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Abstract

What is the scaling limit of diffusion limited aggregation (DLA) in the
plane? This is an old and famously difficult question. One can generalize the
question in two ways: first, one may consider the dielectric breakdown model
η-DBM, a generalization of DLA in which particle locations are sampled
from the η-th power of harmonic measure, instead of harmonic measure
itself. Second, instead of restricting attention to deterministic lattices, one
may consider η-DBM on random graphs known or believed to converge in
law to a Liouville quantum gravity (LQG) surface with parameter γ ∈ [0, 2].

In this generality, we propose a scaling limit candidate called quantum
Loewner evolution, QLE(γ2, η). QLE is defined in terms of the radial
Loewner equation like radial SLE, except that it is driven by a measure
valued diffusion νt derived from LQG rather than a multiple of a standard
Brownian motion. We formalize the dynamics of νt using an SPDE. For each
γ ∈ (0, 2], there are two or three special values of η for which we establish
the existence of a solution to these dynamics and explicitly describe the
stationary law of νt.

We also explain discrete versions of our construction that relate DLA
to loop-erased random walk and the Eden model to percolation. A cer-
tain “reshuffling” trick (in which concentric annular regions are rotated
randomly, like slot machine reels) facilitates explicit calculation.

We propose QLE(2, 1) as a scaling limit for DLA on a random spanning-
tree-decorated planar map, and QLE(8/3, 0) as a scaling limit for the Eden
model on a random triangulation. We propose using QLE(8/3, 0) to endow
pure LQG with a distance function, by interpreting the region explored by
a branching variant of QLE(8/3, 0), up to a fixed time, as a metric ball in
a random metric space.
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1 Introduction

1.1 Overview

The mathematical physics literature contains several simple “growth models” that
can be understood as random increasing sequences of clusters on a fixed underlying
graph G, which is often taken to be a lattice such as Z2. These models are used to
describe crystal formation, electrodeposition, lichen growth, lightning formation,
coral reef formation, mineral deposition, cancer growth, forest fire progression,
Hele-Shaw flow, water seepage, snowflake formation, oil dissipation, and many
other natural processes. Among the most famous and widely studied of these mod-
els are the Eden model (1961), first passage percolation (1965), diffusion limited
aggregation (1981), the dielectric breakdown model (1984), and internal diffusion
limited aggregation (1986) [Ede61, HW65, WJS81, WS83, NPW84, MD86], each
of which was originally introduced with a different physical motivation in mind.

This paper mainly treats the dielectric breakdown model (DBM), which is a family
of growth processes, indexed by a parameter η, in which new edges are added to
a growing cluster according to the η-th power of harmonic measure, as we explain
in more detail in Section 1.21. DBM includes some of the other models mentioned

1In [NPW84] growth is based on harmonic measure viewed from a specified boundary set
within a regular lattice like Z2. For convenience, one may identify the points in the boundary
set and treat them as a single vertex v. A cluster grows from a fixed interior vertex, and at each
growth step, one considers the function φ that is equal to 1 at v and 0 on the vertices of the
growing cluster — and is discrete harmonic elsewhere. The harmonic measure (viewed from v) of
an edge e = (v1, v2), with v1 in the cluster and v2 not in the cluster, is defined to be proportional
to φ(v2)−φ(v1) = φ(v2). We claim this is in turn proportional to the probability that a random
walk started at v first reaches the cluster via e (which is the definition of harmonic measure
we use for general graphs in this paper). We sketch the proof of this standard observation here
in this footnote. On Z2, φ(v2) is the probability that a random walk from v2 reaches v before
the cluster boundary, i.e., φ(v2) =

∑
P 4−|P | where P ranges over paths from v2 to v that do

not hit the cluster or v (until the end), and |P | denotes path length. Also, for each P , the
probability that a walk from v traces P in the reverse direction and then immediately follows e
to hit the cluster is given by 4−|P |/deg(v). Summing over P proves that φ(v2) is proportional
to the probability that a walk starting from v exits at e without hitting v a second time; this
is in turn proportional to the overall probability that a walk from v exits at e, which proves
the claim. Variants: One common variant is to consider the first time a walk from v hits a
cluster-adjacent vertex (instead of the first time it crosses a cluster-adjacent edge); this induces a
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above as special cases: when η = 0, DBM is equivalent to the Eden model, and
when η = 1, DBM is equivalent to diffusion limited aggregation (DLA), as noted
in [NPW84]. Moreover, first passage percolation (FPP) is a growing family of
metric balls in a metric space obtained by assigning i.i.d. positive weights to the
edges of G — and when the law of the weights is exponential, FPP is equivalent
(up to a time change) to the Eden model (see Section 1.2.1).

We would like to consider what happens when G is taken to be a random graph
embedded in the plane. Specifically, instead of using Z2 or another deterministic
lattice (which in some sense approximates the Euclidean structure of space) we will
define the DBM on random graphs that in some sense approximate the random
measures that arise in Liouville quantum gravity.

Liouville quantum gravity (LQG) was proposed in the physics literature by Polyakov
in 1981, in the context of string theory, as a canonical model of a random two-
dimensional Riemannian manifold [Pol81a, Pol81b], although it is too rough to
be defined as a manifold in the usual sense. By Riemann uniformization, any
two-dimensional simply connected Riemannian manifold M can be conformally
mapped to a planar domain D. If µ is the pullback to D of the area measure on
M, then the pair consisting of D and µ completely characterizes the manifoldM.
One way to define an LQG surface is as the pair D and µ with µ = eγh(z)dz, where
dz is Lebesgue measure on D, h is an instance of some form of the Gaussian free
field (GFF) on D, and γ ∈ [0, 2) is a fixed parameter. Since h is a distribution,
not a function, a regularization procedure is needed to make this precise [DS11a].
It turns out that one can define the mean value of h on a circle of radius ε, call this
hε(z), and then write µ = limε→0 ε

γ2/2eγhε(z)dz [DS11a] (and a slightly different
construction works when γ = 2 [DRSV12a, DRSV12b]).

Figure 1.1 illustrates one way to tile D with squares all of which have size of
order δ (for some fixed δ > 0) in the random measure µ. Given such a tiling,
one can consider a growth model on the graph whose vertices are the squares of
this grid. Another more isotropic approach to obtaining a graph from µ is to
sample a Poisson point process with intensity given by some large multiple of µ,
and then consider the Voronoi tesselation corresponding to that point process. A
third approach, which we explain in more detail below, is to consider one of the
random planar maps believed to converge to LQG in the scaling limit.

We are interested in all three approaches, but ultimately, the main purpose of
this paper is to produce a candidate for the scaling limit of an η-DBM process

harmonic measure on cluster-adjacent vertices and one may add new vertices via the η-th power
of this measure. The difference is analogous to the difference between site percolation and bond
percolation. Also, it is often natural to consider harmonic measure viewed from ∞ instead of
from a fixed vertex v.

4



γ = 1/2 γ = 1

γ = 3/2 γ = 2

Number of subdivisions performed ranging from 0 (left) to 12 (right).

Figure 1.1: To construct the figures above, first an approximate γ-LQG measure µ was

chosen by taking a GFF h on a fine (4096× 4096 = 212 × 212) lattice and constructing

the measure eγh(z)dz where dz is counting measure on the lattice (normalized so µ has

total mass 1). Then a small constant δ is fixed (here δ = 2−16) and one divides the large

square into four squares of equal Euclidean size, divides each of these into four squares

of equal Euclidean size, etc., except that if any square’s µ-area is less than δ, that square

is not further divided. Each square remaining in the end has µ-area less than δ, but the

µ-area of its diadic parent is greater than δ. Squares are colored by Euclidean size.
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on a γ-LQG surface (in the fine mesh, or δ → 0 scaling limit). We expect that
there is a universal scaling limit that does not depend on which approach we
take (at least if the discrete setup is sufficiently isotropic; see the discussion in
Section 1.2.2). Our goal is to show that (at least for some choices of γ and η)
there exists a process, which we call quantum Loewner evolution QLE(γ2, η), that
has the dynamic properties that we would expect a scaling limit to have.

For certain values of the parameters γ2 and η, which are illustrated in Figure 1.3,
we will be able to explicitly describe a stationary law of the growth process in
terms of quantum gravity. We will see that this growth process is similar to SLE
except that the point-valued “driving function” that one feeds into the Loewner
differential equation to obtain SLEκ (namely

√
κ times Brownian motion on a

circle) is replaced by a measure-valued driving function νt whose stationary law
corresponds to a certain boundary measure that appears in Liouville quantum
gravity. The time evolution of this measure is not nearly as easy to describe as
the time evolution of Brownian motion, and making sense of this evolution is one
of the main goals of this paper.

Let us explain this point a bit further. We will fix γ and an instance h of a free
boundary GFF (plus a deterministic multiple of the log function) on the unit disk
D. We will interpret the pair (D, h) as a γ-LQG quantum surface and seek to
define an increasing collection (Kt) of closed sets, indexed by t ∈ [0, T ] for some
T , starting with K0 = ∂D and growing inward within D toward the origin. We
assume that each Kt is a hull, i.e., a subset of D whose complement is an open
set containing the origin. (Note that if a growth model grows outward toward
infinity, one can always apply a conformal inversion so that the growth target
becomes the origin.) We will require that for each t the set Kt is a so-called local
set of the GFF instance h. This is a natural technical condition (see Section 4,
or the more detailed treatment in [SS13]) that essentially states that altering h
on an open set S ⊆ D does not affect the way that Kt grows before the first time
that Kt reaches S. In order to describe these growing sets Kt, we will construct
a solution to a type of differential equation imposed on a triple of processes, each
of which is indexed by a time parameter t ∈ [0, T ], for some fixed T > 0:

1. A measure ν on [0, T ] × ∂D whose first coordinate marginal is Lebesgue
measure. We write νt for the conditional probability measure (defined for
almost all t) obtained by restricting ν to {t} × ∂D. Let NT be the space of
measures ν of this type.

2. A family (gt) of conformal maps gt : D \ Kt → D, where for each t the
set Kt is a closed subset of D whose complement is a simply connected set
containing the origin. We require further that the sets Kt are increasing,
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i.e. Ks ⊆ Kt whenever s ≤ t, and that for all t ∈ [0, T ] we have gt(0) = 0
and g′t(0) = et. That is, the sets (Kt) are parameterized by the negative log
conformal radius of D \Kt viewed from the origin.2 Let GT be the space of
families of maps (gt) of this type.

3. A family (ht) of harmonic functions on D with the property that ht(0) = 0
for all t ∈ [0, T ] and the map [0, T ] × D → R given by (t, z) → ht(z) is
jointly continuous in t and z. Let HT be the space of harmonic function
families of this type.

The differential equation on the triple (νt, gt, ht) is a triangle of maps between
the sets NT , GT , and HT that describes how the processes in the triple (νt, gt, ht)
are required to be related to each other, as illustrated in Figure 1.2 and further
explained below. The triple involves a constant α that for now is unspecified. The
constant η will actually emerge a posteriori as a scaling symmetry of the map from
HT to NT that applies almost surely to the triples we construct. We will see that
when an LQG coordinate change is applied to (νt,D) (a change that preserves
quantum boundary length but changes harmonic measure viewed from zero) νt
is locally rescaled by the derivative of the map to the 2 + η power; Figure 1.4
explains heuristically why the scaling limit of η-DBM on a γ-LQG should have
such a symmetry. The definition of η and its relationship to α will be explained
in more detail in Section 1.4 and Section 3.

1. NT → GT : the process (gt) is obtained as the radial Loewner flow driven by
(νt), as further explained in Section 1.3. It turns out (see Theorem 1.1) that
Loewner evolution describes a one-to-one map from NT to GT .

2. GT → HT : for each t, the function ht is obtained from h by first letting
P t

harm(h) be the harmonic extension of the values of h from ∂(D \ Kt) to
D \ Kt, and then letting ht be the harmonic function on D defined by
ht = P t

harm(h) ◦ (g−1
t ) + Q log |(g−1

t )′|, with the additive constant chosen to
make ht(0) = 0. (Here Q = 2/γ+γ/2 and the addition of Q log |(g−1

t )′| comes
from the LQG coordinate change rule described in Section 1.2.5 below.)
Once h is fixed, this step essentially describes a map from GT to HT . We
say “essentially” because the harmonic extension P t

harm(h) is not necessarily
well-defined for all h and gt pairs, but it is almost surely defined under the
above-mentioned assumption that Kt is local; see Section 4 or [SS13].

2(−1) times the log of the conformal radius of D \Kt, viewed from the origin, is also called
the capacity of the Kt (though we caution that the term “capacity” has several other meanings
in other contexts).
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νt

gtht

ġt(z)=gt(z)
∫ u+gt(z)

u−gt(z)
dνt(u)

ht = Pt
harm(h) ◦ (g−1t ) + Q log |(g−1t )′|

dνt(u) = Z−1eαht(u)du

Radial Loewner flowExponentiation/

LQG coordinate change/harmonic extension

normalization

Figure 1.2: Visual sketch of the differential equation for the QLE dynamics. The
map that takes the process νt to the process gt is the most straightforward to
describe. It is simply Loewner evolution, and works for any νt we would want
to consider, see Theorem 1.1. This is the “differential” part of the equation,
since νt determines the time derivative of gt. The map from gt to ht is also
fairly straightforward, assuming h has been fixed in advance. Here P t

harm(h) is the
harmonic extension of the values of h from ∂(D \ Kt) to D \ Kt. (This notion
is defined precisely in the case that Kt is a local set in Section 4.) We usually
choose an additive constant for ht so that ht(0) = 0. Since the ht of interest
tend to blow up to ±∞ as one approaches ∂D, a limiting procedure is required
to make sense of the map from ht to νt. One approach is to define a continuous
approximation hnt to ht using the first n terms in the power series expansion of the
analytic function with real part ht. One can then let νt be the weak n→∞ limit
of the measures eαh

n
t (u)du on ∂D, normalized to be probability measures. Such an

approach makes sense provided that the process ht almost surely spends almost
all time on functions for which this limit exists.

3. HT → NT : νt is obtained by exponentiating αht on ∂D, for a given value α
(which depends on η and γ). Since the ht we will be interested in are almost
surely harmonic functions that blow up to ±∞ as one approaches ∂D, we
will have to use a limiting procedure: dνt = limn→∞Z−1

n,t e
αhnt (u)du where du

is Lebesgue measure on ∂D and hnt is (the real part of) the sum of the first n
terms in the power series expansion of the analytic function (with real part)
ht, and Zn,t =

∫
∂D
eαh

n
t (u)du. We would like to say that this step provides a

map from HT to NT , but in fact the map is only defined on the subset of
HT for which these limits exist for almost all time.3

3Alternatively, one could define ν ∈ NT as the weak n → ∞ limit of the measures
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γ2

η

0

1

−1

1 3 4

(2, 1)

(8/3, 0)

(1, 5/2)

(3, 1/2)

(4, 1/4)

(2,−1/8)

Figure 1.3: The solid orange curves illustrate the (γ2, η) pairs for which we are
able to construct and understand a QLE(γ2, η) process most explicitly. The curves

correspond to η ∈ {−1 , 3γ2

16
− 1

2
, 3
γ2
− 1

2
}, where γ2 ∈ (0, 4]. When (γ2, η) is on the

middle curve, our construction involves radial SLEκ with κ = 16/γ2. When (γ2, η)
is on the upper curve, it involves radial SLEκ with κ = γ2. The solid red dots are
phase transitions of the SLEκ curves used to construct QLE: (2,−1/8) corresponds
to κ = 8 and (4, 1/4) corresponds to κ = 4. The point (1, 5/2) corresponds to
κ = 1 and is a phase transition beyond which the QLE construction of this paper
becomes trivial — i.e., when κ ≤ 1, the construction (carried out naively) produces
a simple radial SLE curve independent of h (and the measures νt are point masses
for all t). The blue dots are points we are especially interested in. The point (2, 1)
is related to DLA on spanning-tree-decorated random planar maps. The point
(8/3, 0) is related to the Eden model on undecorated random planar maps, and
to the problem of endowing pure LQG with a distance function.

We remark that if we had h = 0, then the triangle in Figure 1.2 would say
that ht = Q log |(g−1

t )′| and that νt is given (up to multiplicative constant) by

Z−1n,teαh
n
t (u)dtdu on [0, T ]×∂D. This limit could conceivably exist even in settings for which the

νt did not exist for almost all t. To avoid making any assumptions at all about limit existence,
one could alternatively define a one-to-(possibly)-many map from each ht process in HT to the
set of all ν ∈ NT obtained as weak n → ∞ limit points of the sequence Z−1n,teαh

n
t (u)dtdu of

measures on [0, T ] × ∂D. With that approach, one might require only that ν be one of these
limit points. Although we do not address this point in this paper, we believe that it might
be possible, using these alternatives, to extend the solution existence results of this paper to
additional values of η and γ.
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u1 u1

u2 u2

ψ(u1)

ψ(u2)

ψ

K

Figure 1.4: Upper left: Suppose a discrete random triangulation is conformally
mapped to the disk, and the Eden model growing from the boundary inward takes
about N time units to absorb the cluster of triangles shown near u1, and also about
N units to absorb the cluster near u2. (Other not-shown triangles scattered around
the boundary are also added during that time.) Upper right: Now suppose that
we modify the initial setup by designating the hull K to be part of the boundary.
Intuitively, if the regions near u1 and u2 are small, this modification should not
affect the relative rate at which growth happens near u1 and u2. That is, there
should be some N ′ such that both clusters take about N ′ steps to be absorbed.
Bottom: A conformal map ψ : D \K → D with ψ(0) = 0 scales the region near
ui by about |ψ′(ui)|. The capacity corresponding to the shown blue cluster near
ψ(ui) is approximately |ψ′(ui)|2 times that of the original blue cluster near ui.
This suggests that if (νt) is the driving measure in the bottom figure and (ν̃t) is
the original driving measure in the upper left, and Ii is a small interval about ui,
then ν0(ψ(Ii)) should be roughly proportional to |ψ′(ui)|2ν̃0(Ii). In the η-DBM
model, one replaces |ψ′(ui)|2 by |ψ′(ui)|2+η because the rate at which particles
reach ui should also change by a factor roughly proportional to |ψ′(ui)|η.
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|(g−1
t (u))′|αQdu. This is precisely the deterministic evolution associated with the

DBM that is discussed, for example, in [RZ05] (except that the exponent αQ
given here is replaced by a single parameter −α). This deterministic evolution
has some smooth trivial solutions (for example the constant circular growth given
by letting ν be the uniform measure on [0, T ] × ∂D, and taking gt(z) = etz and
ht(z) = 0). For these solutions, we would not need to use limits to construct νt
from ht, since the measures eαht(u)du would be well defined. However, if one starts
with a generic harmonic function for h that extends smoothly to ∂D (instead of
simply h = 0) then the evolution can develop singularities in finite time, and once
one encounters the singularities it is unclear how to continue the evolution; this
issue and various regularization/approximation schemes to prevent singularity-
formation are discussed in [CM01, RZ05]. Even in the h = 0 case, Figure 1.2
suggests an interesting alternative to the regularization approaches of [CM01,
RZ05]. It suggests an exact (non-approximate) notion of what it means to be a
solution to the dynamics that makes sense even when singularities are present; the
approximation is only involved in making sense of the map from HT to NT . Since
the real aim in the h = 0 case is to define a natural probability measure on the
space of fractal solutions to the dynamics (which should describe the scaling limit
of DBM, at least in suitably isotropic formulations), one might hope that these
solutions would have some nice properties (perhaps a sort of almost sure fractal
self similarity, or long range approximate independence of ht boundary values)
that would allow the map from HT to NT to be almost surely well defined.

In this paper, we will take h to be the GFF (plus a deterministic multiple of
log | · |) and we will construct solutions to the dynamics of Figure 1.2 for α and Q
values that correspond (in a way we explain later) to the (γ2, η) values that lie on
the upper two curves in Figure 1.3. We will also argue that η = −1 corresponds
to α = 0, which yields a trivial solution corresponding to the bottom curve in
Figure 1.3. We remark that although this solution is “trivial” in the continuum,
the analogous statement about discrete graphs (namely that if a random planar
map model, conformally mapped to the disk in some appropriate way, scales to
LQG on the disk, then the (−1)-DBM on the random planar map has the dilating
circle process as a scaling limit) is still an open problem.

We will produce non-trivial continuum constructions for (the solid portions of) the
upper two curves in Figure 1.3 by taking subsequential limits of certain discrete-
time approximate processes defined using a radial version of the quantum gravity
zipper defined in [She10]. These approximate processes can themselves be in-
terpreted as non-lattice-based variants of η-DBM on a γ-LQG surface that are
designed to be isotropic and to have some extra conformal invariance symmetries
(here one grows small portions of SLE curves instead of adding small particles
of fixed Euclidean shape). The similarity between our approximations and DBM
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seems to support the idea that (at least for some (γ2, η) pairs) the processes we
construct are the “correct” continuum analogs of η-DBM on a γ-LQG surface.
The portion of the upper curve corresponding to γ2 ≤ 1 is degenerate in that the
approximation procedure used to construct the process νt, as described in Sec-
tion 6, would yield a point mass for almost all t (although we will discuss this case
in detail in this paper).

To each of these processes, we associate a discrete-time approximation of the triple
(νt, gt, ht), in which the time parameter takes values 0, δ, 2δ, · · · for a constant
δ. The most important property that these discrete-time processes have (which
distinguishes them from, e.g., the Hastings-Levitov approximations described in
[HL98]) is that the stationary law of the νt and the ht turn out to be exactly the
same for each discrete-time approximation (even as the time step size varies). This
rather surprising property is what allows us to understand the stationary law of
the δ → 0 limit (something that has never been possible, in the Euclidean γ = 0
case, for DBM approximation schemes like Hastings-Levitov). We find that the
limiting stationary law is exactly the same as the common stationary law of the
approximations, and this allows us to prove that the limit satisfies the dynamics of
Figure 1.2, and to prove explicit results about this limit, which we state formally
in Section 1.4.

We will see in Section 2 that the procedure we use to generate the continuum pro-
cess has discrete analogs, which give interesting relationships between percolation
and the Eden model, and also between loop-erased random walk and DLA. The
reader who wishes to understand the key idea behind our construction (without
delving into the analytical machinery behind the quantum zipper) might begin
with Section 2.

Before we state our results more precisely, we present in Section 1.2 an overview
of several of the models and mathematical objects that will be treated in this
work. We also present, in Figures 1.5 through 1.13, computer simulations of
the Eden model and DLA on γ-LQG square tilings such as those represented in
Figure 1.1. In each of these figures we have δ = 2−16 (as explained in the caption
to Figure 1.1) which results in many squares of a larger Euclidean size (and hence
a more pixelated appearance) for the larger γ values. Figures 1.14, 1.15, and 1.17
show instances with larger γ but smaller δ values. Generally, the DLA simulations
for larger γ values appear to have characteristics in common with the γ = 0 case,
but there is more variability to the shapes when γ is larger. The large-γ, small-δ
DLA simulations such as Figure 1.17 sometimes look a bit like Chinese dragons,
with a fairly long and windy backbone punctuated by shorter heavily decorated
limbs.

Figures 1.18 and 1.19 show what happens when different instances of the Eden
model or DLA are performed on top of the same instance of a LQG square decom-
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position. These figures address an interesting question: how much of the shape
variability comes from the randomness of the underlying graph, and how much
from the additional randomness associated with the growth process? We believe
but cannot prove that in the Eden model case shown in Figure 1.18, the shape of
the cluster is indeed determined, to first order (as δ tends to zero), by the GFF in-
stance used to define the LQG measure. The deterministic (given h) shape should
be the metric ball in a canonical continuum metric space determined by the GFF.

On the continuum level, the authors are in the process of carrying out a program
for using QLE(8/3, 0) to endow a γ =

√
8/3 Liouville quantum gravity surface

with metric space structure, and to show that the resulting metric space is equiv-
alent in law to a particular random metric space called the Brownian map. But
this is not something we will achieve in this paper. (We describe forthcoming
works in more detail at the end of Section 9.)

Squares Eden model DLA

Figure 1.5: γ = 0

1.2 Background on several relevant models

1.2.1 First passage percolation and Eden model

The Eden growth model was introduced by Eden in 1961 [Ede61]. One constructs
a randomly growing sequence of clusters Cn within a fixed graph G = (V,E) as
follows: C0 consists of a single deterministic initial vertex v0, and for each n ∈ N,
the cluster Cn is obtained by adding one additional vertex to Cn−1. To obtain
this vertex, one samples uniformly from the set of edges that have exactly one
endpoint in Cn−1, and adds the endpoint of this edge that does not lie in Cn−1.

First passage percolation (FPP) in turn was introduced by Hammersley and Welsh
in 1965 [HW65]. We can construct a random metric on the vertices of the graph
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Squares Eden model DLA

Figure 1.6: γ = 1/4

Squares Eden model DLA

Figure 1.7: γ = 1/2

Squares Eden model DLA

Figure 1.8: γ = 3/4
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Squares Eden model DLA

Figure 1.9: γ = 1

Squares Eden model DLA

Figure 1.10: γ = 5/4

Squares Eden model DLA

Figure 1.11: γ = 3/2
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Squares Eden model DLA

Figure 1.12: γ = 7/4

Squares Eden model DLA

Figure 1.13: γ = 2

G obtained by weighting all edges of G with i.i.d. positive weights; the distance
between any two vertices is defined to be the infimum, over all paths between them,
of the weight sum along that path. We can then let Ct be the set of all vertices
whose distance from an initial vertex v0 is at most t. If we think of the weight of
an edge as representing the amount of time it takes a fluid to “percolate across”
the edge, and we imagine that a fluid source is hooked up to a vertex v0 at time
0, then Ct represents the set of vertices that “get wet” by time t. It is instructive
to think of Ct as a growing sequence of balls in a random metric space obtained
from the ordinary graph metric on G via independent local perturbations.

For a discrete time parameterization of FPP, we can instead let Cn be the set
containing v0 and the n vertices that are closest to v0 in this metric space. When
the law of the weight for each edge is that of an exponential random variable,
it is not hard to see (using the “memoryless” property of exponential random
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25% 50%

75% 100%

Time-parameterization.

Figure 1.14: An Eden model instance on a
√

8/3-LQG generated with an 8192×
8192 = 213×213 DGFF, where δ = 2−24. Shown in greyscale is the original square
decomposition (squares of larger Euclidean size are colored lighter). Using the
scale shown above, the colors indicate the radius of the ball as it grows relative
to the radius at which it first hits boundary of the square. This simulation is a
discrete analog of QLE(8/3, 0). See also Figure 1.15 and Figure 1.16.
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Time-parameterization.

Figure 1.15: Enlargement of final box in Figure 1.14.

variables) that the sequence of clusters Cn obtained this way agrees in law with
the sequence obtained in the Eden growth model.

An overall shape theorem was given by Cox and Durrett in [CD81] in 1981, which
dealt with general first passage percolation on the square lattice and showed that
under mild conditions on the weight distribution (which are satisfied in the case
of exponential weights described above) the set t−1Ct converges to a deterministic

18



Time-parameterization.

Figure 1.16: Eden model as in Figure 1.15 except that one only adds squares
on the outside (i.e., reachable by paths from infinity that don’t pass through the
cluster). The cluster appears to tend to hit regions with big squares but circumvent
regions with tiny squares. The number of colored squares is 213061 ≈ 217.7, and
each has µ mass less than a δ = 2−24 fraction of the total, with one caveat: our
simulation did not further subdivide the tiny 2−13 × 2−13 squares, so these can
have mass greater than a 2−24 fraction of the total. There are 3008224 ≈ 221.5

squares (colored and non-colored) in this figure, and most of the µ mass lies in
the tiny ones.
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Time-parameterization.

Figure 1.17: DLA on a
√

2-LQG generated with a 8192× 8192 = 213× 213 DGFF,
with δ = 2−26. Time is parameterized by the ratio of the number of particles in
the cluster over the number required for it to reach the concentric circle inside of
the square and is indicated using the color scale shown above. This simulation is
a discrete analog of QLE(2, 1).

shape (though not necessarily exactly a disk) in the limit. Vahidi-Asl and Wierman
proved an analogous result for first passage percolation on the Voronoi tesselation
(and the related “Delaunay triangulation”) later in the early 1990’s [VAW90,
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VAW92] and showed that in this case the limiting shape is actually a ball.

With a very quick glance at Figure 1.5, one might guess that the limiting shape of
the Eden model (whose existence is guaranteed by the Cox and Durrett theorem
mentioned above) is circular; but early and subsequent computer experiments
suggest that though the deterministic limit shape is “roundish” it is not exactly
circular (e.g., [FSS85, BH91]).

The fluctuations of t−1Ct away from the boundary of the deterministic limit are
of smaller order; with an appropriate rescaling, they are believed to have a scaling
limit closely related to the KPZ equation introduced by Kardar, Parisi, and Zhang
in 1986 [KPZ86]. Indeed, understanding growth models of this form was the
original motivation for the KPZ equation [KPZ86], see Section 1.2.8.

1.2.2 Diffusion limited aggregation (DLA)

Diffusion limited aggregation (DLA) was introduced by Witten and Sander in
1981 and has been used to explain the especially irregular “dendritic” growth
patterns found in coral, lichen, mineral deposits, and crystals [WJS81, WS83].4

Sander himself wrote a general overview of the subject in 2000 [San00]; see also
the review [Hal00].

The most famous and substantial result about planar external DLA to date is
Kesten’s theorem [Kes87], which states that the diameter of the DLA cluster ob-
tained after n particles have been added almost surely grows asymptotically at
most as fast as n2/3. Another way to say this is that by the time DLA reaches ra-
dius n (for all n sufficiently large), there are least n3/2 particles in the cluster. This
seems to suggest (though it does not imply) that any scaling limit of DLA should
have dimension at least 3/2.5 Although there is an enormous body of research on

4Note that here (and throughout the remainder of this paper) we use the term DLA alone
to refer to external DLA. The so-called internal DLA is a growth process introduced by Meakin
and Deutch in 1986 [MD86] to explain the especially smooth growth/decay patterns associated
with electropolishing, etching, and corrosion. Internal DLA clusters grow spherically with very
small (log order) fluctuations, much smaller than the fluctuations observed for the Eden model
on a grid. Although external DLA has had more attention in the physics literature, there has
been much more mathematical progress on internal DLA, beginning with works by Diaconis
and Fulton and by Lawler, Bramson, and Griffeath from the early 1990’s [DF91, LBG92]. More
recently, the second author was part of an IDLA paper series with Levine and Jerison that
describes the size and nature of internal DLA fluctuations in great detail and relates these
fluctuations to a variant of the GFF [JLS12, JLS10, JLS11], see also [AG13a, AG13b].

5In his 2006 ICM paper, Schramm discussed the problem of understanding DLA on Z2

and wrote that Kesten’s theorem “appears to be essentially the only theorem concerning two-
dimensional DLA, though several very simplified variants of DLA have been successfully anal-
ysed” [Sch07].
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Figure 1.18: Different instances of the Eden model drawn on the square tiling
shown in Figure 1.15. We expect that given an instance h of the GFF (which
determines the square decomposition for all δ), it is almost surely the case that
the shapes converge in probability to a limiting shape (depending only on h) as
δ → 0. The KPZ dynamics are conjecturally related to the fluctuations from the
limit shape when γ = 0 and δ tends to zero. We do not have an analog of this
conjecture for general γ.

