two systems are defined,

xip = [ x y ẋ ẏ ]T , xop = [ z ż ]T
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the SDC matrices are characterized by the following expressions.

Aip(xip) =



0 0 1 0

0 0 0 1

ḟ2 −2ḟ ṙr 0 2ḟ

2ḟ ṙr ḟ2 −2ḟ 0


Bip =



0 0

0 0

1 0

0 1



Aop =

0 1

0 0

 Bop =

0

1


Prove of out-of-plane system controllability is straightforward. Controllability ma-

trix of in-plane system has rank 4, since

det [Bip | Aip(xip)Bip] = det



0 0 1 0

0 0 0 1

1 0 0 2ḟ

0 1 −2ḟ 0


= 1

6.2 Simulations Results

The parametrization proposed in the previous sections were used to develop three

SDRE controllers. Their performance were compared setting up a terminal ren-

dezvous mission scenario using the same test cases presented in Section 4.3 (see

Tables 4.1 and 4.2). Simulations were developed in Simulink. Runge - Kutta 4th

order integration algorithm was used and sample time was set to T/1000. SDRE

controllers were compared to calibrated state feedback control presented in Sec-

tion 4.

Before starting the simulations, SDRE controllers weighting matrices coefficients

were tuned in order to minimize propellant consumption. An automatic tuning pro-

cedure was set up to find an optimal combination of coefficients. The procedure

simulates one of the test cases trying different coefficients combinations and simu-

lation results are then compared.
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Several simulations were performed in order to analyse the controller perfor-

mances. During the first set of simulations, in the following referred to as Test 1,

controllers performance were evaluated over two orbital periods. In particular, total

control usage, Equation (4.3), and final distance values were used to compare the

controllers. The automatic tuning procedure found the following set of weighting

matrices for the SDRE controllers,

Q1 =

6.5× 10−2I3×3 03×3

03×3 2.2× 105I3×3

 , R1 = 3.7474× 1011I3×3

Q2,ip =

5× 10−4I2×2 02×3

03×2 03×3

 , R2,ip = 3.8× 108I2×2

Q2,op =

2.5× 10−5 0

0 0

 , R2,op = 5× 107

Q3,ip =

3× 10−6I2×2 02×2

02×2 7I2×2

 , R3,ip = 8× 106I2×2

Q3,op =

4× 10−4 0

0 8

 , R3,op = 1.5× 106

The number in the subscript denotes the parametrization. The weighting matri-

ces Q3,op and R3,op were used to compute an LQR controller for the out-of-plane

component of parametrization 3.

Simulations results for this first set of tests are shown in Tables 6.1 and 6.2.

SDRE controllers showed greater control usage than calibrated state feedback con-

trol. However, at the end of the simulations deputies that used SDRE controllers

were significantly closer to the chief.

Therefore, a second set of tests was set up, Test 2, to understand time needed by

deputies to converge to a condition suitable for a rendezvous and docking operation.

Inspired by ESA’s ATV docking, the deputy had to converge and to keep for 10

minutes the following conditions: ρ < 20 m, ρ̇ < 0.01 m/s. For this set of tests, total
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Table 6.1: Test 1, total control usage ∆v in m/s.

Test case Calib.State SDRE Par.1 SDRE Par.2 SDRE Par.3

e = 0

δe = 0.01, δi = 0.01 rad 62 164 288 228
δe = 0.1, δi = 0.1 rad 625 1662 3193 2370
δe = 0.2, δi = 0.2 rad 1281 3405 7435 4962
δΩ = δω = 0.01 rad 47 118 233 419
δΩ = δω = 0.1 rad 466 1221 2404 4207
δΩ = δω = 0.2 rad 944 2550 4979 8350

e = 0.3

δe = 0.01, δi = 0.01 rad 78 155 287 263
δe = 0.1, δi = 0.1 rad 781 1546 3040 2764
δe = 0.2, δi = 0.2 rad 1579 3838 6401 5890
δΩ = δω = 0.01 rad 47 121 187 303
δΩ = δω = 0.1 rad 471 1221 1888 2939
δΩ = δω = 0.2 rad 951 2486 3811 5656

Table 6.2: Test 1, final distance in m.

