5,943 research outputs found

    Quantum walk sampling by growing seed sets

    Get PDF
    This work describes a new algorithm for creating a superposition over the edge set of a graph, encoding a quantum sample of the random walk stationary distribution. The algorithm requires a number of quantum walk steps scaling as Õ(m1/3δ−1/3), with m the number of edges and δ the random walk spectral gap. This improves on existing strategies by initially growing a classical seed set in the graph, from which a quantum walk is then run. The algorithm leads to a number of improvements: (i) it provides a new bound on the setup cost of quantum walk search algorithms, (ii) it yields a new algorithm for st-connectivity, and (iii) it allows to create a superposition over the isomorphisms of an n-node graph in time Õ(2n/3), surpassing the Ω(2n/2) barrier set by index erasure

    Quantum Loewner Evolution

    Full text link
    What is the scaling limit of diffusion limited aggregation (DLA) in the plane? This is an old and famously difficult question. One can generalize the question in two ways: first, one may consider the {\em dielectric breakdown model} η\eta-DBM, a generalization of DLA in which particle locations are sampled from the η\eta-th power of harmonic measure, instead of harmonic measure itself. Second, instead of restricting attention to deterministic lattices, one may consider η\eta-DBM on random graphs known or believed to converge in law to a Liouville quantum gravity (LQG) surface with parameter γ[0,2]\gamma \in [0,2]. In this generality, we propose a scaling limit candidate called quantum Loewner evolution, QLE(γ2,η)(\gamma^2, \eta). QLE is defined in terms of the radial Loewner equation like radial SLE, except that it is driven by a measure valued diffusion νt\nu_t derived from LQG rather than a multiple of a standard Brownian motion. We formalize the dynamics of νt\nu_t using an SPDE. For each γ(0,2]\gamma \in (0,2], there are two or three special values of η\eta for which we establish the existence of a solution to these dynamics and explicitly describe the stationary law of νt\nu_t. We also explain discrete versions of our construction that relate DLA to loop-erased random walk and the Eden model to percolation. A certain "reshuffling" trick (in which concentric annular regions are rotated randomly, like slot machine reels) facilitates explicit calculation. We propose QLE(2,1)(2,1) as a scaling limit for DLA on a random spanning-tree-decorated planar map, and QLE(8/3,0)(8/3,0) as a scaling limit for the Eden model on a random triangulation. We propose using QLE(8/3,0)(8/3,0) to endow pure LQG with a distance function, by interpreting the region explored by a branching variant of QLE(8/3,0)(8/3,0), up to a fixed time, as a metric ball in a random metric space.Comment: 132 pages, approximately 100 figures and computer simulation

    Expansion Testing using Quantum Fast-Forwarding and Seed Sets

    Get PDF
    Expansion testing aims to decide whether an nn-node graph has expansion at least Φ\Phi, or is far from any such graph. We propose a quantum expansion tester with complexity O~(n1/3Φ1)\widetilde{O}(n^{1/3}\Phi^{-1}). This accelerates the O~(n1/2Φ2)\widetilde{O}(n^{1/2}\Phi^{-2}) classical tester by Goldreich and Ron [Algorithmica '02], and combines the O~(n1/3Φ2)\widetilde{O}(n^{1/3}\Phi^{-2}) and O~(n1/2Φ1)\widetilde{O}(n^{1/2}\Phi^{-1}) quantum speedups by Ambainis, Childs and Liu [RANDOM '11] and Apers and Sarlette [QIC '19], respectively. The latter approach builds on a quantum fast-forwarding scheme, which we improve upon by initially growing a seed set in the graph. To grow this seed set we use a so-called evolving set process from the graph clustering literature, which allows to grow an appropriately local seed set.Comment: v3: final version to appear in Quantu

    Comparison of drought stress response and gene expression between a GM maize variety and a near-isogenic non-GM variety

    Get PDF
    Maize MON810, grown and commercialised worldwide, is the only cultivated GM event in the EU. Maize MON810, variety DKC6575, and the corresponding near-isogenic line Tietar were studied in different growth conditions, to compare their behaviour in response to drought. Main photosynthetic parameters were significantly affected by water stress in both GM and non –GM varieties to a similar extents. Though DKC6575 (GM) had a greater sensitivity in the early phase of stress response as compared with Tietar (non GM), after six days of stress they behaved similarly, and both varieties recovered from stress damage. Profiling gene expression in water deficit regimes and in a generalised water stress condition showed an up-regulation of many stress- responsive genes, but a greater number of differentially expressed genes was observed in Tietar, with genes belonging to transcription factor families and genes encoding HSPs, LEAs and detoxification enzymes. Since induction of these genes have been indicated from the literature as typical of stress responses, their activation in Tietar rather than in DKC6575 may be reminiscent of a more efficient response to drought. DKC6575 was also analysed for the expression of the transgene CryIAb (encoding the delta-endotoxin insecticidal protein) in water deficit conditions. In all the experiments, the CryIAb transcript was not influenced by water stress, but was expressed at a constant level.. This suggests that though possessing a different pattern of sensitivity to stress, the GM variety maintains the same expression level for the transgene