22



the behavior of DLA simulations, even the most basic questions about the scaling
limit of DLA (such as whether the scaling limit is space-filling, or whether the
scaling limit has dimension greater than 1) remain unanswered mathematically.

The effects of lattice anisotropy on DLA growth also remain mysterious. We
mentioned above that limit shapes for FPP and Eden clusters need not be exactly
round — the anisotropy of the lattice can persist in the limit. Intuitively, this
makes sense: there is no particular reason, on a grid, to expect the rate of growth
in the vertical direction to be exactly the same as the rate of growth in a diagonal
direction. In the case of DLA, effects of anisotropy can be rather subtle, and it is
hard to detect anything anisotropic from a glance at a DLA cluster like the one
in Figure 1.5. Nonetheless, simulations suggest that anisotropy may also affect
scaling limits for DLA (perhaps by decreasing the overall scaling limit dimension
from about 1.7 to about 1.6). One recent overview of the scaling question (with
many additional references) appears in [Men12], and effects of anisotropy are
studied in [MS11]. There is some simulation-based evidence for universality among
different isotropic “off-lattice” formulations of DLA (which involve differently-
shaped dust particles performing Brownian motion until they attach themselves
to a growing cluster) [LYTZC12]. There is also some evidence that different types
of isotropic models (such as DLA and the so-called viscous fingering) have common
scaling limits [MPST06]. Meakin proposed already in 1986 that off-lattice DLA
and DLA on systems with five-fold or higher symmetry belong to one universality
class, while DLA on systems with lower symmetry belong to one or more different
universality classes [Mea86].

In the DLA simulations generated in this paper, the square to add to a cluster is
essentially chosen by running a Brownian motion from far away and choosing the
first cluster-adjacent square the Brownian motion hits. This is a little different
from doing a simple random walk on the graph of squares started at a far away
target vertex (and it was actually a little easier to code efficiently). It is possible
that our approach is somehow “isotropic enough” to ensure that the growth models
in the simulations converge to a universal isotropic scaling limit as δ tends to zero,
but we do not know how to prove this. We stress that the QLE evolutions that
we construct in this paper are rotationally invariant, and can thus only be scaling
limits of growth models that have isotropic scaling limits.

1.2.3 Dielectric breakdown model and the Hastings-Levitov model

As mentioned above, when FPP weights are exponential, the growth process se-
lects new edges from counting measure on cluster-adjacent edges, i.e., according
to the Eden model. DLA is the same but with counting measure replaced by
harmonic measure viewed from a special point (or from infinity).
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Figure 1.19: Different instances of DLA on a common γ =
√

2 LQG tiling.
Same 8192 × 8192 DGFF as in Figure 1.17 with the same value of δ. There are
some macroscopic differences between the instances, but we do not know whether
these differences will remain macroscopic in the limit as δ → 0. Similarly, in our
continuum formulation, we do not know whether QLE(2, 1) is determined by the
quantum surfaces on which it is drawn.

Niemeyer, Pietronero, and Wiesmann introduced the dielectric breakdown model
(DBM) in 1984 [NPW84]. Like SLE and LQG, it is a family of models indexed
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by a single real parameter, which in [NPW84] is called η. As noted in [NPW84],
η-DBM can be understood as a hybrid between DLA and the Eden model. If
µ is counting measure on the harmonically exposed edges, and ν is harmonic
measure, then the DBM model involves choosing a new edge from the measure µ
weighted by (∂ν/∂µ)η (multiplied by a constant to produce a probability measure).
Equivalently, we can consider ν weighted by (∂µ/∂ν)1−η, also multiplied by a
normalizing constant to produce a probability measure. Observe that 0-DBM is
then the Eden growth model, while 1-DBM is external DLA.

The DBM models are believed to be related to the so-called α-Hastings-Levitov
model when α = η+ 1[HL98]. (The α used in Hastings-Levitov is not the same as
the α used in this paper describe QLE dynamics.) The Hastings-Levitov model
is constructed in the continuum using Loewner chains (rather than on a lattice).
It was introduced by Hastings and Levitov in 1998 as a plausible and simpler
alternative to DLA and DBM, with the expectation that it would agree with these
other models in the scaling limit but that it might be simpler to analyze [HL98].
In the Hastings-Levitov model one always samples the location of a new particle
from harmonic measure, but the size of the new particle varies as the α power of
the derivative of the normalizing conformal map at the location where the point is
added. This model itself is now the subject of a sizable literature that we will not
attempt to properly survey here. See for example works of Carleson and Makarov
[CM01] (obtaining growth bounds analogous to Kesten’s bound for DLA), Rohde
and Zinsmeister [RZ05] (analyzing scaling limit dimension and other properties
for various α ∈ [0, 2], discussing the possibility of an α = 1 phase transition from
smooth to turbulent growth), Norris and Turner [NT12] (proof of convergence in
the α = 0 case to a growing disk and a connection to the Brownian web), and
the reference text [GV06]. In our terminology, the scaling limit of the α-Hastings-
Levitov model should correspond to QLE(0, α − 1), and the α ∈ [0, 2] family
studied in [RZ05] should correspond to the points in Figure 1.3 along the vertical
axis with η ∈ [−1, 1].

1.2.4 Gaussian free field

The Gaussian free field (GFF) is a Gaussian random distribution on a planar
domain D, which can be interpreted as a standard Gaussian in the Hilbert space
described by the so-called Dirichlet inner product. It has free and fixed boundary
analogs, as well as discrete variants defined on a grid; see the GFF survey [She07].
We defer a more detailed discussion of the GFF until Section 4
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1.2.5 Liouville quantum gravity

Liouville quantum gravity, introduced in the physics literature by Polyakov in 1981
in the context of string theory, is a canonical model of a random two-dimensional
Riemannian manifold [Pol81a, Pol81b]. One version of this construction involves
replacing the usual Lebesgue measure dz on a smooth domain D with a random
measure µh = eγh(z)dz, where γ ∈ [0, 2] is a fixed constant and h is an instance
of (for now) the free boundary GFF on D (with an additive constant somehow
fixed). Since h is not defined as a function on D, one has to use a regularization
procedure to be precise. Namely, one defines hε(z) to be the mean value of h on
the circle ∂B(z, ε), and takes the measure µ to be the weak limit of the measures

εγ
2/2eγhε(z)dz

as ε tends to zero [DS11a]. On a linear segment of ∂D, a boundary measure νh on
∂D can be similarly defined as

lim
ε→0

εγ
2/4e(γ/2)hε(u)du,

where in this case hε is the mean of h on the semicircle D ∩ ∂B(u, ε) [DS11a]. (A
slightly different procedure is needed to construct the measure in the critical case
γ = 2 [DRSV12a, DRSV12b].)

We could also parameterize the same surface with a different domain D̃. Suppose
ψ : D̃ → D is a conformal map. Write h̃ for the distribution on D̃ given by
h ◦ψ+Q log |ψ′| where Q := 2

γ
+ γ

2
. Then it is shown in [DS11a] that µh is almost

surely the image under ψ of the measure µh̃. That is, µh̃(A) = µh(ψ(A)) for

A ⊆ D̃.6 A similar argument to the one in [DS11a] mentioned above shows that
the boundary length νh is almost surely the image under ψ of the measure νh̃.
(This also allows us to make sense of νh on domains with non-linear boundary.)mc

We define a quantum surface to be an equivalence class of pairs (D, h) under
the equivalence transformations

(D, h)→ (ψ−1(D), h ◦ ψ +Q log |ψ′|) = (D̃, h̃). (1.1)

The measures µh and νh are almost surely highly singular objects with fractal
structure, and thus we cannot understand LQG random surfaces as smooth man-
ifolds. Nonetheless quantum surfaces come equipped with well-defined notions of
conformal structure, area, and boundary length.

6The reader can also verify this fact directly; the first term in Q is related to the ordinary
change of measure formula, since the term 2

γ log |ψ′| in h̃ corresponds to a factor of |ψ′|2 in the

µh̃ definition. The term γ
2 log |ψ′| compensates for the rescaling of the ε that appears in the

definition of µh̃.

26



Figure 1.20: γ =
√

8/3 Eden model on graph obtained when h is the GFF plus
j log | · |, where j ∈ {−4,−3,−2, . . . , 2, 3, 4} (read left to right, top to bottom).
Upper left figure has smaller squares in center, bigger squares on outside. Bottom
right has bigger boxes in center, smaller boxes outside.

1.2.6 Random planar maps

The number of planar maps with a fixed number of vertices and edges is finite,
and there is an extensive literature on the enumeration of planar maps, begin-
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Figure 1.21: γ =
√

2 DLA drawn on graph obtained when h is the GFF plus
j log | · |, where j ∈ {−4,−3,−2, . . . , 2, 3, 4} (read left to right, top to bottom).
Upper left figure has smaller squares in center, bigger squares on outside. Bottom
right has bigger boxes in center, smaller boxes outside.

ning with the works of Mullin and Tutte in the 1960’s [Tut62, Mul67, Tut68].
On the physics side, various types of random planar maps were studied in great
detail throughout the 1980’s and 1990’s, in part because of their interpretation
as “discretized random surfaces.” (See [DS11a] for a more extensive bibliography
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on planar maps and Liouville quantum gravity.) The metric space theory of ran-
dom quadrangulations begins with an influential bijection discovered by Schaeffer
[Sch97], and earlier by Cori and Vauquelin [CV81]. Closely related bijections of
Bouttier, Di Franceso, and Guitter [BDFG04] deal with planar maps with face
size restrictions, including triangulations. Subsequent works by Angel [Ang03a]
and by Angel and Schramm [AS03] have explained the uniform infinite planar
triangulation (UITP) as a subsequential limit of planar triangulations.

Although microscopic combinatorial details differ, there is one really key idea that
underlies much of the combinatorial work in this subject: namely, that instead of
considering a planar map alone, one can consider a planar map together with a
spanning tree. Given the spanning tree, one often has a notion of a dual spanning
tree, and a path that somehow goes between the spanning tree and the dual
spanning tree. It is natural to fix a root vertex for the dual tree and an adjacent
root vertex for the tree. Then as one traverses the path, one can keep track of
a pair of parameters in Z2

+: one’s distance from a root vertex within the tree,
and one’s distance from the dual root within the dual tree. Mullin in 1967 used
essentially this construction to give a way of enumerating the pairs (M,T ) where
M is a rooted planar map on the sphere with n edges and T is distinguished
spanning tree [Mul67]. These pairs correspond precisely to walks of length 2n
in Z2

+ that start and end at the origin. (The bijection between tree-decorated
maps and walks in Z2

+ was more explicitly explained by Bernardi in [Ber07]; see
also the presentation and discussion in [She11], as well as the brief overview in
Section 2.3.1.) As n tends to infinity and one rescales appropriately, one gets a
Brownian excursion on R2 starting and ending at 0.

The Mullin bijection gives a way of choosing a uniformly random (M,T ) pair, and
if we ignore T , then it gives us a way to choose a random M where the probability
of a given M is proportional to the number of spanning trees that M admits.
If instead we had a way to choose randomly from a subset S of the set of pairs
(M,T ), with the property that each M belonged to at most one pair (M,T ) ∈ S,
then this would give us a way to sample uniformly from some collection of maps
M . The Cori-Vauquelin-Schaeffer construction [CV81, Sch97] suggests a way to do
this: in this construction, M is required to be a quadrangulation, and a “tree and
dual tree” pair on M are produced from M in a deterministic way. (The precise
construction is simple but a bit more complicated than the Mullin bijection. One
of the trees is a breadth first search tree of M consisting of geodesics, and the other
is something like a dual tree defined on the same vertices, but with some edges that
cross the quadrilaterals diagonally and some edges that overlap the tree edges.)
As one traces the boundary of the dual tree, the distance from the root in the dual
tree changes by ±1 at each step, while the distance in the geodesic tree changes by
either 0 or ±1. Schaeffer and Chassaing showed that this distance function should
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scale to a two-dimensional continuum random path called the Brownian snake, in
which the first coordinate is a Brownian motion (and the second coordinate comes
from a Brownian motion indexed by the continuum random tree defined by the
first Brownian motion) [CS04].

Another variant due to the second author appears in [She11], where the trees are
taken to be the exploration trees associated with a random planar map together
with a random FK random cluster on top of it. In fact, the construction in [She11],
described in terms of a “hamburgers and cheeseburgers” inventory management
process, is a generalization of the work of Mullin [Mul67]. We stress that the walks
on Z2

+ that one finds in both [Mul67] and [She11] have as scaling limits forms of
two-dimensional Brownian motion (in [She11] the diffusion rate of the Brownian
motion varies depending on the FK parameter), unlike the walks on Z2

+ given in
[Sch97, CS04] (which scale to the Brownian snake described above).

1.2.7 The Brownian map

The Brownian map is a random metric space equipped with an area measure.
It can be constructed from the Brownian snake, and is believed to be in some
sense equivalent to a form of Liouville quantum gravity when γ =

√
8/3. The

idea of the Brownian map construction has its roots in the combinatorial works of
Schaeffer and of Chassaing and Schaeffer [Sch97, CS04], as discussed just above in
Section 1.2.6, where it was shown that certain types of random planar maps could
be described by a random tree together with a random labeling that determines
a dual tree, and that this construction is closely related to the Brownian snake.

The Brownian map was introduced in works by Marckert and Mokkadem and by Le
Gall and Paulin [MM06, LGP08]. For a few years, the term “Brownian map” was
often used to refer to any one of the subsequential Gromov-Hausdorff scaling limits
of random planar maps. Because it was not known whether the limit was unique,
the phrase “a Brownian map” was sometimes used in place of “the Brownian map”.
Works by Le Gall and by Miermont established the uniqueness of this limit and
showed that it is equivalent to a natural metric space constructed directly from
the Brownian snake [LG10, Mie13, LG13]. Infinite planar quadrangulations on
the half plane or the plane and the associated infinite volume Brownian maps are
discussed in [CM12, CLG12].

1.2.8 KPZ: Kardar-Parisi-Zhang

As mentioned briefly in Section 1.2.1, Kardar, Parisi, and Zhang introduced a
formal stochastic partial differential equation in 1986 in order to describe the
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fluctuations from the deterministic limit shape that one finds in the Eden model
on a grid (as in Figure 1.5) or in related models such as first passage percolation
[KPZ86]. As described in [KPZ86], the equation is a type of ill-posed stochastic
partial differential equation, but one can interpret the log of the stochastic heat
equation with multiplicative noise as in some sense solving this equation (this
is called the Hopf-Cole solution). The Eden model fluctuations are believed to
scale to a “fixed point” of the dynamics defined this way; see the discussion by
Corwin and Quastel in [CQ11], as well as the survey article [Cor12]. Other recent
discussions of this point include e.g. [CMB96, AOF11].

One interesting question for us is what the analog of the KPZ growth equation
should be for the random graphs described in this paper. Figure 1.15 shows differ-
ent instances of the Eden model drawn on the square tiling shown in Figure 1.15.
Although they appear to be roughly the same shape, there are clearly random
fluctuations and at present we do not have a way to predict the behavior or even
the magnitude of these fluctuations (though we would guess that the magnitude
decays like some power of δ).

1.2.9 KPZ: Knizhnik-Polyakov-Zamolodchikov

A natural question is whether discrete models for random surfaces (built com-
binatorially by randomly gluing together small squares or triangles) have Liou-
ville quantum gravity as a scaling limit. Polyakov became convinced in the af-
firmative in the 1980’s after jointly deriving, with Knizhnik and Zamolodchikov,
the so-called KPZ formula for certain Liouville quantum gravity scaling dimen-
sions and comparing them with known combinatorial results for the discrete
models [KPZ88, Pol08]. Several precise conjectures along these lines appear in
[DS11a, She10] and the KPZ formula was recently formulated and proved mathe-
matically in [DS11a]; see also [DS09].

To describe what the KPZ formula says, suppose that a constant γ ∈ [0, 2], a
fractal planar set X, and an instance h of the GFF are all fixed. The set X can
be either deterministic or random, as long as it is chosen independently from h.
Then for any δ one can generate a square decomposition of the type shown in
Figure 1.1 and ask whether the expected number of squares intersecting X scales
like a power of δ. One form of the KPZ statement proved in [DS11a] is that if
the answer is yes when γ = 0 (the Euclidean case) then the answer is also yes
for any fixed (positive) γ ∈ (0, 2), and the Euclidean and quantum exponents
satisfy a particular quadratic relationship (depending on γ). Formulations of
this statement in terms of Hausdorff dimension (and a quantum-surface analog of
Hausdorff dimension) in one and higher dimensions appear respectively in [BS09b,
RV11]; see also [DRSV12a, DRSV12b] for the case γ = 2.
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One important thing to recognize for this paper is that the KPZ formula only
applies when X and h are chosen independently of one another. This independence
assumption is natural in many contexts—for example, one sometimes expects the
scaling limit of a random planar map decorated with a path (associated to some
statistical physics model) to be an LQG surface decorated with an SLE-curve that
is in fact independent of the field h describing the LQG surface [She10, DS11b].
However, we do not expect the Euclidean and quantum dimensions of the QLE
traces constructed in this paper to be related by the KPZ formula, because these
random sets are not independent of the GFF instance h.

1.2.10 Schramm Loewner evolution

SLEκ (κ > 0) is a one-parameter family of conformally invariant random curves,
introduced by Oded Schramm in [Sch00] as a candidate for (and later proved to
be) the scaling limit of loop erased random walk [LSW04] and the interfaces in
critical percolation [Smi01, CN06]. Schramm’s curves have been shown so far
also to arise as the scaling limit of the macroscopic interfaces in several other
models from statistical physics: [Smi10, CS12, SS05, SS09, Mil10]. More detailed
introductions to SLE can be found in many excellent survey articles of the subject,
e.g., [Wer04, Law05].

Given a simply connected planar domain D with boundary points a and b and
a parameter κ ∈ [0,∞), the chordal Schramm-Loewner evolution SLEκ is
a random non-self-crossing path in D from a to b. In this work, we will be
particularly concerned with the so-called radial SLEκ, which is a random non-self-
crossing path from a fixed point on ∂D to a fixed interior point in D. Like chordal
SLE, it is completely determined by certain conformal symmetries [Sch00].

The construction of SLE is rather interesting. When D = D is the unit disk, the
radial SLE curve can be parameterized by a function U : [0,∞)→ ∂D. However,
instead of constructing the curve directly, one constructs for each t the conformal
map gt : Dt → D, where Dt is the complementary component7 of the curve drawn
up to time t which contains 0, with gt(0) = 0 and g′t(0) > 0. For u ∈ ∂D and
z ∈ D, let

Ψ(u, z) =
u+ z

u− z and Φ(u, z) = zΨ(u, z). (1.2)

For each fixed z, the value gt(z) is defined as the solution to the ODE

ġt(z) = Φ(Ut, gt(z)), (1.3)

7Here “complementary component of” means “component of the complement of”.
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where Ut = ei
√
κBt and Bt is a standard Brownian motion. More introductory

material about SLE appears in Section 4.1.

SLE is relevant to this paper primarily because of its relevance to Liouville quan-
tum gravity and the so-called quantum gravity zipper described by the second
author in [She10]. Roughly speaking, the constructions there allow one to form
one LQG surface by “cutting” another LQG surface along an SLE path. In fact,
one can do this in such a way that the new (cut) surface has the same law as
the original (uncut) surface. This will turn out to be extremely convenient as we
construct and study the quantum Loewner evolution.

1.3 Measure-driven Loewner evolution

We consider an analog of Loewner evolution, also called the Loewner-Kufarev
evolution, in which the point-valued driving function is replaced by a measure-
valued driving function:

ġt(z) =

∫

∂D

Φ(u, gt(z))dνt(u), (1.4)

(recall (1.2)) where, for each time t, the measure νt is a probability measure on ∂D.
For each time t, the map gt is the unique conformal map from D \Kt to D with
gt(0) = 0 and g′t(0) > 0, for some hull Kt. Time is parameterized so that g′t(0) = et

(this is the reason that νt is normalized to be a probability measure). That is, the
log conformal radius of D \Kt, viewed from the origin, is given by −t. Given any
measure ν on [0, T ] × ∂D whose first coordinate is given by Lebesgue measure,
we can define νt to be the conditional measure obtained on ∂D by restricting the
first coordinate to t.

Unlike the space of point-valued driving functions indexed by [0, T ], the space of
measure-valued driving functions indexed by [0, T ] has a natural topology with
respect to which it is compact: namely the topology of weak convergence of mea-
sures on [0, T ]× ∂D.

We now recall a standard result, which can be found, for example, in [JVST12].
(A slightly more restrictive statement is found in [Law05].) Essentially it says that
NT together with with the notion of weak convergence, corresponds to the space
of capacity-parameterized growing hull processes in D (indexed by t ∈ [0, T ]),
with the notion of Carathéodory convergence for all t. (Recall that a sequence of
hulls K1, K2, . . . converges to a hull K in the Carathéodory sense if the conformal
normalizing maps from D \ Kj to D converge uniformly on compact subsets of
D \K to the conformal normalizing map from D \K to D.)
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Theorem 1.1. Consider the following:

(i) A measure ν ∈ NT .

(ii) An increasing family (Kt) of hulls in D, indexed by t ∈ [0, T ], such that
D \Kt is simply connected and includes the origin and has conformal radius
e−t, viewed from the origin. (In other words, for each t, there is a unique
conformal map gt : D \Kt → D with gt(0) = 0 and g′t(0) = et.)

There is a one-to-one correspondence between objects of type (i) and (ii). In this
correspondence, the maps gt are obtained from ν via (1.4), where νt is taken to
be the conditional law of the second coordinate of ν given that the first coordinate
is equal to t. Moreover, a sequence of measures ν1, ν2, . . . in NT converges weakly
to a limit ν if and only if for each t the functions g1

t , g
2
t , . . . corresponding to νi

converge uniformly to the function gt corresponding to ν on any compact set in
the interior of D \Kt.

For completeness, we will provide a proof of Theorem 1.1 in Section 6. The reader
may observe that the notion of Carathéodory convergence for all t ∈ [0, T ] is
equivalent to the notion of Carathéodory convergence for all t in a fixed countable
dense subset of [0, T ]. This can be used to give a direct proof of compactness of
the set of hull families described Theorem 1.1, using the topology of Carathéodory
convergence for all t.

1.4 Main results

1.4.1 Subsequential limits and compactness

The main purpose of this paper is to construct a candidate for what should be
the scaling limit of η-DLA on a γ-LQG surface (at least in sufficiently isotropic
formulations) for the (γ2, η) pairs which lie on the top two solid curves from
Figure 1.3.

Before presenting these results, let us explain one path that we will not pursue
in this paper. One natural approach would be to take a subsequential limit of η-
DLA on δ-approximations of γ-LQG (perhaps using an inherently isotropic setting,
such as the one involving Voronoi cells of a Poisson point process associated with
the LQG measure) and to simply define the limit to be a QLE(γ2, η). Using
Theorem 1.1 and the weak compactness ofNT , it should not be hard to construct a
triple (νt, gt, ht) coupled with a free field instance h, as in the context of Figure 1.2,
with the property that
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1. The sets Kt corresponding to gt are local.

2. The maps from νt to gt, and from gt to ht are as described in Figure 1.2.

The natural next step would then be to show that ht determines νt in the manner
of Figure 1.2. We consider this to be an interesting problem, and one that might
potentially be solvable by understanding (using the discrete approximations) how
νt restricted to a boundary arc would change when one added a constant to ht on
that boundary arc (see this list of open problems in Section 9).

However, we stress that even if this problem were solved, it would not immediately
give us an explicit description of the stationary law of νt. The main contribution
of this article is to construct a solution to the dynamics of Figure 1.2 for the (γ2, η)
pairs illustrated in Figure 1.3 and to explicitly describe the stationary law of the
corresponding νt. The construction is explicit enough to enable us to describe
basic properties of the QLE growth.

1.4.2 Theorem statements

Before presenting our main results, we need to formalize the scaling symmetry
illustrated in Figure 1.4, which in the continuum should be a statement (which
holds for any fixed t) about how the boundary measure νt changes when ht is locally
transformed via an LQG coordinate change. It is a bit delicate to formulate this,
since this should be an almost sure statement (i.e., it should hold almost surely for
the ht that one observes in a random solution, but not necessarily for all possible
ht choices) and one would not necessarily expect a coordinate change such as the
one described in Figure 1.4 to preserve the probability measure on ht, or even that
the law of the image would be absolutely continuous with respect to the law of
the original. However, we believe that it would be reasonable to expect the law
of the restriction of ht to the intervals Ii in Figure 1.4 to change in an absolutely
continuous way. (This is certainly the case when ht is a free boundary Gaussian
free field plus a smooth deterministic function; see the many similar statements in
[SS13].) In this case, one can couple two instances of the field in such a way that
one looks like a quantum coordinate change of the other (via a map such as the
one described in Figure 1.4) with positive probability. Given a coupling of this
type one can formalize the η-DBM scaling symmetry, as we do in the following
definition:

Definition 1.2. We say that a triple (νt, gt, ht) that forms a solution to the dynamics
described in Figure 1.2 satisfies η-DBM scaling if the following is true. Suppose
that we are given any two instances (νt, gt, ht) and (ν̃t, g̃t, h̃t) coupled in such
a way that for a fixed value of t0 ≥ 0 and a fixed conformal map ψ from a
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subset of D to D, there is a positive probability of the event A that h̃t0(u) =
ht0 ◦ψ(u) +Q log |ψ′(u)| for all u ∈ I where I is an arc of ∂D. More precisely, this
means that

lim
u→I
u∈D

(
h̃t0(u)− ht0 ◦ ψ(u)−Q log |ψ′(u)|

)
= 0

and it says that ht0 and h̃t0 are related by an LQG quantum coordinate change
(as in (1.1)). Then we have almost surely on A that

A 7→ νt0(ψ(A)) and A 7→
∫

A

|ψ′(u)|2+ηdν̃t0(u) (1.5)

agree as measures on I, up to a global multiplicative constant.

Our first result is the existence of stationary solutions to the dynamics described in
Figure 1.3 that satisfy η-DBM scaling for appropriate η values. (The existence of
the trivial solution corresponding to α = 0, νt given by uniform Lebesgue measure
for all t, and η = −1, i.e. to the bottom line in Figure 1.3, is obvious and hence
omitted from the theorem statement, since in this case the measures νt do not
depend on h and (1.5) is a straightforward change of coordinates.)

The particular law of h described in the theorem statement below (a free boundary
GFF with certain logarithmic singularity at the origin and another logarithmic
singularity at a prescribed boundary point) may seem fairly specific. Both singu-
larities are necessary for our particular method of constructing a solution to the
QLE dynamics (which uses ordinary radial SLE and the quantum gravity zipper).
However, we stress that once one obtains a solution for this particular law for h,
one gets for free a solution corresponding to any random h whose law is abso-
lutely continuous with respect to that law, since one can always weight the law of
the collection

(
h, (νt, gt, ht)

)
by a Radon-Nikodym derivative depending only on h

without affecting any almost sure statements.

In particular, it turns out that adding the logarithmic singularity (which is not too
large) centered at the uniformly chosen boundary point changes the overall law
of h in an absolutely continuous way (in fact the Radon-Nikodym derivative has
an explicit interpretation in terms of the total mass of a certain LQG boundary
measure; see the discussion in Section 4 and Section 5, or in [DS11a]). Also,
adding any finite Dirichlet energy function to h changes the law in an absolutely
continuous way. In particular, one could add to h a finite Dirichlet energy function
that agrees with a multiple of log | · | outside a neighborhood U of the origin; a
corresponding QLE would then be well defined up until the process first reaches
U . Since this can be done for any arbitrarily small U , one can obtain in this way a
(not-necessarily-stationary) solution to the QLE dynamics that involves replacing
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the multiple of the logarithm in the definition of h with another multiple of the
logarithm (or removing this term altogether).

Figures 1.20 and 1.21 illustrate the changes that occur in the simulations when
different multiples of log | · | are added to h. As explained in [She10, Section 1.6],
adding a log | · | singularity to the GFF has the interpretation of first starting off
with a cone and then conformally mapping to C with the conic singularity sent
to the origin. Adding a negative multiple of log | · | corresponds to an opening
angle smaller than 2π and a positive multiple corresponds to an opening angle
larger than 2π. This is why the simulations of the Eden model (resp. DLA) in
Figure 1.20 (resp. Figure 1.21) appear more and more round (resp. have more
arms) as one goes from left to right and then from top to bottom.

Theorem 1.3. For each γ ∈ (0, 2] and η such that (γ2, η) lies on one of the upper
two curves in Figure 1.3, there is a (νt, gt, ht) triple that forms a solution to the
dynamics described in Figure 1.2 and that satisfies η-DBM scaling. The triple can
be constructed using an explicit limiting procedure that involves radial SLEκ, where
κ = γ2, when (γ2, η) lies on the upper curve in Figure 1.3, and κ = 16/γ2 when
(γ2, η) lies on the middle curve. In this solution, the α appearing in Figure 1.3
is equal to − 1√

κ
and h is a free boundary GFF on D minus κ+6

2
√
κ

log | · | (which
will turn out to mean that there is an infinite amount of quantum mass in any
neighborhood of the origin) plus 2√

κ
log |z−·| where z is a uniformly chosen random

point on ∂D independent of the GFF. The pair (νt, ht) is stationary with respect
to capacity (i.e., minus log conformal radius) time.

The solutions described in Theorem 1.3 will be constructed as subsequential lim-
its of certain approximations involving SLE. Although we cannot prove that the
limits are unique, we can prove that every subsequential limit of these approxi-
mations has the properties described in Theorem 1.3 (and in particular has the
same stationary distribution, described in terms in of the GFF). We will write
QLE(γ2, η) to refer to one of these solutions. That these solutions satisfy the η-
DBM property will turn out to follow easily from the fact that ht, for each t ≥ 0,
is given by the harmonic extension of the boundary values of a form of the GFF
and νt is simply a type of LQG quantum measure corresponding to that GFF
instance; these points will be explained in Section 3 and Theorem 1.3.

In Section 7, we derive an infinite dimensional SDE which describes the dynamics
in time of the harmonic component (ht) of the QLE(γ2, η) solutions we construct
in the proof of Theorem 1.3. We will not restate the result here but direct the
reader to Section 7 for the precise form of the equation.

Our next result is the Hölder continuity of the complementary component of a
QLE(γ2, η) which contains the origin.
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Theorem 1.4. Fix γ ∈ (0, 2), let Q = 2/γ + γ/2, and let

∆ =
Q− 2

Q+ 2
√

2
. (1.6)

Fix ∆ ∈ (0,∆). Suppose that (νt, gt, ht) is one of the QLE(γ2, η) processes de-
scribed in Theorem 1.3. For each t ≥ 0, let Dt = D \ Kt. Then Dt is almost
surely a Hölder domain with exponent ∆. That is, for each t ≥ 0, g−1

t : D → Dt

is almost surely Hölder continuous with exponent ∆.