Test case Calib.State SDRE Par.1 SDRE Par.2 SDRE Par.3

e = 0

δe = 0.01, δi = 0.01 rad 3475.229 7.604 126.133 18.294
δe = 0.1, δi = 0.1 rad 61 823.227 79.601 1587.308 36.857
δe = 0.2, δi = 0.2 rad 215 477.251 164.680 4482.950 66.791
δΩ = δω = 0.01 rad 42 533.259 5.478 54.624 18.983
δΩ = δω = 0.1 rad 424 668.293 67.935 640.280 63.105
δΩ = δω = 0.2 rad 850 265.047 167.139 1514.864 123.165

e = 0.3

δe = 0.01, δi = 0.01 rad 11 792.386 1.224 4.559 47.996
δe = 0.1, δi = 0.1 rad 91 268.430 16.498 51.356 48.520
δe = 0.2, δi = 0.2 rad 136 942.060 34.356 103.705 50.111
δΩ = δω = 0.01 rad 35 152.162 1.063 0.496 48.015
δΩ = δω = 0.1 rad 353 389.070 14.279 3.049 50.365
δΩ = δω = 0.2 rad 709 117.474 38.512 11.747 56.938
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control usage and total maneuver time (time needed to the deputy to converge to

the docking condition) were used as performance indexes.

Results are shown in Tables 6.3 and 6.4. As can be seen, calibrate state feedback

control law maneuver time is almost ten times greater than maneuver time needed

by SDRE controllers. Moreover, calibrated state total control usage increased in

this set of tests. As will be seen in Figures 6.1 and 6.2, Sinclair’s control oscillates

around the origin and need time to satisfy the docking condition, whereas SDRE

controllers converge smoothly.

The previous SDRE controllers do not consider the mass variation due to pro-

pellant consumption. In the third set of tests, Test 3, mass was introduced in the

control matrix B of the SDC parametrization, i.e. the new control matrix was

Bm = 1
mB (see Section 2.1.5). For parametrization 3, mass variation was intro-

duced only in the in-plane motion control matrix. Convergence to docking condition

was again considered. The following weighting matrices were found by the auto-

matic tuning procedure,

Q1 =

6.5× 10−2I3×3 03×3

03×3 2.7× 105I3×3

 , R1 = 2.8× 104I3×3

Q2,ip =

5.5× 10−1I2×2 02×3

03×2 03×3

 , R2,ip = 5× 103I2×2

Q2,op =

2.4× 10−2 0

0 0

 , R2,op = 5× 102

Q3,ip =

1.1× 10−2I2×2 02×2

02×2 02×2

 , R3,ip = 102I2×2

Q3,op =

20 0

0 8

 , R3,op = 1010

Calibrated state feedback control law was no longer considered, since it was devel-

oped on equations that do not take in account mass variation. During these tests,
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Table 6.3: Test 2, total control usage ∆v in m/s.

Test case Calib.State SDRE Par.1 SDRE Par.2 SDRE Par.3

e = 0

δe = 0.01, δi = 0.01 rad 93 164 290 228
δe = 0.1, δi = 0.1 rad 939 1662 3216 2370
δe = 0.2, δi = 0.2 rad 1898 3405 7755 4962
δΩ = δω = 0.01 rad 76 118 235 419
δΩ = δω = 0.1 rad 763 1222 2429 4207
δΩ = δω = 0.2 rad 1538 2550 5028 8350

e = 0.3

δe = 0.01, δi = 0.01 rad 113 155 279 263
δe = 0.1, δi = 0.1 rad 1130 1546 2912 2764
δe = 0.2, δi = 0.2 rad 2250 3838 6079 5890
δΩ = δω = 0.01 rad 81 121 173 303
δΩ = δω = 0.1 rad 812 1221 1761 2939
δΩ = δω = 0.2 rad 1634 2486 3590 5656

Table 6.4: Test 2, total maneuver time in T .

