169 research outputs found

    The geometry of non-unit Pisot substitutions

    Get PDF
    Let σ\sigma be a non-unit Pisot substitution and let α\alpha be the associated Pisot number. It is known that one can associate certain fractal tiles, so-called \emph{Rauzy fractals}, with σ\sigma. In our setting, these fractals are subsets of a certain open subring of the ad\`ele ring AQ(α)\mathbb{A}_{\mathbb{Q}(\alpha)}. We present several approaches on how to define Rauzy fractals and discuss the relations between them. In particular, we consider Rauzy fractals as the natural geometric objects of certain numeration systems, define them in terms of the one-dimensional realization of σ\sigma and its dual (in the spirit of Arnoux and Ito), and view them as the dual of multi-component model sets for particular cut and project schemes. We also define stepped surfaces suited for non-unit Pisot substitutions. We provide basic topological and geometric properties of Rauzy fractals associated with non-unit Pisot substitutions, prove some tiling results for them, and provide relations to subshifts defined in terms of the periodic points of σ\sigma, to adic transformations, and a domain exchange. We illustrate our results by examples on two and three letter substitutions.Comment: 29 page

    Dynamical Directions in Numeration

    Get PDF
    International audienceWe survey definitions and properties of numeration from a dynamical point of view. That is we focuse on numeration systems, their associated compactifications, and the dynamical systems that can be naturally defined on them. The exposition is unified by the notion of fibred numeration system. A lot of examples are discussed. Various numerations on natural, integral, real or complex numbers are presented with a special attention payed to beta-numeration and its generalisations, abstract numeration systems and shift radix systems. A section of applications ends the paper

    Shift Radix Systems - A Survey

    Full text link
    Let d1d\ge 1 be an integer and r=(r0,,rd1)Rd{\bf r}=(r_0,\dots,r_{d-1}) \in \mathbf{R}^d. The {\em shift radix system} τr:ZdZd\tau_\mathbf{r}: \mathbb{Z}^d \to \mathbb{Z}^d is defined by τr(z)=(z1,,zd1,rz)t(z=(z0,,zd1)t). \tau_{{\bf r}}({\bf z})=(z_1,\dots,z_{d-1},-\lfloor {\bf r} {\bf z}\rfloor)^t \qquad ({\bf z}=(z_0,\dots,z_{d-1})^t). τr\tau_\mathbf{r} has the {\em finiteness property} if each zZd{\bf z} \in \mathbb{Z}^d is eventually mapped to 0{\bf 0} under iterations of τr\tau_\mathbf{r}. In the present survey we summarize results on these nearly linear mappings. We discuss how these mappings are related to well-known numeration systems, to rotations with round-offs, and to a conjecture on periodic expansions w.r.t.\ Salem numbers. Moreover, we review the behavior of the orbits of points under iterations of τr\tau_\mathbf{r} with special emphasis on ultimately periodic orbits and on the finiteness property. We also describe a geometric theory related to shift radix systems.Comment: 45 pages, 16 figure

    Beta-expansions, natural extensions and multiple tilings associated with Pisot units

    Get PDF
    From the works of Rauzy and Thurston, we know how to construct (multiple) tilings of some Euclidean space using the conjugates of a Pisot unit β\beta and the greedy β\beta-transformation. In this paper, we consider different transformations generating expansions in base β\beta, including cases where the associated subshift is not sofic. Under certain mild conditions, we show that they give multiple tilings. We also give a necessary and sufficient condition for the tiling property, generalizing the weak finiteness property (W) for greedy β\beta-expansions. Remarkably, the symmetric β\beta-transformation does not satisfy this condition when β\beta is the smallest Pisot number or the Tribonacci number. This means that the Pisot conjecture on tilings cannot be extended to the symmetric β\beta-transformation. Closely related to these (multiple) tilings are natural extensions of the transformations, which have many nice properties: they are invariant under the Lebesgue measure; under certain conditions, they provide Markov partitions of the torus; they characterize the numbers with purely periodic expansion, and they allow determining any digit in an expansion without knowing the other digits
    corecore