In fact, the proof of Theorem 1.4 will only use the fact the stationary law of ht
is given by the harmonic extension of the boundary values of a form of the GFF;
if we could somehow construct other solutions to the QLE dynamics with this
property, then this theorem would apply to those solutions as well.

Theorem 1.4 is a special case of a more general result which holds for any random
closed set A which is coupled with h in a certain manner. This is stated as
Theorem 8.1 in Section 8. Another special case of this result is the fact that the
complementary components of SLEκ for κ 6= 4 are Hölder domains. This fact was
first proved by Rohde and Schramm in [RS05, Theorem 5.2] in a very different
way. We will state this result formally and give additional examples in Section 8.

Suppose that K ⊆ D is a closed set. Then K is said to be conformally remov-
able if the only maps ϕ : D→ C which are homeomorphisms of D and conformal
on D \ K are the maps which are conformal transformations of D. The remov-
ability of the curves coupled with the GFF which arise in this theory is important
because it is closely related to the question of whether the curve is almost surely
determined by the GFF [She10]. One important consequence of Theorem 1.4 and
[JS00, Corollary 2] is the removability of component boundaries of a QLE(γ2, η)
when (γ2, η) lies on one of the upper two curves of Figure 1.3 and γ ∈ (0, 2).

Corollary 1.5. Suppose that we have the same setup as in Theorem 1.4. For each
t ≥ 0 we almost surely have that ∂Dt is conformally removable.

1.5 Interpretation and conjecture when η is large

In the physics literature, there has been some discussion and debate about what
happens to the η-DBM model (in the Euclidean setting, i.e., γ = 0) when η is
large. Generally, it is understood that when η is large, there could be a strong
enough preference for growth to occur at the “tip” that the scaling limit of η-
DBM could in principle be a simple path. There has been some discussion on the
matter of whether one actually obtains a one-dimensional path when η is above
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some critical value. Some support for this idea with a critical value of about
η = 4 appears in [Has01] and [MJ02]. (The latter contains a figure depicting a
simulation of the η = 3 DBM.) However, a later study estimates the dimension of
η-DBM in more detail and does not find evidence for a phase transition at η = 4,
and concludes that the dimension of η-DBM is about 1.08 when η = 4 [MJB08].
Another reasonable guess might be that the scaling limit of η-DBM is indeed a
simple path when η is large enough, but that the simple path may be an SLE with
a small value of κ (and not necessarily a straight line).

As a reasonable toy model for this scenario, and a model that is also interesting
in its own right, one may consider a variant of η-DBM in which, at each step,
one conditions on having the next edge added begin exactly at the tip of where
the last edge was added (so that a simple path is produced in the end). That is,
instead of choosing a new edge from the set of all cluster adjacent edges (with
probability proportional to harmonic measure to the η power) one chooses a new
edge from the set of edges beginning at the current tip of the path (again with
probability proportional to harmonic measure to the η power). This random non-
self-intersecting walk is sometimes called the Laplacian random walk (LRW) with
parameter η.8 Lawler has proposed (citing early calculations by Hastings) that
the η-LRW should have SLE as a scaling limit (on an ordinary grid) with

η = (6− κ)/(2κ), (1.7)

[Law06, LEP86, Has02] at least when η ≥ 1/4, which corresponds to κ ∈ (0, 4].
Interestingly, if we set κ = γ2 and η = b, then (1.7) states that η = 3/γ2 − 1/2,
which corresponds to the upper curve in Figure 1.3. Simulations have shown that
η-LRW for large η looks fairly similar to a straight line [BRH10], as one would
expect.

At this point, there are two natural guesses that come to mind:

1. Maybe the conjecture about η-LRW on a grid scaling to SLEκ holds in more
generality, so that the scaling limit of η-LRW on a γ-LQG is also given by
SLEκ with κ as in (1.7). (Note that it is often natural to guess that processes
that converge to SLE on fixed lattices also converge to SLE when drawn on
γ-LQG type random graphs, assuming the latter are embedded in the plane
in a conformal way [DS11a, She10].)

2. Maybe, for each fixed γ, it is the case that when η is large enough, the
scaling limit of η-DBM on a γ-LQG is the same as the scaling of η-LRW
on a γ-LQG. (If in the η-DBM model, the growth tends to take place near
the tip, maybe the behavior does not change so much when one requires the
growth to take place exactly at the tip.)

8The term “Laplacian-b random walk”, with parameter b = η, is also used.
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The authors do not have a good deal of evidence supporting these guesses. How-
ever it is interesting to observe that if these guesses are correct, then for sufficiently
large η, the η-DBM on a γ-LQG has a scaling limit given by SLEκ for the κ ob-
tained from (1.7), and this scaling limit does not actually depend on the value of
γ. If this is the case, then (at least for η sufficiently large) the dotted line in Fig-
ure 1.3 represents (γ2, η) pairs for which the scaling limit of η-DBM on a γ-LQG
is described by the ordinary radial quantum gravity zipper, which we describe in
Section 5. We remark that the η-DBM property as formulated above might be
satisfied in a fairly empty way for this process (when νt is a point mass for all t),
but the property may have some content if one considers an initial configuration
in which there are two or more distinct tips (i.e., νt contains atoms but is not
entirely concentrated at a single point).

We will not further speculate on the large η case or further discuss scenarios in
which νt might contain atoms. Indeed, throughout the remainder of the paper,
we will mostly limit our discussion to the solid portions of the upper two curves
in Figure 1.3, and the νt we construct in these settings will be almost surely
non-atomic for all almost all t.

1.6 Outline

The remainder of this article is structured as follows. In Section 2, we will describe
several discrete constructions which motivate our definition of QLE as well as our
interpretation of QLE(2, 1) and QLE(8/3, 0). Next, in Section 3, we will provide
arguments in the continuum that support the same interpretation for QLE(2, 1)
and QLE(8/3, 0) as well as relate the other parameter pairs indicated in orange
in Figure 1.3 to η-DBM. The purpose of Section 4 is to review some preliminaries
(radial SLE, GFF with Dirichlet and free boundary conditions, local sets, and
LQG boundary measures). In Section 5 we will establish a coupling between
reverse radial SLEκ and the GFF, closely related to the so-called quantum zipper
describe in [She10]. This will then be used in Section 6 to prove the existence of
QLE(γ2, η) for (γ2, η) which lies on one of the upper two curves from Figure 1.3.
We will then derive an equation for the stochastic dynamics of the measure which
drives a QLE(γ2, η) in Section 7. In Section 8 we will establish continuity and
removability results about QLE(γ2, η) and discussion the problem of describing
certain phase transitions for QLE. Finally, in Section 9 we will state a number of
open questions and describe some current works in progress.
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2 Discrete constructions

2.1 Reshuffled Markov chains

At the heart of our discrete constructions lies a very simple observation about
Markov chains. Consider a measure space S which is a disjoint union of spaces
S1, S2, . . . , SN . In the examples of this section, S will be a finite set. Suppose we
have a measure µi defined on each Si. Let X = (Xk) be any Markov chain on S
with the property that for any i, j, and S ⊆ Si, we have

P[Xj ∈ S|Xj ∈ Si] = µi(S).

This property in particular implies that the conditional law of X0, given that it
belongs to Si, is given by µi.

Then there is a reshuffled Markov chain Y = (Yk) defined as follows. First, Y0 has
the same law as X0. Then, to take a step in the reshuffled Markov chain from a
point x, one first chooses a point y ∈ S according to the transition rule for the
Markov chain X (from the point x), and then one chooses a new point z from
µj, where j is the value for which y ∈ Sj. The step from x to z is a step in the
reshuffled Markov chain (and subsequent steps are taken in the same manner).
Intuitively, one can think of the reshuffled Markov chain as a Markov chain in
which one imposes a certain degree of forgetfulness: if we are given the value Yi,
then in order to sample Yi+1 we can imagine that we first take a transition step
from Yi and then we “forget” everything we know about the new location except
which of the sets Sj it belongs to.

The reshuffled chain induces a Markov chain on {S1, S2, . . . , SN}. Now suppose
that A is a union of some of the Si and is a sink of this Markov chain (i.e., once
the Markov chain enters A, it almost surely does not leave). Then we have the
following:

Proposition 2.1. In the context described above, for each fixed j ≥ 0, the law of
Xj is equivalent to the law of Yj. Moreover, the law of min{j : Xj ∈ A} agrees
with the law of min{j : Yj ∈ A}.

Proof. The first statement holds for j = 0 and follows for all j > 0 by induction.
The second statement follows from the first, since for any j the probability that
A has been reached by step j is the same for both Markov chains.

Our aim in the next two subsections is to show two things:
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1. The Eden model on a random triangulation can be understood as a reshuffled
percolation interface exploration on that triangulation.

2. DLA on a random planar map can be understood as a reshuffled loop-erased
random walk on that map.

In order to establish these results, and to apply Proposition 2.1, we will need to
decide in each setting what information we keep track of (i.e., what information is
contained in the state Yi) and what information we forget (i.e., what information
we lose when we remember which Sj the state Yi belongs to and forget everything
else). In both settings, the information we keep track of will be

1. the structure of the “unexplored” region of a random planar map,

2. the location of a “target” within that region,

3. the location of a “tip” on the boundary of the unexplored region.

Also in both settings, the information that we “forget” is the location of the tip.
Thus we will replace a path that grows continuously with a growth process that
grows from multiple locations. In both cases, a natural sink (to which one could
apply Theorem 2.1) is the “terminal” state obtained when the exploration process
reaches its target. The total number of steps in the exploration path agrees in law
with the total number of steps in the reshuffled variant. We will also find additional
symmetries (and a “slot machine” decomposition) in the percolation/Eden model
setting.

2.2 The Eden model and percolation interface

2.2.1 Finite volume Eden/percolation relationship

The following definitions and basic facts are lifted from the overview of planar
triangulations given by Angel and Schramm in [AS03] (which cites many of these
results from other sources, including [Ang03b]). Throughout this section we con-
sider only so-called “type II triangulations,” i.e., triangulations whose graphs have
no loops but may have multiple edges. For integers n,m ≥ 0, [AS03] defines φn,m
to be the number of triangulations of a disc (rooted at a boundary edge) with
m+ 2 boundary edges and n internal vertices, giving in [AS03, Theorem 2.1] the
explicit formula9:

φn,m =
2n+1(2m+ 1)!(2m+ 3n)!

(m!)2n!(2m+ 2n+ 2)
. (2.1)

9In [AS03] a superscript 2 is added to φn,m to emphasize that the statement is for type II
triangulations. We omit this superscript since we only work with triangulations of this type.
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By convention φ0,0 = 1 because when the external face is a 2-gon, one possible way
to “fill in” the inside is simply to glue the external edges together, with no addi-
tional vertices, edges, or triangles inside (and this is in fact the only possibility).
As n→∞,

φn,m ∼ Cmα
nn−5/2, (2.2)

where α = 27/2 and

Cm =

√
3(2m+ 1)!

2
√
π(m!)2

(9/4)m ∼ C9mm1/2. (2.3)

(Both (2.2) and (2.3) are stated just after [AS03, Theorem 2.1].)

Figure 2.1 shows a triangulation T of the sphere with two distinguished edges e1

and e2, and the caption describes a mechanism for choosing a random path in the
dual graph of the triangulation, consisting of distinct triangles t1, t2, . . . , tk, that
goes from e1 to e2. It will be useful to imagine that we begin with a single 2-gon
and then grow the path dynamically, exploring new territory as we go. At any
given step, we keep track of the total number edges on the boundary of the already-
explored region and the number of vertices remaining to be seen in the component
of the unexplored region that contains the target edge. The caption of Figure 2.2
explains one step of the exploration process. This exploration procedure is closely
related to the peeling process described in [Ang03b], which is one mechanism for
sampling a triangulation of the sphere by “exploring” new triangles one at a time.
The exploration process induces a Markov chain on the set of pairs (m,n) with
m ≥ 0 and n ≥ 0. In this chain, the n coordinate is almost surely non-increasing,
and the m coordinate can only increase by 1 when the n coordinate decreases by 1.

Now consider the version of the Eden model in which new triangles are only added
to the unexplored region containing the target edge, as illustrated Figure 2.3.
In both Figure 2.1 and Figure 2.3, each time an exploration step separates the
unexplored region into two pieces (each containing at least one triangle) we refer
to the one that does not contain the target as a bubble. The exploration process
described in Figure 2.1 created two bubbles (the two small white components),
and the exploration process described in Figure 2.3 created one (colored blue).
We can interpret the bubble as a triangulation of a polygon, rooted at a boundary
edge (the edge it shares with the triangle that was observed when the bubble was
created).

The specific growth pattern in Figure 2.3 is very different from the one depicted
in Figure 2.1. However, the analysis used in Figure 2.2 applies equally well to
both scenarios. The only difference between the two is that in Figure 2.3 one
re-randomizes the seed edge (choosing it uniformly from all possible values) after
each step.
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Figure 2.1: Upper left: a triangulation of the sphere together with two distin-
guished edges colored green. Upper right: It is conceptually useful to “fatten”
each green edge into a 2-gon. We fix a distinguished non-self-intersecting dual-
lattice path p (dotted red line) from one 2-gon to the other. Bottom: Vertices
are colored red or blue with i.i.d. fair coins. There is then a unique dual-lattice
path from one 2-gon to the other (triangles in the path colored orange) such that
each edge it crosses either has opposite-colored endpoints and does not cross p, or
has same-colored endpoints and does cross p. The law of the orange path does not
depend on the choice of p, since shifting p across a vertex has the same effect as
flipping the color of that vertex. (Readers familiar with this terminology will rec-
ognize the orange path as a percolation interface of an antisymmetric coloring of
the double cover of the complement of the 2-gons. Here “antisymmetric” means
the two liftings of a vertex have opposite colors.) When the triangulations are
embedded in the sphere in a conformal way, the conjectural scaling limit of the
path is a whole plane SLE6 between the two endpoints.
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Figure 2.2: Begin with a polygon with m + 2 edges (for some m ≥ 0) and
a fixed seed edge on the boundary (from which the exploration will take place).
Suppose we wish to construct a triangulation of the polygon with n ≥ 0 additional
vertices in the interior. Observe by an easy induction argument that n and m
together determine the number of triangles in this triangulation: m + 2n. They
also determine the number of edges (including boundary edges): m+ 2 + 3n. The
total number of possible triangulations is φm,n, and for each triangulation there
are (m+ 2 + 3n) choices for the location of the green edge. The exploration ends
if the face incident to the seed edge is the green 2-gon, as in the right figure,
which has probability (m + 2 + 3n)−1. Conditioned on this not occurring, the
probability that we see a triangle with a new vertex (as in the left two figures)
is given by φm+1,n−1/φm,n, and given this, the two directions are equally likely
(and depend on the coin toss determining the vertex color). In the third and
fourth pictures, the exploration step involves deciding both the location of the
new vertex (how many steps it is away from the seed edge, counting clockwise)
and how many of the remaining interior vertices will appear on the right side. We
can work out the number of triangulations consistent with each choice: it is given
by the product φm1,n1φm2,n2 where (mi, ni) are the new (m,n) values associated
to the two unexplored regions. (The choices are constrained by m1 +m2 = m− 1
and n1 + n2 = n.) The probability of such a choice is therefore given by this
value divided by φm,n. Once that choice is made, we have to decide whether the
step corresponds to the third or fourth figure shown — i.e., whether the green
edge is somewhere in the left unexplored region or the right unexplored region.
The probability of it being in the first region is the number of edges in that region
divided by the total number of edges (excluding the seed edge, since we are already
conditioning on the seed not being the target): (m1 + 2 + 3n1)/(m + 1 + 3n). In
each of the first four figures, we end up with a new unexplored polygon-bounded
region known to contain the target green edge, and a new (m,n) pair. We may
thus begin a new exploration step starting with this pair and continue until the
target is reached.

In either of these models, we can define Ck to be the boundary of the target-
containing unexplored region after k steps. If (Mk, Nk) is the corresponding
Markov chain, then the length of Ck is Mk + 2 for each k. Let Dk denote the
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Figure 2.3: Same as Figure 2.1 except that one explores using the Eden model
instead of percolation. At each step, one chooses a uniformly random edge on
the boundary of the unexplored region containing the target and explores the face
incident to that edge. The faces are numbered according to the order in which
they were explored. When the unexplored region is divided into two pieces, each
with one or more triangles, the piece without the target is called a bubble and
is never subsequently explored by this process. In this figure there is only one
bubble, which is colored blue.

union of the edges and vertices in Ck, the edges and vertices in Ck−1 and the
triangle and bubble (if applicable) added at step k, as in Figure 2.4. We refer to
each Dk as a necklace since it typically contains a cycle of edges together with a
cluster of one or more triangles hanging off of it. The analysis used in Figure 2.2
(and discussed above) immediately implies the following (parts of which could also
be obtained from Proposition 2.1):

Proposition 2.2. Consider a random rooted triangulation of the sphere with a
fixed number n > 2 of vertices together with two distinguished edges chosen uni-
formly from the set of possible edges. (Using the Euler characteristic and the fact
that edges and faces are in 2 to 3 correspondence, it is clear that this triangulation
contains 2(n − 2) triangles and 3(n − 2) edges.) If we start at one edge and ex-
plore using the Eden model as in Figure 2.3, or if we explore using the percolation
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interface of Figure 2.1, we will find that the following are the same:

(i) The law of the Markov chain (Mk, Nk) (which terminates when the target
2-gon is reached).

(ii) The law of the total number of triangles observed before the target is reached.

(iii) The law of the sequence Dk of necklaces.

Indeed, one way to construct an instance of the Eden model process is to start
with an instance of the percolation interface exploration process and then randomly
rotate the necklaces in the manner illustrated in Figure 2.4.
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Figure 2.4: Left: the first four necklaces (separated by white space) generated by
an Eden model exploration. Middle: one possible way of identifying the vertices
on the outside of each necklace with those on the inside of the next necklace
outward. Right: The map with exploration associated to this identification.
If a necklaces has n vertices on its outer boundary, then there are n ways to
glue this outer boundary to the inner boundary of the next necklace outward.
It is natural to choose one of these ways uniformly at random, independently
for each consecutive pair of necklaces. Intuitively, we imagine that before gluing
them together, we randomly spin the necklaces like the reels of a slot machine,
as in Figure 2.5. A fanciful interpretation of Proposition 2.2 is that if we take
a percolation interface exploration as in Figure 2.1 (which describes a sequence
of necklaces) and we pull the slot machine lever, then we end up with an Eden
model exploration of the type shown in Figure 2.3. In later sections, this paper
will discuss a continuum analog of “pulling the slot machine lever” that involves
SLE and LQG.
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SUPER SLOTS

Figure 2.5: Left: sketch of an actual slot machine. Right: sketch of slot machine
reels conformally mapped from cylinder to plane. When the lever is pulled, each
of the reels rotates a random amount.

2.2.2 Infinite volume Eden/percolation relationship

In [Ang03b] Angel gives a very explicit construction of the uniform infinite planar
triangulation (UIPT), which is further investigated by Angel and Schramm in
[AS03]. The authors in [AS03] define τn to be the uniform distribution on rooted
type II triangulations of the sphere with n vertices and show that the measures
τn converge as n → ∞ (in an appropriate topology) to an infinite volume limit
called the uniform infinite planar triangulation (UIPT). (Related work on infinite
planar quadrangulations appears in [CMM13].) The convenient property that
this process possesses is that the number n of remaining vertices is always infinite,
and hence, in the analog of the Markov chain described in Figure 2.2, it is only
necessary to keep track of the single number m, instead of the pair (m,n). A
very explicit description of this Markov chain and the law of the corresponding
necklaces appears in [Ang03b, AS03]. As in the finite volume case, the sequence of
necklaces has the same law in the UIPT Eden model as in the UIPT percolation
interface exploration. One can first choose the necklaces associated to a UIPT
percolation interface model and then randomly rotate them (by “pulling the slot
machine lever”) to obtain an instance of the UIPT Eden model, as in Figure 2.4.

Later in this paper, we will interpret the version of QLE(8/3, 0) that we construct
as a continuum analog of the Eden model on the UIPT. The construction will
begin with the continuum analog of the percolation exploration process on the
UIPT, which is a radial SLE6 exploration on a certain type of LQG surface. We
will then “rerandomize the tip” at discrete time intervals, and we will then find a
limit of these processes when the interval size tends to zero.

Finally, we remark that Gill and Rohde have recently established parabolicity of
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the Riemann surfaces obtained by gluing triangles together [GR13], which implies
that the UIPT as a triangulation can be conformally mapped onto the entire
complex plane, as one would expect.

2.3 DLA and the loop-erased random walk

2.3.1 Finite volume DLA/LERW relationship

The uniform spanning-tree-decorated random planar map is one of the simplest
and most elegant of the planar map models, due to the relationship with simple
random walks described by Mullin in 1967 [Mul67] (and explained in more detail
by Bernardi in [Ber07]) which we briefly explain in Figure 2.6 and Figure 2.7
(which are lifted from a more detailed exposition in [She11]). As the caption to
Figure 2.6 explains, one first observes a correspondence between planar maps and
quadrangulations: there is a natural quadrangulation such that each edge of the
original map corresponds to a quadrilateral (whose vertices correspond to the two
endpoints and the two dual endpoints of that edge). As the caption to Figure 2.7
explains, one may then draw diagonals in these quadrilaterals corresponding to
edges of the tree or the dual tree.

If an adjacent vertex and dual vertex are fixed and designated as the root and dual
root (big dots in Figure 2.7) then one can form a cyclic path starting at that edge
that passes through each green edge once, always with blue on the left and red on
the right. To the kth green edge that the path encounters (after one spanning root
and dual root) we assign a pair of integers (xk, yk), where xk is the distance of the
edge’s left vertex to the root within the tree, and yk is the distance from its right
vertex to the dual root within the dual tree. If n is the number of edges in the
original map, then the sequence (x0, y0), (x1, y1), (x2, y2), . . . , (x2n, y2n) is a walk
in Z2

+ beginning and ending at the origin, and it is not hard to see that there is a
one-to-one correspondence between walks of this type and rooted spanning-tree-
decorated maps with n edges, such as the one illustrated in Figures 2.6 and 2.7.
The walks of this type with 2m left-right steps and 2n− 2m up-down steps corre-
spond to the planar maps with m edges in the tree (hence m+ 1 vertices total in
the original planar map) and n−m edges in the dual tree (hence n−m+ 1 faces
total in the original planar map). Once m and n are fixed (it is natural to take
m ≈ n/2), it is easy to sample the spanning-tree-decorated rooted planar map by
sampling the corresponding random walk.

As shown in Figure 2.8, if we endow the map with two distinguished vertices,
a “seed” and a “target” then there is a path from the seed to the target and a
deterministic procedure for “unzipping” the edges of the path one at a time, to
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Figure 2.6: Upper left: a planar map M with vertices in blue and “dual vertices”
(one for each face) shown in red. Upper right: the quadrangulation Q = Q(M)
formed by adding a green edge joining each red vertex to each of the boundary
vertices of the corresponding face. Lower left: quadrangulation Q shown without
M . Lower right: the dual map M ′ corresponding to the same quadrangulation,
obtained by replacing the blue-to-blue edge in each quadrilateral with the opposite
(red-to-red) diagonal.

produce (at each step) a new planar map with a distinguished grey polygon that
has a marked tip vertex (“zipper handle”) on its boundary. This procedure is also
reversible — i.e., if we see one of the later decorated maps in Figure 2.8, then we
have enough information to recover the earlier figures.

It is possible to consider the same procedure but keep track of less information:
one can imagine a version of Figure 2.8 in which all of the edges colored black
or green (except those on the boundary of the grey polygon) were colored red,
like the first two maps shown in Figure 2.9. To put ourselves in the context of
Proposition 2.1, we can let Xi be the decorated planar map (the planar map
endowed with a distinguished grey face with a marked blue tip on its boundary,
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Figure 2.7: Left: in each quadrilateral we either draw an edge (connecting blue
to blue) or the corresponding dual edge (connecting red to red). In this example,
the edges drawn form a spanning tree of the original (blue-vertex) graph, and
hence the dual edges drawn form a spanning tree of the dual (red-vertex) graph.
Right: designate a “root” (large blue dot) and an adjacent “dual root” (large red
dot). The red path starts at the midpoint of the green edge between the root and
the dual root and crosses each of the green edges once, keeping the blue endpoint
to the left and red endpoint to the right, until it returns to the starting position.
Each endpoint corresponds to a pair of vertices

and a distinguished green target vertex) obtained after unzipping i steps. By
Wilson’s algorithm [Wil96], if one is given the first k steps of the path from the
seed to the target, then the conditional law of the remaining edges is the law of the
loop erasure of a simple random walk started at the target and conditioned to hit
the grey polygon for the first time at the blue tip vertex (whereupon the walk is
terminated). In particular, this tells us how to perform the Markov transition step
from Xi to Xi+1. Namely, one chooses an edge incident to the tip with probability
proportional to its harmonic measure (viewed from the target), colors that edge
green, and “unzips” it by sliding up the blue tip, as in the first transition step
shown in Figure 2.9.

Using the notation of Proposition 2.1, we can let the sets Sj be the equivalence
classes of decorated maps, where two maps are considered equivalent if they agree
except that their blue tips are at different locations (on the boundary of the same
grey polygon). Conditioned on Xi ∈ Sj, it is not hard to see that the conditional
law of the tip location is given by harmonic measure viewed from the target. This
is because, once we condition on Sj, one can treat the grey polygon as a single
vertex, and note that all spanning trees of the collapsed graph are equally likely;
hence, one can therefore use Wilson’s algorithm to sample the path from the
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Figure 2.8: Upper left: A planar map with distinguished spanning tree (tree
edges black, other edges red) along with distinguished “seed” and “target” vertices
(colored green). Assume the tree-decorated map is chosen uniformly from the set
of tree-decorated maps with a given number of vertices and edges, and that the
seed and target are then uniformly chosen vertices. Upper middle: tree path
from seed to target colored green. Upper right: think of the blue dot as a
zipper handle, and the green path as the closed zipper; we slide the blue dot up
one step and “unzip” the first edge by splitting it in two to form 2-gon (with
inside colored grey). Lower left to lower right: second, third, fourth edges
along path are similarly unzipped, to produce 4-gon, 6-gon, 8-gon. Given the
initial tree-decorated map and seed/target vertices, the unzipping procedure is
deterministic.

target to the grey polygon, and the law of the location at which it exits is indeed
given by harmonic measure. Thus, within each Sj we can define the measure µj
on decorated maps such that sampling from µj amounts to re-sampling the seed
vertex from this harmonic measure.

One can now define the reshuffled Markov chain Y0, Y1, . . . using precisely the pro-
cedure described in Proposition 2.1. This chain has the same transition law as
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tip

Choose new
green edge

and “unzip” it by
sliding blue zipper handle

Figure 2.9: We could have drawn the images in Figure 2.8 with a different coloring
— showing all edges red except for those around the grey polygon. With such
a coloring, we could imagine that we do not know the tree in advance: we only
discover the path from seed to tip one edge at a time. Conditioned on the first
k edges, Wilson’s algorithm implies that the probability that a given tip-adjacent
edge e is the next edge in the path is proportional to the probability that a random
walk from the target first reaches the grey polygon via e. After selecting an edge,
we color it green and unzip it by sliding up the blue zipper handle, tracing a path
whose overall law is that of a LERW from tip to seed. The process shown in the
figure is a “reshuffled” version of the one just described. After an edge is drawn,
we “resample” the blue vertex according to harmonic measure viewed from the
target and then choose a sample green edge from that vertex. We can equivalently
combine the resample-tip and pick-new-edge steps by performing a random walk
from the target and picking the last edge traversed before the grey polygon is hit.
The order in which edges are “unzipped” in this reshuffled form of LERW is the
same as the order in which edges are discovered in edge-growth DLA. In a sense,
DLA is nothing more than reshuffled LERW.

the unreshuffled chain except that after each step we resample the blue tip from
the harmonic measure viewed from the target, as explained in Figure 2.9. As ex-
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plained in Figure 2.9, this reshuffling procedure converts loop-erased random walk
(LERW) to diffusion limited aggregation (DLA). The following is now immediate
from Proposition 2.1.

Proposition 2.3. Consider a random rooted planar map M with n edges, m+ 1
vertices, and n−m+1 faces, with two of the vertices designated “seed” and “target”
chosen uniformly among all such decorated maps except that the probability of a
given decorated map is proportional to the number of spanning trees the map has.
Conditional on M , one may generate a loop-erased random walk L from the seed
to target. Given M , one may also generate an edge-based DLA growth process,
which yields a random tree D containing the seed and the target.

(i) The number of edges in D agrees in law with the number of edges in L.

(ii) The law of the map obtained by unzipping the first k steps of L (to produce
the grey polygon with distinguished tip, as in Figure 2.8) is the same as the
law of the map obtained by unzipping the first k steps of D, as in Figure 2.8.

(iii) The law of the map obtained by unzipping all of the edges of L agrees in law
with the map obtained by unzipping all of the edges of D.

2.3.2 Infinite volume DLA/LERW relationship

In this section, we will observe that the constructions of the previous section can
be extended to the so-called uniform infinite planar tree-decorated map (UIPTM).
We present this infinite volume construction partly because of its intrinsic interest,
and partly because we believe that the form of QLE(2, 1) that we construct in this
paper is the scaling limit of DLA on the UIPTM.

We define the UIPTM to be the infinite volume limit of the models of random
rooted planar maps described in the previous section as n → ∞ and m = n/2.
More discussion of this model appears in [She11] and in the work of Gill and
Rohde in [GR13]. The latter showed that the Riemannian surface defined by
gluing together the triangles in the UIPTM is parabolic (like the analogous surface
defined using the UIPT). Gurel-Gurevich and Nachmias also recently proved a
very general recurrence statement for random planar maps, which implies that
if we forget the spanning tree on the UIPTM and simply run a random walk on
the vertices of the underlying graph, then this walk is almost surely recurrent
[GGN13]. (Their work also implies that random walk on the UIPT is almost
surely recurrent, and extends the earlier recurrence results obtained by Benjamini
and Schramm in [BS01].)
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Given the walk (xk, yk) described in the previous section, we may write Ik =
(xk, yk)− (xk−1, yk−1). The Ik are random variables taking values in

{(−1, 0), (1, 0), (0,−1), (0, 1)}.

There is a one-to-one correspondence between steps of type (1, 0) and vertices v of
the planar map (discounting the root vertex) since the red path in Figure 2.7 first
encounters a green edge incident to a vertex v at step k if and only if Ik = (1, 0).

If k is such that Ik corresponds to a chosen seed vertex v, then we may recenter
time so that this vertex corresponds to the first increment. That is, we define a
new centered increment process: Ĩj = Ij−k. It is not hard to see that in the limit

as n → ∞ and m = n/2, the Ĩj converge to a process indexed by Z in which
I1 = (1, 0) almost surely but the other Ii are i.i.d. uniformly chosen elements from
{(−1, 0), (1, 0), (0,−1), (0, 1)}. The use of doubly infinite sequences of this form
to describe random surfaces is discussed in more detail in [She11]. It is easy to see
from this construction that there is almost surely a unique infinite simple path in
the tree in the UIPTM that extends from the seed vertex to infinity.

