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Abstract. Using a real number β > 1, a positive real number x can be represented
by x = ∑∞

n=k0
bnβ
−n, bn ∈ {0, 1, 2, . . . , [β]} , which is so-called the β-expansion. This

primitive numerical representation of the real number x proposes various topics in the field
of number theory, ergodic theory, dynamical system theory, and tiling theory, etc. In partic-
ular, for an algebraic integer β (> 1), many properties of the β-transformation are studied
in [A], [Bl], [Re], [P], [IT], [Sol], [Sch], [T], etc. However, it seems to be unclear whether
for a complex number z there exists the algorithm which induces the complex λ-expansion
as z = ∑∞

n=k0
anλ
−n, an ∈ Γ where Γ is the finite digit set of Z [λ] by using a complex

algebraic integer λ. In this paper, by using a complex Pisot number λ ∈ C\R, |λ| > 1, we
give the algorithm which induces the complex Pisot λ-expansion.

0. Introduction

The purpose of this paper is to show the algorithm to produce the complex λ-expansion
of z ∈ C, z = ∑∞

n=k0
anλ
−n, an ∈ Γ where Γ is the finite digit set of Z [λ]. For this

purpose, we introduce a complex Pisot number λ.

DEFINITION 0.1. A complex number λ ∈ C\R is a complex Pisot number if λ is
the algebraic integer of the minimal polynomial p (x) = xd − k1x

d−1− · · · − kd−1x − kd,

ki ∈ Z (1 ≤ i ≤ d) whose roots λ (= λ1) , λ (= λ2) , λ3, . . . , λd satisfy

|λ| = ∣∣λ∣∣ > 1 > |λi | (3 ≤ i ≤ d) . (0.1)

If kd = ±1, λ is said to be unimodular. In this paper, we assume that λ is an uni-
modular complex Pisot number. Let A be the d × d integer matrix whose characteristic
polynomial coincides with p (x) and λ is a complex Pisot number of p (x). We call A the
complex Pisot matrix of λ.

We consider that a complex Pisot matrix A of λ is the linear transformation on the d-
dimensional Euclidean space Rd , therefore A has the 2-dimensional A-invariant expanding
plane Pe and the (d − 2)-dimensional A-invariant contracting plane Pc. Using Pe and Pc,
Rd is decomposed into Pe and Pc, i.e., Rd = Pe ⊕ Pc. Then, let us define the projection
πe : Rd → Pe (resp. πc : Rd → Pc) along Pc (resp. Pe) by πex = x1 (resp. πcx = x2) for
x = x1 + x2 ∈ Rd , where x1 ∈ Pe and x2 ∈ Pc.

9
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DEFINITION 0.2. For a complex Pisot number λ, we assume that we can find the
finite family of compact sets P = {

γj

}
j∈I of Pe with the finite integer vector sequence{

f
(j)
k

}
1≤k≤lj

, f
(j)
k ∈ Zd and the finite index sequence

{
V

(j)
k

}
1≤k≤lj

, V
(j)
k ∈ I , where I is

an index set, satisfying
(N1) μe

(
γj

)
> 0, cl

(
int

(
γj

)) = γj , and μe

(
∂γj

) = 0
where μe is the Lebesgue measure on Pe, int (Y ) and cl (Y ) are the interior and
the closure of a set Y respectively, and ∂Y := Y\int (Y );

(N2) for each j ∈ I , the following set equation holds:

Aγj =
lj⋃

k=1

(
γ
V

(j)
k

+ πef
(j)
k

)
(disjoint) (0.2)

where “
⋃

k Yk (disjoint)” means that int (Yk) ∩ int (Yk′) = ∅ if k 
= k′;
(N3) γ :=

⋃
j∈I

γj (disjoint) .

Then, we say that the pair (A,P) is the complex Pisot numeration system of λ.

Note. In this paper, the index set I is chosen as I = {1, 2, 3} , {1 ∧ 2, 1 ∧ 3, 2 ∧ 3},
etc.

From the complex Pisot numeration system (A,P) of λ , we obtain the numerical
expression of x ∈ γ by

x =
∞∑

n=1

A−n
(
πef

(jn−1)
kn−1

)
(0.3)

where the double positive integer sequence
((

j0
k0

)(
j1
k1

) · · · (jn

kn

) · · · ) is given by the following

process: for x0 = x ∈ γj0 ⊂ γ , there exists
(
j0
k0

)
such that Ax0 ∈ γ

V
(j0)
k0

+ πef
(j0)
k0

by

(0.2) and then, put x1 := Ax0 − πef
(j0)
k0
∈ γ

V
(j0)
k0

and j1 := V
(j0)
k0

. Using x1 ∈ γj1 and the

existence
(
j1
k1

)
such that Ax1 ∈ γ

V
(j1)
k1

+πef
(j1)
k1

, we obtain x2 := Ax1−πef
(j1)
k1
∈ γj2 and

j2 := V
(j1)

k1
, and so on.

Moreover, there exists the linear map φe : Pe → C satisfying

φe (Ax) = λφe (x) and φe (πee1) = 1 ,

so the numerical expression (0.3) can be represented as the complex Pisot λ-expansion by

z = φe (x) =
∞∑

n=1

a
(
jn−1
kn−1

)
λ−n ∈ φe (γ ) ⊂ C , (0.4)

where a
(jn
kn
)
= φe

(
πef

(jn)
kn

)
. The precise definitions of these expressions (0.3), (0.4), and

φe are found in the section 1.



Complex Pisot Numeration Systems 11

In this paper, we discuss when we can find the complex Pisot numeration system
(A,P) of λ, in other words, for the complex Pisot matrix A, we give the way how to find
the finite family of compact sets P = {

γj

}
j∈I satisfying (N1), (N2), (N3) in Definition 0.2.

We introduce three classes of the complex Pisot number which has the complex Pisot
numeration system. The first class introduced in the section 2 is that the inverse of the
complex Pisot matrix A of λ is the non-negative 3 × 3 integer matrix. The second class
introduced in the section 3 is that the complex Pisot matrix of λ is the 3 × 3 companion
matrix whose characteristic polynomial is p (x) = x3−ax2−bx±1. In this class, we give
the sufficient condition of a, b ∈ Z for existence of the complex Pisot numeration system of
λ. And the third class introduced in the section 4 is that the complex Pisot matrix of λ is the
4×4 companion matrix whose characteristic polynomial is p (x) = x4−ax3−bx2−cx±1.

In this class, we give the sufficeint condition of a, b, c ∈ Z for existence of the complex
Pisot numeration system of λ.

1. Complex Pisot expansions

1.1. Expanding transformations
Let us start to give the precise definition of the λ-expansion in this section again. For

this purpose, let us start to give the following definition.

DEFINITION 1.1. Let (A,P) be an complex Pisot numeration system of λ and let
B ⊂ Pe be the union of the boundary set of each compact set γj , i.e., B := ⋃

j∈I ∂γj . We
define the expanding transformation TA : γ \B → γ \B by

TA (x) :=Ax − πef
(j0)
k0

if x ∈ int
(
γj0

)
and Ax ∈ int

(
γ
V

(j0)

k0

)
+ πef

(j0)
k0

,

and for TA (x) ∈ int
(
γ
V

(j0)

k0

)
, the iteration of TA is defined by

T n
A (x) :=AT n−1

A (x)− πef
(jn−1)
kn−1

if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
T n−1

A (x) ∈ int
(
γjn−1

)
and

AT n−1
A (x) ∈ int

(
γ
V
(jn−1)
kn−1

)
+ πef

(jn−1)
kn−1

.

If AT n−1
A (x)−πef

(jn−1)
kn−1

∈ B, then the iteration will be stopped. By the definition of

the null set Nu :=
{
x ∈ γ

∣∣∣ ∃n : T n−1
A (x) ∈ B

}
, the iteration T n

A is well-defined for all n

for μe-almost all x ∈ γ .
From Definition 1.1, for μe-almost all x ∈ γ , there uniquely exists the sequence

w (x) :=
((

j0
k0

) (
j1
k1

) · · · (jn

kn

) · · · ) satisfying T n
A (x) ∈ int

(
γjn

)
and AT n

A (x) ∈ int
(
γjn+1

)+
πef

(jn)

kn
, x can be represented by

x =
∞∑

n=1

A−n
(
πef

(jn−1)
kn−1

)
. (1.5)
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We call (1.5) the numerical representation of x.

1.2. λ-expansion
LEMMA 1.2. Let λ be a unimodular complex Pisot number, let A be a complex

Pisot matrix of λ, and let u1, u2 be the eigenvectors corresponding to λ, λ respectively. Put
v1 := u2+u1

2 , v2 := u2−u1
2i

, then {v1, v2} is a base of Pe satisfying

Av1 = cv1 + dv2 , Av2 = −dv1 + cv2

where λ = c + di. Moreover, there exists a linear map φe : L (v1, v2) (= Pe) → C
satisfying the following properties:

(1) φe (Ax) = λφe (x) for x ∈ L (v1, v2);
(2) φe (πee1) = 1.

Proof. It is easy to see that for L (v1, v2) � y = y1v1 + y2v2, y1, y2 ∈ R, we have

A [v1 v2]

[
y1
y2

]
= [v1 v2]

[
c −d

d c

] [
y1
y2

]
.

Let us define
φe : L (v1, v2) → C

∈ ∈

y = y1v1 + y2v2 �→ αe (y1 + y2i) ,

where αe ∈ C is a constant. Then, we see that φe is the linear map and that φe satisfies
φe (Ay) = λφe (y) . Moreover, if we choose the constant αe = 1

x
(1)
1 +x

(1)
2 i

for πee1 =
x

(1)
1 v1 + x

(1)
2 v2, then φe satisfies the properties (1) and (2). �

Hence, we obtain the following representaion: for φ ◦ μe-almost all z ∈ φe (γ ) ⊂ C,

z can be represented by

z =
∞∑

n=1

a
(
jn−1
kn−1

)
λ−n (1.6)

where a
(jn
kn
)
= φe

(
πef

(jn)
kn

)
. It is the λ-expansion with the finite digits{

φe

(
πef

(j)
k

) ∣∣∣ j ∈ I, 1 ≤ k ≤ lj

}
.

By the way, if A is given by

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 kd

1 0 O kd−1
0 1 0 kd−2

0
. . .

. . .
...

. . .
. . .

. . .
...

. . .
. . . 0 k2

O 0 1 k1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (1.7)
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which is called a companion matrix of p (x), then we see that a(jn
kn
) ∈ Z [λ]. In fact, from

φe (πeek) = φe

(
πeA

k−1e1

)
by Lemma 1.2 (1)= λk−1φe (πee1)

by Lemma 1.2 (2)= λk−1 ,

we know that for t [m1 m2 · · · md ] ∈ Zd ,

φe

(
πe

t [m1 m2 · · ·md ]
) = m1 +m2λ+ . . .+mdλd−1 ∈ Z [λ] .

Therefore, if the complex Pisot matrix A is isomorphic to the companion matrix C of λ,
i.e.,

∃B ∈ GL(d, Z) : B−1AB = C ,

then we can find φe such that φe (πeu) ∈ Z [λ] for u ∈ Zd , that is, we obtain the represen-
tation (1.6) in the sense of a

(jn
kn
)
∈ Z [λ] .

1.3. The graph of the admissible edge sequence
Let us define the directed multigraph Gλ = (V ,E, i, t) consisting of a finite set V of

vertices, a countable set of directed edges E and two functions i, t : E → V . For each
edge e ∈ E, i (e) is the initial vertex of e and t (e) is the the terminal vertex of e. From

the finite sequence
{
V

(j)

k

}
1≤k≤lj

, V
(j)

k ∈ I in Definition 0.2 (N2), we define V,E, i, t as

follows:

V := I, E :=
{(

j

k

)∣∣∣∣ j ∈ V, 1 ≤ k ≤ lj

}
,

i : E → V t : E → V

∈ ∈ ∈ ∈(
j
k

) �→ j,
(
j
k

) �→ V
(j)
k .