Test case Calib.State SDRE Par.1 SDRE Par.2 SDRE Par.3

e = 0

δe = 0.01, δi = 0.01 rad 18.067 1.880 2.694 1.860
δe = 0.1, δi = 0.1 rad 23.447 2.294 3.452 2.305
δe = 0.2, δi = 0.2 rad 24.940 2.422 3.815 2.439
δΩ = δω = 0.01 rad 18.209 1.836 2.388 1.981
δΩ = δω = 0.1 rad 23.216 2.263 3.200 2.427
δΩ = δω = 0.2 rad 24.715 2.417 3.434 2.562

e = 0.3

δe = 0.01, δi = 0.01 rad 17.257 1.633 1.604 1.447
δe = 0.1, δi = 0.1 rad 23.980 2.034 2.168 2.270
δe = 0.2, δi = 0.2 rad 26.150 2.127 2.264 2.273
δΩ = δω = 0.01 rad 21.952 1.634 1.602 1.564
δΩ = δω = 0.1 rad 28.808 2.015 1.952 2.273
δΩ = δω = 0.2 rad 30.134 2.127 2.226 2.284
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Table 6.5: Test 3, total control usage ∆v difference in % with respect to Test 2
values.

Test case SDRE Par.1 SDRE Par.2 SDRE Par.3

e = 0

δe = 0.01, δi = 0.01 rad −8.16 −24.50 6.24
δe = 0.1, δi = 0.1 rad −7.23 −28.58 6.71
δe = 0.2, δi = 0.2 rad −5.30 −36.67 7.42
δΩ = δω = 0.01 rad −8.51 20.77 89.19
δΩ = δω = 0.1 rad −8.90 18.23 88.47
δΩ = δω = 0.2 rad −8.83 15.31 75.18

e = 0.3

δe = 0.01, δi = 0.01 rad −7.69 14.71 23.74
δe = 0.1, δi = 0.1 rad −6.25 21.22 24.51
δe = 0.2, δi = 0.2 rad −0.56 31.26 25.75
δΩ = δω = 0.01 rad −4.17 29.95 81.24
δΩ = δω = 0.1 rad −4.35 30.52 86.67
δΩ = δω = 0.2 rad −4.39 30.55 91.38

only total control usage was considered and compared to the values reported in

Table 6.3. The aim was to understand if the introduction of mass variation in the

SDC parametrization improves the control performance. Table 6.5 shows simula-

tions results. As can be seen, only the performance of the SDRE controller using

parametrization 1 improved, whereas performance of the other controllers signifi-

cantly got worse.

In Figures 6.1 and 6.2 the trajectories generated by all the controllers analysed

are shown. Sinclair’s control does not converge smoothly and the oscillation may

be a problem in a real situation, since collision with other objects may occur. Fig-

ures 6.3 and 6.4 show the relative distance evolution during the maneuver. Again,

calibrated state feedback control law oscillations are visible. Moreover, Sinclair’s

control shows initial overshoots sometimes excessively high, with values between

1000 and 2000 km.
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Figure 6.1: Trajectories for e = 0.
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Figure 6.2: Trajectories for e = 0.3.
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Figure 6.3: Relative distance over 4 orbit periods for e = 0.
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Figure 6.4: Relative distance over 4 orbit periods for e = 0.3.



Chapter 7

SDRE Control of Relative

Perturbed Motion

In this section the SDRE control is applied to control the relative perturbed motion.

Two different controllers were developed and compared: a nonlinear SDRE-H∞

controller and a SDRE controller.

The nonlinear H∞ controller was designed using the extended linearization tech-

nique presented in Section 5.2. In particular, an H∞ controller is computed at each

sampling time, using the SDC matrices result of the extended linearization process.

A classical SDRE controller was also developed to draw a comparison.

Moreover, a SDRE controller based on LERM equations was designed in order to

understand if perturbation modelling is really necessary. Atmospheric drag and J2

perturbations acceleration are several orders lower than gravitational acceleration

and the resulting differential perturbation tends to zero as the distance between

deputy and chief decreases. Hence, LERM equations accuracy improves as the

system goes to the origin.

In Section 7.1 the nonlinear H∞ control based on extended linearization tech-

nique is presented. The SDRE-H∞ controller for relative perturbed motion is then

developed in Section 7.2, whereas in Section 7.3 the SDRE controllers based on

nonlinear equations of relative perturbed motion and on LERM equations are de-

87
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veloped. The controllers were tested on terminal rendezvous and formation control

mission scenarios and the results are presented in Section 7.4.

7.1 Nonlinear H∞ Control using Extended Lineariza-

tion

The use of extend linearization for H∞ nonlinear controller design was proposed by

Cloutier et al. in [59, 76]. In literature very few application of this control technique

can be found [77].