Proposition 2.4. If one samples a UIPTM (which is an infinite rooted planar
map M endowed with a spanning tree T and a root vertex v) and then samples a
tree T ′ on M according to Wilson’s algorithm, then the law of (M,T ′, v) is again
that of a UIPTM.

Proof. It is shown in Theorem 5.6 of [BLPS01] that for any recurrent graph the
tree generated by Wilson’s algorithm (with any choice of vertex order) agrees
in law with the so-called wired spanning forest, and also with the so-called free
spanning forest. In particular, this implies that Wilson’s algorithm determines a
unique random tree on M (independent of the vertex order) and we just have to
show that the law of this tree agrees with the conditional law of T given M .

Let Mn be the random tree-decorated rooted planar map obtained with n edges
and m = n/2 vertices, Tn the corresponding spanning tree, and vn the corre-
sponding seed vertex. The proposition will follow from the fact that (Mn, Tn, v)
converges in law to (M,T, v), that M is almost surely recurrent, and that for any
n one can first sample (Mn, v) and then use Wilson’s algorithm to sample Tn.

To explain this in more detail, note that it suffices to show that for any N > 0
the law of (M,T ) restricted to the ball of radius N about v agrees with the law
of (M,T ′) restricted to the ball of radius N about v. Now, the recurrence of
M implies that for any δ > 0 we can choose N ′ large enough so that if we run
Wilson’s algorithm starting at all points within B(v,N), to obtain the shortest
tree path from each of these points to v, we find that the probability that any of
these paths reaches distance N ′ from v is at most δ.
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Now take n large enough so that (Mn, Tn, vn) and (M,T, v) can be coupled in such
a way that their restrictions to the N ′ ball about their origin vertices agree with
probability at least 1 − δ. It then follows that we can couple (Mn, Tn, vn) with
(M,T ′, v) so that they agree within a radius N ball of their origin vertices with
probability at least 1 − 2δ. Since δ can be made arbitrarily small (by taking N ′

large enough) this completes the argument.

Now, based on Proposition 2.4, we find that the law of the branch of the tree from
the origin to ∞ can be obtained as a limit of the law of the loop erased random
walk from w to v, as the distance from w to v tends to∞. In particular, the limit
of the harmonic measure of the possible next edges to be added to this LERW (as
measured from w as this distance from v to w tends to infinity) exists, and one
can grow the branch from v to ∞ one step at a time by sampling from the tip
according to this measure, using the procedure indicated in Figure 2.8.

Noting that (M,T, v) is the limit of the (Mn, Tn, vn), we also find that the condi-
tional law of the location of the tip (given the grey polygon and the map but not
tip location) is given by harmonic measure, and hence we can obtain the infinite
volume analog of Proposition 2.3 using the same argument used in the proof of
Proposition 2.3.

2.4 “Capacity” time parameterization

In each of the models in this section, for any edge e on the boundary of the
cluster, we can let b(e) denote the harmonic measure at edge e as viewed from
the target. When considering possible scaling limits of the discrete models in this
section, we should keep in mind that heuristically the “capacity” added to the
cluster by putting in the new edge should be roughly proportional to b(e)2. (In
the continuum, drawing a slit of length ε from ∂D towards the origin changes the
conformal radius of the remaining domain viewed from the origin by order ε2.)
Thus, the amount of “capacity” time corresponding to a given step in a discrete
model is random. One might therefore try to reparameterize time in the discrete
models in such a way that one might expect to obtain a scaling limit parameterized
by capacity (i.e., negative the log conformal radius).

One way to do this with the η-DBM model is as follows: suppose that b(e) rep-
resents the harmonic measure at an edge e viewed from the target. Then at each
step, we choose a new edge to add with probability proportional b(e)2+η, but then
after choosing the new edge we toss a coin that is heads with probability pro-
portional to b(e)−2, and we only add the edge to the cluster if the coin comes up
heads. This construction is equivalent to the usual η-DBM model (up to a random
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time change) but now the expected amount of capacity we add to the cluster at
each time step is of the same order. Another approach is to say that after an edge
is selected, instead of flipping a coin that is heads with probability proportional
to b(e)−2, we simply only add a “b(e)−2 sized portion of the edge” (i.e., we don’t
consider an edge to have been “added” until it has been hit multiple times, and
the sum of all of these fractional contributions exceeds some large constant).

We mention these alternatives, because the approximations to the continuum con-
struction of QLE we present in this paper will involve random increments of con-
stant capacity (i.e., constant change to the log conformal radius), and the scal-
ing limit will be parameterized by capacity. One could modify the continuum
construction (adding increments of constant quantum length instead of constant
capacity) but this will not be our first approach.

3 Scaling exponents for continuum QLE

The QLE dynamics described in Figure 1.2 involves two parameters: γ and α.
Here γ describes the type of LQG surface on which the growth process takes place
and α determines the multiple of ht used in the exponentiation that generates νt.
As discussed in Section 1.4, once one has a solution to the dynamics for a given
α and γ pair, one can seek to verify that the solution satisfies η-DBM scaling, as
defined in Definition 1.2, for some value of η.

It is natural to wonder whether, for each γ value, there is a one-to-one corre-
spondence between α and η values (at least over some range of the parameters).
This is not a question we will settle in this paper, as we will only construct (and
determine α and η for) certain families of QLE processes, and these correspond
to points on the curves in Figure 1.3.

However, in Section 3.1 we will propose a relationship between α, β, γ, and η
where β (introduced below) is an additional parameter that appears in the reg-
ularization used to make sense of eαht , and in some sense encodes how fast eαht

blows up near ∂D.

In full generality, this calculation should be taken as a heuristic (since we do not
know that β is defined for general solutions to the QLE dynamics) but it can be
made rigorous under some assumptions — for example, if one assumes that the
stationary law of ht is given by a free boundary Gaussian free field (restricted
to ∂D and harmonically extended to D). This latter assumption will turn out
to imply that β = α2 and hence (for each fixed γ) it determines a relationship
between α and η. This assumption turns out to hold for the solutions we construct
from the quantum zipper (corresponding to the upper two curves in Figure 1.3)
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and this gives us a way to recover η from α for these solutions, as we discuss in
Section 3.2.

In Section 3.3 we will argue that when η = 0 the β = α2 assumption leads to
a prediction of the dimension for the γ-LQG surfaces when these surfaces are
understood as metric spaces. (We stress that endowing a γ-LQG surface with a
metric space structure has never been done rigorously, but we believe that such
a metric should exist and that a ball in this metric, whose radius increases in
time, should be described by a QLE(γ2, 0) process.) The dimension prediction
we obtain agrees with a prediction made in the physics literature by Watabiki
in [Wat93]. (The fact that our formula agrees with Watabiki’s derivation was
pointed out to us by Duplantier.) As mentioned above, the β = α2 assumption
would hold if the stationary law of ht for a QLE(γ2, 0) process were given by a free
boundary Gaussian free field (harmonically extended from ∂D to D). However,
we do not currently have a compelling heuristic to suggest why a stationary law
for QLE(γ2, 0) should have this form.

3.1 Scaling exponents: a relationship between α, β, γ, η

The caption to Figure 1.2 describes a particular way to make sense of the map
from ht to νt. Precisely, we let νt be the n → ∞ limit of the measures eαh

n
t (u)du

on ∂D, normalized to be probability measures; recall that the hnt are obtained by
throwing out all but the first n terms in the power series expansion of the analytic
function with real part ht. (This can be understood as a projection of the GFF
onto a finite dimensional subspace.)

Instead of using the power series approximations or other projections of the GFF
onto finite dimensional subspaces, another natural approach would be to use ap-
proximations hεt to ht defined by “something like” convolving ht with a bump
function supported (or mostly supported) on an interval with length of order ε.
For example, we could write hεt(u) = ht

(
(1 − ε)u

)
for each u ∈ ∂D. (This is

equivalent to convolving with a bump function related to the Poisson kernel.) Or
we could let hεt(u) be the mean of ht on ∂B(u, ε)∩D for each u ∈ ∂D. To describe
another approach (which involves more of the unexplored field than just the har-
monic projection), let us simplify notation for now by writing h for the sum of ht
and an independent zero boundary GFF on D and let hεt = hε be the mean value
of h on ∂B(u, ε) ∩ D. (The latter definition of hεt is essentially what is used in
[DS11a] to define boundary measures when h is an instance of the free boundary
GFF.)

For now, let us assume that the boundary values of h are such that it is possible
to make sense of the average hε(z) of h on ∂B(z, ε) for each z ∈ D and ε > 0. We
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also assume that hε(u) blows up to ±∞ almost surely for each u ∈ ∂D as ε → 0
(as is the case when h is given by the form of the free boundary GFF considered
in Theorem 1.3). Now, let us assume we have a constant β such that the following
limit exists and is almost surely a non-zero finite measure:

νh = lim
ε→0

εβeαh
ε(u)du. (3.1)

(This limit turns out not to depend on the zero-boundary GFF used in the defi-
nition of h [DS11a].) In a sense, β encodes the growth rate of eαht near ∂D. Note
that when describing the dynamics of Figure 1.2, we avoided having to specify a
regularizing factor such as εβ (or an analogous factor depending on n) because we
normalized to make each approximation a probability measure.

In the case that h is the free boundary GFF and α ∈ (−1, 1) so that νh is given
by the 2α-LQG boundary measure, β is given by (2α)2/4 = α2 [DS11a]. 10

For γ > 0 given, let Qγ = 2/γ + γ/2. Recall that Qγ is the factor the appears in
front of the log-derivative in the γ-LQG coordinate change described in (1.1). We
are going to derive the following relationship between α, γ, η, and β:

αQγ = β − η − 1. (3.2)

Once three of the variables α, β, γ, and η are fixed we can use (3.2) to determine
the fourth. Moreover, once γ is fixed, (3.2) gives an affine relationship between α,
β, and η.

Let ψ : D→ D̃ be a conformal change of coordinates. Let

Q̃ :=
1

α
+
β

α
=

1 + β

α

and let h̃ be the distribution on D̃ given by

h̃ =h ◦ ψ−1 + Q̃ log |(ψ−1)′|. (3.3)

Let νh̃ be the boundary measure as in (3.1) defined in terms of h̃. Then it is not
hard to see (at least if ψ is linear) from (3.1) that νh̃ is almost surely the image
under ψ of νh. That is, νh(A) = νh̃(ψ(A)) for A ⊆ ∂D. To see this, observe

that eαQ̃ log |(ψ−1)′| = |(ψ−1)′|1+β, which is |(ψ−1)′| (the ordinary coordinate change
term) times |(ψ−1)′|β.

10In [DS11a, Section 6], the existence of the limit (3.1) is proved when h is given by the free
boundary GFF on a domain with piecewise linear boundary while here we are taking our domain
to be D. It is easy to see, however, that the argument of [DS11a] also goes through in the case
that the domain is D.
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When α = γ/2 and β = α2, the definition (3.3) is the same as the usual change
of coordinates formula for the LQG boundary measure [DS11a].

Let νγ be the measure on ∂D̃ which is constructed by replacing Q̃ in the def-

inition (3.3) of h̃ with Qγ. Replacing Q̃ with Qγ makes it so that the change
of coordinates by ψ preserves the γ-LQG boundary measure defined from h (as
opposed to the boundary measure with scaling exponent β as defined in (3.1)).
Then the Radon-Nikodym derivative between νγ and νh̃ is (formally) given by a
constant times

exp(α(Qγ − Q̃) log |(ψ−1)′|) = |(ψ−1)′|α(Qγ−Q̃).

The application of the conformal transformation ψ scales the harmonic measure of
a small region near ∂D by the factor |ψ′|. Recalling the discussion in the caption
of Figure 1.4, we want νγ to be given by scaling νh̃ by the factor |ψ′|2+η. We
therefore want

−α(Qγ − Q̃) = 2 + η.

Plugging in the definition for Q̃, we have −αQγ + 1 + β = 2 + η. Rearranging
gives (3.2).

3.2 Free boundary GFF and quantum zipper α

Fix γ ∈ (0, 2]. Using the quantum zipper machinery, we will find in later sections
that it is natural to consider a setting in which β = α2 and we have one addi-
tional constraint, namely, α ∈ {−γ/4,−1/γ}. These two facts and (3.2) together
imply the relationship between η and γ described by the upper two curves in Fig-
ure 1.311. Very roughly speaking, the reason is that for these values the 2α-LQG
boundary measure is supported on “thick points” u near which the field behaves
like −2α log |u − ·| where 2α ∈ {−γ/2,−2/γ} (see [DS11a, Proposition 3.4] for

11There is also another heuristic way to determine what α must be when η and γ are given
(in the case that h0 is a harmonically projected GFF, so that β = α2), which would give an
alternate derivation of (3.2). This heuristic was shown to us by Bertrand Duplantier. Consider
the discrete η-DBM interpretation described in Section 2 in which one samples a boundary face
(or edge) of the planar map from harmonic measure to the η + 2 power, and then adds a unit
of capacity near the chosen face. Recall that the measure that assigns a unit mass to each face
is (conjecturally) supposed to have approximately the form eγh(z)dz for a type of free boundary
GFF h. Now, what does the field look like near a “typical” face chosen from harmonic measure
to the η + 2 power? According to the KPZ formalism as applied to “negative dimensional” sets
(see the discussion in [DS11a] on non-intersecting Brownian paths), if the face is centered at a
point u, then the field near u should look approximately like an ordinary free boundary GFF
plus 2α log |u − ·|, where α and η are related in precisely the manner described here. We hope
to explain this point in more detail in a future joint work with Duplantier.
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the bulk version of this statement as well as Proposition 4.6 below for the version
which will be relevant for this article), and these values have the form −2/

√
κ for

κ ∈ {16/γ2, γ2}, which correspond to the singularities that appear in the capacity
invariant quantum zipper.

In these settings we will also find a stationary law of ht given by the harmonic
extension of the boundary values of a form of the free boundary GFF on D, and
as mentioned earlier, in this setting one has β = α2.

If we plug in α = −1/γ and β = α2 into (3.2) then we obtain:

−1

γ

(
2

γ
+
γ

2

)
=

1

γ2
− η − 1,

or equivalently

η =
3

γ2
− 1

2
. (3.4)

This describes the upper curve in Figure 1.3

If we plug α = −γ/4 and β = α2 into (3.2) then we obtain

−γ
4

(
2

γ
+
γ

2

)
=
γ2

16
− η − 1,

or equivalently

η =
3γ2

16
− 1

2
. (3.5)

This describes the middle curve in Figure 1.3. Note that the lower curve in
Figure 1.3 corresponds to α = β = 0 and η = −1, which is trivially a solution
to (3.2) for any γ.

3.3 Free boundary scaling β = α2 and η = 0

In Theorem 1.3 we prove the existence of stationary QLE(γ2, η) processes for
(γ2, η) pairs which are on one of the upper two curves in Figure 1.3 with β = α2.
It is natural to wonder whether this is just a coincidence, or whether there are
other (γ2, η) pairs for which there exist QLE solutions with β = α2. (This would
be the case, for example, if the ht turned out to have stationary laws described by
the harmonic extension of the boundary values from ∂D to D of a form of the free
boundary GFF.) We observe that if we simply plug in β = α2, then (3.2) becomes

αQγ = α2 − η − 1,
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Figure 3.1: The value d as a function of κ = γ2, as defined by (3.6). Although the
graph is not a straight line, it appears “almost straight” and it takes the value 2
for κ = 0 and 4 for κ = 8/3.

or equivalently

η = α2 − αQγ − 1.

One can also solve this for α to obtain

α =
Qγ ±

√
Q2
γ + 4 + 4η

2
.

We now introduce a parameter d = −γ/α, which can interpreted as a sort of
“dimension”, at least in the η = 0 case.12 Let A = eγC . This represents the
factor by which the γ-LQG area in a small neighborhood of a boundary point
u ∈ ∂D changes when we add a function to h that is equal to a constant C in that

12One way to define the dimension of a metric space is as the value d such that the number of
radius δ balls required to cover the space scales as δ−d. (Hausdorff dimension is a variant of this
idea.) If the metric space comes endowed with a measure (and is homogenous, in some sense)
then one might guess that each of these balls would have area of order δd. In fact, if there is
a natural notion of “rescaling” the metric space so that its diameter changes by a factor of δ
(and the measure is also defined for the rescaled version), then one can define d to be such that
the area scales as δd. In the QLE setting with η = 0, if we consider a small neighborhood U
of a point u ∈ ∂D, and we rescale the quantum surface restricted to U (by modifying h on U)
then we expect the “length of time it takes a QLE to traverse U” to scale by approximately the
same factor as the diameter of U (assuming a metric space structure on the quantum surface is
defined).
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neighborhood. Then eαC represents the factor by which the QLE driving measure
changes, which suggests that the time it takes to traverse the neighborhood should
scale like T = e−αC . Now d is the value such that A = T−γ/α = T d.

Computing this, we have

d = − 2γ

Qγ ±
√
Q2
γ + 4 + 4η

=
2γ
(
Qγ ±

√
Q2
γ + 4 + 4η

)

4 + 4η

=
1

1 + η

(
1 +

γ2

4
±
√
γ4

16
+

3γ2

2
+ 1 + ηγ2

)
.

Setting κ = γ2 ∈ (0, 4) this is equivalently equal to

1

1 + η

(
1 +

κ

4
±
√
κ2

16
+

3κ

2
+ 1 + ηκ

)
.

In the case η = 0, the positive root can be written as

d = 1 +
κ

4
+

1

4

√
(4 + κ)2 + 16κ. (3.6)

The graph of d as a function of κ = γ2 is illustrated in Figure 3.1. The plot
matches a physics literature prediction made by Watabiki in 1993 for the fractal
dimension of γ-LQG quantum gravity when understood as a metric space [Wat93,
Equation (5.13)].13 However, we stress again that our calculation was made under
the assumption that β = α2, and that we do not currently have even a heuristic
argument for why there should exist QLE processes satisfying this relationship
for η = 0 and a given γ ∈ (0, 2] (though of course the reader may consult the
explanation given in [Wat93]). The exception is the case γ =

√
8/3, since (8/3, 0)

is one of the (γ2, η) pairs for which we construct solutions to the QLE dynamics.
In this case, our arguments do support the notion the Hausdorff dimension of
Liouville quantum gravity should be 4 for γ =

√
8/3, though we will not prove

this statement in this paper. This is consistent with the dimension of the Brownian
map [CS04, LG07]

13The quantities α1 and α−1 which appear in [Wat93, Equation (5.13)] are defined in [Wat93,
Equation (4.15)]. These, in turn, are defined in terms of the central charge c. The central charge
c corresponding to an SLEκ is (8− 3κ)(κ− 6)/(2κ); see the introduction of [LSW03].
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4 Preliminaries

4.1 Forward and reverse radial SLEκ

For u ∈ ∂D and z ∈ D, let

Ψ(u, z) =
u+ z

u− z and Φ(u, z) = zΨ(u, z). (4.1)

A radial SLEκ in D starting from 1 and targeted at 0 is described by the random
family of conformal maps obtained by solving the radial Loewner ODE

ġt(z) = Φ(eiWt , gt(z)), g0(z) = z (4.2)

where Wt =
√
κBt and B is a standard Brownian motion. We refer to eiWt as the

driving function for (gt). For each z ∈ D let τ(z) = sup{t ≥ 0 : |gt(z)| < 1}
and write Kt := {z ∈ D : τ(z) ≤ t}. For each t ≥ 0, gt is the unique conformal
map which takes Dt := D \ Kt to D with gt(0) = 0 and g′t(0) > 0. Time is
parameterized by log conformal radius so that g′t(0) = et for each t ≥ 0. Rohde
and Schramm showed that there almost surely exists a curve η (the so-called SLE
trace) such that for each t ≥ 0 the domain Dt of gt is equal to the connected
component of D \ η([0, t]) which contains 0. The (necessarily simply connected
and closed) set Kt is called the “filling” of η([0, t]) [RS05].

In our construction of QLE, it will sometimes be more convenient to work with
reverse radial SLEκ rather than forward radial SLEκ (as defined in (4.2)). A
reverse SLEκ in D starting from 1 and targeted at 0 is the random family of
conformal maps obtained by solving the reverse radial Loewner ODE

ġt(z) = −Φ(eiWt , gt(z)), g0(z) = z (4.3)

where Wt =
√
κBt and B is a standard Brownian motion. As in the forward case,

we refer to eiWt as the driving function for (gt).

Remark 4.1. Forward and reversal radial SLEκ are related in the following manner.
Suppose that (gt) solves the reverse radial Loewner equation (4.3) with driving
function Wt =

√
κBt and B a standard Brownian motion. Fix T > 0 and let

ft = gT−t for t ∈ [0, T ]. Then (ft) solves the forward radial Loewner equation with
driving function t 7→ WT−t and with initial condition f0(z) = gT (z). Equivalently,
we can let qt for t ∈ [0, T ] solve (4.2) with driving function t 7→ WT−t and q0(z) = z
and then take ft = qt ◦ gT . Indeed, this follows from standard uniqueness results
for ODEs. Then

z = g0(z) = fT (z) = qT (gT (z)).
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That is, qT is the inverse of gT . This implies that the image of gT can be ex-
pressed as the complementary component containing zero of an SLEκ curve ηT in
D drawn up to log conformal radius time T . We emphasize here that the path ηT
changes with T . (See the end of the proof of [Law05, Theorem 4.14] for a similar
discussion.)

4.2 Gaussian free fields

We will now describe the construction of the two-dimensional GFF (with either
Dirichlet, free, or mixed boundary conditions) as well as some properties that
will be important for us later. We refer the reader to [She07] as well as [She10,
Section 3] for a more detailed introduction.

4.2.1 Dirichlet inner product

Let D be a domain in C with smooth, harmonically non-trivial boundary. The
latter means that the harmonic measure of ∂D is positive as seen from any point
in D. Let C∞0 (D) denote the set of C∞ functions compactly supported in D. The
Dirichlet inner product is defined by

(f, g)∇ =
1

2π

∫

D

∇f(x) · ∇g(x)dx for f, g ∈ C∞0 (D). (4.4)

More generally, (4.4) makes sense for f, g ∈ C∞(D) with L2 gradients.

4.2.2 Distributions

We view C∞0 (D) as a space of test functions and equip it with the topology where
a sequence (φk) in C∞0 (D) satisfies φk → 0 if and only if there exists a compact
set K ⊆ D such that the support of φk is contained in K for every k ∈ N and
φk as well as all of its derivatives converge uniformly to zero as k → ∞. A
distribution on D is a continuous linear functional on C∞0 (D) with respect to
the aforementioned topology. A modulo additive constant distribution on
D is a continuous linear functional on the subspace of functions f of C∞0 (D) with∫
D
f(x)dx = 0 with the same topology.

4.2.3 GFF with Dirichlet and mixed boundary conditions

We let H0(D) be the Hilbert-space closure of C∞0 (D) with respect to the Dirichlet
inner product (4.4). The GFF h on D with zero Dirichlet boundary conditions
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can be expressed as a random linear combination of an (·, ·)∇-orthonormal basis
(fn) of H0(D):

h =
∑

n

αnfn, (αn) i.i.d. N(0, 1). (4.5)

Although this expansion of h does not converge in H0(D), it does converge al-
most surely in the space of distributions or (when D is bounded) in the frac-
tional Sobolev space H−ε(D) for each ε > 0 (see [She07, Proposition 2.7] and
the discussion thereafter). If f, g ∈ C∞0 (D) then an integration by parts gives
(f, g)∇ = −(2π)−1(f,∆g). Using this, we define

(h, f)∇ = − 1

2π
(h,∆f) for f ∈ C∞0 (D).

Observe that (h, f)∇ is a Gaussian random variable with mean zero and variance
(f, f)∇. Hence h induces a map C∞0 (D) → G, G a Gaussian Hilbert space, that
preserves the Dirichlet inner product. This map extends uniquely to H0(D) and
allows us to make sense of (h, f)∇ for all f ∈ H0(D) and, moreover,

cov((h, f)∇, (h, g)∇) = (f, g)∇ for all f, g ∈ H0(D).

For fixed x ∈ D we let G̃x(y) be the harmonic extension of y 7→ − log |x− y| from
∂D to D. The Dirichlet Green’s function on D is defined by

GD(x, y) = − log |y − x| − G̃x(y).

When x ∈ D is fixed, GD(x, ·) may be viewed as the distributional solution to
∆GD(x, ·) = −2πδx(·) with zero boundary conditions. When D = D, we have
that

GD(x, y) = log

∣∣∣∣
1− xy
y − x

∣∣∣∣ . (4.6)

Repeated applications of integration by parts also imply that

cov((h, f), (h, g)) = (2π)2 cov((h,∆−1f)∇, (h,∆
−1g)∇)

=

∫∫

D×D
f(x)GD(x, y)g(y)dxdy

where GD is the Dirichlet Green’s function on D. If h is a zero-boundary GFF on
D and F : D → R is harmonic, then h + F is the GFF with Dirichlet boundary
conditions given by those of F .

More generally, suppose that that D ⊆ C is a domain and ∂D = ∂D ∪ ∂F where
∂D ∩ ∂F = ∅. We also assume that the harmonic measure of ∂D is positive as
seen from any point z ∈ D. The GFF on D with Dirichlet (resp. free) boundary
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conditions on ∂D (resp. ∂F) is constructed using a series expansion as in (4.5)
except the space H0(D) is replaced with the Hilbert space closure with respect
to (·, ·)∇ of the subspace of functions in C∞(D) which have an L2 gradient and
vanish on ∂D. The aforementioned facts for the GFF with only Dirichlet boundary
conditions also hold verbatim for the GFF with mixed Dirichlet/free boundary
conditions. In the case that D is a smooth Jordan domain and ∂D, ∂F are each
non-degenerate intervals of ∂D, the Green’s functionG is taken to solve ∆G(x, ·) =
−2πδx(·) with n ·∇G(x, ·) = 0 on ∂F and G(x, ·) = 0 on ∂D for x ∈ D. See also the
discussion in [DS11a, Section 6.2] for the GFF with mixed boundary conditions.

4.2.4 GFF with free boundary conditions

The GFF with free boundary conditions on D ⊆ C is constructed using a series
expansion as in (4.5) except we replace H0(D) with the Hilbert space closure H(D)
of the subspace of functions f ∈ C∞(D) with ‖f‖2

∇ := (f, f)∇ < ∞ with respect
to the Dirichlet inner product (4.4). Since the constant functions are elements of
C∞(D) but have ‖ · ‖∇-norm zero, in order to make sense of this object, we will
work in the space of distributions modulo additive constant. As in the case of the
ordinary GFF, it is not difficult to see that the series converges almost surely in
this space. As in Section 4.2.3, we can view (h, f)∇ for f ∈ H(D) as a Gaussian
Hilbert space where

cov((h, f)∇, (h, g)∇) = (f, g)∇ for all f, g ∈ H(D).

Note that we do not need to restrict to mean zero test functions here due to the
presence of gradients.

The Neumann Green’s function on D is defined by

GF(x, y) = − log |y − x| − Ĝx(y)

where for x ∈ D fixed, y 7→ Ĝx(y) is the function in on D such that the normal
derivative of GF(x, y) along ∂D is equal to 1. (The reason for the superscript
“F” is that, as explained below, GF gives the covariance function for the GFF
with free boundary conditions.) When x ∈ D is fixed, GF may be viewed as the
distributional solution to ∆GF(x, ·) = −2πδx(·) where the normal derivative of
GF(x, ·) is equal to 1 at each y ∈ ∂D. When D = D, we have that

GF(x, y) = − log |(x− y)(1− xy)| . (4.7)

Assuming that f, g have mean zero, repeated applications of integration by parts
yield that

cov((h, f), (h, g)) = (2π)2 cov((h,∆−1f)∇, (h,∆
−1g)∇)
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=

∫∫

D×D
f(x)GF(x, y)g(y)dxdy

where GF is the Neumann Green’s function on D.

4.2.5 Markov property

We are now going to explain the Markov property enjoyed by the GFF with
Dirichlet, free, or mixed boundary conditions. For simplicity, for the present
discussion we are going to assume that h is a GFF with zero boundary conditions
(though the proposition stated below is general and so is the following argument).
Suppose that W ⊆ D with W 6= D is open. There is a natural inclusion ι of
H0(W ) into H0(D) where

ι(f)(x) =

{
f(x) if x ∈ W,
0 otherwise.

If f ∈ C∞0 (W ) and g ∈ C∞0 (D), then as (f, g)∇ = −(2π)−1(f,∆g) it is easy to see
that H0(D) admits the (·, ·)∇-orthogonal decomposition H0(W )⊕H⊥0 (W ) where
H⊥0 (W ) is the subspace of functions in H0(D) which are harmonic in W . Thus we
can write

h = hW + hW c =
∑

n

αWn f
W
n +

∑

n

αW
c

n fW
c

n

where (αWn ), (αW
c

n ) are independent i.i.d. sequences of standard Gaussians and
(fWn ), (fW

c

n ) are orthonormal bases of H0(W ) and H⊥0 (W ), respectively. Observe
that hW is a zero-boundary GFF on W , hW c is the harmonic extension of h|∂W
from ∂W to W , and hW and hW c are independent. We arrive at the following
proposition:

Proposition 4.2 (Markov Property). Suppose that h is a GFF with Dirichlet,
free, or mixed boundary conditions. The conditional law of h|W given h|D\W is
that of the sum of a zero boundary GFF on W plus the harmonic extension of
h|∂W from ∂W to W .

The orthogonality of H0(W ) and the set of functions in H0(D) which are harmonic
in W is also proved in [She07, Theorem 2.17] and it is explained thereafter how
this is related to the Markov property of the GFF.

Remark 4.3. Proposition 4.2 implies that if h is a free boundary GFF on D then we
can write h as the sum of the harmonic extension of its boundary values from ∂D
to D and an independent zero boundary GFF in D.
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Remark 4.4. Proposition 4.2 implies that for each fixed W ⊆ D open we can
almost surely define the orthogonal projection of a GFF h onto the subspaces of
functions which are harmonic in and supported in W . We will indicate these by
Pharm(h;W ) and Psupp(h;W ), respectively. If W is clear from the context, we will
simply write Pharm(h) and Psupp(h).

4.3 Local sets

The theory of local sets, developed in [SS13], extends the Markovian structure of
the field (Proposition 4.2) to the setting of conditioning on the values it takes on
a random set A ⊆ D. More precisely, suppose that (A, h) is a coupling of a GFF
(with either Dirichlet, free, or mixed boundary conditions) h on D and a random
variable A taking values in the space of closed subsets of D, equipped with the
Hausdorff metric. Then A is said to be a local set of h [SS13, Lemma 3.9, part
(4)] if there exists a law on pairs (A, h1) where h1 takes values in the space of
distributions on D with h1|D\A harmonic is such that a sample with the law (A, h)
can be produced by

1. choosing the pair (A, h1),

2. then sampling an instance h2 of the zero boundary GFF on D\A and setting
h = h1 + h2.

There are several other characterizations of local sets which are discussed in [SS13,
Lemma 3.9]. These are stated and proved for the GFF with Dirichlet boundary
conditions, however the argument goes through verbatim for the GFF with either
free or mixed boundary conditions.