From the directed multigraph Gλ, we obtain the one-sided edge-admissible symbolic
space Ω

(j)
λ (1 ≤ j ≤ N):

Ω
(j)
λ =

{((
j0

k0

)(
j1

k1

)
· · ·

) ∣∣∣∣ j0 = j ∈ V, t

(
jp

kp

)
= i

(
jp+1

kp+1

)}
=

{((
j0

k0

)(
j1

k1

)
· · ·

) ∣∣∣∣ j0 = j ∈ V, t

(
jp

kp

)
= jp+1

}
. (1.8)

Moreover, we know that for μe-almost all x∈γ , the sequence w (x)=
((

j0
k0

) (
j1
k1

)· · ·(jn

kn

)· · ·)
given by (1.5) is the admissible sequence of Gλ.

Let us define the labeling L : E→ πeZd and the map ϕ : Ω(j)
λ → Pe by

L
((

j

k

))
:= πef

(j)
k , ϕ

((
j0

k0

)(
j1

k1

)
· · ·

)
:=
∞∑

n=1

A−n
(
πef

(jn−1)
kn−1

)
,

then we have the following proposition.

PROPOSITION 1.3. If Gλ is irreducible, then ϕ
(
Ω

(j)
λ

)
= γj for j ∈ I .
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Proof. It is easy to see that the set
{
ϕ
(
Ω

(j)
λ

)}
j∈I is the family of the compact sets

and satisfies the set equation (0.2) (see [Ed]). On the other hand, we see that γj\Nu ⊂
ϕ
(
Ω

(j)
λ

)
, γj ⊂ cl

(
γj\Nu

)
and so γj ⊂ ϕ

(
Ω

(j)
λ

)
. Therefore, from the uniqueness of at-

tractors by the graph-directed iterated function system theorem [MW], we have ϕ
(
Ω

(j)
λ

)
=

γj . �

2. Complex Pisot numeration systems from Pisot unimodular substitutions

In this section, we give a survey how we obtain the complex Pisot numeration system
from an unimodular Pisot substitution with three letters.

Let A = {1, 2, 3} be an alphabet and A∗ = ⋃∞
n≥0 An the set of finite words. A

substitution σ is a map σ : A → A∗. Let Mσ =
(
mij

)
1≤i,j≤3 be the incidence matrix of

σ , i.e., mij is the number of occurences of i in σ (j). In this paper, we assume that
(i) Mσ is primitive, i.e., there exists a positive integer n0 such that M

n0
σ > O;

(ii) Mσ is unimodular, i.e., det Mσ = ±1;
(iii) σ is a complex Pisot substitution, i.e., the eigenvalues μ, μ′, μ′′ of Mσ satisfy

μ > 1 >
∣∣μ′∣∣ , ∣∣μ′′∣∣ , μ′, μ′′ ∈ C\R .

Under the assumption (i), (ii), (iii), let us define the matrix A := M−1
σ . Then the

root λ of the characteristic polynomial p (x) of A is 1
μ′ and it is the complex Pisot number.

Therefore there exist two invariant subspaces of A, that is, one is the 2-dimensional A-
invariant expanding plane Pe and another is the 1-dimensional A-invariant contractive line
Pc generated by the real eigenvector of A, and the Euclidean space R3 is decomposed into
Pe and Pc, i.e., R3 = Pe ⊕ Pc.

By the way, for the substitution σ whose incidence matrix Mσ satisfies the assumption
(i), (ii), (iii), it is known that there exists the infinite sequence w of {1, 2, 3} which is
periodic with respect to σ , i.e., ∃m : σm (w) = w. Put w = s1s2 · · · sk · · · , and let us define
the set δi by the projection method:

δi := cl (πe {f (s1s2 · · · sk−1) | ∃k ∈ N : sk = i}) ⊂ Pe for i = 1, 2, 3

where s0 = ε (the empty word), f : A∗ → Z3 is the abelianization map given by f (ε) =
0, f (i) = ei , i = 1, 2, 3, and f (w1w2 · · ·wk) := ∑k

n=1 f (wn) for w1w2 · · ·wk ∈ A∗.
We call the family {δi}i=1,2,3 the atomic surfaces of σ .

Then we have the following theorem.

THEOREM 2.1 ([AI], [IR], [FFIW]). Let σ be an unimodular Pisot substitution of
three letters and Mσ the incidence matrix of σ . Then atomic surfaces {δi}i=1,2,3 satisfy the
following properties:

(1) μe (δi) > 0, δi = cl (int (δi)) , and μe (∂δi) = 0;
(2) M−1

σ δi =
3⋃

j=1

⋃
k:W(j)

k =i

(
δj +M−1

σ

(
πef

(
P

(j)
k

)))
(disjoint)
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where σ (j) = W
(j)
1 W

(j)
2 · · ·W(j)

lj
and P

(j)
k is the prefix of W

(j)
k , i.e.,

P
(j)

k = W
(j)

1 W
(j)

2 · · ·W(j)

k−1;
(3) If σ satisfies the strong coincidence condition, i.e., there exist n and k such that

σn (i), i = 1, 2, 3 have the same k-th letter and their prefixes of the length k − 1
of σn (i) have the same image under the abelianization map f , then δ =⋃3

i=1 δi

is disjoint.

The formula (2) in Theorem 2.1 says that the set Aδi is generated by the union of the
set (δj+ translation). Therefore, we can rewrite the formula (2) as (2′) as follows: there

exists the finite integer vector sequence
{
f

(i)
h

}
1≤h≤li

, f
(i)
h ∈ Z3 such that{

f
(i)
1 , . . . ,f

(i)
li

}
=

{
Af

(
P

(j)
k

) ∣∣∣ j = 1, 2, 3 and k : W(j)
k = i

}
and the finite index sequence

{
V

(i)
h

}
1≤h≤li

, V
(i)
h ∈ {1, 2, 3} such that

(2′) Aδi =
li⋃

h=1

(
δ
V

(i)
h

+ πef
(i)
h

)
( =

3⋃
j=1

⋃
k:W(j)

k =i

(
δj + πeA

(
f

(
P

(j)
k

)))
.

Hence, by this rewriting, we see that the pair (A,P), which is constructed by the matrix
A = M−1

σ and the family of compact sets P = {δi}1≤i≤3, is the complex Pisot numeration
system.

REMARK 2.2. In the next section, by using E2 (θ), the compact set γi will be intro-
duced by

γi := lim
n→∞M−n

σ πeE2 (θ)n (ei , j ∧ k)

where θ is the mirror image of the inverse of σ , i.e., θ :=
←(

σ−1
)

and σ is a substitution (see
[AI], [SAI], [E]). We see that γi = −δi holds.

EXAMPLE 2.3 (Rauzy substitution: [Ra], [AI], [IK]). Let σ be σ : 1 �→ 12, 2 �→

13, 3 �→ 1 and the incidence matrix of σ Mσ =
⎡⎣ 1 1 1

1 0 0
0 1 0

⎤⎦. Then, A = M−1
σ satisfies

the complex Pisot condition, i.e., λ = −0.771845+1.11514i, λ = −0.771845−1.11514i,
λ3 = 0.543689. Moreover, the family of compact sets P = {δ1, δ2, δ3}, which is given by
the projection method, i.e.,

δi = cl ({πef (s1s2 · · · sk−1) | ∃k ∈ N, sk = i }) ,

satisfies not only the following set equations:

Aδ1 = δ1 ∪ δ2 ∪ δ3 , Aδ2 = δ1 + πee3 , Aδ3 = δ2 + πee3
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FIGURE 1. P = {δi }i=1,2,3 and AP .

FIGURE 2. The directed multigraph Gλ and the labeled G′λ of Example 2.3.

(see Figure 1), i.e., the property (N2), but also the properties (N1) and (N3) of Definition
0.2 where w = s1s2 · · · = limn→∞ σn (1) is the fixed point of σ . Therefore, we see that
(A,P) is the complex Pisot numeration system of λ.

On this example, the directed multigraph Gλ and the labeld graph G′λ are given by
Figure 2.

Therefore, φ ◦ μ-almost all z ∈ φe (γ ) can be represented by (1.6): z =∑∞
n=1 a

(
jn−1
kn−1

)
λ−n where a

(
jn−1
kn−1

)
given by the property φe (Ax) = λφe (x) and φe (πee3) =

φe (πeAe1) = λφe (πee1) = λ as follows:

a
(
jn−1
kn−1

)
= φe

(
πef

(jn−1)
kn−1

)
=

{
0 if

(
jn−1
kn−1

) = (1
∗
)

λ if
(jn−1
kn−1

) = (2
∗
)

or
(3
∗
) .

3. Complex Pisot numeration systems from 3 × 3 unimodular complex Pisot com-
panion matrices

3.1. Classifying of 3× 3 unimodular complex Pisot companion matrices
In this section, we give the complex Pisot numeration system generated by a 3 × 3

unimodular complex Pisot companion matrix .
Let A be the 3 × 3 companion matrix whose characteristic polynomial is p∓ (x) =

x3 − ax2 − bx ± 1, a, b ∈ Z. Let us consider two types of matrices, called (type −1) and
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(type+1) respectively, as follows:

A− =
⎡⎣ 0 0 −1

1 0 b

0 1 a

⎤⎦ : (type−1) , A+ =
⎡⎣ 0 0 1

1 0 b

0 1 a

⎤⎦ : (type+1)

p− (x) = x3 − ax2 − bx + 1 , p+ (x) = x3 − ax2 − bx − 1 .

For each matrix, we will examine the property of algebraic integers λ1, λ2, λ3 of p∓ (x).

PROPOSITION 3.1 (for type −1). The roots λ1, λ2, λ3 of p− (x) = x3−ax2−bx+1
satisfy the conditions:

−1 < λ3 < 0 , λ1, λ2 ∈ C\R , |λ1| = |λ2| > 1 > |λ3| (3.9)

if and only if the coordinate of a and b satisfies the following:
(1) −a + b < 0;
(2) (i) a2 + 3b ≤ 0 or (ii) if a2 + 3b > 0 then 27− 4a3− 18ab− a2b2− 4b3 > 0

(see Figure 3). Moreover, Re (λ1) > 0 (resp.Re (λ1 < 0)) if and only if
(3) a ≥ 0 (resp. a < 0),

where “Re (z)” means the real part of z ∈ C.

PROPOSITION 3.2 (for type +1). The roots λ1, λ2, λ3 of p+ (x) = x3−ax2−bx−1
satisfy the conditions:

0 < λ3 < 1 , λ1, λ2 ∈ C\R , |λ1| = |λ2| > 1 > |λ3| (3.10)

if and only if the coordinate of a and b satisfies the following:
(1) a + b > 0;
(2) (i) a2+ 3b ≤ 0 or (ii) if a2+ 3b > 0, then 27+ 4a3+ 18ab− a2b2− 4b3 > 0

(see Figure 3). Moreover, Re (λ1) < 0 (resp. Re (λ1) > 0) if and only if
(3) a ≤ 0 (resp. a > 0).

Before we prove Propositions 3.1 and 3.2, we prepare the following lemma.

FIGURE 3. The condition of (a, b) satisfying (3.9) and (3.10).
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LEMMA 3.3. For the roots λ1, λ2, λ3 of p∓ (x) satisfying (3.9) or (3.10), λ1+λ2 
=
0, i.e., λ1 and λ2 are not purely imaginary numbers.