The idea behind this technique is the same that led to the introduction of the

SDRE controllers: given an SDC parametrization of the system, comprehensive of

a performance output function, at each sample time compute the linear H∞ control

law by resolution of its characteristic algebraic Riccati equations. The results is a

state-dependentH∞ controller that in the following will be referred to as SDRE-H∞

controller.

Consider a general nonlinear system characterized by the following equations

ẋ = f(x) +B1(x)w +B2(x)u

z = c1(x) +D12(x)u

y = c2(x) +D21(x)w

where x ∈ Rn, u ∈ Rm2 and w ∈ Rm1 are respectively the state, control and ex-

ogenous input (that may include tracking commands and/or disturbances) vectors,

y ∈ Rm3 is the system output and z ∈ Rm4 is the performance output. Assume

that

• D12(x) and D21(x) have full rank;

• f(0) = c2(0) = 0;

• B2(x) 6= 0 for all x.
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The aim of H∞ control is to find a causal controller K that minimize the H∞ norm

of the closed loop system. The cost function J can be expressed in terms of L2

norm as

J(K) = max
w(t)6=0

||z(t)||
||w(t)||

(7.2)

The minimization of Equation (7.2) is not straightforward. Thus, it is usually

considered the sub-optimal problem: given γ∞ ∈ R, γ∞ > 0, find a causal controller

K such that J(K) < γ∞. If such a controller exists then the following inequality

holds ∫ T

0
||z(t)||2 dt ≤ γ2

∞

∫ T

0
||w(t)||2 dt

for all T ≥ 0 and all w(t) ∈ L2 ∀t ∈ [0, T ] and the exogenous signal w(t) will be

locally attenuated by γ∞. The H∞ problem tends to the H2 control problem as

γ∞ → +∞.

An approximate solution for the stated problem can be obtained using the ex-

tended linearization technique. Assume that exists an SDC parametrization of

Equations (7.1),

ẋ = A(x)x+B1(x)w +B2(x)u

z = C1(x)x+D12(x)u

y = C2(x)x+D21(x)w (7.3a)

such that the pairs {A(x),B1(x)}, {A(x),B2(x)}, {C1(x),A(x)}, {C2(x),A(x)}

are respectively stabilizable and detectable in the region of interest Ω.

If γ∞ is sufficiently large, then the positive-semidefinite solutions P (x̂) and

Q(x̂) of the Riccati equations, which are given below in terms of state-dependent

Hamiltonian matrices (state-dependence is omitted for simplicity), will exist and

they are such that the maximum eigenvalue of P (x̂)Q(x̂) is lower than γ2
∞.
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A−B2R
−1
u D

T
12C1 γ−2

∞ B1B
T
1 −B2R

−1
u B

T
2

−ĈT
1 Ĉ1 −

(
A−B2R

−1
u D

T
12C1

)T
 → P (x̂)

(A−B1D
T
21R

−1
w C2

)T
γ−2
∞ C

T
1 C1 −CT

2 R
−1
w C2

−B̂1B̂
T
1 −

(
A−B1D

T
21R

−1
w C2

)
 → Q(x̂)

The matrices B̂1, Ĉ1, Ru and Rw are defined as follows,

• B̂1 , B1

(
I −DT

21R
−1
w D21

)
;

• Ĉ1 ,
(
I −D12R

−
u 1DT

12

)
C1;

• Ru ,DT
12D12;

• Rw ,D21D
T
21;

The SDRE-H∞ nonlinear controller is then characterized by the following set of

equations, that describes the observer and the state-feedback control law,

˙̂x = Ao(x̂)x̂+Bo(x̂)y (7.4a)

u = F (x̂)x̂ (7.4b)

where the following state-dependent matrices were introduced,

• L , −
(
QCT

2 +B1D
T
21

)
R−1
w ;

• Z ,
(
I − γ−2

∞ QP
)−1

;

• F , −R−1
u

(
BT

2 P +DT
12C1

)
;

• Ao , A+B2F + γ−2
∞ B1B

T
1 P +ZL

(
C2 + γ−2

∞ D21B
T
1 P
)
;

• Bo , −ZL.

If the state is known, then Equations (7.3a) disappears, as well as the observer,

Equation (7.4a), and the SDRE-H∞ controller is given by Equation (7.4b), with

the state estimation x̂ substituted with the real state x.