For a given local set A, we will write CA for h1 as above. We can think of CA
as being given by Pharm(h;D \ A). We can also interpret CA as the conditional
expectation of h given A and h|A. In the case that h is a GFF with free boundary
conditions, CA is defined modulo additive constant.

Throughout this article, we will often work with increasing families of closed sub-
sets (Kt)t≥0 each of which is local for a GFF h. The following is a restatement of
[MS12, Proposition 6.5] and describes the manner in which CKt evolves with t. In
the following statement, for a domain U ⊆ C with simply-connected components
and z ∈ U , we write CR(z;U) for the conformal radius of the component Uz of
U containing z as seen from z. That is, CR(z;U) = φ′(0) where φ is the unique
conformal map which takes D to Uz with φ(0) = z and φ′(0) > 0.
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Proposition 4.5. Suppose that D ⊆ C is a non-trivial simply connected domain.
Let h be a GFF on D with either Dirichlet, free, or mixed boundary conditions.
Suppose that (Kt)t≥0 is an increasing family of closed sets such that Kτ is local
for h for every (Kt) stopping time τ and z ∈ D is such that CR(z;D \ Kt)
is almost surely continuous and monotonic in t. Then CKt(z) − CK0(z) has a
modification which is a Brownian motion when parameterized by log CR(z;D \
K0) − log CR(z;D \ Kt) up until the first time τ(z) that Kt accumulates at z.
In particular, CKt(z) has a modification which is almost surely continuous in t ≥
0. (In the case that h has free boundary conditions, we use the normalization
CK0(z) = 0.)

4.4 Quantum boundary length measures

We are now going to summarize a few important facts which are based on the
discussion in [DS11a, Section 6] regarding the Liouville quantum gravity boundary
length measure. Suppose that h is a GFF with mixed Dirichlet/free boundary
conditions on a Jordan domain D ⊆ C where both the Dirichlet and free parts
∂D and ∂F, respectively, of ∂D are non-degenerate boundary arcs. In [DS11a,
Theorem 6.1], it is shown how to construct the measure νγh = exp(γ

2
h(u))du on ∂F

for γ ∈ (−2, 2) fixed. Formally, this means that the Radon-Nikodym derivative
of νγh with respect to Lebesgue measure on ∂F is given by exp(γ

2
h). This does not

make literal sense because h does not take values in the space of functions and,
in particular, does not take on a specific value at a given point in ∂F. One can
make this rigorous as follows. First, suppose that ∂F consists of a single linear
segment. For each z ∈ ∂F and ε > 0, let hε(z) be the average of h on the semi-
circle ∂B(z, ε) ∩ D (see [DS11a, Section 3] for background on the circle average
process). For each γ ∈ (−2, 2), the measure exp(γ

2
h(u))du is defined as the almost

sure limit
νγh = lim

ε→0
εγ

2/4 exp(γ
2
hε(u))du (4.8)

along powers of two as ε → 0 with respect to the weak topology. Upon showing
that the limit in (4.8) exists for linear ∂F, the boundary measure for other domains
is defined via conformal mapping and applying the change of coordinates rule for
quantum surfaces.

One can similarly make sense of the limits (4.8) in the case that h has free boundary
conditions, i.e. ∂D = ∅. If we consider h as a distribution defined modulo additive
constant, then the measure νγh will only be defined up to a multiplicative constant.
We can “fix” the additive constant in various ways, in which case νγh is an actual
measure.

70



One also has the following analog of [DS11a, Proposition 1.2] for the boundary
measures associated with the free boundary GFF on D. Suppose that (fn) is
any orthonormal basis consisting of smooth functions for the Hilbert space used
to define h. For each n ∈ N, let hn be the orthogonal projection of h onto the
subspace spanned by {f1, . . . , fn}. One can similarly define νγh as the almost sure
limit

νγh = lim
n→∞

exp
(
γ
2
hn(u)− γ2

4
var(hn(u))

)
du. (4.9)

That these two definitions for νγh almost surely agree is not explicitly stated in
[DS11a] for boundary measures however its proof is exactly the same as in the
case of bulk measures which is given in [DS11a, Proposition 1.2].

Proposition 4.6. Fix γ ∈ (−2, 2). Consider a random pair (u, h) where u is
sampled uniformly from ∂D using Lebesgue measure and, given u, the conditional
law of h is that of a free boundary GFF on D plus −γ log | · −u| viewed as a
distribution defined modulo additive constant. Let νγh denote the γ boundary mea-
sure associated with h. Then given h, the conditional law of u is that of a point
uniformly sampled from νγh (νγh is only defined up to a multiplicative constant, but
can be normalized to be a probability measure).

Proof. Let Ar for 0 < r < 1 be the annulus D \ B(0, r). Let Ãr be the larger
annulus B(0, 1/r) \ B(0, r). Let dh be the law of an instace h be the GFF on
Ar with zero boundary conditions on the inner boundary circle ∂B(0, r) and free
boundary conditions on ∂D. Let νγh denote the corresponding boundary γ-LQG
measure on ∂D. Then it is not hard to see that the following ways to produce a
random pair u, h are equivalent (and very similar statements are proved in [DS11a,
Section 6]):

1. First sample u uniformly on ∂D and the let h be a sample from the law
described above plus the deterministic function fu,r(·) = γGÃr

(u, ·) where

γGÃr
is the Green’s function on Ãr. (This function is harmonic on Ãr \ {u}

except at the point u.)

2. First sample h from the measure νγh(∂D)dh and then, conditioned on h,
sample u from the boundary measure νh (normalized to be a probability
measure).

The lemma can be obtained by taking the limit as r goes to zero (with the cor-
responding h being considered modulo additive constant). Note that on the set
∂D, the functions fr,u(·) (treated modulo additive constant) converge uniformly
to −γ log |u− ·| as r tends to zero.
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h ◦ fτ (·)+ 2√

κ
log |fτ (·)−1|−

η|[0,τ ]
0 1 0 1

κ+6
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√
κ
log |fτ (·)|+Q log |f ′

τ (·)|
h+ 2√

κ
log | ·−1|− κ+6

2
√
κ
log | · |

D D

Figure 5.1: Illustration of the coupling of reverse radial SLEκ in D starting from 1
and targeted at 0 with a free boundary GFF h on D. Here, Q = 2/γ + γ/2 for
γ = min(

√
κ,
√

16/κ) and fτ is the centered reverse radial SLEκ Loewner flow
evaluated at a stopping time τ . Theorem 5.1 implies that the distributions on the
left and right above have the same law.

5 The reverse radial SLE/GFF coupling

The purpose of this section is to establish the radial version of the reverse cou-
pling of SLEκ with the free boundary GFF. It is a generalization of the coupling
with reverse chordal SLEκ with the free boundary GFF established in [She10,
Theorem 1.2]. Suppose that Bt is a standard Brownian motion, Wt =

√
κBt, and

Ut = eiWt . Let (gt) solve the reverse radial Loewner ODE (4.3) driven by Ut. The
centered reverse SLEκ is given by the centered conformal maps ft = U−1

t gt. We
note that

dft(z) = U−1
t dgt(z)− iU−1

t gt(z)dWt −
κ

2
U−1
t gt(z)dt

= −ft(z)

(
1 + ft(z)

1− ft(z)
+
κ

2

)
dt− ift(z)dWt

= −
(

Φ(1, ft(z)) +
κ

2
ft(z)

)
dt− ift(z)dWt

(5.1)

(recall (4.1)).

Theorem 5.1. Fix κ > 0. Suppose that h is a free boundary GFF on D, let B be
a standard Brownian motion which is independent of h, and let (ft) be the centered
reverse radial SLEκ Loewner flow which is driven by Ut = eiWt where W =

√
κB
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as in (5.1). For each t ≥ 0 and z ∈ D we let14

ht(z) =
2√
κ

log |ft(z)− 1| − κ+ 6

2
√
κ

log |ft(z)|+Q log |f ′t(z)| (5.2)

where Q = 2/γ + γ/2 and γ = min(
√
κ,
√

16/κ). Let τ be an almost surely finite
stopping time for the filtration generated by W . Then

h+ h0
d
= h ◦ fτ + hτ (5.3)

where we view the left and right sides as distributions defined modulo additive
constant.

Theorem 5.1 states that the law of h + h0 is invariant under the operation of
sampling an independent SLEκ process η and then drawing it on top of h+ h0 up
until some time t and then applying the change of coordinates formula for quantum
surfaces using the forward radial Loewner flow for η at time t. An illustration of
the setup for Theorem 5.1 is given in Figure 5.1.

We include the following self-contained proof of Theorem 5.1 for the convenience
of the reader which follows the strategy of [She10]. The first step, carried out in
Lemma 5.2, is to compute the Ito derivatives of some quantities which are related
to the right side of (5.3). Next, we show in Lemma 5.3 that the random variable
on the right hand side of (5.3) takes values in the space of distributions and, when
integrated against a given smooth mean-zero test function, yields a process which
is continuous in time. We then compute another Ito derivative in Lemma 5.4 and
afterwards combine the different steps to complete the proof.

Let G denote the Neumann Green’s function for ∆ on D given in (4.7). Suppose
that (gt) is the reverse radial SLEκ Loewner flow and (ft) is the corresponding
centered flow as in Theorem 5.1. Throughout, we let

Gt(y, z) = G(ft(y), ft(z)) = G(gt(y), gt(z)) for each t ≥ 0.

We also let P (resp. P) denote 2π times the Poisson (resp. conjugate Poisson)
kernel on D. Explicitly,

(
P + iP

)
(z, w) =

w + z

w − z = Ψ(w, z). (5.4)

That is, P (resp. P) is given by the real (resp. imaginary) part of the expression
in the right side above.

14The function ht in the statement of Theorem 5.1 is not the same as the harmonic component
in the definition of QLE. We are using this notation in this section to be consistent with the
notation used in [She10].
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Lemma 5.2. Suppose that we have the same setup as in Theorem 5.1. There
exists a smooth function φ : D → R such that the following is true. For each
y, z ∈ D we have that

dGt(y, z) =

(
φ(ft(y)) + φ(ft(z))− P(1, ft(y))P(1, ft(z))

)
dt and (5.5)

dht(z) =
1√
κ
dt− P(1, ft(z))dBt. (5.6)

When we apply Lemma 5.2 later in this section, we will consider Gt(y, z) and ht(z)
integrated against mean zero test functions. In particular, the terms involving φ
for dGt(y, z) and the term (1/

√
κ)dt in dht(z) will drop out.

Proof of Lemma 5.2. Both (5.5) and (5.6) follow from applications of Ito’s for-
mula. In particular,

d log(gt(y)− gt(z)) =
gt(y)gt(z)− Ut(gt(y) + gt(z))− U2

t

(Ut − gt(z))(Ut − gt(y))
dt and (5.7)

d log(1− gt(y)gt(z)) =
2gt(z)gt(y)

(U t − gt(y))(Ut − gt(z))
dt. (5.8)

We note that (5.7) and (5.8) do not depend on the choice of driving function.
A tedious calculation thus shows that dGt(y, z) + P(1, ft(y))P(1, ft(z))dt can be
written as φ(ft(y)) + φ(ft(z)) where φ is a smooth function. This gives (5.5).

For (5.6), we fix z ∈ D and write ft = ft(z). Then we can express ht(z) in terms
of the real part of

log(ft − 1), log(ft), and log(f ′t). (5.9)

The Ito derivative of ft is given in (5.1). Differentiating this with respect to z
yields

df ′t = −f ′t
(

1 + ft
1− ft

+
2ft

(1− ft)2
+
κ

2

)
dt− if ′tdWt. (5.10)

Applying (5.1) and (5.10), we see that the Ito derivatives of the terms in (5.9) are
given by

d log(ft − 1) =

(
(1 + κ

2
)ft + f 2

t

(1− ft)2

)
dt+

ift
1− ft

dWt,

d log(ft) = −
(

1 + ft
1− ft

)
dt− idWt, and
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d log(f ′t) =

(
1− 2

(1− ft)2

)
dt− idWt.

This implies that dht(z) is given by the real part of

1√
κ
dt+ i

(
1 + ft
1− ft

)
dBt,

from which (5.6) follows.

Lemma 5.3. Suppose that we have the same setup as in Theorem 5.1. For
each t ≥ 0, the random variable h ◦ ft + ht takes values in the space of distri-
butions defined modulo additive constant. Moreover, for any fixed ρ ∈ C∞0 (D)
with

∫
D
ρ(z)dz = 0, both (h ◦ ft + ht, ρ) and (ht, ρ) are almost surely continuous

and the latter is a square-integrable martingale.

Proof. Fix ρ ∈ C∞0 (D) with
∫
D
ρ(z)dz = 0. We first note that it is clear that

h ◦ ft takes values in the space of distributions modulo additive constant and that
(h ◦ ft, ρ) is almost surely continuous in time from how it is defined. This leaves
us to deal with ht. It follows from (5.6) of Lemma 5.2 that

d〈ht(z)〉 =
(
P(1, ft(z))

)2
dt. (5.11)

By the Schwarz lemma, we note that |ft(z)| ≤ |z| for all z ∈ D and t ≥ 0.
Consequently, it follows from (5.4) that for each r ∈ (0, 1) there exists Cr ∈ (0,∞)
such that

sup
z∈rD
〈ht(z)− hu(z)〉 ≤ Cr(t− u) for all 0 ≤ u ≤ t <∞. (5.12)

It therefore follows from the Burkholder-Davis-Gundy inequality that for each
p ≥ 1 and r ∈ (0, 1) there exists Cp, Cκ,r,p ∈ (0,∞) such that for all 0 ≤ u ≤ t we
have

sup
z∈rD

E

[
sup
u≤s≤t

|hs(z)− hu(z)|p
]

≤Cp
(

sup
z∈rD

E
[
〈ht(z)− hu(z)〉p/2

]
+

1

κp/2
(t− u)p

)

≤Cκ,r,p
(

(t− u)p + (t− u)p/2
)
. (5.13)

It is easy to see from (5.13) with u = 0 and Fubini’s theorem that for each
r ∈ (0, 1) we have ht|rD is almost surely in Lp(rD). By combining (5.13) with a
large enough value of p > 1 and the Kolmogorov-Centsov theorem, it is also easy
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to see that that t 7→ (ht, ρ) is almost surely continuous for any ρ ∈ C∞0 (D) with∫
D
ρ(z)dz = 0. Lastly, it follows from (5.13) and (5.6) of Lemma 5.2 that (ht, ρ)

is a square-integrable martingale. This completes the proof of both assertions of
the lemma.

For each ρ ∈ C∞0 (D) with
∫
D
ρ(z)dz = 0 and t ≥ 0 we let

Et(ρ) =

∫

D

∫

D

ρ(y)Gt(y, z)ρ(z)dydz

be the conditional variance of (h ◦ ft, ρ) given ft.

Lemma 5.4. For each ρ ∈ C∞0 (D) with
∫
D
ρ(z)dz = 0 we have that

d〈(ht, ρ)〉 = −dEt(ρ).

Proof. Since (ht, ρ) is a continuous L2 martingale, the process 〈(ht, ρ)〉 is charac-
terized by the property that

(ht, ρ)2 − 〈(ht, ρ)〉

is a continuous local martingale in t ≥ 0. Thus to complete the proof of the
lemma, it suffices to show that

(ht, ρ)2 + Et(ρ)

is a continuous local martingale. It follows from (5.5) and (5.6) of Lemma 5.2 that

ht(y)ht(z) +Gt(y, z)

evolves as the sum of a martingale in t ≥ 0 plus a drift term which can be expressed
as a sum of terms one of which depends only on y and the other only on z. These
drift terms cancel upon integrating against ρ(y)ρ(z)dydz which in turn implies the
desired result.

Proof of Theorem 5.1. Fix ρ ∈ C∞0 (D) with
∫
D
ρ(z)dz = 0. Let Ft be the fil-

tration generated by ft. Note that ht is Ft-measurable and that, given Ft,
(h ◦ ft, ρ) is a Gaussian random variable with mean zero and variance Et(ρ).
Let It(ρ) = (h ◦ ft + ht, ρ). For θ ∈ R we have that:

E[exp(iθIt(ρ))] = E[E[exp(iθIt(ρ))|Ft]]
=E[E[exp(iθ(h ◦ ft, ρ))|Ft] exp(iθ(ht, ρ))]

=E[exp(iθ(ht, ρ)− θ2

2
Et(ρ))]
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= exp(iθ(h0, ρ)− θ2

2
E0(ρ)).

Therefore It(ρ)
d
= I0(ρ) for each ρ ∈ C∞0 (D) with

∫
D
ρ(z)dz = 0. The result

follows since this holds for all such test functions ρ and ρ 7→ I0(ρ) has a Gaussian
distribution.

Reverse radial SLEκ(ρ) is a variant of reverse radial SLEκ in which one keeps track
of an extra marked point on ∂D. It is defined in an analogous way to reverse radial
SLEκ except the driving function Ut is taken to be a solution to the SDE:

dUt = −κ
2
Utdt+ i

√
κUtdBt +

ρ

2
Φ(Vt, Ut)dt

dVt = −Φ(Ut, Vt)dt.
(5.14)

Observe that when ρ = 0 this is the same as the driving SDE for ordinary reverse
radial SLEκ. This is analogous to the definition of forward radial SLEκ(ρ) up to
a change of signs (see, for example, [SW05, Section 2]). In analogy with Theo-
rem 5.1, it is also possible to couple reverse radial SLEκ(ρ) with the GFF (the
chordal version of this is [She10, Theorem 4.5]).

Theorem 5.5. Fix κ > 0. Suppose that h is a free boundary GFF on D and let
(ft) be the centered reverse radial SLEκ(ρ) Loewner flow which is driven by the
solution U as in (5.14) with V0 = v0 ∈ ∂D taken to be independent of h. For each
t ≥ 0 and z ∈ D we let

ht(z) =
2√
κ

log |ft(z)− 1| − κ+ 6− ρ
2
√
κ

log |ft(z)|−
ρ√
κ

log |ft(z)− Vt|+Q log |f ′t(z)|
(5.15)

where Q = 2/γ + γ/2 and γ = min(
√
κ,
√

16/κ). Let τ be an almost surely finite
stopping time for the filtration generated by W which occurs before the first time
t that ft(v0) = 1. Then

h+ h0
d
= h ◦ fτ + hτ (5.16)

where we view the left and right sides as distributions defined modulo additive
constant.

Proof. This result is proved in the same manner as Theorem 5.1; the only differ-
ence is that the calculations needed to verify that the analogy of the assertion of
(5.6) from Lemma 5.2 also holds in the setting of the present theorem. As in the
proof of Lemma 5.2, we will not spell out all of the calculations but only indicate
the high level steps. Fix z ∈ D and write ft = ft(z). We also let

Zt = U−1
t Vt and At =

ρ

2
Φ(Zt, 1).
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We will now explain how to show that

dht(z) = −Re

(
(At − 1)(2− ρ)

2
√
κ

)
dt− P(1, ft)dBt. (5.17)

Note that the diffusion term does not depend on ρ. Moreover, the drift term does
not depend on z and so integrates to zero against any mean-zero test function.

First, we note that

dft = −ft
(

1 + ft
1− ft

+ At +
κ

2

)
dt− i√κftdBt. (5.18)

Applying this for z = v0 also gives dZt. Differentiating both sides with respect to
z yields

df ′t = −f ′t
(

1 + ft
1− ft

+
2ft

(1− ft)2
+ At +

κ

2

)
dt− i√κf ′tdBt. (5.19)

Using (5.18) and (5.19), we thus see that

d log(ft − 1) =

(
(1 + κ

2
)ft + f 2

t

(1− ft)2
+

Atft
1− ft

)
dt+

ift
1− ft

√
κdBt,

d log(ft) = −
(

1 + ft
1− ft

+ At

)
dt− i√κdBt,

d log(f ′t) =

(
1− 2

(1− ft)2
− At

)
dt− i√κdBt, and

d log(ft − Zt) =

(
Zt + 1

Zt − 1
· 1

1− ft
− ft

1− ft
− At

)
dt− i√κdBt.

Adding these expressions up gives (5.17).

6 Existence of QLE

The purpose of this section is to prove Theorem 1.3. Throughout, we suppose that
the pair (γ2, η) is on one of the upper two lines from Figure 1.3. We are going to
construct a triple (νt, gt, ht) which satisfies the dynamics described in Figure 1.2
where

ακ = − 1√
κ

(6.1)

for κ > 1. We will first give a careful definition of the spaces in which our
random variables take values in Section 6.1. We will then prove Theorem 1.1
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in Section 6.2. We next introduce approximations (ςδt , g
δ
t , h

δ
t ) to QLE(γ2, η) in

Section 6.3. Throughout, we reserve using the symbol ν to denote a measure which
is constructed using exponentiation. This is why the Loewner driving measure
for the approximation is referred to as ςδt . We will then show that each of the
elements of (ςδt , g

δ
t , h

δ
t ) is tight on compact time intervals with respect to a suitable

topology in Section 6.4. Finally, we will show that the subsequentially limiting
triple (νt, gt, ht) satisfies the dynamics from Figure 1.2 in Section 6.5. This will
complete the proof of Theorem 1.3.

6.1 Spaces, topologies, and σ-algebras

We are going to recall the spaces NT , GT , and HT (and their infinite time versions)
from the introduction as well as introduce a certain subspace of the space of
distributions. We will then equip each of these spaces with a metric and the
corresponding Borel σ-algebra. We emphasize that each of the spaces that we
consider is separable. This will be important later since we will make use of the
Skorohod representation theorem for weak convergence.

Measures. We letNT be the space of measures ς on [0, T ]×∂D whose marginal on
[0, T ] is given by Lebesgue measure. We equipNT with the topology given by weak
convergence. That is, we say that a sequence (ςn) in NT converges to ς ∈ NT if for
every continuous function φ on [0, T ]×∂D we have that

∫
[0,T ]×∂D φ(s, u)dςn(s, u)→∫

[0,T ]×∂D φ(s, u)dς(s, u). Equivalently, we can equip NT with the Levy-Prokhorov

metric dN ,T . We let N be the space of measures ς on [0,∞)×∂D whose marginal
on [0,∞) is given by Lebesgue measure. Note that there is a natural projection
PT : N → NT given by restriction. We equip N with the following topology. We
say that a sequence (ςn) in N converges to ς if (PT (ςn)) converges to PT (ς) as a
sequence in NT for each T ≥ 0. Equivalently, we can equip N with the metric
dN given by

∑∞
n=1 2−n min(dN ,n(·, ·), 1). Then (N , dN ) is a separable metric space

and we equip N with the Borel σ-algebra.

Families of conformal maps. We let GT be the space of families of conformal
maps (gt) where, for each 0 ≤ t ≤ T , gt : D \ Kt → D is the unique conformal
transformation with gt(0) = 0 and g′t(0) > 0. We assume further that g′t(0) = et

so that time is parameterized by log conformal radius. We define G analogously
except time is defined on the interval [0,∞). We say that a sequence of families
(gnt ) in G converges to (gt) if (gnt )−1 → g−1

t locally uniformly in space and time. In
other words, for each compact set K ⊆ D and T ≥ 0 we have that (gnt )−1 → g−1

t

uniformly on [0, T ] × K. We can construct a metric which is compatible with
this notion of convergence by taking dG,n to be the uniform distance on functions
defined on B(0, 1−1/n)×[0, n] and then taking dG to be

∑∞
n=1 2−n min(dG,n(·, ·), 1).
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Then (G, dG) is a separable metric space and we equip G with the corresponding
Borel σ-algebra.

Families of harmonic functions. We letHT be the space of families of harmonic
functions (ht) where, for each t ∈ [0, T ], ht : D → R is harmonic, ht(0) = 0, and
(t, z) 7→ ht(z) is continuous. We define H similarly with T =∞. We equip H with
the topology of local uniform convergence. That is, if (hnt ) is a sequence in H then
we say that (hnt ) converges to (ht) if for each compact set K ⊆ D and T ≥ 0 we
have that hnt → ht uniformly on [0, T ]×K. We can construct a metric dH which
is compatible with this notion of convergence in a manner which is analogous to
dG and we equip H with the corresponding Borel σ-algebra.

Distributions. Suppose that (fn) are the eigenvectors of ∆ with Dirichlet bound-
ary conditions on D with negative eigenvalues (λn). By the spectral theorem, (fn)
properly normalized gives an orthonormal basis of L2(D). Thus for f ∈ C∞0 (D)
we can write f =

∑
n αnfn and, for a ∈ R, we define (−∆)af =

∑
n αn(−λn)afn.

We let (−∆)aL2(D) denote the Hilbert space closure of C∞0 (D) with respect to
the inner product (f, g)a = ((−∆)−af, (−∆)−ag) where (·, ·) is the L2(D) inner
product; see [She07, Section 2.3] for additional discussion of this space. We equip
(−∆)aL2(D) with the Borel σ-algebra associated with the norm generated by
(·, ·)a.
The GFF with zero boundary conditions takes values in (−∆)aL2(D) for each
a > 0 [She07] (see also [SS13, Section 4.2]). By Proposition 4.2, we can write the
GFF on D with either mixed or free boundary conditions as the sum of a harmonic
function and an independent zero-boundary GFF on D. It therefore follows that
for each ε > 0, each of these fields restricted to (1−ε)D take values in (−∆)aL2((1−
ε)D). (In the case of free boundary conditions, we can either consider the space
modulo additive constant or fix the additive constant in a consistent manner by
taking, for example, the mean of the field on D to be zero.) We let Dεa be the
subspace of distributions on D which are elements of (−∆)aL2((1− ε)D) and let
da,ε be the metric on Dεa induced by the (·, ·)a inner product. Let Da = ∩ε>0Dεa
and equip Da with the metric given by da(·, ·) =

∑
n 2−n min(da,n−1(·, ·), 1). Since

each each Dεa is separable, so is Da and we equip it with the Borel σ-algebra.

6.2 Proof of Theorem 1.1

Recall that Theorem 1.1 has three assertions. For the convenience of the reader,
we restate them here and then give the precise location of where each is established
below.

(i) For any ς ∈ N there exists a unique solution to the radial Loewner equation
(in integrated form) driven by ς. This is proved in Proposition 6.1.
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(ii) If we have any increasing family of compact hulls (Kt) in D parameterized
by log conformal radius as seen from 0 then there exists a unique measure
ς ∈ N such that the complement of the domain in D of the solution to the
radial Loewner equation driven by ς at time t is given by Kt. This is proved
in Proposition 6.4.

(iii) The convergence of a sequence (ςn) in N to a limiting measure ς ∈ N is
equivalent to the Caratheodory convergence of the families of compact hulls
in D parameterized by log conformal radius associated with the correspond-
ing radial Loewner chains. That the convergence of such measures implies the
Caratheodory convergence of the hulls is proved as part of Proposition 6.1.
The reverse implication is proved in Proposition 6.6.

We establish the first assertion of Theorem 1.1 in the following proposition.

Proposition 6.1. Suppose that ς ∈ N . Then there exists a unique solution (gt)
to the radial Loewner evolution driven by ς. That is, (gt) solves

gt(z) =

∫

[0,t]×∂D
Φ(u, gs(u))dς(s, u), g0(z) = z. (6.2)

Moreover, suppose that (ςn) is a sequence in N converging to ς ∈ N . For each
n ∈ N, let (gnt ) solve the radial Loewner equation driven by ςn and likewise let (gt)
solve the radial Loewner equation driven by ς. Then (gnt )→ (gt) as n→∞ in G.

Before we prove Proposition 6.1, we first collect the following two lemmas.

Lemma 6.2. Suppose that ς ∈ N . Then there exists a sequence (ςnt ) where, for
each n ∈ N and t ≥ 0, ςnt is a probability measure on ∂D such that the following
are true.

(i) For each n ∈ N, t 7→ ςnt is continuous with respect to the weak topology on
measures on ∂D.

(ii) We have that dςnt dt→ ς as n→∞ in N .

Proof. We define ςnt by averaging the first coordinate of ς as follows: for φ : ∂D→
R continuous, we take

∫

∂D

φ(u)dςnt (u) = n

∫

[t,t+n−1]×∂D
φ(u)dς(s, u).

Then it is easy to see that the sequence (ςnt ) has the desired properties.
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Lemma 6.3. If (ςn) is a sequence in N and, for each n ∈ N, t 7→ gnt solves the
radial Loewner equation driven by ςn, then the following is true. There exists a
family of conformal transformations (gt) which are continuous in both space and
time and each of which maps D into itself and a subsequence (gnkt ) of (gnt ) such
that (gnkt )→ (gt) in G.

Proof. Let ψnt = (gnt )−1. Then the chain rule implies that for each z ∈ D and
t ≥ 0 we have that

ψnt (z) = −z
∫

[0,t]×∂D
(ψns )′(z)Ψ(u, z)dςn(s, u) + z; (6.3)

see [Law05, Remark 4.15]. The desired result follows because it is clear from the
form of (6.3) that the family (ψnt ) is equicontinuous when restricted to a compact
subset of D and compact interval of time in [0,∞).

Proof of Proposition 6.1. We are first going to prove uniqueness of solutions to
(6.2). Suppose that we have two solutions (gt) and (g̃t) to (6.2). Fix T ≥ 0. Then
the domain of gT (resp. g̃T ) contains B(0, 1

4
e−T ) by the Koebe one-quarter theorem

since time is parameterized by log conformal radius. To show that gT = g̃T , it
suffices to show that gT (z) = g̃T (z) for all z ∈ B(0, 1

16
e−T ) because two conformal

transformations with connected domain and whose values agree on an open set
agree everywhere. For 0 ≤ s ≤ t ≤ T , we let gs,t = gt ◦ g−1

s and g̃s,t = g̃t ◦ g̃−1
s .

From the form of the radial Loewner equation it follows that the maps gs,t are
Lipschitz in 0 ≤ s ≤ t ≤ T and z ∈ B(0, 1

16
e−T ) where the Lispchitz constant only

depends on T . By estimating gs,r (resp. g̃s,r) by z in the integral below, it thus
follows that there exists a constant C > 0 depending only on T such that

|gs,t(z)− g̃s,t(z)|

≤
∫

[s,t]×∂D
|Φ(u, gs,r(z))− Φ(u, g̃s,r(z))| dς(r, u)

≤C(t− s)2.

Fix δ > 0 and let t` = δ` for ` ∈ N0. Then

gT (z) = gt1,T ◦ gt1(z)

= gt1,T ◦ g̃t1(z) +
(
gt1,T (gt1(z))− gt1,T (g̃t1(z))

)
.