Proof. From the relation between λ1 and λ2, the real parts of λ1 and λ2 is λ1+λ2
2 . So,

λ1 and λ2 are purely imaginary numbers if and only if λ1 + λ2 = 0. From the relation
between p∓ (x) and roots, we know that λ1 + λ2 + λ3 = a. Suppose that λ1, λ2 are purely
imaginary numbers, then, a = λ3. However, from the assumption −1 < λ3 < 0 of (3.9) or
0 < λ3 < 1 of (3.10), it contradicts the fact that a is an integer. Therefore λ1 + λ2 
= 0,
i.e., λ1 and λ2 are not purely imaginary numbers. �

Proof of Proposition 3.1. About (1), (2): It is easy to see that the roots of p− (x)

satisfy the condition (3.9) if and only if
(i) p− (−1) < 0;

(ii) (ii-1) D ≤ 0 or (ii-2) if D > 0 then p− (s) p− (t) > 0,
where D is the discriminant of p′− (x) = 3x2 − 2ax − b and s, t are the roots of p′− (x) .

The conditions (i) and (ii) are explicitly given by (I) and (II) respectively:
(I) −a + b < 0;

(II) (II-1) D = a2 + 3b ≤ 0
or (II-2) if D > 0 then p− (s) p− (t) = 1

27

(
27− 4a3 − 18ab− a2b2 − 4b3

)
>

0
(see Figure 3).

About (3): Put x3− ax2− bx+ 1 = (x − λ1) (x − λ2) (x − λ3) = 0. Then, we know
that λ1+λ2 = a−λ3. From Lemma 3.3, we see that a−λ3 > 0 implies a ≥ 0. Conversely,
we know that a ≥ 0 implies a − λ3 > 0. �

We get the proof of Proposition 3.2 analogously.

COROLLARY 3.4 (for type−1). For the roots λ1, λ2, λ3 of p− (x) = x3 − ax2 −
bx + 1,

(1) the condition p− (1) = 2− a − b > 0 is the necessary condition of (3.9);
(2) the condition p− (−1) = −a + b < 0 is the necessary condition of (3.9).

Therefore, from a, b ∈ Z, we see that b ≤ 0 is the necessary condition of (1), (2).

COROLLARY 3.5 (for type+1). For the roots λ1, λ2, λ3 of p+ (x) = x3 − ax2 −
bx − 1,

(1) the condition p+ (1) = −a − b > 0 is the necessary condition of (3.10);
(2) the condition p+ (−1) = −2− a + b < 0 is the necessary condition of (3.10).

Therefore, from a, b ∈ Z, we see that b ≤ 0 is the necessary condition of (1), (2).

We call A∓ the unimodular complex Pisot companion matrices if the characteristic
polynomial of A∓ conincides with p∓ (x) and the roots λ1, λ2, λ3 of p (x) satisfying the
condition (3.9) in Proposition 3.1 or (3.10) in Proposition 3.2, i.e.,

(type− 1) : −1 < λ3 < 0 , λ1, λ2 ∈ C\R , |λ1| = |λ2| > 1 ,

(type+ 1) : 1 > λ3 > 0 , λ1, λ2 ∈ C\R , |λ1| = |λ2| > 1 .
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Let ui , (1 ≤ i ≤ 3) be the eigenvectors of λi respectively. Put v1 := u2+u1
2 , v2 := u2−u1

2i
,

and v3 := u3, then, by Lemma 1.2, we obtain the following properties:

A [v1 v2] = [v1 v2]

[
c −d

d c

]
, R3 = Pe ⊕ Pc ,

where λ1 = c + di, Pe = L (v1, v2), and Pc = L (v3). Let πe : R3 → Pe be the
projection along Pc and let us denote the counter clockwise angle between πeei and πeej

by arg (i ∧ j). Then we have the following lemmas.

LEMMA 3.6 (for type−1). If a ≥ 0, then 0 < arg (1 ∧ 2) , arg (2 ∧ 3) < π
2 , and if

a < 0, then π
2 < arg (1 ∧ 2) , arg (2 ∧ 3) < π (see Figure 4).

Proof. Assume that a ≥ 0, then we see that Re (λ (= λ1)) > 0 by Proposition 3.1
(3). On the other hand, we know that

φe (πee1) = 1 , φe (πee2) = φe (Aπee1) = λ , φe (πee3) = λ2 .

Therefore, it is clear that 0 < arg (λ) < π
2 and 0 < arg

(
λ2

)
< π . Moreover, we also know

that φe : Pe → C is linear and bijective. Therefore, we see that 0 < arg (1 ∧ 2) , arg (2 ∧ 3)

< π
2 . The case of a < 0 is proved analogously. �

LEMMA 3.7 (for type +1). If a ≤ 0, then π
2 < arg (1 ∧ 2) , arg (2 ∧ 3) < π and if

a > 0, then 0 < arg (1 ∧ 2) , arg (2 ∧ 3) < π
2 (see Figure 4).

We get the proof by the analogous discussion of Lemma 3.6.
From Lemmas 3.6 and 3.7, we classify the characteristic polynomial p∓ (x) into four

classes such that

Let A∓ be the 3 × 3 unimodular complex Pisot companion matrix, let λ3 be the real
eigenvalue of A∓, and let v∗ = [

v∗1 v∗2 v∗3
]

and v = t [v1 v2 v3] be the row and column
eigenvectors of λ3, i.e.,

v∗A = λ3v
∗, A∓v = λ3v .

Then, v∗ and v are explicitly given by

v∗ =
[
1 λ3 λ2

3

]
, v = t

[
∓ 1

λ3
λ3 − a 1

]
. (3.11)
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FIGURE 4. The distribution of {πeei }i=1,2,3 for V0 and V1.

Therefore, by using (3.11), we have the following lemma.

LEMMA 3.8.

where sgn (v) = + if v > 0 and sgn (v) = −if v < 0.

And Pe is characterized by v∗ as follows.

LEMMA 3.9. Pe =
{
x ∈ R3 | 〈x, v∗〉 = 0

}
.

Then, we have the following table:

3.2. Stepped planes and quasi-periodic tilings of Pe

For the 2-dimensional A-invariant expanding plane Pe, we introduce the stepped plane
in this section.
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For x ∈ R3 and i, j ∈ {±1,±2,±3}, let us define the 2-dimentional unit face
(x, i ∧ j) given by

(x, i ∧ j) := {
x + λ (sgn (i)) e|i| + μ (sgn (j)) e|j | | 0 ≤ λ,μ ≤ 1

}
(see Figure 5).

FIGURE 5. 2-dimensional unit face (x, i ∧ j) for type (−1, 0), type (−1, 1), type (+1, 0), and type (+1, 1).

Using Lemma 3.8 and Lemma 3.9, let us define the stepped plane of Pe as follows.

DEFINITION 3.10 (for type (−1, 0) and type (−1, 1), i.e., in the case of v∗ =
(+,−,+)). Let us define the sets of unit faces S

≥
− , S>− of Pe as follows:

S
≥
− :=

{
(x, (−2) ∧ 1)

∣∣∣ x ∈ Z3,
〈
x, v∗

〉 ≥ 0,
〈
x − e3, v

∗〉 < 0
}

∪
{
(x, 1 ∧ 3)

∣∣∣ x ∈ Z3,
〈
x, v∗

〉 ≥ 0,
〈
x + e2, v

∗〉 < 0
}

∪
{
(x, 3 ∧ (−2))

∣∣∣ x ∈ Z3,
〈
x, v∗

〉 ≥ 0,
〈
x − e1, v

∗〉 < 0
}

,

S>− :=
{
(x, (−2) ∧ 1)

∣∣∣ x ∈ Z3,
〈
x, v∗

〉
> 0,

〈
x − e3, v

∗〉 ≤ 0
}

∪
{
(x, 1 ∧ 3)

∣∣∣ x ∈ Z3,
〈
x, v∗

〉
> 0,

〈
x + e2, v

∗〉 ≤ 0
}

∪
{
(x, 3 ∧ (−2))

∣∣∣ x ∈ Z3,
〈
x, v∗

〉
> 0,

〈
x − e1, v

∗〉 ≤ 0
}

.

DEFINITION 3.11 (for type (+1, 0) and type (+1, 1), i.e., in the case of v∗ =
(+,+,+)). Let us define the sets of unit faces S

≥
+ , S>+ of Pe as follows:

S
≥
+ :=

{
(x, i ∧ j)

∣∣∣∣ x ∈ Z3, {i, j, k} = {1, 2, 3} , i ∧ j ∈ {1 ∧ 2, 3 ∧ 1, 2 ∧ 3} ,
〈x, v∗〉 ≥ 0, 〈x − ek, v

∗〉 < 0

}
,

S>+ :=
{
(x, i ∧ j)

∣∣∣∣ x ∈ Z3, {i, j, k} = {1, 2, 3} , i ∧ j ∈ {1 ∧ 2, 3 ∧ 1, 2 ∧ 3} ,
〈x, v∗〉 > 0, 〈x − ek, v

∗〉 ≤ 0

}
.

DEFINITION 3.12. We define the family of finite sets of unit faces G≥− of S
≥
− , called

the patch, which is generated as a finite formal sum of unit faces as follows:

G≥− :=
{∑

λ∈Λ
(x, i ∧ j)λ

∣∣∣∣ #Λ < +∞, (x, i ∧ j)λ ∈ S
≥
− ,

(xλ, i ∧ j)λ 
= (xλ, i ∧ j)λ′ if λ 
= λ′

}
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(see Figure 6). The other cases G>− , G≥+ , G>+ are defined analogously.

FIGURE 6. Examples of patches.

DEFINITION 3.13. Using S
≥
− , we define the surfaces S ≥− of S

≥
− called the stepped

plane of Pe as follows:

S ≥− := ⋃
(x,i∧j)∈S≥− (x, i ∧ j)

(see Figure 7). (x, i ∧ j) ∈ S
≥
− is called the unit face of the stepped plane located at x. The

other cases S >− , S ≥+ , S >+ are defined analogously.

FIGURE 7. Stepped planes S ≥− and S >− .

REMARK 3.14. (1) πeS
≥
− , πeS >− , πeS

≥
+ , πeS >+ = Pe.

(2) The fact that x ∈ Pe and x ∈ Z3 implies x = 0. Since v∗ =t
[
1 λ λ2

]
is

rationally independent, i.e., if l +mλ+ nλ2 = 0 for some m,n, then (l,m, n) =
(0, 0, 0).

(3) We see that S
≥
− ⊃ {(0, (−2) ∧ 1) , (0, 1 ∧ 3) , (0, 3 ∧ (−2))} and

S>− ⊃ {(e3, (−2) ∧ 1) , (−e2, 1 ∧ 3) , (e1, 3 ∧ (−2))}. Moreover, we have
S
≥
−\S>− = {(0, (−2)∧ 1) , (0, 1 ∧ 3) , (0, 3 ∧ (−2)) , (e3, (−2)∧ 1) ,

(−e2, 1 ∧ 3) , (e1, 3 ∧ (−2))}
(see Figure 8).
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FIGURE 8.

(4) We see that S
≥
+ ⊃ {(0, 1 ∧ 2) , (0, 3 ∧ 1) , (0, 2 ∧ 3)} and

S>+ ⊃ {(e3, 1 ∧ 2) , (e2, 3 ∧ 1) , (e1, 2 ∧ 3)}. Moreover, we have
S
≥
+\S>+ = {(0, 1 ∧ 2) , (0, 3 ∧ 1) , (0, 2 ∧ 3) , (e3, 1 ∧ 2) , (e2, 3 ∧ 1) ,

(e1, 2 ∧ 3)} .
(see Figure 8).