7.2. SDRE-H∞ Control of Relative Perturbed Motion 91

7.2 SDRE-H∞ Control of Relative Perturbed Motion

The relative perturbed motion can be written in a form that considers the differen-

tial perturbation acceleration as an external disturbance. In particular, a new set

of SDC matrices can be introduced, A(x), B1(x) and B2, such that the system

dynamic can be written as

ẋ = A(x) +B1(x) +B2u

Using Equation (6.2) to rewrite the bias term µ
(

1
r2
− r

r3d

)
as a linear function of

the state (Section 6.1.3), the SDC matrices have the following expressions.

A(x) =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

ω2
z −

µ
r3d

+ γ (2r + x) ω̇z + γy γz − ωxωz 0 2ωz 0

−ω̇z ω2
x + ω2

z −
µ
r3d

ω̇x −2ωz 0 2ωx

−ωxωz −ω̇x ω2
x −

µ
r3d

0 −2ωx 0


B1(x) =

 03×3

I3×3∆ap

 , B2 =

 03×3

1
mI3×3


In order to design an SDRE-H∞ controller, a performance output function must be

introduced,

z = C1x+D12u

where

C1 =


α1I3×3 03×3

03×3 α2I3×3

03×3 03×3

 , D12 =

 06×3

α3I3×3


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and α1, α2, α3 ∈ R are such that α1, α2, α3 > 0. With this choice of matrices the

performance output norm is

||z||2 = α2
1ρ+ α2

2ρ̇+ α2
3u

and when γ∞ → +∞ the controller is equivalent to the SDRE controller developed

for parametrization 1 in Section 6.1.2 (the differential perturbation acceleration is

no longer considered).

7.3 SDRE Control of Relative Perturbed Motion

A possible SDRE controller can be designed considering the differential perturbation

acceleration ∆ap in Equation (2.34) as a bias term. Actually, the term is state-

dependent, but its reformulation as a linear function of x is not straightforward

and may increase controller complexity, affecting the overall performance.

The differential perturbation acceleration can be introduced in the SDC matrix

A(x) defining a new fictitious stable state ξ, with dynamic ξ̇ = −λξ (λ > 0), similar

to parametrization 2 presented in Section 6.1.3. Introducing the new state vector,

x̃ = [ x y z ẋ ẏ ż ξ ]T

and ξ in Equations (2.34) (comprehensive of fuel comsumption and consequent

deputy’s mass variation),

ẍ =

(
ω2
z −

µ

r3
d

)
x+ ω̇zy − ωxωzz + 2ωz ẏ + µ

(
1

r2
− r

r3
d

)
+

∆apx
ξ

ξ +
ux
m

ÿ = −ω̇zx+

(
ω2
x + ω2

z −
µ

r3
d

)
y + ω̇xz − 2ωzẋ+ 2ωxż +

∆apy
ξ

ξ +
uy
m

z̈ = −ωxωzx− ω̇xy +

(
ω2
x −

µ

r3
d

)
z − 2ωxẏ +

∆apz
ξ

ξ +
uz
m
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using again Equation (6.2) the SDC matrices A(x̃) and B can be written as follows.

A(x̃) =



0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

ω2
z −

µ
r3d

+ γ (2r + x) ω̇z + γy γz − ωxωz 0 2ωz 0
∆apx
ξ

−ω̇z ω2
x + ω2

z −
µ
r3d

ω̇x −2ωz 0 2ωx
∆apy
ξ

−ωxωz −ω̇x ω2
x −

µ
r3d

0 −2ωx 0
∆apz
ξ

0 0 0 0 0 0 −λ



B(t) =


03×3

1
mI3×3

01×3


Atmospheric drag and J2 perturbations acceleration are several order smaller

than gravitational acceleration. Moreover, as the distance between the satellite

decreases, i.e. the state goes to the origin, ∆ap goes to zero. Therefore, LERM

equation may be taken in account for designing a SDRE controller, since represent

a good approximation of the motion and demand less computational resources. As

a matter of fact perturbations no longer need to be computed and at each sample

time LERM parameters that depend on chief’s orbit are updated.