    Experimental device-independent certified randomness generation with an instrumental causal structure

    Full text link
    The intrinsic random nature of quantum physics offers novel tools for the generation of random numbers, a central challenge for a plethora of fields. Bell non-local correlations obtained by measurements on entangled states allow for the generation of bit strings whose randomness is guaranteed in a device-independent manner, i.e. without assumptions on the measurement and state-generation devices. Here, we generate this strong form of certified randomness on a new platform: the so-called instrumental scenario, which is central to the field of causal inference. First, we theoretically show that certified random bits, private against general quantum adversaries, can be extracted exploiting device-independent quantum instrumental-inequality violations. To that end, we adapt techniques previously developed for the Bell scenario. Then, we experimentally implement the corresponding randomness-generation protocol using entangled photons and active feed-forward of information. Moreover, we show that, for low levels of noise, our protocol offers an advantage over the simplest Bell-nonlocality protocol based on the Clauser-Horn-Shimony-Holt inequality.Comment: Modified Supplementary Information: removed description of extractor algorithm introduced by arXiv:1212.0520. Implemented security of the protocol against general adversarial attack

    Quantum Loewner evolution

    Get PDF
    What is the scaling limit of diffusion-limited aggregation (DLA) in the plane? This is an old and famously difficult question. One can generalize the question in two ways: first, one may consider the dielectric breakdown model η-DBM, a generalization of DLA in which particle locations are sampled from the η th power of harmonic measure, instead of harmonic measure itself. Second, instead of restricting attention to deterministic lattices, one may consider η-DBM on random graphs known or believed to conve rge in law to a Liouville quantum gravity (LQG) surface with parameter γ e [0,2]. In this generality, we propose a scaling limit candidate called quantum Loewner evolution, QLE(γ 2 ,η). QLE is defined in terms of the radial Loewner equation like radial stochastic Loewner evolution, except that it is driven by a measure-valued diffusion v t derived from LQG rather than a multiple of a standard Brownian motion. We formalize the dynamics of v t using a stochastic partial differential equation. For each γ e [0, 2], there are two or three special values of η for which we establish the existence of a solution to these dynamics and explicitly describe the stationary law of v t . We also explain discrete versions of our construction that relate DLA to loop-erased random walks and the Eden model to percolation. A certain "reshuffling" trick (in which concentric annular regions are rotated randomly, like slot-machine reels) facilitates explicit calculation. We propose QLE(2, 1) as a scaling limit for DLA on a random spanning-tree-decorated planar map and QLE(8/3, 0) as a scaling limit for the Eden model on a random triangulation. We propose using QLE(8/3, 0) to endow pure LQG with a distance function, by interpreting the region explored by a branching variant of QLE(8/3, 0), up to a fixed time, as a metric ball in a random metric space

    Quantum Loewner evolution

    Get PDF
    What is the scaling limit of diffusion-limited aggregation (DLA) in the plane? This is an old and famously difficult question. One can generalize the question in two ways: first, one may consider the dielectric breakdown model -DBM, a generalization of DLA in which particle locations are sampled from the the power of harmonic measure, instead of harmonic measure itself. Second, instead of restricting attention to deterministic lattices, one may consider -DBM on random graphs known or believed to converge in law to a Liouville quantum gravity (LQG) surface with parameter 2 Œ0; 2 . In this generality, we propose a scaling limit candidate called quantum Loewner evolution, QLE.2; /. QLE is defined in terms of the radial Loewner equation like radial stochastic Loewner evolution, except that it is driven by a measure-valued diffusion t derived from LQG rather than a multiple of a standard Brownian motion. We formalize the dynamics of t using a stochastic partial differential equation. For each 2 .0; 2 , there are two or three special values of for which we establish the existence of a solution to these dynamics and explicitly describe the stationary law of t . We also explain discrete versions of our construction that relate DLA to looperased random walks and the Eden model to percolation. A certain “reshuffling” trick (in which concentric annular regions are rotated randomly, like slot-machine reels) facilitates explicit calculation. We propose QLE.2; 1/ as a scaling limit for DLA on a random spanning-treedecorated planar map and QLE.8=3; 0/ as a scaling limit for the Eden model on a random triangulation. We propose using QLE.8=3; 0/ to endow pure LQG with a distance function, by interpreting the region explored by a branching variant of QLE.8=3; 0/, up to a fixed time, as a metric ball in a random metric space
    corecore