(5) For unit faces of S
≥
− and S>− , we consider the rearrangement such as

(x, (−2) ∧ 1) = (x − e2, 1 ∧ 2) , (x, 3 ∧ (−2)) = (x − e2, 2 ∧ 3) . (3.12)

Then, using the rearrangement (3.12), S≥− and S>− are rewritten by

S
≥
− :=

{
(z, 1 ∧ 2)

∣∣ 〈−e2, v
∗〉 ≤ 〈

z, v∗
〉
<

〈−e2 + e3, v
∗〉 }

∪ {
(z, 1 ∧ 3)

∣∣ 0 ≤ 〈
z, v∗

〉
<

〈−e2, v
∗〉 }

∪ {
(z, 2 ∧ 3)

∣∣ 〈−e2, v
∗〉 ≤ 〈

z, v∗
〉
<

〈−e2 + e1, v
∗〉 } ,

S>− :=
{
(z, 1 ∧ 2)

∣∣ 〈−e2, v
∗〉 <

〈
z, v∗

〉 ≤ 〈−e2 + e3, v
∗〉 }

∪ {
(z, 1 ∧ 3)

∣∣ 0 <
〈
z, v∗

〉 ≤ 〈−e2, v
∗〉 }

∪ {
(z, 2 ∧ 3)

∣∣ 〈−e2, v
∗〉 <

〈
z, v∗

〉 ≤ 〈−e2 + e1, v
∗〉 } .

For the characterization of the faces which generate the stepped plane, we prepare the
following notations.

NOTATION 1 (for type (−1, 0), type (−1, 1)). For the set of unit faces of S
≥
− , S>−

which generate the stepped plane S ≥− , S >− respectively, let us denote the segments I
≥
−

(i ∧ j), I>− (i ∧ j) of L (v) = Pc, i ∧ j ∈ V0 as follows:

I
≥
− (1 ∧ 2) := [πc (−e2) , πc (−e2 + e3))c

:= {απc (−e2 + e3)+ (1− α) πc (−e2) | 0 ≤ α < 1 } ,

I
≥
− (1 ∧ 3) := [πc0, πc (−e2))c

:= {απc (−e2) | 0 ≤ α < 1 } ,

I
≥
− (2 ∧ 3) := [πc (−e2) , πc (−e2 + e1))c

:= {απc (−e2 + e1)+ (1− α) πc (−e2) | 0 ≤ α < 1 } ,
I>− (1 ∧ 2) := (πc (−e2) , πc (−e2 + e3)]c

:= {απc (−e2 + e3)+ (1− α) πc (−e2) | 0 < α ≤ 1 } ,
I>− (1 ∧ 3) := (πc0, πc (−e2)]c
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FIGURE 9. I
≥
− (i ∧ j), i ∧ j ∈ V0.

FIGURE 10.

:= {απc (−e2) | 0 < α ≤ 1 } ,
I>− (2 ∧ 3) := (πc (−e2) , πc (−e2 + e1)]c

:= {απc (−e2 + e1)+ (1− α) πc (−e2) | 0 < α ≤ 1 }
(see Figure 9).

NOTATION 2 (for type (+1, 0), type (+1, 1)). For the set of unit faces S
≥
+ , S>+ ,

which generate the stepped plane S ≥+ , S >+ respectively, let us denote the segments of I
≥
+

(i ∧ j), I>+ (i ∧ j) of L (v) = Pc, i ∧ j ∈ V1 as follows:

I
≥
+ (i ∧ j) := [πc0, πcek)c := {απcek | 0 ≤ α < 1 } ,

I>+ (i ∧ j) := (πc0, πcek]c := {απcek | 0 < α ≤ 1 }
where {i, j, k} = {1, 2, 3}.

Using I
≥
− (i ∧ j), I>− (i ∧ j), i ∧ j ∈ V0 and I

≥
+ (i ∧ j), I>+ (i ∧ j), i ∧ j ∈ V1, we

can characterize the faces of stepped plane.

LEMMA 3.15. Under the assumption sgn (v) = sgn (v∗), i.e., under type (−1, 0)

or type (+1, 1), (z, i ∧ j) ∈ S
≥
− (resp. (z, i ∧ j) ∈ S>− , (x, i ∧ j) ∈ S

≥
+ , (x, i ∧ j) ∈

S>+ ) if and only if πcz ∈ I
≥
− (i ∧ j) (resp. πcz ∈ I>− (i ∧ j), πcx ∈ I

≥
+ (i ∧ j), πcx ∈

I>+ (i ∧ j)) (see Figure 10).

Proof. From the definition of S
≥
− , it is clear that S

≥
− � (z, 1 ∧ 2) if and only if

〈−e2, v
∗〉 ≤ 〈z, v∗〉 < 〈−e2 + e3, v

∗〉 . Let π∗ : R3 → L (v∗) be the projection along Pe.
Then, from the fact that π∗ (z) = 〈z, v∗〉 v∗, we can write that 〈z, v∗〉 ∈ [〈−e2, v

∗〉 , 〈−e2+
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e3, v
∗ 〉) on L (v∗) where |v∗| = 1. From z = πcz + πez, 〈πcz, v

∗〉 ∈ [〈πc (−e2), v
∗〉,

〈πc (−e2 + e3), v
∗〉) onL (v∗). Moreover, sgn (v)= sgn (v∗), we see that πcz∈ [πc (−e2),

πc (−e2 + e3))c. We can prove the other cases analogously. �
Hereafter, let us discuss only type (−1, 0) or type (+1, 1) cases whose classes are

characterized by sgn (v) = sgn (v∗).
DEFINITION 3.16. Let us define the set of projected unit faces of S

≥
− as follows:

T
≥
− :=

{
πe (z, i ∧ j)

∣∣ (z, i ∧ j) ∈ S
≥
−

}
.

The other cases of T >− , T
≥
+ , T >+ are defined analogously.

DEFINITION 3.17. Using T
≥
− , the tiling of Pe is defined by

T ≥− :=
⋃

πe(z,i∧j)∈T ≥−
πe (z, i ∧ j) .

The other cases T >− , T ≥+ , T >+ are defined analogously.

Then, by the property sgn (v) = sgn (v∗), we have the following proposition.

PROPOSITION 3.18. If sgn (v) = sgn (v∗), then T ≥− , T >− are the quasi-periodic
tilings of Pe by proto-tiles {πe (0, i ∧ j) | i ∧ j ∈{1 ∧ 2, 1 ∧ 3, 2 ∧ 3} = V0 } and T ≥+ , T >+
are the quasi-periodic tilings of Pe by proto-tiles {πe (0, i ∧ j) | i ∧ j ∈ {1 ∧ 2, 3∧
1, 2 ∧ 3} = V1}.

The proof is obtained by Theorem 3.8 in [IO2] analogously.

REMARK 3.19. We are interested in the projection πeS
≥
− (resp.πeS

>− ,πeS
≥
+,πeS

>+ ).
But in the cases of type (−1, 1) and type (+1, 0), πeS

≥
− (resp. πeS

>− , πeS
≥
+ , πeS

>+ ) are not
tilings but coverings because of the property sgn (v∗) 
= sgn (v). Therefore, we will discuss
only the case of sgn (v∗) = sgn (v), i.e., type (−1, 0) and type (+1, 1). It is unclear about
the case of sgn (v∗) 
= sgn (v) now. We will try to introduce the existence of the numeration
system and the tiling property in the different paper.

Finally, we give the definition of the positive oriented face as follows.

DEFINITION 3.20. The unit face (x, i ∧ j) located at x is positive oriented if i∧j ∈
V0 for type (−1, 0) and if i ∧ j ∈ V1 for type (+1, 1).

REMARK 3.21. In the case of type (−1, 0), let us assume that i ∧ j = (−2)∧ 1 for
the unit face (x, i ∧ j). Then, we can rearrange it as (x − e2, 1 ∧ 2), so it is the poritive
oriented by Definition 3.20. Thus if the rearrangement face is positive oriented, we also say
that the non-arrangement face is positive oriented.

3.3. 2-dimensional extension E2 (σ )

Let us introduce the automorphisms σ− and σ+ on the free group F 〈1, 2, 3〉 whose
incidence matrices are A− and A+ respectively as follows:

σ− :
1 → 2
2 → 3
3 → 3a1−12b

, σ+ :
1 → 2
2 → 3
3 → 12b3a .
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Using the automorphism σ (= σ− or σ+), let us introduce the 2-dimensional exten-
sion E2 (σ ) of σ on the family of patches generated by the symbolic faces of the set
Ve (= V0 or V1): for each i ∧ j ∈ Ve,

E2 (σ ) (0, i ∧ j) := (0, σ (i) ∧ σ (j))

:=
∑

1 ≤ k ≤ li
1 ≤ l ≤ lj

(
f

(
P

(i)
k

)
+ f

(
P

(j)
l

)
,W

(i)
k ∧W

(j)
l

)
(3.13)

E2 (σ ) (x, i ∧ j) :=Ax + E2 (σ ) (0, i ∧ j)

E2 (σ )

(∑
λ

(x, i ∧ j)λ

)
:=

∑
λ

E2 (σ ) (x, i ∧ j)λ

where f : F 〈1, 2, 3〉 → Z3 is the homomorphism satisfying f (ε) = 0, f (i) = ei ,
σ (i) = W

(i)
1 W

(i)
2 · · ·W(i)

li
, P

(i)
k is the prefix of W

(i)
k , i.e., P

(i)
k = W

(i)
1 · · ·W(i)

k−1 and y +
(0, i ∧ j) = (y, i ∧ j) (see [AFHI]).

If 2-dimensional extension E2 (σ ) given by (3.13) satisfies the property that all faces
of E2 (σ ) (0, i ∧ j) are positive orientated, we say that E2 (σ ) has the positive orientation
property (the POP-property for simplicity).

Then, we have the following proposition.

PROPOSITION 3.22. E2 (σ−) and E2 (σ+) have the POP-property.

Proof. E2 (σ−) (0, i ∧ j), i ∧ j ∈ V0 can be explicitly given by

E2 (σ−) (0, 1 ∧ 2) = (0, 2 ∧ 3)

E2 (σ−) (0, 1 ∧ 3) = (
0, 2 ∧ 3a

)+ (
f

(
3a

)
, 2 ∧ 1−1

)
(∗)=

(
a∑

k=1

((k − 1) e3, 2 ∧ 3)

)
+ (ae3 − e1, 1 ∧ 2)

E2 (σ−) (0, 2 ∧ 3) =
(
f

(
3a

)
, 3 ∧ 1−1

)
+

(
f

(
3a

)+ f
(

1−1
)

, 3 ∧ 2b
)

(∗)= (ae3 − e1, 1 ∧ 3)+
−b∑
k=1

(ae3 − e1 − ke2, 2 ∧ 3) .

Here, the technical manner (∗) means that the “rearrangement” is used. It is clear that all
faces of E2 (σ−) (0, i ∧ j), i ∧ j ∈ V0 are positive oriented, i.e., E2 (σ−) has the POP-
property. We get the proof of E2 (σ+) analogously. �
3.4. Invariant stepped plane generated by E2 (σ±)

For t ∈ R3, let us consider the plane Pe (t) = Pe + t , the stepped plane S ≥− (t) =
S ≥− + t of Pe (t). Moreover, the element (z, i ∧ j) ∈ S

≥
− (t) = S

≥
− + t can be characterised

by πcz ∈ I
≥
− (i ∧ j) (t) from Lemma 3.15 where I

≥
− (i ∧ j) (t) := I

≥
− (i ∧ j) + πct . The

cases of S >− (t), S>− (t), and I>− (i ∧ j) (t) is defined analogously.
Now, let us consider the existence problem of the E2 (σ )-invariant stepped plane.
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DEFINITION 3.23 (for type (−1, 0)). Let s ∈ R3 be the solution satisfying

s + e3 − e2 = As + ae3 − e1 , (3.14)

which is given by s =t
[

b−1
2−a−b

,
(a−1)(b−1)

2−a−b
, a−1

2−a−b

]
. Using s, let us consider the plane

Pe (s) and S
≥
− (s) of Pe (s), moreover let us define the U≥− (s) and U>− (s), which are called

the seed, as follows:

U≥− (s) := (s − e2, 1 ∧ 2)+ (s, 1 ∧ 3)+ (s − e2, 2 ∧ 3) ,

U>− (s) := (s − e2 + e3, 1 ∧ 2)+ (s − e2, 1 ∧ 3)+ (s − e2 + e1, 2 ∧ 3) .