Extended linearization of Equations (2.27) is straightforward,

A(x) =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

ḟ2
(

1 + 2 rp

)
−2ḟ ṙr 0 0 2ḟ 0

2ḟ ṙr ḟ2
(

1− r
p

)
0 −2ḟ 0 0

0 0 −ḟ2 r
p 0 0 0


, B =

 03×3

1
mI3×3


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Table 7.1: TerraSAR-X and TanDEM-X characteristics.

TerraSAR-X TanDEM-X

Ballistic Coef. 2.3 2.5393
Transversal Area [m2] 3.2 3.2

Total Mass [kg] 1238 1340
Fuel [kg] - 120

Thruster Isp - 220

7.4 Simulations Results

The controllers developed in the previous sections were tested on formation control

and terminal rendezvous operations. Data of TerraSAR-X and TanDEM-X missions

was used to set up a realistic simulations with Simulink. Sample time was set to

T/1000 and 4th order Runge - Kutta integration algorithm was selected.

TerraSAR-X and TanDEM-X missions were developed by DLR and Astrium

and their primary objective is the generation of an Earth’s digital elevation model

with an unprecedented accuracy. The satellites fly in a closely controlled formation

with typical distances between 250 and 500 metres since 2010. More information

can be found in [78, 79]. Satellites’ characteristics for relative perturbed motion

simulation were taken from [80, 81]. TerraSAR-X is the formation leader and its

orbit is

a = 6886.310 km, e = 0.0001584, i = 97.44◦, Ω = 0, ω = 0

The satellites began its operations in 2007 and was followed by TanDEM-X, launched

in 2010. TanDEM-X was designed to be almost identical to TerraSAR-X, in order

to eliminate as much as possible differential perturbations influence. The aim of

TanDEM-X mission is not only the development of a digital elevation model, but

also the test of new formation control algorithms, collecting data for future mission

development. The satellite has different set of thrusters for altitude, position correc-

tion and fine-tuning of relative position. In this simulations only position correction

thrusters were considered. Satellites’ characteristics are listed in Table 7.1.
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Table 7.2: Terminal rendezvous tests results, control usage ∆v in m/s.

Test case SDRE-H∞ SDRE SDRE w/ LERM

δe = 0.01, δi = 0.01 rad 149.532 148.677 164.107

δΩ = δω = 0.01 rad 112.231 111.319 111.399

δe = 0.01, δi = δΩ = 0.01 rad 176.938 177.364 189.581

Three different terminal rendezvous tests were performed with different initial

separations. Terminal rendezvous conditions were the same of tests in Section 6.2.

For these tests, total control usage, Equation (4.3), and total maneuver duration

time were considered as performance indexes. Weighting and output performance

matrices were tuned using the same automatic procedure of Section 6.2. For termi-

nal rendezvous simulations the following matrices were found,

C1 =

I3×3 03×3

03×3 102I3×3

 , D12 =

 06×3

103I3×3

 , γ∞ = 1

QS =

10−1I3×3 03×3

03×3 104I3×3

 , RS = 105I3×3, λ = 10−3

QL =

10−1I3×3 03×3

03×3 10−5I3×3

 , RL = 105I3×3

QS and RS are the weighting matrices of the SDRE controller, whereas QL and RL

belongs to the SDRE controller developed using LERM equations.

As can be seen in Tables 7.2 and 7.3 controllers performances are almost the

same. SDRE controller designed using LERM equations showed a slightly greater

control usage. Also the generated trajectories, shown in Figure 7.1, are very close

and almost identical.

Two different operations were considered for formation control tests: forma-

tion keeping and formation maneuver. During formation keeping the deputy was
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(a) Trajectory, δe = 0.01, δi = 0.01 rad.
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(b) Relative distance, δe = 0.01, δi = 0.01 rad.
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(c) Trajectory, δΩ = δω = 0.01 rad.
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(d) Relative distance, δΩ = δω = 0.01 rad.
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(e) Trajectory, δe = 0.01, δi = δΩ = 0.01 rad.
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(f) Relative distance, δe = 0.01, δi = δΩ =
0.01 rad.

Figure 7.1: Terminal rendezvous simulations.
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Table 7.3: Terminal rendezvous tests results, maneuver duration in T .