By the previous estimate and the Lipschitz property, the second term is of order
O(δ2) as δ → 0 where the implicit constant depends only on T . Iterating this
procedure implies that gT (z)− g̃T (z) = O(δ) as δ → 0 where the implied constant
depends only on T . This implies uniqueness.
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We are next going to show that if (ςn) is a sequence in N converging to ς and, for
each n, (gnt ) is the solution to the radial Loewner equation with driving function
(ςn), then (gnt )→ (gt) in G where (gt) is the radial Loewner equation driven by ς.
By possibly passing to a subsequence, Lemma 6.3 implies that there exists a family
of conformal maps (gt) such that (ft = g−1

t ) is a locally uniform subsequential limit
of (fnt ) in both space and time. To finish the proof, we just need to show that (gt)
satisfies the radial Loewner equation driven by ς. For each t ≥ 0 and z ∈ D with
positive distance from the complement of the domain of gt, we can write:

gnt (z) =

∫

[0,t]×∂D
Φ(u, gns (z))dςn(s, u) + z

= O(t× sup
s∈[0,t]

|gns (z)− gs(z)|) +

∫

[0,t]×∂D
Φ(u, gs(z))dςn(s, u) + z.

Taking a limit as n→∞ of both sides proves the assertion.

It is left to prove existence. In the case that the radial Loewner evolution is driven
by a family of measures t 7→ ςt on ∂D which is piecewise continuous with respect
to the weak topology, the existence of a solution to the radial Loewner equation
(gt) driven by (ςt) follows from standard existence results for ordinary differential
equations (see, for example, [Law05, Theorem 4.14]). The result in the general
case follows by combining the previous assertion with Lemma 6.2. In particular,
if ς ∈ N , then we let (ςnt ) be a sequence as in Lemma 6.2. For each n, let (gnt )
be the radial Loewner evolution driven by t 7→ ςnt . Then the previous assertion
implies that (gnt ) converges in G to the unique solution (gt) driven by ς.

To finish the proof of Theorem 1.1, we need to show that we can associate a
growing family of hulls (Kt) in D parameterized by log conformal radius with
an element of N using the radial Loewner evolution and that the convergence of
hulls with respect to the Caratheodory topology is equivalent to the convergence
of measures in N , also using radial Loewner evolution. This is accomplished in
the following two propositions.

Proposition 6.4. Suppose that (Kt) is a family of hulls in D parameterized by
log conformal radius as seen from 0. That is, the conformal radius of Dt = D\Kt

as seen from 0 is equal to e−t for each t ≥ 0. There exists a unique measure ς ∈ N
such that if (gt) is the solution of the radial Loewner evolution driven by ς then,
for each t ≥ 0, Kt is the complement in D of the domain of gt.

The main ingredient in the proof of Proposition 6.4 is the following lemma.

Lemma 6.5. Suppose that K ⊆ D is a compact hull and let T = − log CR(0; D \
K). Then there exists a measure ς ∈ NT such that if (gt) is the radial Loewner
evolution driven by ς then D \K is the domain of gT .
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Proof. Fix ε > 0 and let γε : [0, Tε] → D be a simple curve starting from a point
in ∂D such that the Hausdorff distance between K and γε([0, Tε]) is at most ε.
Then (the radial version of) [Law05, Proposition 4.4] implies that there exists
a continuous function U ε : [0, Tε] → ∂D such that if (gεt) is the radial Loewner
evolution driven by U ε then, for each t ∈ [0, Tε], γ

ε([0, t]) is the complement in D
of the domain of gεt . Let ςεt = δUε(t). By possibly passing to a subsequence (εk)
of positive numbers which decrease to 0 as k →∞, we have that dςεt dt converges
in NT to ς ∈ NT . Proposition 6.1 implies that the radial Loewner evolution (gt)
driven by ς has the property that the domain of gT is D \K.

Proof of Proposition 6.4. The uniqueness component of the proposition is obvious,
so we will just give the proof of existence. Fix δ > 0 and, for each ` ∈ N0, let
Kδ,` = gδ`(Kδ(`+1)). Let ςδ,` be a measure on [δ, δ(`+1)]×∂D as in Lemma 6.5 with
respect to Kδ,`, let ςδ =

∑∞
`=0 δ[δ`,δ(`+1))(t)ς

δ,`, and let (gδt ) be the radial Loewner
evolution driven by ςδ. Then the complement of the domain of gδδ` is equal to Kδ`

for each ` ∈ N0. The result follows by taking a limit along a sequence (δk) of
positive numbers which decrease to 0 as k → ∞ such that ςδk converges in N to
ς ∈ N .

Proposition 6.6. Let (ςn) be a sequence in N . Suppose that, for each n ∈ N and
t ≥ 0, Kn

t is the complement in D of the domain of gnt where t 7→ gnt is the radial
Loewner evolution driven by ςn. Then ςn converges to an element ς of N if and
only if (Kn

t ) converges with respect to the Caratheodory topology to the growing
sequence of compact hulls (Kt) in D associated with the radial Loewner evolution
driven by ς.

Proof. That the convergence of ςn → ς in N implies the Caratheodory conver-
gence of the corresponding families of compact hulls is proved in Proposition 6.1.
Therefore, we just have to prove the reverse implication. That is, we suppose
that for each n, (Kn

t ) is a family of compact hulls in D parameterized by log con-
formal radius as seen from 0 which converge in the Caratheodory sense to (Kt).
For each n ∈ N, let ςn be the measure which drives the radial Loewner evolution
associated with (Kn

t ) and let ς be the measure which drives the radial Loewner
evolution associated with (Kt). Let ς̃ be a subsequential limit in N of (ςn). The
Caratheodory convergence of (Kn

t ) to (Kt) implies that ς̃ drives a radial Loewner
evolution whose corresponding family of compact hulls is the same as (Kt), there-
fore ς = ς̃. This implies that the limit of every convergent subsequence of (ςn) is
given by ς, hence ςn → ς as n→∞ as desired.

Proof of Theorem 1.1. Combine Proposition 6.1, Proposition 6.4, and Proposi-
tion 6.6 as explained in the beginning of this section.
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6.3 Approximations

gδ

χ|[0,δ]

0

u

0

gδ(χ(δ))

D D

h h ◦ g−1δ +Q log |(g−1δ )′|

Figure 6.1: Fix κ > 1 and suppose that (h, u) has the law as described in
Proposition 4.6 (where the role of γ in the application of the proposition is played
by 2ακ) plus −κ+6

2
√
κ

log | · | and let νh,κ be the − 2√
κ
-quantum boundary length

measure associated with h. Then the conditional law of h given u is that of a
free boundary GFF on D plus −κ+6

2
√
κ

log | · |+ 2√
κ

log | · −u|. By Theorem 5.1, the

law of the pair (h, u) is invariant under the operation of sampling a radial SLEκ

process in D starting from u and targeted at 0 (which given u is conditionally
independent of h) up to some fixed (log conformal radius) time δ, mapping back
using the (forward) radial Loewner map gδ as illustrated above, and applying
the change of coordinates formula for quantum surfaces. Here, h is viewed as a
modulo additive constant distribution. This is the basic operation which is used
to construct QLE.

We are now going to describe an approximation procedure for generating QLE(γ2, η).
Fix κ > 1. Let (h, u) have the law as described in Proposition 4.6 (where the role
of γ in the application of the proposition is played by 2ακ) plus −κ+6

2
√
κ

log | · | and

let νh,κ(∂D) be the − 2√
κ
-quantum boundary length measure associated with h.

Fix δ > 0. We are now going to describe the dynamics of the triple (ςδt , g
δ
t , h

δ
t )

which will be an approximation to QLE(γ2, η). The random variables ςδt dt, (gδt ),
and (hδt ) will take values in N , G, and H respectively. The basic operation is
illustrated in Figure 6.1. Consider the Markov chain in which we:

1. Pick u ∈ ∂D according to νh,κ. By Proposition 4.6, the conditional law of
h given u is equal to that of the sum of a free boundary GFF on D plus
−κ+6

2
√
κ

log | · |+ 2√
κ

log | · −u|.
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2. Sample a radial SLEκ in D starting from u and targeted at 0 taken to be
conditionally independent of h given u. Let (gt) be the corresponding family
of conformal maps which we assume to be parameterized by log conformal
radius.

3. Replace h with h ◦ (g−1
δ ) + Q log |(g−1

δ )′| where Q = 2/γ + γ/2 with γ =

min(
√
κ,
√

16/κ).

By Proposition 4.6 and Theorem 5.1, we know that this Markov chain preserves
the law of h. We use this construction to define the processes (ςδt , g

δ
t , h

δ
t ) as follows.

We sample U δ,0 from νh,κ = exp(ακh) and let W δ,0 = exp(i
√
κBδ,0) where Bδ,0 is

a standard Brownian motion independent of h, and take gδ|[0,δ) to be the radial
Loewner evolution driven by U0,δW δ,0. For each t ∈ [0, δ], we let hδ|[0,δ) be given
by15 Pharm(h◦(gδt )−1+Q log |((gδt )−1)′|+ κ+6

2
√
κ

log |·|) normalized so that hδt (0) = 0 for

t ∈ [0, δ]. Given that (gδt ) and (hδt ) have been defined for t ∈ [0, δk), some k ∈ N,
we sample U δ,k from exp(ακh

δ
δk) and let W δ,k = exp(i

√
κBδ,k) where Bδ,k is an

independent standard Brownian motion defined in the time interval [δk, δ(k+ 1))
(so that Bδ,k

δk = 0). We then take g̃δ|[δk,δ(k+1)) to be the radial Loewner evolution
driven by U δ,kW δ,k and gδ|[δk,δ(k+1)) = g̃δ|[δk,δ(k+1))◦gδδk. Finally, we take hδ|[δ,δ(k+1))

to be given by Pharm(h ◦ (gδt )
−1 +Q log |((gδt )−1)′|+ κ+6

2
√
κ

log | · |) normalized so that

hδt (0) = 0 for t ∈ [δk, δ(k + 1)).

Since h ◦ (gδt )
−1 + Q log |((gδt )−1)′| + κ+6

2
√
κ

log | · | for each t ≥ 0 is a free boundary

GFF on D plus 2/
√
κ times the log function centered at an independent point

on ∂D, the orthogonal projections used to define hδt are almost surely defined
for Lebesgue almost all t ≥ 0 simultaneously; recall Proposition 4.2. We can
extend the definition of hδt so that it makes sense almost surely for all t ≥ 0
simultaneously as follows. By induction, it is easy to see that the complement Kδ

t

in D of the domain of gδt is a local set for (the GFF part of) h for each t ≥ 0.
Hence, Proposition 4.5 implies that hδt is almost surely continuous as a function
[0,∞)× ∂D→ R. (This point is explained in more detail in Lemma 6.9 below.)

Let

ςδt =
∞∑

`=0

1[δ`,δ(`+1))(t)δUδ,`W δ,` . (6.4)

That is, ςδt for t ∈ [δ`, δ(` + 1)) and ` ∈ N is given by the Dirac mass located at
U δ,`W δ,` ∈ ∂D. Then (gδt ) is the radial Loewner evolution driven by ςδt . That is,
(gδt ) solves

ġδt (z) =

∫

∂D

Φ(u, gδt (z))dςδt (u), gδ0(z) = z. (6.5)

15We add the term κ+6
2
√
κ

log | · | back into the GFF whenever applying Pharm because Pharm as

defined in Remark 4.4 is defined only for the GFF.

86



(Recall (4.1).) We emphasize that by Theorem 5.1 we have

h ◦ (gδt )
−1 +Q log |((gδt )−1)′| d= h for all t ≥ 0

as modulo additive constant distributions. In particular, the law of (hδt ) is sta-
tionary in t.

For our later arguments, it will be more convenient to consider the measure dςδt dt
on [0,∞) × ∂D in place of ςδt , which for each t ≥ 0 is a measure on ∂D. Note
that this is random variable which takes values in N . We also note that (gδt ) takes
values in G and (hδt ) takes values in H.

Definition 6.7. We call the triple (ςδt , g
δ
t , h

δ
t ) constructed above the δ-approximation

to QLE(γ2, η).

Note that the dynamics (ςδt , g
δ
t , h

δ
t ) satisfy two of the arrows from Figure 1.2.

Namely, gδt is obtained from ςδt by solving the radial Loewner equation and hδt
is obtained from gδt using Pharm(h ◦ (gδt )

−1 + Q log |((gδt )−1)′| + κ+6
2
√
κ

log | · |) (and

then normalized to vanish at the origin). However, ςδt is not obtained from hδt
via exponentiation. (Rather, ςδt is given by a Dirac mass at a point in ∂D which
is sampled from the measure given by exponeniating hδt .) In Section 6.4, we will
show that each of the elements of (ςδt , g

δ
t , h

δ
t ) is tight (on compact time intervals)

with respect to a suitable topology as δ → 0. In Section 6.5, we will show that
both of the aforementioned arrows for the QLE(γ2, η) dynamics still hold for the
subsequentially limiting objects (ςt, gt, ht). We will complete the proof by showing
that ςt is equal to the measure νt which is given by exponentiating ht, hence the
triple (νt, gt, ht) satisfies all three arrows of the QLE(γ2, η) dynamics.

6.4 Tightness

The purpose of this section is to establish Proposition 6.10, which gives the exis-
tence of subsequential limits of the triple (ςδt , g

δ
t , h

δ
t ) viewed as a random variable

taking values in N × G × H as δ → 0. We begin with the following two lemmas
which are general results about local sets for the GFF.

Lemma 6.8. Suppose that (hn, Kn) is a sequence such that, for each n, hn is
a GFF on D (with Dirichlet, free, or mixed boundary conditions and the same
boundary conditions for each n) and Kn ⊆ D is a local set for hn. Fix a > 0.
Assume that (hn, Kn) are coupled together so that hn → h (resp. Kn → K) almost
surely as n→∞ in Da (resp. the Hausdorff topology) where h is a GFF on D and
K ⊆ D is closed. Then K is local for h. If CKn (resp. CK) denotes the conditional
expectation of hn (resp. h) given Kn and h|Kn (resp. K and h|K) and CKn → F
locally uniformly almost surely for some function F : D \K → R, then F = CK.
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ςt gt ht
Radial Loewner flow

νt
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t g
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∞

k

∞

k

∞

normalization
Exponentiation and

Figure 6.2: In Proposition 6.10 of Section 6.4, we prove the tightness of each
of the elements of the triple (ςδt , g

δ
t , h

δ
t ) (on compact time intervals) in the δ-

approximation to QLE(γ2, η) as δ → 0 with respect to the topologies introduced
in Section 6.1. The subsequentially limiting objects (ςt, gt, ht) are related to each
other in the same way as (ςδt , g

δ
t , h

δ
t ) and as indicated above. Namely, gt is gener-

ated from ςt by solving the radial Loewner equation and ht is related to gt in that
it is given by Pharm(h ◦ g−1

t + Q log |(g−1
t )′| + κ+6

2
√
κ

log | · |) (normalized to vanish

at the origin). The measure νt is obtained from ht by exponentiation and is con-
structed in Proposition 6.11. Upon proving tightness, the existence of QLE(γ2, η)
is established by showing that νt = ςt. This is completed in Section 6.5.

Proof. The proof that K is a local set for h is similar to that of [SS13, Lemma 4.6].
In particular, we will make use of the second characterization of local sets from
[SS13, Lemma 3.9]. Fix a deterministic open set B ⊆ D. For each n ∈ N, we let

Sn be the event that Kn∩B 6= ∅ and let K̃n = Kn on Scn and K̃n = ∅ otherwise. We

also let S be the event that K∩B 6= ∅ and let K̃ = K on Sc and K̃ = ∅ otherwise.
For each n ∈ N, let h1

n = Pharm(hn;B) and h2
n = Psupp(hn;B) and define h1, h2

analogously for h. Since h1 is independent of h2 (recall Proposition 4.2), it suffices

to show that h2 is independent of the triple (S, K̃, h1). Since Kn is local for hn,
the second characterization of local sets from [SS13, Lemma 3.9] implies that h2

n is

independent of the triple (Sn, K̃n, h
1
n) for each n ∈ N. The result therefore follows

because this implies that the independence holds in the n→∞ limit.

Suppose that CKn → F locally uniformly almost surely for some F : D \K → R.
Then F is almost surely harmonic since each CKn is harmonic. Since Kn is local

for hn we can write hn = h̃n + CKn where h̃n is a zero-boundary GFF on D \Kn.
Fix ε > 0. Since hn → h in Da it follows that hn → h in (−∆)aL2((1− ε)D \K)
as n → ∞. The local uniform convergence of CKn to F in D \ K as n → ∞
implies that CKn → F in (−∆)aL2(V ) for all V ⊆ D\K with dist(V,K ∪∂D) > 0

as n → ∞. Combining, we have that h̃n converges to some h̃ in (−∆)aL2(V ) as

n→∞ for such V . Since this holds for all such V , we have that h = h̃+F and h̃
is a zero-boundary GFF in D\K. Since K is local for h, ĥ = h−CK = h̃+F −CK
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is a zero-boundary GFF on D \K. Rearranging, we have that h̃− ĥ = CK −F . If

φ is harmonic in D \K, then we have that (CK − F, φ)∇ = (h̃− ĥ, φ)∇ = 0. Since
this holds for all such φ, we have that CK − F = 0, desired.

Proposition 4.5 gives that if (Kt) is an increasing family of local sets for a GFF
h on D parameterized by log conformal radius as seen from a given point z ∈ D,
then CKt(z) evolves as a Brownian motion as t varies but z is fixed. This in
particular implies that CKt(z) is continuous in t. We are now going to extend this
to show that CKt(z) is continuous in both t and z.

Lemma 6.9. Suppose that h is a GFF on D (with Dirichlet, free, or mixed bound-
ary conditions) and that (Kt) is an increasing family of local sets for h parameter-
ized so that − log CR(0; D \Kt) = t for all t ∈ [0, T ] where T > 0 is fixed. Then
the function [0, T ] × B(0, 1

16
e−T ) → R given by (t, z) 7→ CKt(z) has a modifica-

tion which is Hölder continuous with any exponent strictly smaller than 1/2. The
Hölder norm of the modification depends only on T and and the boundary data for
h. (In the case that h has free boundary conditions, we fix the additive constant
for h so that CK0(0) = 0.)

The reason that Lemma 6.9 is stated for z ∈ B(0, 1
16
e−T ) is that the Koebe one-

quarter theorem implies that B(0, 1
4
e−T ) ⊆ D \Kt for all t ∈ [0, T ]. In particular,

B(0, 1
16
e−T ) has positive distance fromKt for all t ∈ [0, T ]. By applying Lemma 6.9

iteratively, we see that CKt(z) is in fact continuous for all z, t pairs such that z is
contained in the component of D \Kt containing the origin.

Proof of Lemma 6.9. We are going to prove the result using the Kolmogorov-
Centsov theorem. Fix 0 ≤ s ≤ t ≤ T and z, w ∈ B(0, 1

16
e−T ). Since Kt is

local for h, we can write h = ht + CKt where ht is a zero-boundary GFF on
D \Kt. Re-arranging, we have that CKt = h− ht. Let hε (resp. hε,t) be the circle
average process for h (resp. ht). Taking ε = 1

16
e−T so that z ∈ B(0, 1

16
e−T ) implies

B(z, 1
16
e−T ) ⊆ B(0, 1

8
e−T ) in what follows, we have that

CKt(z)− CKt(w) =
(
hε(z)− hε(w)

)
−
(
hε,t(z)− hε,t(w)

)
.

The same argument as in the proof of [DS11a, Proposition 3.1] applied to both hε
and hε,t implies that for each p ≥ 2 there exists a constant C > 0 such that

E
[(
CKt(z)− CKt(w)

)p] ≤ C|z − w|p/2. (6.6)

Proposition 4.5 also implies that for each p ≥ 2 there exists a constant C > 0 such
that

E
[(
CKt(z)− CKs(z)

)p] ≤ C|t− s|p/2. (6.7)
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Combining (6.6), (6.7) with the inequality (a + b)p ≤ 2p(ap + bp) implies that for
each p ≥ 2 there exists a constant C > 0 such that

E
[(
CKt(z)− CKs(w)

)p] ≤ C(|z − w|p/2 + |t− s|p/2). (6.8)

The desired result thus follows from the Kolmogorov-Centsov theorem [RY99,
KS91].

Proposition 6.10. There exists a sequence (δk) in (0,∞) decreasing to 0 such
that the following is true. There exists a coupling of the laws of hk, (ςδkt ), (gδkt ),
and (hδkt ) as k ∈ N varies — where hk denotes the GFF used to generate (ςδkt ),
(hδkt ), and (gδkt ) — and limiting processes h ∈ Da (some a > 0), ς ∈ N , (gt) ∈ G,
and (ht) ∈ H such that hk, ςδkt dt, (gδkt ), and (hδkt ) almost surely converge to h,
ς, (gt), and (ht) respectively, in Da, N , G, and H. Moreover, (gt) is the radial
Loewner evolution generated by ς and ht for each t ≥ 0 is almost surely given by
Pharm(h ◦ g−1

t + Q log |(g−1
t )′| + κ+6

2
√
κ

log | · |) (normalized to vanish at the origin).
Finally,

h ◦ g−1
t +Q log |(g−1

t )′| d= h for each t ≥ 0 (6.9)

as modulo additive constant distributions.

Proof. As explained in Section 6.1, the law of the free boundary GFF has separable
support; see also [SS13, Lemma 4.2 and Lemma 4.3]. It is also explained in
Section 6.1 that the same holds for the laws of ςδt dt, (gδt ), and (hδt ) viewed as
random variables taking values in N , G, and H, respectively. The tightness of
the law of h is obvious as is the tightness of the law of ςδt dt. The tightness of the
law of (gδt ) follows from Lemma 6.3 and the tightness of the law of (hδt ) follows
from Lemma 6.9. This implies the existence of a sequence (δk) of positive real
numbers along which the law Lδ of (h, ζδt dt, g

δ
t , h

δ
t ) has a weak limit. The Skorohod

representation theorem implies that we find a coupling (hk, ς
δk
t dt, g

δk
t , h

δk
t ) of the

laws Lδk such that hk → h, ςδkt dt → ς, (gδkt ) → (gt), and (hδkt ) → (ht) almost
surely as k →∞ in the senses described in the statement of the proposition.

It is left to show that (h, ς, gt, ht) are related in the way described in the proposition
statement. Theorem 1.1 implies that (gt) is obtained from ς by solving the radial
Loewner equation. Therefore we just need to show that

(i) ht can be obtained from gt via coordinate change and applying Pharm and
then

(ii) establish (6.9).
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We will start with (i). For each t ≥ 0, let Kt be the hull given by the complement
in D of the domain of gt. The first step is to show that Kt is local for h. Let
(Kδk

t ) denote the corresponding family of hulls associated with (gδkt ). By possibly
passing to a subsequence of (δk) and using that the Hausdorff topology is compact
hence separable, we can recouple so that, in addition to the above, we have that
Kδk
t → K̃t almost surely in the Hausdorff topology for all t ∈ Q+. Lemma 6.8

then implies that K̃t is local for h for all t ∈ Q+. Combining this with the first
characterization of local sets given in [SS13, Lemma 3.9] implies that Kt is local
for h for all t ≥ 0. Lemma 6.8 implies that C

K
δk
t
→ CKt locally uniformly almost

surely for all t ∈ Q+. Combining this with Lemma 6.9 implies that C
K
δk
t
→ CKt

locally uniformly in both space and time. Since hδkt is given by C
K
δk
t
◦ (gδkt )−1 +

Q log |((gδkt )−1)′| + κ+6
2
√
κ

log | · | (normalized to vanish at the origin), we therefore

have that ht is given by CKt ◦g−1
t +Q log |(g−1

t )′|+ κ+6
2
√
κ

log | · | (normalized to vanish

at the origin).

The construction of the δ-approximation implies that

hk ◦ (gδkt )−1 +Q log |((gδkt )−1)′| d= hk for each k ∈ N and t ≥ 0

as modulo additive constant distributions, hence the same holds in the limit as
k →∞ due to the nature of the convergence. This gives (ii).

6.5 Subsequential limits solve the QLE dynamics

Throughout this section, we suppose that (δk) is a sequence in (0,∞) decreasing
to 0 as in the statement of Proposition 6.10 and (hk, ς

δk
t , g

δk
t , h

δk
t ) are coupled

together on a common probability space such that hk → h in Da for a > 0,
ςδkt dt → ς in N , (gδkt ) → (gt) in G, and (hδkt ) → (ht) in H as in the statement of
Proposition 6.10. The purpose of this section is to construct a family of probability
measures (νt) on ∂D from (ht) and then show that the triple (νt, gt, ht) satisfies
the QLE dynamics illustrated in Figure 1.2. The measures νt will only be defined
for almost all t ≥ 0, so we will in fact think of (νt) as being given by a single
measure ν ∈ N .

We will accomplish the above in two steps. We will first construct a measure
ν ∈ N which, for a given time t ≥ 0, should be thought of as the − 2√

κ
-quantum

boundary length measure (Proposition 6.11) generated from the boundary values
of ht (normalized to be a probability). That is, ν ∈ N is formally given by
Z−1
t exp(ακht(u))dudt where Zt is a normalization constant. This step is carried

out in Section 6.5.1. The second step (Proposition 6.12) is to show that ς = ν.
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This is carried out in Section 6.5.2. As we explained earlier, this will complete the
proof because it gives that (νt, gt, ht) satisfies all three arrows of the QLE(γ2, η)
dynamics described in Figure 1.2.

6.5.1 Construction of the QLE driving measure

We begin by defining the approximations we will use to construct ν. We first
approximate ht by orthogonally projecting it to the subspace of H(D) (recall the
definition of H(D) from Section 4.2.4) spanned by {f1, . . . , fn} where (fn) is an
orthonormal basis of the subspace of functions of H(D) which are harmonic in D.
In what follows in this section, the precise choice of basis is not important (i.e.,
the resulting measure ν does not depend on the choice of basis). However, for
our later arguments, it will be convenient to make a particular choice so that it is
obvious that our approximations are continuous in t. Thus for each n ∈ N which is
even (resp. odd) we take fn(z) = β−1

n Re(zn/2) (resp. fn = β−1
n Im(z(n+1)/2)) where

βn = ‖Re(zn/2)‖∇ (resp. βn = ‖Im(z(n+1)/2)‖∇) so that ‖fn‖∇ = 1. Indeed, an
elementary calculation implies that (fn) is orthonormal and that (fn) spans follows
because every harmonic function in D is the real part of an analytic function on
D. Note that (fn) is part of an orthonormal basis of all of H(D); we will use
this in conjunction with (4.9) in what follows. For each n ∈ N and t ≥ 0, we
let hnt be the orthogonal projection of ht onto the subspace of H(D) spanned by
{f1, . . . , fn}, i.e. the real parts of polynomials in z of degree at most n/2. We let

dνnt (u) =
1

Zn,t
exp(ακh

n
t (u))du for u ∈ ∂D and t ≥ 0 (6.10)

where Zn,t is a normalizing constant so that νnt has unit mass. Note that hnt varies
continuously in t with respect to the uniform topology on continuous functions
defined on D. One way to see this is to note that since ht is harmonic in D for
each fixed t, it is equal to the real part of an analytic function Ft on D. Then
hnt is given by the real part of the terms up to degree n/2 in the power series
expansion for Ft. The claimed continuity follows because these coefficients for
Ft are a continuous function of ht restricted to 1

2
D with respect to the uniform

topology on continuous functions on 1
2
D→ R. We also let

dνn(t, u) = dνnt (u)dt for u ∈ ∂D and t ≥ 0. (6.11)

Then νn ∈ N for all n ∈ N.

Proposition 6.11. There exists a sequence (nj) in N with nj → ∞ as j → ∞
and a measure ν ∈ N such that νnj → ν in N almost surely. That is, we almost
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surely have for each T ≥ 0 and continuous function φ : [0, T ]× ∂D→ R that

lim
j→∞

∫

[0,T ]×∂D
φ(s, u)dνnj(s, u) =

∫

[0,T ]×∂D
φ(s, u)dν(s, u).

In the proof that follows and throughout the rest of this section, for measures
ς1, ς2, we will use the notation d(ς1 − ς2) to denote integration against the signed
measure ς1 − ς2.

Proof of Proposition 6.11. Fix n, n′ ∈ N, T ≥ 0, and a continuous function
φ : [0, T ]× ∂D→ R. By Fubini’s theorem, we have that

E

[∣∣∣∣
∫

[0,T ]×∂D
φ(s, u)d

(
νn(s, u)− νn′(s, u)

)∣∣∣∣
]

≤
∫ T

0

E

[∣∣∣∣
∫

∂D

φ(s, u)d
(
νns (u)− νn′s (u)

)∣∣∣∣
]
ds. (6.12)

By stationarity, the inside expectation does not depend on s. Moreover, the in-
tegral inside of the expectation converges to zero as n, n′ → ∞ for any fixed
s ≥ 0 because νns converges weakly almost surely as n→∞ to the − 2√

κ
-quantum

boundary measure on ∂D associated with hs normalized to be a probability mea-
sure (recall (4.9)) and the quantity inside of the expectation is bounded by 2‖φ‖L∞ .
Therefore it follows from the dominated convergence theorem that the expression
in (6.12) converges to zero as n, n′ → ∞. Applying Markov’s inequality and the
Borel-Cantelli lemma gives the almost sure convergence of

∫
[0,T ]×∂D φ(s, u)dνn(s, u)

provided we take a limit along a sequence (nj) in N which tends to ∞ suffi-
ciently quickly. By possibly passing to a further (diagonal) subsequence, this, in
turn, gives us the almost sure convergence of

∫
[0,T ]×∂D φ(s, u)dνnj(s, u) for any

countable collection of continuous functions φ : [0, T ] × ∂D → R. This proves
the result because we can pick a countable dense subset of continuous functions
φ : [0, T ] × ∂D → R with respect to the uniform topology on [0, T ] × ∂D and
then use the continuity of the aforementioned integral with respect to the uniform
topology on continuous functions. Passing to a final (diagonal) subsequence gives
the convergence for all T ≥ 0 simultaneously.

6.5.2 Loewner evolution driven by the QLE driving measure solves the
QLE dynamics

Throughout, we let ν be the (random) element of N constructed in Proposi-
tion 6.11 and we let ς be the (random) element of N which drives (gt). As
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ςt gt ht
Radial Loewner flow

∀ε > 0, ∃jε s.t. j ≥ jε

νt

ς
δk
t g

δk
t h

δk
t

ς
δk,nj
t ν

nj
t

harmonic extension
Coordinate change and

k

∞

k

∞

k

∞

normalization
Exponentiation and

∀ε > 0, ∃jε, kε s.t.
j ≥ jε, k ≥ kε ⇒
d(ςδkt , ς

δk,nj

t ) < ε
∀ε > 0, j, ∃kε,j > 0 s.t.

k ≥ kε,j ⇒ d(ς
δk,nj

t , ν
nj

t )<ε

⇒ d(ν
nj

t , νt) < ε

Figure 6.3: (Continuation of Figure 6.2.) Shown is the approximation scheme
used to show that ςt = νt (Proposition 6.12) to complete the proof of the exis-
tence of QLE(γ2, η) for (γ2, η) on one of the upper two curves from Figure 1.3.
The statements in each of the three boxes along the bottom of the figure from
left to right are proved in Lemma 6.13, Lemma 6.14, and Proposition 6.11, re-
spectively. The symbol d represents a notion of “closeness” which is related to
the topology of N . To show that ςt = νt, we first pick j very large so that
d(ν

nj
t , νt) < ε and d(ςδkt , ς

δk,nj
t ) < ε. We then pick k very large so that d(ςδkt , ςt) < ε

and d(ς
δk,nj
t , ν

nj
t ) < ε.

explained in Proposition 6.10, we know that we can obtain ht from gt by Pharm(h◦
g−1
t +Q log |(g−1

t )′|+ κ+6
2
√
κ

log | · |) (normalized to vanish at the origin) and that we
can obtain ν by exponentiating ht. Therefore the proof of Theorem 1.3 will be
complete upon establishing the following.