Then, from the definition of I
≥
− (i ∧ j), i ∧ j ∈ V0, πc (s − e2) ∈ I

≥
− (1 ∧ 2) (s),

πcs ∈ I
≥
− (1 ∧ 3) (s), πc (s − e2) ∈ I

≥
− (2 ∧ 3) (s). Therefore, we see that U≥− (s) ∈ G≥− (s)

where G≥− (s) = G≥− + s. By the analogous discussion, we get U>− (s) ∈ G>− (s) , where
G>− (s) = G>− + s.

DEFINITION 3.24 (for type (+1,1)). Let us define the U≥+ and U>+ , which are called
the seed, as follows:

U≥+ :=(0, 1 ∧ 2)+ (0, 1 ∧ 3)+ (0, 2 ∧ 3) , U>+ :=(e3, 1 ∧ 2)+ (e2, 3 ∧ 1)+ (e1, 2 ∧ 3) .

Then, it is easy to see that

U≥+ ∈ G≥+ , U>+ ∈ G>+
by the anlogous discussion above.

REMARK 3.25. We usually treat U≥− (s), U>− (s), U≥+ , U>+ as patches, i.e., U≥− (s) ∈
G≥− (s), but we sometimes treat them three distinct unit faces, i.e., U≥− (s) ⊂ S

≥
− (s).

LEMMA 3.26 (for type (−1, 0)). Using s satisfying (3.14), we get the following re-
lations:

E2 (σ−)U≥− (s) � U>− (s) , E2 (σ−)U>− (s) � U≥− (s)

where δ � γ means that the patch γ is the subpatch of the patch δ. In other words, δ � γ

means that if (z, i ∧ j) ∈ γ, then (z, i ∧ j) ∈ δ.

LEMMA 3.27 (for type (+1, 1)). The following relations hold:
E2 (σ+)U≥+ � U≥+ , E2 (σ+)U>+ � U>+ .

The proofs of Lemmas 3.26 and 3.27 are given by checking of E2 (σ−)U≥− (s),
E2 (σ−)U>− (s), E2 (σ+)U≥+ , E2 (σ+)U>+ explicitly.

PROPOSITION 3.28 (for type (−1, 0)). Using s satisfying (3.14), let us consider
two seeds U≥− (s) and U>− (s). Then, the following properties hold:

(1) U≥− (s) ∈ G≥− (s), U>− (s) ∈ G>− (s);
(2) E2 (σ−)U≥− (s) � U>− (s), E2 (σ−)U>− (s) � U≥− (s);
(3) E2 (σ−)U≥− (x)− U>− (s) = E2 (σ−)U>− (s)− U≥− (s);
(4) S

≥
− (s) \U≥− (s) � (z, i ∧ j) implies E2 (σ−) (z, i ∧ j) ∈ G≥− (s);

S>− (s) \U>− (s) � (z, i ∧ j) implies E2 (σ−) (z, i ∧ j) ∈ G>− (s);
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(5) (z, i ∧ j) ,
(
z′, (i ∧ j)′

) ∈ S
≥
− (s) (orS>− (s)), (z, i ∧ j) 
= (

z′, (i ∧ j)′
)

imply
� (w, k ∧ l) : (w, k ∧ l) ∈ E2 (σ−) (z, i ∧ j) and (w, k ∧ l) ∈ E2 (σ−)(
z′ (i ∧ j)′

)
.

(6) For any (z, i ∧ j) ∈ S
≥
−\U≥− (s), there exists (y, k ∧ l) ∈ S

≥
− (s) \U≥− (s) such

that E2 (σ−) (y, k ∧ l) � (z, i ∧ j).

Proof. (1) is clear from the definition of U≥− (s) and U>− (s). (2) is proved in Lemma
3.26. (3) is clear from the definition of E2 (σ−). For (4). Let us assume that S

≥
− (s) \

U≥− (s) � (z, 1 ∧ 2), i.e., by Lemma 3.15, let us assume that πcz ∈ (πc (s − e2) ,

πc (s − e2 + e3))c = int
(
I
≥
− (1 ∧ 2) (s)

)
. From E2 (σ−) (z, 1 ∧ 2) = (Az, 2 ∧ 3) , we

want to show that πc (Az) ∈ (πc (s − e2) , πc (s − e2 + e1))c = int
(
I
≥
− (2 ∧ 3) (s)

)
. From

the assumption πcz ∈ (πc (s − e2) , πc (s − e2 + e3))c and from the properties that A is
the linear contracting map on Pc and det A = −1, we have

πc (Az) ∈ (πcA (s − e2 + e3) , πcA (s − e2))c

= (πc (be2) , πc (−ae3 + e1))c + πc (s − e2) .

On the other hand, from the condition (3.9) and a ≥ 0, i.e., roughly speaking a ≥ 0, b ≥ 0,
we know that

(πc (be2) , πc (−ae3 + e1))c ⊂ (πc0, πce1)c .

Therefore, we get πcAz ∈ int
(
I
≥
− (2 ∧ 3) (s)

)
. We prove the other cases, i.e., (z, 1 ∧ 3),

(z, 2 ∧ 3) ∈ S
≥
− (s) \U≥− (s), analogously. In particular, we use the properties such that

|πce1| : |πce2| : |πce3| = 1 : |λ3| :
∣∣λ2

3

∣∣, 1 > aλ2
3, and 1 > bλ3. For (5). We assume

that ∃ (w, k ∧ l) ∈ S
≥
− (s) : (w, k ∧ l) ∈ E2 (σ−) (z, i ∧ j) ∩ E2 (σ−)

(
z′, (i ∧ j)′

)
. It

is enough to consider k ∧ l = 2 ∧ 3. Let consider the case that i ∧ j = 1 ∧ 2 and
(i ∧ j)′ = 1∧3. From the definition of E2 (σ−), we assume that there exists j (1 ≤ j ≤ a) :
Az = Az′ + (j − 1) e3. By the way, (z, 1 ∧ 2) ∈ S

≥
− (s)

(
z′, 1 ∧ 3

) ∈ S>− (s), so πcz ∈
I
≥
− (1 ∧ 2) (s) and πcz ∈ I

≥
− (1 ∧ 3) (s). From 1 ≤ j ≤ a, a ≥ 0, we know that 0 ≤ j−1 ≤

a − 1. This fact contradicts the assumption that there exists j (1 ≤ j ≤ a) : Az = Az′ +
(j − 1) e3. We prove other cases, i.e.,

{
(z, i∧j),

(
z′, (i∧j)′

)} ∈ {{
(z, 1∧2),

(
z′, 1∧2

)}
,{

(z, 1 ∧ 2),
(
z′, 2 ∧ 3

)}
,
{
(z, 1 ∧ 3),

(
z′, 1 ∧ 3

)}
,
{
(z, 1 ∧ 3),

(
z′, 2 ∧ 3

)}
,
{
(z, 2 ∧ 3),(

z′, 2∧ 3
)}}

, analogously. For (6). The proof is obtained by the analogous discussion with
Lemma 2.3 in [IO2]. �

On type (+1, 1), we obtain anlogous result.

PROPOSITION 3.29 (for type (+1, 1)). Let us consider two seeds U≥+ and U>+ .
Then, the following properties hold:

(1) U≥+ ∈ G≥+ , U>+ ∈ G>+ ;
(2) E2 (σ+)U≥+ � U≥+ , E2 (σ+)U>+ � U>+ ;
(3) E2 (σ+)U≥+ − U>+ = E2 (σ+)U>+ − U≥+ ;
(4) S

≥
+\U≥+ � (x, i ∧ j) implies E2 (σ+) (x, i ∧ j) ∈ G≥+ ;

S>+\U>+ � (x, i ∧ j) implies E2 (σ+) (x, i ∧ j) ∈ G>+;
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(5) (x, i ∧ j) ,
(
x′, (i ∧ j)′

) ∈ S
≥
+ (or S>+ ), (x, i ∧ j) 
= (

x′, (i ∧ j)′
)

imply
� (w, k ∧ l) : (w, k ∧ l) ∈ E2 (σ+) (x, i ∧ j) and (w, k ∧ l) ∈ E2 (σ+)(
x′ (i ∧ j)′

)
.

(6) For any (x, i ∧ j) ∈ S
≥
+\U≥+ , there exists (y, k ∧ l) ∈ S

≥
+\U≥+ such that

E2 (σ+) (y, k ∧ l) � (x, i ∧ j).

COROLLARY 3.30. E2 (σ−)2 U≥− (s) � U≥− (s) and E2 (σ−)2 U>− (s) � U>− (s)

where s is satisfying (3.14).

Hence, we see that there exist the invariant quasi-periodic tilings of Pe by E2 (σ±)

(see [AI], [FIR]).

3.5. Complex Pisot numeration systems from 3× 3 unimodular complex Pisot com-
panion matrices

Let us discuss only the existence of complex Pisot numeration system on type (−1, 0)

and type (+1, 1).
Let us define T

≥
− (s), T ≥− (s) as

T
≥
− (s) := T

≥
− + πcs , T ≥− (s) := T ≥− + πcs

where s is the solution of (3.14). Then from the definition of S
≥
− (s) and the property

of sgn (v) = sgn (v∗), we see that T ≥− (s) is a quasi-periodic tiling of Pe with proto-
tiles {πe (0, i ∧ j) | i ∧ j ∈ V0 }. Since the non-periodicity of the tiling comes from the
irreducibility of p (x) and the quasi-periodicity of the tiling comes from the fact that the
tiling is constructed by the projection πe of the s-translated stepped plane S ≥− (s). The
other cases T >− (s), T >− (s), T

≥
+ , T ≥+ , T >+ , and T >+ are discussed analogously.

Let πeG≥− (s) (resp. πeG>− (s)) be the family of patches of T
≥
− (s) = T

≥
− + πcs (resp.

T >− (s)), we proved that the operator πeE2 (σ−) is the tiling substitution from πeG≥− (s)

(resp. πeG>− (s)) to πeG>− (s) (resp. πeG≥− (s)) and that that the operator πeE2 (σ+) is the
tiling substitution from πeG≥+ (resp. πeG>+ ) to G≥+ (resp. G>+ ) in the subsection 3.4.

Finally, we arrive at the following theorem.

THEOREM 3.31. (1) Let us define γi∧j,− by

γi∧j,− := lim
n→∞A−nπeE2 (σ−)n

(
si∧j , i ∧ j

)
where

(
si∧j , i ∧ j

) ∈ U≥− (s) or U>− (s). Moreover, we assume that there exist

the new seed U≥
′
−

(
s′
)

such that

(i) U≥
′
−

(
s′
) = U≥− (s)+ u for some u ∈ Z3;

(ii) E2 (σ−)2 U≥
′
−

(
s ′
) � U≥

′
−

(
s′
);

(iii)
⋃∞

n=1 E2 (σ−)2n U≥
′
−

(
s′
) = Pe.

Then (A−,P−) , P− =
{
γi∧j,− | i ∧ j ∈ V0

}
satisfies the properties for the

complex Pisot numeration system, i.e., (N1), (N2), (N3) in Definition 0.2 hold.
(2) Let us define γi∧j,+ by

γi∧j,+ := lim
n→∞A−nπeE2 (σ+)n

(
xi∧j , i ∧ j

)



30 M. HAMA, M. FURUKADO, and S. ITO

where
(
xi∧j , i ∧ j

) ∈ U≥+ or U>+ . Moreover, we assume that there exist the new

seed U≥
′
+

(
x′

)
such that

(i) U≥
′
+

(
x′

) = U≥+ + x′ for some x′ ∈ Z3;
(ii) E2 (σ+)U≥

′
−

(
x′

) � U≥
′
−

(
x′

);
(iii)

⋃∞
n=1 E2 (σ+)n U≥

′
−

(
x′

) = Pe.
Then (A+,P+) , P+ =

{
γi∧j,+ | i ∧ j ∈ V1

}
satisfies the properties for the

complex Pisot numeration system, i.e., (N1), (N2), (N3) in Definition 0.2 hold.