Test case SDRE-H∞ SDRE SDRE w/ LERM

δe = 0.01, δi = 0.01 rad 4.210 4.002 4.207

δΩ = δω = 0.01 rad 4.279 4.198 4.285

δe = 0.01, δi = δΩ = 0.01 rad 4.311 4.121 4.312

demanded to keep a fixed relative position and velocity with respect to the chief,

ρLk =


−350

−200

0

 m, ρ̇Lk = 03×1

Formation maneuver instead consisted in following a time varying trajectory de-

scribed by the following relative position and velocity vectors.

ρLm = 0.1


cos
(

2πt
T

)
sin
(

2πt
T

)
0

 m, ρ̇Lm = 0.2
π

T


− sin

(
2πt
T

)
cos
(

2πt
T

)
0

 m/s

For these tests mean distance error eρ and mean speed error eρ̇ were considered,

as well as total control usage. The automatic tuning procedure found the following

weighting matrices for formation control,

C1 =

105I3×3 03×3

03×3 10−4I3×3

 , D12 =

 06×3

105I3×3

 , γ∞ = 1

QS =

104I3×3 03×3

03×3 105I3×3

 , RS = 104I3×3, λ = 10−3

QL =

105I3×3 03×3

03×3 10−2I3×3

 , RL = 105I3×3

Test results are shown in Table 7.4. Controllers performances were tested over

two orbital periods. Again, results are almost identical. There is not a significant
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Table 7.4: Formation control, tests results.

Index
Formation keeping Formation maneuver

SDRE-H∞ SDRE SDRE w/ LERM SDRE-H∞ SDRE SDRE w/ LERM

eρ [m] 1.563 1.703 1.705 0.759 0.761 0.762

eρ̇ [10−4 m/s] 5.703 2.982 2.954 12.259 12.283 12.292

∆v [m/s] 14.658 14.664 14.664 6.596 6.596 6.596
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Figure 7.2: Formation maneuver, trajectories.

difference between indexes final values. In Figure 7.2 formation maneuver trajectory

is showed. The three SDRE controllers followed almost the same trajectory during

all the simulation.

Control loop execution time was also analysed. Using Simulink performance

profiler the following values were found

• SDRE-H∞: 2.701 ms;

• SDRE: 3.025 ms;

• SDRE w/ LERM: 2.018 ms.

SDRE designed using LERM equations resulted the quickest as expected, since

perturbations accelerations do not need to be computed. SDRE-H∞ controller

execute its control loop in less time than the SDRE controller. Also this result was

expected. The SDRE controller was developed upon a system of order 7, whereas

the SDRE-H∞ controller upon a system of order 6. ARE resolution demands more
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time for the SDRE controller, since the greater order of the Hamiltonian matrix.



Chapter 8

Conclusions

The SDRE control method was applied to the control of relative motion in space.

First, the unperturbed case was considered and three different parametrization of

nonlinear equations of relative motion were proposed. The developed SDRE con-

trollers were tested setting up a terminal rendezvous mission scenario and their

performance were compared to a novel near-optimal control law. The SDRE con-

trollers were the quickest to converge to the considered docking condition. However,

propellant consumption was higher compared to calibrated state feedback law con-

sumption.

Then, atmospheric drag and J2 perturbations were considered and introduced in

the equations of relative motion. The resulting equations set was used to develop a

nonlinear H∞ controller. In particular, using the extended linearization technique,

an SDC parametrization of nonlinear equations of relative perturbed motion was

obtained, considering differential perturbation acceleration term as an external dis-

turbance. Then, an SDRE-H∞ controller was developed, that, at each sampling

time, compute an H∞ controller, rather than a linear quadratic regulator. The

SDRE-H∞ controller was tested and compared to two classical SDRE controller,

one based on nonlinear equation of relative perturbed motion, the other one de-

veloped using linear equations of relative motion. The aim was to understand if

perturbations need to be taken in account by the SDRE control law. As a matter of

100
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fact, the technique update the SDC matrices at each sampling time and as the sys-

tem converges to the origin the differential perturbation term goes to zero. Thus,

perturbation influence decrease as the manuever goes on and the correspondent

accelerations computation may be avoided, decreasing control computational cost.

The controllers were tested on terminal rendezvous and formation control mission

scenarios. Simulation results showed that all the controllers are characterized by

similar performance. However, the computational cost of SDRE controller based on

linear equations of relative motion was significantly lower. This suggests a possible

use of simpler relative motion models for SDRE controllers development.
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