Proposition 6.12. We almost surely have that ς = ν.

A schematic illustration of the main steps in the proof of Proposition 6.12 is given
in Figure 6.3. The strategy is to relate ς and ν using three approximating mea-
sures: ςδkt dt, ς

δk,nj
t dt, and ν

δk,nj
t dt. We introduced ςδkt in (6.4) and we introduced

ν
nj
t in (6.10). We know that ςδkt dt→ ς as k →∞ and ν

nj
t dt→ ν as j →∞ in N .

In the rest of this section, we will introduce ς
δk,nj
t dt and then show that ς

δk,nj
t dt is

close to both ςδkt dt and ν
nj
t dt for large j and k.

We now give the definition of ςδ,nt . Fix n ∈ N and let

νδ,nt = Z−1
n,t,δ exp(ακh

δ,n
t (u))du (6.13)

where hδ,nt is the orthogonal projection of hδt onto the subspace spanned by {f1, . . . , fn}
as defined above and Zn,t,δ is a normalization constant so that νδ,nt is a probability
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measure. For each ` ∈ N0, let U δ,`,n be a point picked from νδ,nt . Fix ζ > 0. For
each t ≥ 0, it follows from (4.9) that

νδ,nt → νδt as n→∞
weakly almost surely. By the stationarity of hδt , the rate of convergence does not
depend t or δ. It thus follows that there exists non-random n0 ∈ N depending
only on ζ such that for all n ≥ n0 we can couple the sequences (U δ,`) and (U δ,`,n)
together so that

P[Eδ,n
` ] ≤ ζ where Eδ,n

` = {|U δ,` − U δ,`,n| ≥ ζ}. (6.14)

We assume throughout that U δ,`,n and U δ,n are coupled as such. Let

ςδ,nt =
∞∑

`=0

1[δ`,δ(`+1))(t)δUδ,`,n .

That is, ςδ,nt for t ∈ [δ`, δ(` + 1)) with ` ∈ N0 is given by the Dirac mass located
at U δ,`,n. Note that ςδ,nt is defined analogously to ςδt except the U δ,`,n are picked
from νδ,nt in place of νδt = Z−1

t,δ exp(ακh
δ
t (u))du and the Brownian motions have

been omitted.

The proof of Proposition 6.12 has two steps.

The first step (Lemma 6.13) is to show that for each ε > 0 there exists jε, kε ∈ N

such that ςδkt dt and ς
δk,nj
t dt are ε-close for all j ≥ jε and k ≥ kε (the result is stated

for more general values of δ and n because it is not necessary in the proof to work
along the sequences (δk) and (nj)). We note that the choice of k determines the
speed at which the location of the Dirac mass is resampled while the choice of
j determines the expected fraction of the (U δk,`,nj) which are close to the (U δk,`)
(recall (6.14)).

The second step (Lemma 6.14) is to show that for each ε > 0 and j ∈ N there

exists kε,j > 0 such that ς
δk,nj
t dt and ν

nj
t dt are ε-close for all k ≥ kε,j (the result

is stated for more general values of n because in the proof it is not necessary to
work along the sequence (nj)). The proof is by a law of large numbers argument.

By construction, we know that t 7→ ν
δk,nj
t is continuous for a fixed value of j and

the choice of j controls our estimate its modulus of continuity. When δk > 0 is
sufficiently small depending on j so that the rate at which the points (U δk,`,nj) are

being sampled is much faster than the rate at which t 7→ ν
δk,nj
t is changing, we

can think of organizing the points (U δk,`,nj) into groups each of which is close to
being i.i.d. This is what leads to the law of large numbers effect.

Once these estimates have been established, we will pick j very large so that both
ν
nj
t dt is close to ν and ς

δk,nj
t dt is close to ςδkt dt. We will then choose k to be very

large so that ςδkt dt is close to ς and ς
δk,nj
t dt is close to ν

nj
t dt.
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Lemma 6.13. Fix T > 0 and suppose that φ : [0, T ] × ∂D → R is continuous.
For every ε > 0 there exists nε ∈ N and δε > 0 such that n ≥ nε and δ ∈ (0, δε)
implies that

E

∣∣∣∣
∫

[0,T ]×∂D
φ(s, u)d

(
ςδs (u)− ςδ,ns (u)

)
ds

∣∣∣∣ < ε.

Proof. We are first going to explain how to bound the difference when s = `δ for
some ` ∈ N0. Fix ε > 0. By the continuity of φ, it follows from (6.14) that there
exists n1,ε such that n ≥ n1,ε implies that

E

∣∣∣∣
∫

∂D

1(Eδ,n` )cφ(δ`, u)d
(
ςδ`δ(u)− ςδ,n`δ (u)

)∣∣∣∣ <
ε

4
(6.15)

provided we choose ζ > 0 small enough. Since the integrand is bounded, it also
follows from (6.14) that there exists n2,ε such that n ≥ n2,ε implies that

E

∣∣∣∣
∫

∂D

1Eδ,n`
φ(δ`, u)d

(
ςδ`δ(u)− ςδ,n`δ (u)

)∣∣∣∣ <
ε

4
. (6.16)

Combining (6.15) and (6.16) gives that n ≥ nε = max(n1,ε, n2,ε) implies that

E

∣∣∣∣
∫

∂D

φ(δ`, u)d
(
ςδ`δ(u)− ςδ,n`δ (u)

)∣∣∣∣ <
ε

2
.

Using the continuity of Brownian motion, it follows that there exists δε > 0 such
that for all n ≥ nε and δ ∈ (0, δε) we have that

sup
s∈[δ`,δ(`+1))

E

∣∣∣∣
∫

∂D

φ(s, u)d
(
ςδs (u)− ςδ,ns (u)

)∣∣∣∣ < ε.

This implies the desired result.

Lemma 6.14. Fix T > 0 and suppose that φ : [0, T ] × ∂D → R is continuous.
For each n ∈ N there exists kε,n ∈ N such that k ≥ kε,n implies that

E

∣∣∣∣
∫

[0,T ]×∂D
φ(s, u)d

(
ςδk,ns (u)− νns (u)

)
ds

∣∣∣∣ < ε. (6.17)

It is important that the limit in the statement of Lemma 6.14 is along the sequence
(δk) because then we have that hδkt → ht as k → ∞ and νnt is defined in terms
of ht.
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Proof of Lemma 6.14. Let (recall (6.13))

ςδk,nt (u)du =
∞∑

`=0

1[`δk,(`+1)δk)(t)ν
δk,n
`δk

(u)du.

Note that the increments of
∫ δk`

0

∫

∂D

φ(s, u)d(ςδk,ns (u)− ςδk,ns (u))ds

as ` varies are uncorrelated given hδk,nt . Consequently, we have that

E

[(∫

[0,T ]×∂D
φ(s, u)d(ςδk,ns (u)− ςδk,ns (u))ds

)2
]

= O(δk)

where the implicit constant in O(δk) depends on T . It thus suffices to prove
(6.17) with ςδk,nt in place of ςδk,nt . By the continuity of ht and the local uniform
convergence of hδkt to ht as k →∞, it is easy to see that

lim
k→∞

E

∣∣∣∣
∫

[0,T ]×∂D
φ(s, u)d(ςδk,ns (u)− νδk,ns (u))ds

∣∣∣∣ = 0.

Combining gives (6.17).

Proof of Proposition 6.12. Fix T > 0 and φ : [0, T ] × ∂D → R continuous. It
suffices to show that

∫

[0,T ]×∂D
φ(s, u)d(ν(s, u)− ς(s, u)) = 0 (6.18)

almost surely. Fix ε > 0. Then Proposition 6.10 implies that there exists kε ∈ N
such that k ≥ kε implies that

E

∣∣∣∣
∫

[0,T ]×∂D
φ(s, u)

(
dςδks (u)ds− dς(s, u)

)∣∣∣∣ <
ε

4
. (6.19)

Lemma 6.13 implies that there exists jε ∈ N such that, by possibly increasing the
value of kε, we have that j ≥ jε and k ≥ kε implies that

E

∣∣∣∣
∫

[0,T ]×∂D
φ(s, u)d

(
ςδks (u)− ςδk,njs (u)

)
ds

∣∣∣∣ <
ε

4
. (6.20)

Proposition 6.11 implies that, by possibly increasing the value of jε, we have that
j ≥ jε implies that

E

∣∣∣∣
∫

[0,T ]×∂D
φ(s, u)d

(
νnj(s, u)− ν(s, u)

)∣∣∣∣ <
ε

4
. (6.21)
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Let j = jε. Lemma 6.14 implies that there exists kε,j ∈ N such that k ≥ kε,j
implies that

E

∣∣∣∣
∫

[0,T ]×∂D
φ(s, u)d

(
ςδk,njs (u)− νnjs (u)

)
ds

∣∣∣∣ <
ε

4
. (6.22)

Using the triangle inequality, (6.19)—(6.22), and that ε > 0 was arbitrary implies
(6.18), as desired.

We can now complete the proof of Theorem 1.3.

Proof of Theorem 1.3. Proposition 6.12 gives us that the limiting triple (νt, gt, ht)
satisfies all three arrows of the QLE dynamics as described in Figure 1.2. That
the limiting triple (νt, gt, ht) satisfies η-DBM scaling as defined in Definition 1.2
follows from the argument explained in Section 3.2. Combining gives the desired
result.

7 Limiting dynamics

We are now going to identify the limiting dynamics which govern the time evolu-
tion of the harmonic component (ht) of the QLE(γ2, η) processes (νt, gt, ht) con-
structed in Section 6 to prove Theorem 1.3.

As in Section 5, we will use P (resp. P) to denote 2π times the Poisson (resp.
conjugate Poisson) kernel on D (recall (5.4)). We also let P? = P − 1 so that
P∗(0, u) = 0 for all u ∈ ∂D. We use a · b to denote the standard dot product. If
one of a or b is a complex number, we will identify it with a vector in R2 when
writing a · b. In particular, if a = x + yi and b = u + vi for x, y, u, v ∈ R then
a · b = xu+ yv.

Let

Dt(z, u) = −∇ht(z) · Φ(u, z) +
1√
κ
P?(z, u) +Q(∂θP)(z, u). (7.1)

In (7.1), ∂θP(z, u) for z ∈ D and u ∈ ∂D means the partial derivative of the map
D × R → R given by (z, θ) 7→ P(z, eiθ) with respect to θ evaluated at (z, u);
see (7.9) for an explicit formula. We will show that the time-evolution of ht is
governed by the equation

ḣt(z) =

∫

∂D

(
Dt(z, u) + P?(z, u)W (t, u)

)
dνt(u) (7.2)

where W (t, u) denotes a space-time white noise on ∂D× [0,∞). The reason that
P? appears in (7.2) rather P is that we have normalized ht so that ht(0) = 0 for
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all t ≥ 0. If we had instead only normalized at time 0 by setting h0(0) = 0, then
the resulting equation would be the same except with P in place of P?.
The evolution equation (7.2) is significant for two reasons. First, if one were able
to show that (7.2) has a unique solution then it would imply that the subsequential
limits used to construct QLE(γ2, η) for (γ2, η) on one of the top two curves from
Figure 1.3 to prove Theorem 1.3 are actually true limits. In other words, it is
not necessary to pass along a subsequence (δk) as δ → 0. Second, although its
derivation takes as input the existence of QLE(γ2, η) for (γ2, η) on one of the upper
two curves from Figure 1.3 as proved in Theorem 1.3, one can make the ansatz
that (7.2) describes the dynamics for other (γ2, η) values. It is then possible that
a careful analysis of (7.2) could be used to determine the stationary distribution
for the dynamics in these cases which in turn might suggest a way to construct
these processes.

We will make (7.2) rigorous (Proposition 7.6) by putting ht into coordinates and
then showing that the coordinate processes satisfy a certain infinite dimensional
SDE in integrated form. The particular choice of coordinates is not important
for the proof; we choose L2(1

2
D) to be concrete. We will start in Section 7.1 by

studying the dynamics of the δ-approximations introduced in Section 6.3. We will
then use this in Section 7.2 to show that the δ → 0 subsequential limits must
satisfy a certain martingale problem. This, in turn, allows us to derive the SDE
satisfied by the δ → 0 subsequential limits.

7.1 SDE for the approximate dynamics

Let (gδt ) be the radial Loewner flow associated with the δ-approximation to QLE(γ2, η)
using forward SLEs as described in Section 6.3. In other words,

ġδt (z) =

∫

∂D

Φ(u, gδt (z))dςδt (u), gδ0(z) = z, ςδt =
∞∑

`=0

1[δ`,δ(`+1))(t)δUδ,`W δ,`
t
.

Recall that the points U δ,` and Brownian motions W δ,` in ∂D were defined in
Section 6.3. In this section, we are going to describe the dynamics of the harmonic
component (hδt ) of the δ-approximation (ςδt , g

δ
t , h

δ
t ).

For each 0 ≤ s ≤ t we let gδs,t = gδt ◦ (gδs)
−1. For each ` ∈ N0, note that gδδ`,δ(`+1) is

the conformal transformation which maps away the (`+ 1)st radial SLEκ process
in the δ-approximation to QLE(γ2, η). It will be convenient in what follows to
describe the maps gδδ`,δ(`+1) in terms of a reverse rather than forward Loewner

flow. We can accomplish this as follows. For each ` ∈ N0, we let (f δ,`t ) be the
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family of conformal maps which solve the reverse radial Loewner equation

ḟ δ,`t (z) = −
∫

∂D

Φ(u, f δ,`t (z))dςδδ(2`+1)−t(u), f δ,`δ` (z) = z, t ∈ [δ`, δ(`+ 1)].

(Note that these reverse radial Loewner evolutions are not centered.) Then
f δ,`δ(`+1) = (gδδ`,δ(`+1))

−1. To see this, note that qt = f δ,`δ(`+1)−t satisfies the forward

radial Loewner equation with q0(z) = f δ,`δ(`+1)(z), qδ(z) = z, and driving mea-

sure ςδ`+t. The claim follows because gδδ`,δ`+t ◦ f δ,`δ(`+1) satisfies the same equation,
has the same initial condition, and solutions to this equation are unique. It is
not in general true, however, that f δ,`t = (gδδ`,t)

−1 for intermediate values of t in
(δ`, δ(`+ 1)).

We also let
V δ,`
t = U δ,`W δ,`

δ(2`+1)−t. (7.3)

Proposition 7.1. Fix t ≥ 0, let ` ∈ N0 be such that t ∈ [δ`, δ(`+ 1)), and let

D̃δ
t (z) = (∇hδδ`)(f δ,`t (z)) · ḟ δ,`t (z) +

1√
κ
P?(f δ,`t (z), V δ,`

t ) +Q(∂θP)(f δ,`t (z), V δ,`
t ),

σ̃δt (z) = P?(f δ,`t (z), V δ,`
t ).

There exists a standard Brownian motion B and a process h̃δt taking values in H
(as defined in Section 6.1) which solves the SDE

dh̃δt (z) = D̃δ
t (z)dt+ σ̃δt (z)dBt for each z ∈ D, (7.4)

and h̃δt = hδt for each t of the form δ` for ` ∈ N0. Moreover, for each ε > 0,
K ⊆ D compact, and T > 0 we have

P


 sup
t∈[0,T ]
z∈K

|hδt (z)− h̃δt (z)| ≥ ε


→ 0 as δ → 0.

Finally, h̃δt
d
= hδt for each t ≥ 0.

Recall that hδt is harmonic in D hence C∞ in D for each t ≥ 0. Consequently, the

definition of D̃δ
t makes sense pointwise for z ∈ D. We will perform the calculation

in several steps. It suffices to prove the result for ` = 0. In order to avoid carrying
around too much notation, we will write f δt = f δ,0t and V δ

t = V δ,0
t . Let du denote
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the standard length measure on ∂D. Since hδt is harmonic in D with hδt (0) = 0,
for t = δ we can write

hδt (z) =
1

2π

∫

∂D

P(f δt (z), u)hδ0(u)du− κ+ 6

2
√
κ

(
log |f δt (z)| − log |z|

)
+

1

2π

∫

∂D

P?(z, u)(h ◦ f δt )(u)du+Q log |(f δt )′(z)| − 1√
κ
t

(7.5)

where h is a zero-boundary GFF on D independent of f δt and hδ0. (The term
−(1/

√
κ)t arises because the two integrals above vanish at 0, (f δt )′(0) = e−t, and

we have that hδt (0) = 0.) We can compute the time derivative of 2π times the first
integral from (7.5) as follows.

d

(∫

∂D

P(f δt (z), u)hδ0(u)du

)
=

∫

∂D

(
(∇P)(f δt (z), u) · ḟ δt (z)

)
hδ0(u)dudt

= 2π(∇hδ0)(f δt (z)) · ḟ δt (z)dt. (7.6)

By first computing d log(f δt (z)) and then taking real parts, it is also easy to see
that

d
(
log |f δt (z)| − log |z|

)
= −P(f δt (z), V δ

t )dt. (7.7)

We will now compute the time-derivative of the second to last term from (7.5).

Lemma 7.2. For t ∈ [0, δ], we have that

d

dt
log |(f δt )′(z)| = (∂θP)(f δt (z), V δ

t )− P(f δt (z), V δ
t ).

Proof. We have that,

d

dt
log(f δt )′(z) =

1

(f δt )′(z)
(ḟ δt )′(z)

=−
∫

∂D

u+ f δt (z)

u− f δt (z)
dςδδ−t(u)− f δt (z)

∫

∂D

2u

(u− f δt (z))2
dςδδ−t(u). (7.8)

For θ ∈ R, we note that

∂θ

(
eiθ + z

eiθ − z

)
=
−2izeiθ

(eiθ − z)2
.

In particular,
−2zeiθ

(eiθ − z)2
= −i∂θ

(
eiθ + z

eiθ − z

)
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so that

Re

( −2zeiθ

(eiθ − z)2

)
= Im

(
∂θ

(
eiθ + z

eiθ − z

))
= ∂θP(z, eiθ). (7.9)

This allows us to write the real part of (7.8) more concisely as

−
∫

∂D

P(f δt (z), u)dςδδ−t(u) +

∫

∂D

(∂θP)(f δt (z), u)dςδδ−t(u)

=− P(f δt (z), V δ
t ) + (∂θP)(f δt (z), V δ

t ),

which proves the lemma.

The following lemma gives the law of the third term from (7.5). We emphasize
that it does not describe the dynamics of this term in time.

Lemma 7.3. Suppose that h is a zero-boundary GFF on D, let (ψt) be the reverse
radial Loewner flow driven by eiWt where W : [0,∞)→ R is a continuous function,
and let Ht be the harmonic extension of (h ◦ψt)(z) from ∂D to D. For each t ≥ 0
there exists a standard Brownian motion B such that

Ht(z) =

∫ t

0

P(ψs(z), eiWs)dBs. (7.10)

We emphasize that in the statement of Lemma 7.3, the function W should be
thought of as deterministic. In particular, B and W are independent and so
are h and W . The main ingredient in the proof of Lemma 7.3 is the following
analog of (5.5) from Lemma 5.2 with the Dirichlet Green’s function in place of
the Neumann Green’s function on D.

Lemma 7.4. Suppose that G is the Dirichlet Green’s function on D, let (ψt) be the
reverse radial Loewner flow driven by eiWt where W : [0,∞)→ R is a continuous
function, and let

Gt(z, w) = G(ψt(z), ψt(w)) for z, w ∈ D and t ≥ 0.

Then
dGt(z, w) = P(ψt(z), eiWt)P(ψt(w), eiWt)dt.

Proof. This follows from a calculation which is similar to that of Lemma 5.2. In
particular, one computes the difference between the expressions in (5.7) and (5.8)
(rather than the sum, as in the case of Lemma 5.2). See also the chordal version
of this calculation carried out in [She10, Section 4.1].
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Proof of Lemma 7.3. Fix a Brownian motion B and let H̃t(z) be equal to the

expression on the right side of (7.10) with respect to B. Then Ht(z) and H̃t(z)
are both mean zero Gaussian processes (with t fixed and thought of as functions
of z), so to complete the proof we just have to show that they have the same
covariance function. For z, w ∈ D, we have that

cov(H̃t(z), H̃t(w)) =

∫ t

0

P(ψs(z), eiWs)P(ψs(w), eiWs)ds (7.11)

For each r ∈ (0, 1), let Hr
t be the function which is harmonic in D whose boundary

values are given by (h ◦ ψt)(rz). Then Hr
t → Ht locally uniformly as r → 1. By

Lemma 7.4, we have that

cov(Hr
t (z), Hr

t (w))

=
1

(2π)2

∫

∂D

∫

∂D

P(z, u)P(w, v)G(ψt(ru), ψt(rv))dudv

=
1

(2π)2

∫ t

0

∫

∂D

∫

∂D

P(z, u)P(w, v)P(ψs(ru), eiWs)P(ψs(rv), eiWs)dudvds

+
1

(2π)2

∫

∂D

∫

∂D

P(z, u)P(w, v)G(ru, rv)dudv.

Since z 7→ P(ψs(rz), eiWs) is harmonic in D, we have that

1

2π

∫

∂D

P(z, u)P(ψs(ru), eiWs)du

=P(ψs(rz), eiWs)→ P(ψs(z), eiWs) as r → 1.

The limit above is locally uniform in z ∈ D. Note also that (u, v) 7→ G(ru, rv)
converges to 0 in L1((∂D)2). The assertion of the lemma therefore follows because
as r → 1, the left side above converges to cov(Ht(z), Ht(w)) and the right side
converges to the same expression as in the right side of (7.11).

Proof of Proposition 7.1. Combining the calculations from (7.6) and (7.7) with
Lemma 7.2 and Lemma 7.3 implies that the following is true. There exists a
Brownian motion B such that for all z ∈ D we have

hδδ(z) = hδ0(z) +

∫ δ

0

D̃δ
s(z)ds+

∫ δ

0

σ̃δs(z)dBs.

For each z ∈ D and t ∈ [0, δ] we let

h̃δt (z) = hδ0(z) +

∫ t

0

D̃δ
s(z)ds+

∫ t

0

σ̃δs(z)dBs.
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Then h̃δδ = hδδ. Extending the definition of h̃δt in the same way to all t ≥ 0 defines
a process which satisfies all of the assertions of the proposition. The statement
regarding the convergence of h̃δt − hδt to zero as δ → 0 in probability uniformly on
compact subsets of D and compact intervals of time can be extracted from the
continuity of the coefficients and that h̃δt = hδt for all times of the form t = δ` with
` ∈ N0.

7.2 SDE for the limiting dynamics

We are now going to show that a subsequential limit ht of hδt as δ → 0 satisfies (7.2).

By Proposition 7.1, it suffices to work with h̃δt in place of hδt . Throughout, when
we refer to a δ → 0 limit we always mean along a subsequence such that the law
of (hδt ) hence (h̃δt ) has a weak limit as in Section 6. We shall also assume (using
the Skorohod representation theorem for weak convergence) that we have coupled
the laws of such a sequence together onto a common probability space so that
h̃δt → ht as δ → 0 almost surely.

It will be useful in what follows to work in coordinates. There are many possible
choices which would work equally well. To be concrete, we will make the particular
choice of L2(1

2
D). Note that hδt is determined by its values on 1

2
D since it is

harmonic. We will use (·, ·) to denote the L2 inner product on 1
2
D and let ‖ · ‖

denote the corresponding norm. Fix an orthonormal basis (ψj) of this space
such that ψj is smooth for each j. Let Dt(z, u) be as in (7.1) and let ν be the
driving measure associated with the limiting QLE(γ2, η). We will write dνt(u)
for integration against the conditional measure ν(t, u) with t ≥ 0 fixed. We will
now use integration against dνt(u) to define a number of objects. These are each
defined only for almost all t ≥ 0 but make sense to integrate against. Let

Dt(z) =

∫

∂D

Dt(z, u)dνt(u).

For each t ≥ 0 and j ∈ N, let

Dj
t = (Dt, ψ

j)

be the coordinates of Dt with respect to (ψj). We also let

σijt =

∫

D

∫

D

∫

∂D

ψi(z)ψj(w)P?(z, u)P?(w, u)dνt(u)dzdw.

We define the operator

Lt =
1

2

∑

i,j

σijt ∂ij +
∑

i

Di
t∂i.
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Finally, we let ajt = (ht, ψ
j) and ãδ,jt = (h̃δt , ψ

j) be the coordinates of ht and h̃δt ,
respectively, with respect to (ψj).

We begin by showing that ht solves the martingale problem associated with the
operator Lt.

Proposition 7.5. Fix k ∈ N and suppose that F : Rk → R is a smooth function.
Let Ft = F (a1

t , . . . , a
k
t ). Then

Ft − F0 −
∫ t

0

LsFsds (7.12)

is a continuous square-integrable martingale.

For F as in the statement of Proposition 7.5, we let

Ft = F (a1
t , . . . , a

k
t ),

∂iFt = (∂iF )(a1
t , . . . , a

k
t ), and

∂ijFt = (∂ijF )(a1
t , . . . , a

k
t ).

(7.13)

We also define F̃ δ
t , ∂iF̃

δ
t , and ∂ijF̃

δ
t analogously except with (ã1,δ

t , ã2,δ
t , . . .) in place

of (a1
t , a

2
t , . . .). Since h̃δt → ht locally uniformly, we have that ãδ,jt → ajt locally

uniformly. Thus,

F̃ δ
t → Ft, ∂iF̃

δ
t → ∂iFt, and ∂ijF̃

δ
t → ∂ijFt (7.14)

locally uniformly.

Proof of Proposition 7.5. We let D̃δ
t (z) (resp. σ̃δt (z)) be the drift (resp. diffusion

coefficient) of h̃δt (z) as given in the statement of Proposition 7.1. We also let

D̃δ,j
t = (D̃δ

t , ψ
j) and σ̃δ,jt = (σ̃δt , ψ

j)

be the coordinates of D̃δ
t and σ̃δ,jt . By Proposition 7.1 there exists a continuous

local martingale M̃ δ
t such that for each t ∈ [δ`, δ(`+ 1)) we have that

F̃ δ
t − F̃ δ

δ` =
1

2

k∑

i,j=1

∫ t

δ`

σ̃δ,is σ̃
δ,j
s ∂ijF̃

δ
s ds+

k∑

i=1

∫ t

δ`

D̃δ,i
s ∂iF̃

δ
s ds+

(
M̃ δ

t − M̃ δ
δ`

)
.

Summing up, we consequently have that

F̃ δ
t − F̃ δ

0 −
∫ t

0

(
1

2

k∑

i,j=1

σ̃δ,is σ̃
δ,j
s ∂ijF̃

δ
s +

k∑

i=1

D̃δ,i
s ∂iF̃

δ
s

)
ds = M̃ δ

t . (7.15)
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We are now going to argue that the integral on the left side of (7.15) converges
locally uniformly as δ → 0. We will justify in detail the following:

∫ t

0

k∑

i=1

D̃δ,i
s ∂iF̃

δ
s ds→

∫ t

0

k∑

i=1

Di
s∂iFsds as δ → 0. (7.16)

A similar argument gives

∫ t

0

k∑

i,j=1

σ̃δ,is σ̃
δ,j
s ∂ijF̃

δ
s ds→

∫ t

0

k∑

i,j=1

σijs ∂ijFsds as δ → 0. (7.17)

Let D̃δ
s(z, u) be defined analogously to Ds(z, u) from (7.1) except with h̃δs in place

of hs. We have that

D̃δ
s(z) =

∫

∂D

D̃δ
s(z, u)dςδ(s+δ`)−(u) for s = δ` and ` ∈ N0.

(Note that for s = δ` we have that ςδ(s+δ)− is given by the Dirac mass located at

V δ,`
δ` .) From the definitions of D̃δ

s(z, u) and Ds(z, u), the convergence of h̃δt → ht
in H, and the convergence of ςδt dt → ν in N (Proposition 6.12) it follows that

for each T ≥ 0 fixed we have that D̃δ
s(z) → Ds(z) with respect to the weak

topology induced by continuous functions on 1
2
D × [0, T ] as δ → 0. Therefore

D̃δ,j
s → Dj

s with respect to the weak topology on continuous functions on [0, T ] as

δ → 0. By (7.14), we know that F̃ δ
t − F̃ δ

0 → Ft − F0 locally uniformly as δ → 0.
Combining all of these observations gives (7.16) (and (7.17) by analogy).

Combining (7.16) with (7.17) implies that the left side of (7.15) converges locally

uniformly as δ → 0. It remains to show that the martingale M̃ δ
t from (7.15)

converges locally uniformly to a continuous square-integrable martingaleMt. Since
the left side of (7.15) converges locally uniformly as δ → 0, it follows that M̃ δ

t →
Mt locally uniformly as δ → 0. Recall that h̃δt and ht for each t ≥ 0 are both
distributed as the harmonic extension of the form of the free boundary GFF
on D as described in Proposition 4.6 (where the role of γ in the application of
the proposition is played by 2ακ) from ∂D to D by the time stationarity of the
evolution (recall Proposition 7.1). In particular, for every p ≥ 1 and r ∈ (0, 1)
there exists a constant Cp,r <∞ depending only on p and r such that

sup
z∈rD

E
[(
h̃δt (z)

)p] ≤ Cp,r.

(The same holds with ht in place of h̃δt since ht
d
= h̃δt for each t ≥ 0.) Indeed,

to see that this is the case one first notes that it suffices to bound the second
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moment since h̃δt can be written as the sum of a Gaussian and an independent log
function centered at a point in ∂D and the second moment can be bounded by
first representing h̃δt as the harmonic extension of its boundary values and then

bounding the covariances. This implies that M̃ δ
t is a square-integrable martingale

and the convergence M̃ δ
t → Mt takes place in L2. Therefore Mt is a square-

integrable martingale, as desired.

Proposition 7.6. There exists a filtration (Ft) to which ht is adapted and a family
of (Ft)-standard Brownian motions Bj with

d〈Bi, Bj〉t =
σijt√
σiit σ

jj
t

dt. (7.18)

such that
dajt = Dj

tdt+ (σjjt )1/2dBj
t for each j ∈ N. (7.19)

Note that it follow from the definition that σiit > 0 for all t ≥ 0. In particular, the
expression in the right side of (7.18) makes sense.

Proof of Proposition 7.6. We take F (x1, x2, . . .) = xj and let Ft be as described
in (7.13) with this choice of F . Then Ft = ajt and LtFt = Dj

t . By Proposition 7.5,
we know that

Mt = ajt −
∫ t

0

Dj
sds (7.20)

is a continuous square-integrable martingale. Taking F (x1, x2, . . .) = x2
j so that

Ft = (ajt)
2, by Proposition 7.5, we also know that

M̃t = (ajt)
2 −

∫ t

0

(
2Dj

sa
j
s + σjjs

)
ds (7.21)

is a continuous square-integrable martingale. Combining (7.20) and (7.21) implies
that

M2
t −

∫ t

0

σjjs ds

is a continuous square-integrable martingale. By the martingale characterization
of the quadratic variation [KS91, RY99], it therefore follows that d〈M〉t = σjjt dt.
Note that σjjt > 0. We then let

Bj
t =

∫ t

0

(σjjs )−1/2dMs.
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Then Bj is a continuous local martingale and

d〈Bj〉t =

∫ t

0

(σjjs )−1d〈M〉s =

∫ t

0

ds = t.