Proof. For (1). The property (N1) for γ ′i∧j = limn→∞ A−nE2 (σ−)n
(
s ′i∧j , i ∧ j

)
,(

s′i∧j , i ∧ j
)
∈ U≥

′
−

(
s ′
)

holds from the assumption (ii) and (iii). Therefore, we see that the

property (N1) holds for γi∧j (c.f. Theorem 1.5 in [EIR] using Theorem 5.3 in [LW]). We
prove the property (N2) analogously with the proof of Corollary 2 in [AI]. From the relation
E2 (σ−) (0, i ∧ j) given by the proof of Proposition 3.22, we obtain the set equations of{
γ̂i∧j

∣∣ γ̂i∧j = limn→∞ E2 (σ−) (0, i ∧ j)
}

by

Aγ̂i∧j = ⋃
1 ≤ k ≤ li
1 ≤ l ≤ lj

(
γ
W

(i)
k ∧W

(j)
l

+ f
(
P

(i)
k

)
+ f

(
P

(j)
l

))
. On the other hand, γi∧j is

written by the translation of γ̂i∧j . Therefore, we obtain that Aγi∧j is written by the sum
of the translation of the elements by

{
γi∧j | i ∧ j ∈ V0

}
. To prove the property (N3), we

must show that E2 (σ ) satisfies the strongly coincidence condition (see [AI]). By the way,
the strongly coincidence condition is geometrically given by the following: there exist n,
i ∧ j , y, and t ∈ R3 (resp. n′, (i ∧ j)′, y′, and t ′) such that

E2 (σ−)n (y, i ∧ j) � t + U≥− (s)
(

resp. E2 (σ+)n
′ (

y′, (i ∧ j)′
) � t ′ + U≥+

)
.

This conditions holds in the case of n = 2, i ∧ j = 2∧ 3, y = s − e2, and t = 0 in Lemma
3.26. (2) is proved analogously and see Remark 3.33. �

COROLLARY 3.32. Let T ≥,∗
− (s) := {

γi∧j,− + πez | i ∧ j ∈ V0, (z, i ∧ j) ∈
T
≥
− (s)

}
. Then, T ≥,∗

− (s) is a quasi-periodic self-similar tiling of Pe by the linear trans-
formation A. The other cases T >,∗

− (s), T ≥,∗
+ , T >,∗

+ are discussed analogously.

REMARK 3.33. For type (+1, 1) in Theorem 3.31 , we have obtained the numera-

tion system
(
A+,P = {

γi∧j,+
}
i∧j∈V1

)
where

γi∧j,+ = lim
n→∞A−n

e πeE2 (σ+)n
(
xi∧j , i ∧ j

)
for

(
xi∧j , i ∧ j

) ∈ U≥+ or U>+ where σ+ is given by
1→ 2

σ+ : 2→ 3
3→ 12b3a

and Aσ+ =⎡⎣ 0 0 1
1 0 b

0 1 a

⎤⎦. Let us consider the automorphism τ =
(←
σ+

)−1
, which is the inverse
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of the mirror image of σ+, then,

1→ 1−b2−a3
τ : 2→ 1

3→ 2 .

From the condition of (a, b) satisfying the complex Pisot condition (3.10), i.e., (1), (2), (3)
in Proposition 3.2, it is clear that the automorphism τ is a substitution. Therefore we know
that the limit set γi∧j,+ is also obtained as γi∧j,+ = −δk, {1, 2, 3} = {i, j, k} by Theorem
2.1, in other words, the numeration system produced from the class of type (+1, 1) is
the numeration system produced from the unimodular Pisot substitution (c.f. Remark 2.2
discussed in the section 2).

EXAMPLE 3.34. Let us consider the case (a, b) = (1, 0) of type (−1, 0), i.e., A =⎡⎣ 0 0 −1
1 0 0
0 1 1

⎤⎦ and its characteristic polynomial is x3− x2+ 1. The eigenvalues of A are

λ1 = 0.877439+0.744862i,λ2 = 0.877439−0.744862i, λ3 = −0.754878 (see Figure 11)
and V0 is given by V0 = {1 ∧ 2, 1 ∧ 3, 2 ∧ 3} .

FIGURE 11

Let the automorphism σ :
⎧⎨⎩

1→ 2
2→ 3
3→ 31−1

, then E2 (σ ) is given by

E2 (σ ) (0, 1 ∧ 2) = (0, σ (1) ∧ σ (2)) = (0, 2 ∧ 3)

E2 (σ ) (0, 1 ∧ 3) =
(

0, 2 ∧ 31−1
)
= (0, 2 ∧ 3)+

(
e3, 2 ∧ 1−1

)
(∗)= (0, 2 ∧ 3)+ ((e3 − e1) , 1 ∧ 2)

E2 (σ ) (0, 2 ∧ 3) =
(

0, 3 ∧ 31−1
)
=

(
e3, 3 ∧ 1−1

)
(∗)= ((e3 − e1) , 1 ∧ 3)

where (∗) means the rearrangement and it satisfies the POP-property (see Figure 12).
Let U>− (−e1) be

U>− (−e1) := ((−e1 − e2 + e3) , 1 ∧ 2)+ ((−e1 − e2) , 1 ∧ 3)+ (−e2, 2 ∧ 3) ,

then U>− (−e1) satisfies
E2 (σ )2 U>− (−e1) � U>− (−e1)

(see Figure 13).
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FIGURE 12. πeE2 (σ ) (0, i ∧ j) in Example 3.34: σ : 1 �→ 2, 2 �→ 3, 3 �→ 31−1.

FIGURE 13. πeE2 (σ )n U>− (−e1), n = 0, 1, 2, . . . , 6.

Let us define T >− (−e1) as follows: the tiling T >− (−e1) generated by the projection
πe of the stepped plane S >− (−e1) satisfies the following properties:

T >− (−e1) :=
{
πe (z, i ∧ j)

∣∣ (z, i ∧ j) ∈ E2 (σ )n U>− (−e1) for some n
}

,

T >− (−e1) :=
⋃

πe(z,i∧j)∈T >− (−e1)

πe (z, i ∧ j) (= Pe)

on this example (see Figure 14). The analogous proof can be obtained by the method of
∗-connected in [AFHI], or C-covered propery in [IO1].
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FIGURE 14. T >− (−e1) where the black dot is the origin point.

FIGURE 15. The set equations.

Let us the limit set γi∧j = limn→∞ A−nπeE2 (σ )n
(
si∧j , i ∧ j

)
for

(
si∧j , i ∧ j

) ∈
U>− (−e1). Then, P = {

γi∧j

}
i∧j∈V0

satisfies not only the following set equations

Aγ1∧2= γ2∧3 − πee1
Aγ1∧3= (γ1∧2 − πee3) ∪ (γ2∧3 − πee3)

Aγ2∧3= γ1∧3 + πee2

(see Figure 15), i.e., the property (N2), but also the properties (N1) and (N3) of Definition
0.2. Therefore, we see that (A,P) is the the complex Pisot numeration system of λ.

Then, the labeled graph (V ,E, i, t,L) on the example is given by Figure 16. From the
fact that

φ (πee1) = 1 , φ (πee2) = λ , φ (πee3) = λ2 ,

we see that the labeled graph (V ,E, i, t, (φL)) is given by Figure 16.
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FIGURE 16. The graph of (a, b) = (1, 0) for type (−1, 0).

Therefore, let Ωi∧j be the label-admissible symbolic space which is starting from the
vertex i ∧ j by the labeled graph (V ,E, i, t, (φL)) and let its element be (a0, a1, a2, . . .) ,

ai ∈
{−1, λ, λ2,−λ2

}
, then z ∈ φe

(⋃
i∧j∈Ve

γi∧j

)
is represented by z =∑∞

n=1 an−1λ
−n

where an = φe

(
πef

(jn−1)
kn−1

)
.

4. Complex Pisot numeration systems from 4 × 4 unimodular complex Pisot com-
panion matrices

4.1. Setting
In this section, we discuss how we obtain the complex Pisot numeration system from

a 4× 4 unimodular complex Pisot companion matrix (see [AFHI], [FIR], [F]).
Let A± be the 4× 4 companion matrix whose characteristic polynomial is p± (x) =

x4 − ax3 − bx2 − cx ∓ 1, a, b, c ∈ Z, i.e.,

A± =

⎡⎢⎢⎣
0 0 0 ±1
1 0 0 c

0 1 0 b

0 0 1 a

⎤⎥⎥⎦ .

We assume that the algebraic integers λi (1 ≤ i ≤ 4) of p± (x) satisfy the non-Pisot
hyperbolic condition, i.e.,

|λ1| ≥ |λ2| > 1 > |λ3| ≥ |λ4| .
Under the non-Pisot hyperbolic condition, let ui (1 ≤ i ≤ 4) be the eigenvectors of λi

respectively and put the corresponding vectors vi of eigenvectors{
v1 = u2 + u1

2
, v2 = u2 − u1

2i
if λ1, λ2 ∈ C\R

v1 = u1 , v2 = u2 if λ1, λ2 ∈ R
,{

v3 = u4 + u3

2
, v4 = u4 − u3

2i
if λ3, λ4 ∈ C\R ,

v3 = u3, v4 = u4 if λ3, λ4 ∈ R

Then, the linear transformation A has the 2-dimesional A-invariant expanding plane Pe

spanned by {v1, v2} and the 2-dimensional A-invariant contracting plane Pc spanned by
{v3, v4} . Using Pe and Pc, Rd is decomposed by Pe and Pc, i.e., Rd = Pe ⊕ Pc. Then,
let us define the projection πe : R4 → Pe, πe (xv1 + yv2 + zv3 +wv4) := xv1 + yv2
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(resp. πc : R4 → Pc, πc (xv1 + yv2 + zv3 +wv4) := zv3+wv4 be the projection to Pc).
Moreover, Pe ◦ A = A ◦ Pe (resp. Pc ◦ A = A ◦ Pc) holds.

Using the representation by

[e1 e2 e3 e4] = [v1 v2 v3 v4]
[
xji

]
1≤j,i≤4 , (4.15)

πee ∈ Pe (resp. πce ∈ Pc ) of the projected canonical basis {ei}1≤i≤4 are given by

πeei = x1iv1 + x2iv2 � [x1i, x2i]t

(resp. πcei = x3iv3 + x4iv4 � [x3i, x4i]t ) .

DEFINITION 4.1. The set of the projected canonical basis {πeei}1≤i≤4 has the good
star property if πeei = wπeej for some real number w 
= 0 implies i = j . We define the
good star property for the set {πcei}1≤i≤4 analogously.

Using {πeei}1≤i≤4 (resp. {πcei}1≤i≤4) with the good star property, we uniquely ob-
tain the proto-tiles set Ve (resp. Vc) consisting of six symbolic faces whose orientation are
positive denoted by

Ve :=⎧⎨⎩i ∧ j

∣∣∣∣∣∣
i 
= j, i, j ∈ {1, . . . , 4} , i ∧ j be the positive oriented parallelogram
generated by πeei and πeej where i ∧ j is chosen if the counterclockwise

angle α between πeei and πeej satisfies 0 < α < π

⎫⎬⎭ .

The case of Vc is defined by {πcei}1≤i≤4 analogously.
Let a pair (x, i ∧ j) ∈ Z4×Ve (resp. Vc) be the positive oriented parallelogram i ∧ j

located at x, i.e.,

(x, i ∧ j) := {
x + μei + νej | 0 ≤ μ, ν ≤ 1

}
(see Figure 17).

FIGURE 17. (x, i ∧ j).

Let σ (resp. θ ) be the automorphism on the free group F 〈1, 2, 3, 4〉 given by

σ :

⎧⎪⎪⎨⎪⎪⎩
1→ 2
2→ 3
3→ 4
4→ 2c3b4a1∓1

, σ−1 :

⎧⎪⎪⎨⎪⎪⎩
1→ 4−11c2b3a

2→ 1
3→ 2
4→ 3

, θ :=
←

σ−1:

⎧⎪⎪⎨⎪⎪⎩
1→ 3a2b1c4−1

2→ 1
3→ 2
4→ 3

.

Using the automorphism σ (resp. θ ), the 2-dimentional extension E2 (σ ) (resp. E2 (θ)) on
the patches of the symbolic faces of Ve on Pe (resp. Vc on Pc) is defined analogously with
(3.13) in the section 3.
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From now on, we try to get the sufficient conditions of a, b, c ∈ Z satisfying the
following properties:

(S1) The eigenvalues λi of A satisfy the hyperbolic non-Pisot condition:

|λ1 (= λ)| ≥ |λ2| > 1 > |λ3| ≥ |λ4| ;
(S2) {πeei}1≤i≤4 (resp. {πcei}1≤i≤4) satisfy the good star property (described later);
(S3) The 2-dimensional extension E2 (σ ) (resp. E2 (θ)) has the POP-property.

4.2. Computer experiments
For the companion matrix A−:

A− =

⎡⎢⎢⎣
0 0 0 −1
1 0 0 c

0 1 0 b

0 0 1 a

⎤⎥⎥⎦ , −15 ≤ a, b, c ≤ 15 ,

by the computer experiments, we observe the following facts:
(1) For −15 ≤ a, b, c ≤ 15, the automorphism σ (resp. θ ) satisfies all of the

properties (S1), (S2), (S3) if and only if b = 0, c = −a − 1,−a,−a + 1.
More precisely,

(2) See the table in the section 4.5;
(3) There is no automorphism σ (resp. θ ) satisfying all of the properties (S1), (S2),

(S3) associated with the companion matrix A+

A+ =

⎡⎢⎢⎣
0 0 0 1
1 0 0 c

0 1 0 b

0 0 1 a

⎤⎥⎥⎦ , −7 ≤ a, b, c ≤ 7 .

The condition that b = 0 and c ∈ {−a − 1,−a,−a + 1} for the companion matrix
A− of p (x) = x4− ax3− bx2− cx+ 1 seems to be the necessary and sufficient condition
satisfying that E2 (σ ) has the POP-property.

4.3. Theorem
We will prove the following theorem in this section.

THEOREM 4.2. Let A be the companion matrix of p (x) = x4 − ax3 − cx + 1 by

A− =

⎡⎢⎢⎣
0 0 0 −1
1 0 0 c

0 1 0 0
0 0 1 a

⎤⎥⎥⎦
satisfying a, c ∈ Z and c ∈ {−a − 1,−a,−a + 1}. Then

(1) the automorphism σ(resp. θ) associated with A (resp. A−1) satisfies all of the
properties (S1), (S2), (S3). In particular, (a, c) satisfies

(a, c) ∈
{

(−3, 4) , (−2, 3) , (−2, 2) , (−2, 1) , (−1, 2) , (−1, 1) , (−1, 0) , (0, 1) ,

(0,−1) , (1, 0) , (1,−1) , (1,−2) , (2,−1) , (2,−2) , (2,−3) , (3,−4)

}
,

(4.16)



Complex Pisot Numeration Systems 37

then, the eigenvalues λi (1 ≤ i ≤ 4) of A satisfy the complex Pisot condition:

|λ1| = |λ2| > 1 > |λ3| , |λ4| , and λ2 = λ1 .

(see the table in the section 4.5);
(2) Under the assumption that there exists Ue (resp. Uc) which is the family of 4C2 =

6 pieces symbolic distinct faces satisfying
(i) there exists k (resp. k′) such that

E2 (σ )k Ue � Ue , Ue =
∑

i∧j∈Ve

(
πexi∧j , i ∧ j

)
(
resp. E2 (θ)k

′ Uc � Uc , Uc =
∑

i∧j∈Vc

(
πcxi∧j , i ∧ j

) )
(ii)

⋃∞
n=1 E2 (σ )nk Ue = Pe

(
resp.

⋃∞
n=1 E2 (θ)nk′ Uc = Pc

)
,

then, the compact set

γi∧j,e := lim
n→∞A−nπeE2 (σ )n

(
xi∧j , i ∧ j

)
(
resp. γi∧j,c := lim

n→∞A−nπcE2 (θ)n
(
xi∧j , i ∧ j

) )
for each

(
xi∧j , i ∧ j

) ∈ Ue (resp. Uc).
Then P = {

γi∧j,e

}
i∧j∈Ve

(resp.
{
γi∧j,c

}
i∧j∈Vc

) satisfies a set equation and the properties
(N1), (N2), (N3), then (A,P) has the complex Pisot numeration system.

To prove Theorem 4.2, we prepare a few lemmas.

LEMMA 4.3. For p (x) = x4−ax3− cx+1, a, c ∈ Z, c ∈ {−a − 1,−a,−a + 1},
(1) if a ≥ 5, then p (x) has two real roots in the interval (−1, 0);
(2) if a ≤ −5, then p (x) has two real roots in the interval (0, 1).

Proof. For (1). It is easy to see that p (0) = 1, p (−1) = 2+a+ c ≥ 1, p
(
− 1

2

)
=

1
16 (17+ 2a + 8c) < 0. Therefore, the statement holds. (2) can be obtained analogously

by the observation of p (0) , p
(

1
2

)
< 0, and p (1) ≥ 1. �

LEMMA 4.4. For p (x) = x4−ax3− cx+1, a, c ∈ Z, c ∈ {−a − 1,−a,−a + 1},
the roots λi (1 ≤ i ≤ 4) of p (x) are distributed as follows:

(1) if a ≥ 5, then

−1 < λ3 < λ4 < 0 < 1 < λ2 < λ1 ;
(2) if a ≤ −5, then

λ1 < λ2 < −1 < 0 < λ4 < λ3 < 1 .

Proof. For (1). By Lemma 4.3, we know that p (x) has two real roots in the interval
(−1, 0). Let q (x) = x4−cx3−ax+1, then q (x) satisfies the condition (2) in Lemma 4.3.
Therefore there exist two roots μ1 and μ2 of q (x) in (0, 1). From the fact that λ1 := 1

μ1
,

λ2 := 1
μ2

are the roots of p (x), we see that λ1, λ2 satisfy the relation 1 < λ2 < λ1. (2) is
obtained by the analogous discussion. �
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LEMMA 4.5. Let A be the companion matrix whose characteristic polynomial
p (x) = x4 − ax3 − cx + 1, a, c ∈ Z, c ∈ {−a − 1, −a, −a + 1} and vi (1 ≤ i ≤ 4)

be the corresponding vectors of the eigenvectors discussed in (4.15). Then the signature of
xj1, (1 ≤ j ≤ 4) in (4.15) are given by

(1) if a ≥ 5, then

(sgn (x11) , sgn (x21) , sgn (x31) , sgn (x41)) = (+,−,−,+) ;
(2) if a ≤ −5, then

(sgn (x11) , sgn (x21) , sgn (x31) , sgn (x41)) = (−,+,+,−) .

Proof. From Lemma 4.4, vi (1 ≤ i ≤ 4) of (4.15) are the eigenvectors themselves.
The eigenvector vi (1 ≤ i ≤ 4) is given by

vi =
t
[
− 1

λi

, − 1

λ2
i

+ c

λi

, − 1

λ3
i

+ c

λ2
i

, 1

]
.

Therefore we have

x11 =−λ3
1

(
λ2λ3λ4c

2 − (λ2λ3 + λ2λ4 + λ3λ4) c + λ2 + λ3 + λ4
)

(−λ1 + λ2) (−λ1 + λ3) (−λ1 + λ4)

x21 =−λ3
2

(
λ1λ3λ4c

2 − (λ1λ3 + λ1λ4 + λ3λ4) c + λ1 + λ3 + λ4
)

(−λ2 + λ1) (−λ2 + λ3) (−λ2 + λ4)

x31 =−λ3
3

(
λ1λ2λ4c

2 − (λ1λ2 + λ1λ4 + λ2λ4) c + λ1 + λ2 + λ4
)

(−λ3 + λ1) (−λ3 + λ2) (−λ3 + λ4)

x41 =−λ3
4

(
λ1λ2λ3c

2 − (λ1λ2 + λ1λ3 + λ2λ3) c + λ1 + λ2 + λ3
)

(−λ4 + λ1) (−λ4 + λ2) (−λ4 + λ3)
.

On the other hand, we know the relations between roots and coeffcients for p (x) such that

λ1 + λ2 + λ3 + λ4 = a (4.17)

λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4 = 0 (4.18)

λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4 = c (4.19)

λ1λ2λ3λ4 = 1 . (4.20)

By the way,

λ2λ3 + λ2λ4 + λ3λ4 = λ1 (λ2λ3 + λ2λ4 + λ3λ4)
1

λ1

(4.19)= (c − λ2λ3λ4)
1

λ1

(4.20)=
(

c − 1

λ1

)
1

λ1
. (4.21)

Thus we have

λ3
1

(
λ2λ3λ4c

2 − (λ2λ3 + λ2λ4 + λ3λ4) c + λ2 + λ3 + λ4

)
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(4.17),(4.20),(4.21)= λ3
1

(
1

λ1
c2 −

(
c − 1

λ1

)
1

λ1
c+ (a − λ1)

)
= λ3

1 ·
1

λ3
1

= 1 .

Therefore, x11 = − 1
(−λ1+λ2)(−λ1+λ3)(−λ1+λ4)

. By Lemma 4.4, if a ≥ 5, it is clear that
x11 > 0. For xj1, j = 2, 3, 4, we can discuss analogously. We get the proof for (2)
analogously. �

LEMMA 4.6. For p (x) = x4−ax3− cx+1, a, c ∈ Z, c ∈ {−a − 1,−a,−a + 1},
the following properties hold:

(1) If a ≥ 5, then {πeei}1≤i≤4 satisfies the good star property and the proto-tiles set
Ve is given by

Ve = {1 ∧ 2, 1 ∧ 3, 1 ∧ 4, 2 ∧ 3, 2 ∧ 4, 3 ∧ 4}
called V (0) in the table in the section 4.5. Moreover, E2 (σ ) has the POP prop-
erty. On the other hand, {πcei}1≤i≤4 satisfies the good star property and the
proto-tile set Vc is given by

Vc = {2 ∧ 1, 1 ∧ 3, 4 ∧ 1, 3 ∧ 2, 2 ∧ 4, 4 ∧ 3}
called V (2) in the table in the section 4.5. Moreover, E2 (θ) has the POP prop-
erty.

(2) If a ≤ −5, then {πeei}1≤i≤4 satisfies the good star property and the proto-tiles
set Ve is given by

Ve = {2 ∧ 1, 1 ∧ 3, 4 ∧ 1, 3 ∧ 2, 2 ∧ 4, 4 ∧ 3}
called V (2) in the table in the section 4.5. Moreover, E2 (σ ) has the POP prop-
erty. On the other hand, we see that {πcei}1≤i≤4 satisfies the good star property
and the proto-tiles set Vc is given by

Vc = {1 ∧ 2, 1 ∧ 3, 1 ∧ 4, 2 ∧ 3, 2 ∧ 4, 3 ∧ 4}
called V (0) in the section 4.5. Moreover, E2 (θ) has the POP property.

Proof. For (1). From Lemma 4.4, vi (1 ≤ i ≤ 4) of (4.15) are the eigenvectors
themselves and we know that Pe = L (v1, v2) and Pc = L (v3, v4). From the notation
of the inverse matrix of [v1, v2, v3, v4], we have πee1 = x11v1 + x21v2 and we know that

πee2 = πeAe1 = λ1x11v1 + λ2x21v2

πee3 = πeAe2 = λ2
1x11v1 + λ2

2x21v2

πee4 = πeAe3 = λ3
1x11v1 + λ3

2x21v2 .

Therefore, {πeei}1≤i≤4 satisfies the good star property since 1 < λ2 < λ1 and x11 ≥ 0,
x21 ≤ 0 by Lemma 4.5. So, we obtain Figure 18 and we see that the proto-tiles set is given
by

Ve = {1 ∧ 2, 1 ∧ 3, 1 ∧ 4, 2 ∧ 3, 2 ∧ 4, 3 ∧ 4} = V (0) .
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FIGURE 18. The image of {πeei }1≤i≤4in a ≥ 5.

Now let us operate the 2-dimensional extension E2 (σ ) to the proto-tiles of Ve, then we
obtain the following:

E2 (σ ) (0, 1 ∧ 2)= (0, σ (1) ∧ σ (2)) = (0, 2 ∧ 3)

E2 (σ ) (0, 1 ∧ 3)= (0, σ (1) ∧ σ (3)) = (0, 2 ∧ 4)

E2 (σ ) (0, 1 ∧ 4)=
(

a∑
k=1

(ce2 + (k − 1) e4, 2 ∧ 4)

)
+ (ce2 + ae4 − e1, 1 ∧ 2)

E2 (σ ) (0, 2 ∧ 3)= (0, σ (2) ∧ σ (3)) = (0, 3 ∧ 4)

E2 (σ ) (0, 2 ∧ 4)=
( −c∑

k=1

(−ke2, 2 ∧ 3)

)
+

(
a∑

k=1

(ce2 + (k − 1) e4, 3 ∧ 4)

)
+ (ce2 + ae4 − e1, 1 ∧ 3)

E2 (σ ) (0, 3 ∧ 4)=
( −c∑

k=1

(−ke2, 2 ∧ 4)

)
+ (ce2 + ae4 − e1, 1 ∧ 4) .

Therefore, we see that E2 (σ ) has the POP property.
Now let us consider on Pc, that is, we have πce1 = x31v3 + x41v4 and we know that

πce2 = πcAe1 = λ3x31v3 + λ4x41v4

πce3 = πcAe2 = λ2
3x31v3 + λ2

4x41v4

πce4 = πcAe3 = λ3
3x31v3 + λ3

4x41v4 .

Therefore {πcei}1≤i≤4 also satisfies the good star property since −1 < λ3 < λ4 < 0 and
x31 ≤ 0, x41 ≥ 0 by Lemma 4.5. So, we obtain Figure 19 and the proto-tiles set is given by

Vc = {2 ∧ 1, 1 ∧ 3, 4 ∧ 1, 3 ∧ 2, 2 ∧ 4, 4 ∧ 3} (= V (2)) .

Operating the 2-dimensional extension E2 (θ) to the proto-tiles of Vc, then we obtain
the following:

E2 (θ) (0, 2 ∧ 1) = (0, θ (2) ∧ θ (1)) =
(

a∑
k=1

((k − 1) e3, 1 ∧ 3)

)
+ (ae3 + ce1 − e4, 4 ∧ 1)
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FIGURE 19. The image of {πcei }1≤i≤4.

E2 (θ) (0, 1 ∧ 3) =
(

a−1∑
k=1

((k − 1) e3, 3 ∧ 2)

)
+

( −c∑
k=1

(ae3 − ke1, 2 ∧ 1)

)
+ (ae3 + ce1 − e4, 2 ∧ 4)

E2 (θ) (0, 4 ∧ 1) =
( −c∑

k=1

(ae3 − ke1, 1 ∧ 3)

)
+ (ae3 + ce1 − e4, 4 ∧ 3)

E2 (θ) (0, 3 ∧ 2) = (0, θ (3)∧ θ (2)) = (0, 2 ∧ 1)

E2 (θ) (0, 2 ∧ 4) = (0, θ (2)∧ θ (4)) = (0, 1 ∧ 3)

E2 (θ) (0, 4 ∧ 3) = (0, θ (4)∧ θ (3)) = (0, 3 ∧ 2) .

Therefore, we see that E2 (θ) has the POP property.
For the case of (2) a ≤ −5, we get the conclusion analogously. �
Proof of Theorem 4.2. The first part (1) is obtained by Lemma 4.6 in the case a ≤ −5,

a ≥ 5, and for each a (−5 ≤ a ≤ 5), we can check that the proto-tiles set Ve, Vc and the fact
that E2 (σ ) has the POP property explicitly (see the table in the section 4.5). The second
part (2), mentioned that the family of compact sets

{
γi∧j,e

}
, i ∧ j ∈ Ve (resp.

{
γi∧j,c

}
,

i∧j ∈ Vc) satisfies (N1), (N2), (N3) of the complex Pisot numeration system property, can
be obtained by the analogous proof of Theorem 3.31. �
4.4. Example of the complex Pisot numeration system

EXAMPLE 4.7. Let us consider the minimal polynomial

p (x) = x4 − x3 + 1 ,

then its companion matix A is given by

A =

⎡⎢⎢⎣
0 0 0 −1
1 0 0 0
0 1 0 0
0 0 1 1

⎤⎥⎥⎦
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FIGURE 20.

which is corresponding to (a, c) = (1, 0) in Theorem 4.2.
The eigenvalues of A satisfy

|λ1| = |λ2| > 1 > |λ3| = |λ4|
and the distributions {πeei}1≤i≤4 is as Figure 20. The proto-tiles set Ve is chosen as

Ve={1 ∧ 2, 1 ∧ 3, 1 ∧ 4, 2 ∧ 3, 2 ∧ 4, 3 ∧ 4}
=

{ }
.

Let us define the automorphism σ of F 〈1, 2, 3, 4〉 by

σ :

⎧⎪⎪⎨⎪⎪⎩
1→ 2
2→ 3
3→ 4
4→ 41−1

and using the automorphism σ, we see that the 2-dimentional extension E2 (σ ) from the
positive orientated face to the “patch” of faces is given by

E2 (σ ) (0, 1 ∧ 2) = (0, σ (1) ∧ σ (2)) = (0, 2 ∧ 3)

E2 (σ ) (0, 1 ∧ 3) = (0, 2 ∧ 4)

E2 (σ ) (0, 1 ∧ 4) =
(

0, 2 ∧ 41−1
)
= (0, 2 ∧ 4)+

(
f (4) , 2 ∧ 1−1

)
(∗)= (0, 2 ∧ 4)+ ((e4 − e1) , 1 ∧ 2)

E2 (σ ) (0, 2 ∧ 3) = (0, 3 ∧ 4)

E2 (σ ) (0, 2 ∧ 4) =
(

0, 3 ∧ 41−1
)

(∗)= (0, 3 ∧ 4)+ ((e4 − e1) , 1 ∧ 3)

E2 (σ ) (0, 3 ∧ 4) =
(

0, 4 ∧ 41−1
)
= (0, 4 ∧ 4)+

(
f (4) , 4 ∧ 1−1

)
(∗)= ((e4 − e1) , 1 ∧ 4)

where (∗) is the rearrangement which is introduced in the section 3. Then, we see that
E2 (σ ) has the POP-property (see Figure 21).

Starting (−e3, 3 ∧ 4), we see that

E2 (σ )3 (−e3, 3 ∧ 4) � πe (−e3, 3 ∧ 4) ,

moreover, let

Te =
{
πe (x, i ∧ j)

∣∣ πe (x, i ∧ j) ∈ πeE2 (σ )3n (−e3, 3 ∧ 4) for some n ∈ N
}
,
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FIGURE 21. πe (0, i ∧ j) and πeE2 (σ ) (0, i ∧ j), i ∧ j ∈ Ve.

then Te =⋃
πe(z,i∧j)∈Te

πe (z, i ∧ j) is the quasi-periodic tiling of Pe (see Figure 22).

Now we can find the octagonal patch Ue satisfying E2 (σ )3 Ue � Ue (see Figure 23):

Ue = ((−e3 − e1 − e2) , 1 ∧ 2)+ ((e4 − e1 − e3) , 1 ∧ 3)+ ((−e3 − e1) , 1 ∧ 4)

+ ((e4 − e1 − e2 − e3) , 2 ∧ 3)+ ((−e3 − e1 − e2) , 2 ∧ 4)+ (−e3, 3 ∧ 4)
.

Let us define

γi∧j := lim
n→∞A−nπeE2 (σ )n

(
xi∧j , i ∧ j

)
for

(
xi∧j , i ∧ j

) ∈ Ue.

Then, the family of the compact sets
{
cl

(
int

(
γi∧j

))}
i∧j∈Ve

has the following set equations:

Aγ1∧2 = γ2∧3 + πe (−2e4 + e1)

Aγ1∧3 = γ2∧4 + πee3

Aγ1∧4 = (γ2∧4 + πe (e3 + e1 − e4)) ∪ (γ1∧2 + πee3)

Aγ2∧3 = γ3∧4 + πe (e1 + e2)

Aγ2∧4 = (γ3∧4 + πe (−e2 − e4)) ∪ (γ1∧3 + πe (−e2 − e4))

Aγ3∧4 = γ1∧4 + πee3

(see Figure 23).
Moreover, we can see that

cl
(
int

(
γi∧j

)) = γi∧j , μe

(
∂γi∧j

) = 0 , and γ =
⋃

i∧j∈Ve

γi∧j is disjoint ,

therefore, we see that (A,P), P = {
γi∧j

}
i∧j∈Ve

is the complex Pisot numeration system.
The labeled graph (V ,E, i, t,L) is given by Figure 24.
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FIGURE 22. The quasi-periodic tiling Te.
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FIGURE 23.

FIGURE 24. The graph (V ,E, i, t,L).

FIGURE 25. The graph (V ,E, i, t, (φL)).

From the fact that

φ (πee1) = 1 , φ (πee2) = λ , φ (πee3) = λ2 , φ (πee4) = λ3 ,

the labeled graph (V ,E, i, t, (φL)) is given by Figure 25.
Therefore, let Ωi∧j be the labeled admissible sequence space which is starting from

the vertex i ∧ j by the labeled graph (V ,E, i, t, (φL)) and its element be (a1, a2, . . .) ,

ai ∈
{−2λ3 + 1, λ2,−λ3 + λ2 + 1, λ+ 1,−λ3 − λ

}
, then z ∈ φ

(⋃
i∧j∈Ve

γi∧j

)
is rep-

resented by z =∑∞
n=1 an−1λ

−n where an = φe

(
πef

(jn−1)
kn−1

)
.

4.5. Appendix: The table
Finally, we will show the table how the eigenvalues λi are distributed depending on

a, c ∈ Z. Notation on the table is as follows:
(1) “Comp” (“resp. Real”) means the complex (resp. real) number respectively.
(2) V (i), i = 0, 1, 2 are the set of the proto-tiles such that

V (0)= {1 ∧ 2, 1 ∧ 3, 1 ∧ 4, 2 ∧ 3, 2 ∧ 4, 3 ∧ 4}
V (1)= {1 ∧ 2, 3 ∧ 1, 1 ∧ 4, 2 ∧ 3, 4 ∧ 2, 3 ∧ 4}
V (2)= {2 ∧ 1, 1 ∧ 3, 4 ∧ 1, 3 ∧ 2, 2 ∧ 4, 4 ∧ 3} .
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On other pairs (a, c), c = −a − 1,−a,−a − 1, {λi}1≤i≤4 are totally real.
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