Therefore it follows from the Levy characterization of Brownian motion that Bj

is a standard Brownian motion. Moreover,

ajt =

∫ t

0

Dj
sds+Mt =

∫ t

0

Dj
sds+

∫ t

0

(σjjs )1/2dBj
s .

This proves that ajt solves (7.19). That the Brownian motions Bj satisfy (7.19)
follows by applying a similar argument with F (x1, x2, . . .) = xixj for i 6= j distinct.

8 Sample path properties

8.1 Continuity

The purpose of this section is to establish the following result which, as explained
just after the statement, implies Theorem 1.4.

Theorem 8.1. Fix γ > 0 and let Q = 2/γ + γ/2. Suppose that k, ` ∈ N0, γi ∈ R
for 1 ≤ i ≤ k + `, and let

β? = max(2
√

2, γ1, . . . , γk+`) and β? = max(2,−γ1, . . . ,−γk). (8.1)

Assume that β? < Q and let

∆ =
Q− β?
Q+ β?

∈ (0, 1). (8.2)

Fix ∆ ∈ (0,∆). Suppose that h1 and h2 are random modulo additive constant
distributions each of which can be expressed as the sum of a free boundary GFF
and an independent function of the form

∑k+`
i=1 γi log | ·−xi| where x1, . . . , xk ∈ ∂D

and xk+1, . . . , xk+` ∈ D are distinct. Let A be a local set for h1 which almost
surely does not contain 0 and let D be the connected component of D \ A which
contains 0. Let ϕ : D→ D be the unique conformal transformation with ϕ(0) = 0
and ϕ′(0) > 0 and suppose that

h1 ◦ ϕ+Q log |ϕ′| d= h2 (8.3)

as modulo additive constant distributions. Then ϕ is almost surely Hölder contin-
uous with exponent ∆.
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We note that the value of β? corresponding to a field h associated with one of
the QLE(γ2, η) processes with γ ∈ (0, 2) constructed in Theorem 1.3 is given by
2 < Q. Therefore Theorem 8.1 implies Theorem 1.4.

Theorem 8.1 gives a bound for the Hölder exponent of ϕ but does not give a bound
for the Hölder norm of ϕ. As we will see in the proof of Theorem 8.1, bounding
the Hölder norm is related to the additive constant which is implicit in (8.3) as
well as the proximity of the xi (locations of the log singularities) from each other.

By [She10, Theorem 1.2] and Theorem 5.1, Theorem 8.1 can also be applied to
the chordal and radial SLEκ processes for κ 6= 4. This gives an alternative proof
of [RS05, Theorem 5.2] which states that the complementary components of SLEκ

curves for κ 6= 4 are Hölder domains. For completeness, we restate this result as
the following corollary.

Corollary 8.2. Suppose that η is a chordal SLEκ process for κ 6= 4 in D from −i
to i and fix T > 0. Let D be a non-empty connected component of D\η([0, T ]) and
let ϕ : D → D be a conformal transformation. Fix ∆ ∈ (0,∆) where ∆ is as in
(8.2) with γ = min(

√
κ,
√

16/κ) and γ1 = 2/
√
κ. Then ϕ is almost surely Hölder

continuous with exponent ∆. The same likewise holds if η is instead a radial SLEκ

process in D targeted at 0.

We remark that the Hölder exponent obtained in Corollary 8.2 is not the optimal
value for SLEκ [RS05, Kan07, BS09a].

The idea of the proof of Theorem 8.1 is to exploit the identity (8.3) to bound the
growth rate of |ϕ′(z)| as z → ∂D. To show that ϕ is almost surely ∆-Hölder in D
for a given value of ∆ ∈ (0, 1) it suffices to show that there exists a constant C > 0
such that |ϕ′(z)| ≤ C(1−|z|)∆−1 for all z ∈ D (because we can integrate ϕ′). The
main step in carrying this out is to compute the maximal growth rate of the circle
average process associated with a free boundary GFF on D as the radius ε > 0
about which we average tends to zero. This is accomplished in Section 8.1.1. In
Section 8.1.2 we combine this with (8.3) to constrain |ϕ′| to complete the proof.

8.1.1 Extremes of the free boundary GFF

Suppose that h is a free boundary GFF on D. We fix the additive constant for h
by taking its mean on D to be equal to 0. For each z ∈ D and ε > 0 such that
B(z, ε) ⊆ D, let hε(z) denote the average of h on ∂B(z, ε). The purpose of this
section is to prove the following (as well as Proposition 8.7, its generalization to
the case in which we add log singularities to the free boundary GFF).
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Proposition 8.3. Suppose that h is a free boundary GFF on D. Then,

P

[
lim sup
ε→0

sup
z∈∂B(0,1−ε)

|hε(z)|
log ε−1

≤ 2

]
= 1. (8.4)

Moreover,

P

[
lim sup
ε→0

sup
z∈B(0,1−ε)

|hε(z)|
log ε−1

≤ 2
√

2

]
= 1. (8.5)

This is the analog of the upper bound established in [HMP10] with the free bound-
ary GFF in place of the GFF with Dirichlet boundary conditions. Note that the
constant 2 in (8.4) is the same as the constant which appears in [HMP10] for
the GFF with Dirichlet boundary conditions after one adjusts for the difference
in the normalization used for the GFF in this article and in [HMP10]. We will
extract (8.5) from the corresponding result for the GFF with Dirichlet bound-
ary conditions and the odd-even decomposition for the whole-plane GFF [She10,
Section 3.2]; this is the reason that the constant 2

√
2 rather than 2 appears.

We begin by recording the following modulus of continuity result for the cir-
cle average process established in [HMP10, Proposition 2.1] except with the free
boundary GFF in place of the GFF with Dirichlet boundary conditions.

Proposition 8.4. Suppose that h is a free boundary GFF on D and let hε(z)
denote the corresponding circle average process. Then hε(z) has a modification

h̃ε(z) such that for every λ ∈ (0, 1/2) and ζ > 0 there exists M = M(λ, ζ)
(random) such that

|h̃ε(z)− h̃δ(w)| ≤M
|(z, ε)− (w, δ)|λ

ελ+ζ

for ε, δ ∈ (0, 1] with 1
2
≤ ε/δ ≤ 2 and z, w ∈ B(0, 1− ε ∨ δ).

Proof. This was proved in [HMP10, Proposition 2.1] for the zero-boundary GFF.
It follows from the Markov property that the same holds for the whole-plane GFF
(see [MS13, Proposition 2.8]). Combining this with the odd-even decomposition
for the whole-plane GFF into a sum of a zero-boundary GFF and a free-boundary
GFF (see, for example, [She10, Section 3.2]) it follows that the same modulus of
continuity estimate also holds for the free boundary GFF.

Throughout, we shall always assume that we are working with such a modification
and indicate it with hε. Proposition 8.4 is proved by generalizing [DS11a, Propo-
sition 3.1] using a version of the Kolmogorov-Centsov theorem which bounds the
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growth of the Hölder norm for processes parameterized by [0,∞) (as opposed to
a compact time interval, which is the setting of the usual Kolmogorov-Centsov
theorem [KS91, RY99]). We will not provide an independent proof here. We next
record the following elementary Gaussian tail estimate.

Lemma 8.5. Suppose that Z ∼ N(0, 1). Then

P[Z ≥ λ] ∼ 1√
2πλ

exp

(
−λ

2

2

)
as λ→∞.

We next record the following variance estimate for the circle average process as-
sociated with the free boundary GFF.

Lemma 8.6. Suppose that h is a free boundary GFF on D with corresponding
circle average process hε. For each z ∈ D and ε > 0 such that B(z, ε) ⊆ D, we
have that

var(hε(z)) = log ε−1 − log dist(z, ∂D) +O(1)

where the constant implicit in the O(1) term is uniform in z and ε.

Proof. See, for example, the discussion in [DS11a, Section 6].

We can now give the proof of Proposition 8.3.

Proof of Proposition 8.3. We will start with (8.4). Suppose that z ∈ D and ε > 0
are such that B(z, ε) ⊆ D. Fix δ > 0. By Lemma 8.5 and Lemma 8.6 there exists
a constant C (independent of z, ε, and δ) such that

P
[
hε(z) ≥ (2 + δ) log ε−1

]
≤ exp

(
− (2 + δ)2(log ε−1)2

2(log ε−1 − log dist(z, ∂D)) + C

)
.

Fix ξ > 0, let K = ξ−1, and, for each n ∈ N, let rn = n−K . Note that r1+ξ
n =

n−(1+K). For each n ∈ N, let Dn,ξ consist of those points z ∈ (r1+ξ
n Z)2 ∩D with

rn ≤ dist(z, ∂D) < rn−1. Note that rn−1 − rn is proportional to r1+ξ
n so that the

number of elements in Dn,ξ is O(r
−(1+ξ)
n ). It thus follows from a union bound that

there exists a constant C > 0 such that

P


 ⋃

z∈Dn,ξ

{
hrn(z) ≥ (2 + δ) log r−1

n

}

 ≤ C exp

(
log r−(1+ξ)

n − (2 + δ)2(log r−1
n )2

4 log r−1
n + C

)
.
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It is easy to see from the above that there exists ξ0 > 0 depending only on δ > 0
such that for all ξ ∈ (0, ξ0) we have that

∞∑

n=1

P


 ⋃

z∈Dn,ξ

{
hrn(z) ≥ (2 + δ) log r−1

n

}

 <∞.

Therefore it follows from the Borel-Cantelli lemma that there almost surely exists
n0 ∈ N (random) such that

hrn(z) ≤ (2 + δ) log r−1
n for all z ∈ Dn,ξ and n ≥ n0. (8.6)

Now suppose that z ∈ D and that ε = dist(z, ∂D). Fix n ∈ N such that rn ≤ ε <
rn−1 and zn ∈ Dn,ξ such that |z − zn| ≤ 4r1+ξ

n . Fix λ ∈ (0, 1/2) and let ζ = λξ.
Using again that rn−1 − rn is proportional to r1+ξ

n , Proposition 8.4 implies that
there exists a constant M = M(λ, ζ) (random but independent of z and ε) such
that

|hε(z)− hrn(zn)| ≤M

(
r

(1+ξ)λ
n

rλ+ζ
n

)
= M. (8.7)

Combining (8.6) and (8.7) implies (8.4), as desired.

We now turn to (8.5). We first note that the argument of [HMP10, Lemma 3.1]
(which is very similar to the argument given just above) implies that if h0

ε is the
circle-average process corresponding to a zero-boundary GFF on D then

P

[
lim sup
ε→0

sup
z∈B(0,1−ε)

|h0
ε(z)|

log ε−1
≤ 2

]
= 1.

It follows from the Markov property and scale-invariance that the same holds
for the circle average process for the whole-plane GFF restricted to any bounded
domain in C (see [MS13, Proposition 2.8]). Combining this with the odd-even
decomposition for the whole-plane GFF into a sum of a zero-boundary GFF and
a free-boundary GFF (see, for example, [She10, Section 3.2]) gives (8.5).

We are now going to generalize Proposition 8.3 to the setting in which we add log
singularities to the field.

Proposition 8.7. Fix x1, . . . , xk ∈ ∂D and xk+1, . . . , xk+` ∈ D distinct and let
γ1, . . . , γk+` ∈ R. Let

β? = max(2
√

2, γ1, . . . , γk+`) and β? = max(2,−γ1, . . . ,−γk)
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be as in (8.1). Suppose that h is the sum of a free boundary GFF on D and∑k
i=1 γi log | · −xi|. We assume that the additive constant for h has been fixed by

taking its average on D to be equal to 0. For each z ∈ D let hε(z) be the average
of h on ∂B(z, ε). Then,

P

[
lim sup
ε→0

sup
z∈∂B(0,1−ε)

hε(z)

log ε−1
≤ β?

]
= 1. (8.8)

Moreover,

P

[
lim sup
ε→0

inf
z∈B(0,1−ε)

hε(z)

log ε−1
≥ −β?

]
= 1. (8.9)

Proof. By the absolute continuity properties of the free boundary GFF (see, for
example, [MS12, Proposition 3.2]), it suffices to prove the result when k = 1.
We will now explain the proof of (8.8) when γ1 ∈ (−2, 0] and x1 ∈ ∂D so that
β? = 2. The case when γ1 ≥ 0 is obvious since adding a non-negative multiple
of log | · −x1| can only decrease the asymptotic growth of the circle average as
ε→ 0. We know that the law of the free boundary GFF normalized to have zero
mean weighted by its γ1-LQG boundary measure is (see the discussion just after
[DS11a, Equation (83)] in the proof of [DS11a, Theorem 6.1]):

1. absolutely continuous with respect to the law of the (unweighted) free bound-
ary GFF and

2. can be written as the sum of −γ1 log | · −x| for x ∈ ∂D chosen uniformly
from Lebesgue measure, a bounded, smooth function, and an independent
free boundary GFF.

Therefore the result in this case follows from Proposition 8.3. The case that
γ1 ≤ −2 follows because we can think of first adding −(2− ζ) log | · −x1| to h for
ζ > 0 very small, applying the (−2, 0] case, and then adding (γ1 +2−ζ) log | ·−x1|.
The proof of (8.9) when x1 ∈ D is similar.

8.1.2 Proof of Theorem 8.1

We can fix the additive constants for h1 and h2 by taking their means on D to
be both equal to zero. Then (8.3) implies that there exists an almost surely finite
random variable C such that

h1 ◦ ϕ+Q log |ϕ′| d= h2 + C. (8.10)

113



(The reason we have written (8.10) this way rather than as an equality modulo
additive constant is to emphasize one of the sources of the Hölder norm.) This
implies that we may couple h1, h2, ϕ, and C onto a common probability space so
that the equality in distribution from (8.10) is an almost sure equality.

Let hA,1 (resp. h2) denote the harmonic extension of the boundary values of h1

(resp. h2) from ∂D to D (resp. ∂D to D). We can think of defining these objects
in two steps.

1. Apply Pharm to the GFF component of h1 and h2. These projections are
almost surely defined because D \ D and ∂D are respectively local for the
GFF components of h1 and h2 (recall Section 4.3).

2. Add the harmonic extension of the sum of log functions component of h1

(resp. h2) from ∂D to D (resp. ∂D to D).

We know that the harmonic extension of the values from ∂D to D of the left
side of (8.10) is almost surely equal to that of the right side (recall that we have
coupled so that (8.10) is an almost sure equality). These are respectively given
by hA,1 ◦ ϕ+Q log |ϕ′| and h2 + C, hence we almost surely have that

hA,1 ◦ ϕ+Q log |ϕ′| = h2 + C. (8.11)

Rearranging (8.11), we see that

Q log |ϕ′| = h2 − hA,1 ◦ ϕ+ C. (8.12)

For j = 1, 2 we let hj,ε be the circle average process associated with hj. For each
δ > 0 we also let Bδ = B(0, 1− δ). Proposition 8.7 implies that

P

[
lim sup
ε→0

sup
z∈Bε

h2(z)

log ε−1
≤ β?

]
= 1. (8.13)

Indeed, this follows because we can write h2 as the sum of h2, a zero-boundary
GFF which is independent of h2, and a sum of log singularities located at points
with a positive distance from ∂D. In particular, the contribution of the latter
to the boundary behavior of h2 is bounded. If the maximal value of h2(z) for
z ∈ Bε as ε → 0 exceeded β?(1 + o(1)) log ε−1 then there would be at least a
1/2 chance that the maximal value of h2,ε(z) for z ∈ ∂Bε as ε → 0 would exceed
β?(1 + o(1)) log ε−1, which would contradict (8.8).

Fix z ∈ D, let ε = dist(z, ∂D), and let d = dist(ϕ(z), ∂D). By distortion estimates
for conformal maps, we know that

1

4
|ϕ′(z)|ε ≤ d ≤ 4|ϕ′(z)|ε.
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Since hA,1 is harmonic in D, we have that hA,1(ϕ(z)) is equal to the average of its
values on ∂B(ϕ(z), d). It follows from Proposition 8.7 using the same argument
that we used to justify (8.13) that

P

[
lim inf
ε→0

inf
z∈Bε

hA,1(ϕ(z))

log(|ϕ′(z)|ε)−1
≥ −β?

]
= 1. (8.14)

Combining (8.13) and (8.14) with (8.12) we have uniformly in z ∈ Bε that

Q log |ϕ′(z)| ≤ (β? + β?)(1 + o(1)) log ε−1 − β?(1 + o(1)) log |ϕ′(z)|+ C (8.15)

with probability tending to 1 and the o(1) terms tending to 0 as ε → 0. Let
∆ = (Q − β?)/(Q + β?) be as in (8.2) so that 1 − ∆ = (β? + β?)/(Q + β?).
Rearranging the terms in (8.15) to solve for log |ϕ′| implies that

P

[
lim sup
ε→0

sup
z∈Bε

log |ϕ′(z)|
log ε−1

≤ 1−∆

]
= 1. (8.16)

Since ϕ is a conformal transformation, distortion estimates imply that |ϕ′| is
bounded when evaluated at points which have a positive distance from ∂D. There-
fore we just need to control |ϕ′(z)| as z → ∂D. Fix ζ > 0 such that ∆ − ζ > 0.
Then (8.16) implies that there exists C1, C2 <∞ (random) such that

|ϕ′(z)| ≤ C1(1− |z|)∆−1−ζ + C2 for all z ∈ D. (8.17)

The Hölder property follows from this by integrating ϕ′.

8.2 Phases

The purpose of this section is to discuss the problem of establishing the different
phases for the sample path of QLE(γ2, η) as described in Figure 1.3 (though we
will not provide a rigorous proof here). We use the notation of Section 1.4 in that
for any (γ2, η) pair that lies on one of the two upper lines of Figure 1.3, we write
QLE(γ2, η) to denote one of the subsequential limits whose existence is established
in Theorem 1.3 (and explained in more detail in Section 8).

Recall that the solutions on the middle curve were constructed as δ → 0 subse-
quential limits of “reshuffled” radial SLEκ with κ = 16/γ2 ∈ (4,∞). The solutions
on the upper curve were constructed as δ → 0 subsequential limits of “reshuffled”
radial SLEκ where κ = γ2 ∈ (1, 4). We remind the reader of the phases of radial
SLEκ [RS05]:
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1. When κ ∈ [0, 4] a radial SLEκ is almost surely a simple curve.

2. When κ ∈ (4, 8) a radial SLEκ is almost surely a continuous curve that hits
itself but fills zero Lebesgue measure.

3. When κ ≥ 8, a radial SLEκ curve is almost surely space-filling.

For a given GFF h, let µγh denote the γ-LQG measure. Let Kt denote the hull at
time t of a radial SLEκ. From these results, one may easily deduce the following
for the coupling of SLEκ and the GFF used in the QLE(γ2, η) construction:

1. When κ ∈ [0, 4] the Lebesgue measure of Kt and the quantum measure
µγh(Kt) are both almost surely zero for all t.

2. When κ ∈ (4, 8) the Lebesgue measure of Kt and the quantum measure
µγh(Kt) are both increasing functions of t that have discontinuities (because
bubbles can be swallowed instantaneously).

3. When κ ≥ 8, the Lebesgue measure of Kt and the quantum measure µγh(Kt)
are almost surely continuously increasing functions.

At first glance, it may seem obvious that the three statements just above also apply
in the “reshuffled” δ → 0 subsequential limit: that is, they still apply when (Kt) is
the QLE(γ2, η) growth process associated to the given κ > 1 value as constructed
in Theorem 1.3. In the approximating process (ςδt , g

δ
t , h

δ
t ) described in Section 6,

the maps gδt : D\Kδ
t → D exactly describe an SLEκ evolution except that the seed

location is re-randomized according to some rule after each δ units of capacity
time. In particular, the process µγh(K

δ
t ) is zero, discontinuously increasing, or

continuously increasing precisely when this is true for the corresponding SLEκ.

Going further, one may recall the “reshuffling” discussion of Section 2. Ordinary
SLEκ, stopped at δ increments of time, induces a Markov chain on quantum
surfaces, and “reshuffling” this Markov chain yields the δ-approximation to QLE.
Note however, that if k > 0 is fixed, then by Proposition 2.1 the reshuffling
procedure does not change the law of the configuration (the field on D plus the seed
location) that one has after k steps, nor does it change the law of the transition step
that takes place between k and k + 1. The probability that the δ-approximation
absorbs more than M units of Lebesgue (or quantum) area during the kth step
is precisely the same as the probability that ordinary SLE absorbs more than M
units of Lebesgue (or quantum) area between time kδ and (k + 1)δ. In a certain
sense, this suggests that the “rate” at which quantum mass is being swallowed
should be the same for SLE as it is for the QLE approximation — and one might
expect the same to hold in the δ → 0 limit as well.
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However, it is important to recall that the joint law of the amount of mass absorbed
at step k and at another step (say j) may be very different for the δ-increment
QLE and SLE processes. If κ > 4, one could worry that even though µγh(K

δ
t ) is

strictly increasing for each δ, it might be that in the δ → 0 limit, the quantum
area increase tends to “concentrate” on increasingly rare QLE instances, so that
the limiting process is almost surely zero. When κ ∈ (1, 4), there is another source
of worry: a δ → 0 limit of Kδ

T processes, each of which absorbs zero quantum area,
could in principle swallow a positive amount of quantum area, for example if a
certain region became closer and closer to getting “pinched off” by Kδ

T as δ tended
to zero. Thus, in the κ ∈ (1, 4) setting, one might worry that µγh(Kt) could be
increasing despite the fact that µγh(K

δ
t ) is almost surely zero.

9 Open questions

In this section, we present a number of open questions that naturally arise from this
work. They are divided into three categories: existence and uniqueness, sample
path properties, and connections to discrete models. Of course, this collection of
problems is far from exhaustive. Most of the basic questions one would think to
ask about QLE remain open.

Existence and uniqueness

Question 9.1. In Theorem 1.3, we proved the existence of a solution to the
QLE(γ2, η) dynamics when (γ2, η) is on one of the two upper curves from Fig-
ure 1.3 by realizing these processes as subsequential δ → 0 limits of certain ap-
proximations. Was it necessary to pass to subsequences, or does the limit exist
non-subsequentially? Assuming the limit exists and is unique, is it the only so-
lution to the QLE dynamics for the given (γ2, η) pair? Suppose that in the ap-
proximations, instead of flowing by a fixed amount δ of capacity time in between
“tip reshufflings” we instead flowed by a fixed amount of quantum length of the
exploring path (measured in some reasonable sense) using the procedures described
in [She10]. Would we then still obtain the same process (up to a time change) in
the δ → 0 limit?

To solve the first part of the question, one could fix h and then try to explicitly
couple δ and δ′ approximations so that the triples (νδt , g

δ
t , h

δ
t ) and (νδ

′
t , g

δ′
t , h

δ′
t )

(which agree at t = 0) remain close for t > 0. To solve the second part, one could
try to show that the infinite dimensional SDE that describes the dynamics of the
(ht) process described in Section 7 has a unique solution.
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The latter part of the question might be particularly interesting for points on the
dotted curve in Figure 1.3 for which η is not too large; for these points, it may
be that the “tip rererandomization” always leaves the tip fixed if it is done at
fixed capacity time increments, but that it moves the tip in an interesting way if
rerandomizations are done at fixed “quantum length” increments.

Question 9.2. What can one say about the relationship between α and η? For
each η and γ pair, is there at most one choice of α for which there exists a solution
to the QLE dynamics that has the η-DBM scaling property (as discussed at the
beginning of Section 3)?

Question 9.3. Is it possible to generalize our approximation procedure to make
sense of the QLE(γ2, η) processes for (γ2, η) pairs which are not on the top two
curves from Figure 1.3? Are there such (γ2, η) pairs for which there is a stationary
solution with (ht) given by the harmonic extension of the boundary values of a form
of the free boundary GFF from ∂D to D?

There are various ways one might attempt to explore this problem, including the
following:

1. Carefully analyze the infinite dimensional SDE from Section 7 and look for
hints as to what types of stationary solutions might arise.

2. Look for some clever variant of the reshuffling trick — perhaps something
involving SLEκ or SLEκ(ρ) processes on γ-LQG surfaces (with κ not neces-
sarily equal to γ2 or 16/γ2).

3. Fix γ and then try to combine the known solutions (corresponding to the
two or three special η values) in some way to obtain solutions for other η
values.

4. Try to grow a QLE approximation from many points simultaneously and
understand some limiting law for the corresponding point process.

5. Consider one of the understood stationary QLE processes but take the first
n coordinates in an expansion of the GFF h to have fixed variance that is
smaller or larger than usual (and note that since this modified model has a
law absolutely continuous to the original, the original QLE growth process
can still be defined). Try to take some sort of n→∞ limit to get a different
multiple of the GFF, and control what happens to the QLE growth along
the way.
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All of these ideas are hindered by the fact that we do not yet have a clear sense
of what the stationary dynamics of ht and νt should be when the pair (γ2, η) fails
to lie on one of the special curves.

Question 9.4. What are the sources of randomness in the QLE(γ2, η) processes?
Does the GFF determine the QLE growth process for some (γ2, η) values but not
for others?

We remark that level lines and imaginary geometry flow lines are examples of local
sets that have been proved to be almost surely determined by the GFF instance
they are coupled with [SS13, Dub09, MS12, MS13]. Our guess is that for any
γ ∈ (0, 2) the sets are determined by the field when η = 0, since in this case QLE
should describe growing balls in a metric determined by the field. On the other
hand, when γ = 0, there is no randomness from the field at all, so if the η-DBM
scaling limits corresponding to γ = 0 are given by a (non-deterministic) form of
QLE, they will have to have a source of randomness other than the field. On the
other hand, it is still conceivable that QLE is always determined by the field when
γ 6= 0. We leave it to the reader to decide what intuition (if any) can be drawn
from Figures 1.18 and 1.19.

Question 9.5. What variants of QLE can one rigorously construct by only al-
lowing growth from an interval of the boundary, or by growing at different speeds
from different intervals? Are there interesting variants that involve replacing ra-
dial SLEκ with some sort of SLEκ(ρ) process (or perhaps a process growing from
a fixed number of tips at once) before applying a reshuffling procedure?

There are many interesting questions along these lines that one can explore with-
out leaving the special (γ2, η) curves described in this paper.

Sample path properties

Question 9.6. In the QLE approximations, the set of added “chunks” has a nat-
ural tree structure. (Each chunk is a child of the chunk on whose boundary it
started growing.) Can one take a limit of this tree structure, to define geodesics,
for general γ and η and are the geodesics almost surely simple curves? Are they
almost surely removable?

Question 9.7. Is there a natural variant of QLE in which an underlying conformal
loop ensemble CLEκ is fixed, with κ ∈ (8/3, 4), and the growth process absorbs
entire loops instantaneously?
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To address the above question, one might replace the radial SLEκ process (as used
to construct QLE solutions in this paper) with the SLEκ(ρ) process corresponding
to ρ = κ−6, which is used to construct conformal loop ensembles in [She09, SW12].
In the latter process, there are special times at which the force point and the tip
are at the same place (which correspond to times at which the exploration process
is not partway through creating a loop) and there is a notion of local time for this
set. To produce a loop variant of QLE, instead of running the SLEκ(ρ) process
for δ units of capacity time in between rerandomizations of the tip, one could run
it for δ units of this local time in between tip rerandomizations. Taking a δ → 0
limit may yield an interesting LQG-based variant of the loop exploration process
described for the κ = 4 case in [WW13].

Question 9.8. What is the dimension of the QLE trace? What is the Euclidean
dimension of the boundary of the domain of (gt) at a generic time t? For (γ2, η)
on one of the upper two curves from Figure 1.3, is the former dimension larger
than the Euclidean dimension of the SLE curve used to construct the QLE? Is
the latter dimension smaller or larger than the dimension of the outer boundary
of the SLE used in the construction?

Note that it is natural to expect the quantum scaling dimension of the QLE trace
to be the same as that of the SLE curve used to approximate it, which can be
computed from the Euclidean dimension of SLE using the KPZ formula (although
actually proving this fact, using some precise notion of quantum dimension, would
presumably require some work). On the other hand, one cannot use the KPZ
formula to deduce the Euclidean dimension of the QLE trace from its quantum
dimension, because the QLE trace is not independent of the field h used to defined
the underlying quantum surface.

At least heuristically, the number of colored squares in a figure like Figure 1.16
should scale like a power of δ as δ → 0, and this should be the same exponent
as for the number of squares hit by an SLE6 drawn independently on top of the
surface. We expect the QLE(8/3, 0) trace to look like the δ → 0 scaling limit of
the discrete random set shown in Figure 1.16. Although SLE6 has dimension 7/4,
intuitively, we would guess that the Euclidean dimension of the object in Figure
1.16 is larger than 7/4, because the QLE may have a greater tendency to hit
big squares (and avoid small squares) than the independently drawn SLE6 does.
(If you put an independent SLE6 on top of a quantum surface, of course it will
generally be more likely to hit a given big square than a given small square; on
the other hand, the QLE trace seems, intuitively, to be actively drawn towards
the bigger squares and away from smaller ones.)

Question 9.9. Suppose that (gt) is the family of conformal maps which correspond
to one of the QLE(γ2, η) processes constructed in Theorem 1.3 with γ ∈ (0, 2).
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In Theorem 1.4, we showed that for each t ≥ 0 we almost surely have that g−1
t is

Hölder continuous with a given exponent ∆. The proof of Theorem 1.4 in Section 8
is based on a “worst-case” thick points analysis and is therefore unlikely to yield
the exact Hölder exponent. This exponent has been exactly computed in the case
of SLE and the bound we determine for the corresponding QLE is smaller than
this value. (This is the case since we extract the result for QLE from a more
general result which includes both SLE and QLE as special cases.) Is it possible
to determine the corresponding exponent for QLE? Is QLE more or less irregular
than the SLEs used to construct it?

Question 9.10. In Theorem 1.4, we proved that for each fixed t ≥ 0 that the
domain (gt) of a QLE(γ2, η) process for (γ2, η) on one of the top two curves from
Figure 1.3 with γ ∈ (0, 2) is almost surely a Hölder domain. Does this hold almost
surely for all times t ≥ 0 simultaneously?

Question 9.11. We proved the existence of the QLE(4, 1/4) processes in Section 6
(so γ = 2), however Theorem 1.4 is restricted to the case that γ ∈ (0, 2). Do the
maps (gt) associated with the QLE(4, 1/4) processes extend continuously to ∂D?

Connections to discrete models

Question 9.12. Can we understand discrete DLA on tree-weighted planar graphs
in a deeper way? In particular, can we say how much information about the
“shape” comes from the randomness in the underlying planar map, versus the
randomness in the growth process? Equivalently, if we independently draw two
DLA processes on top of the same planar map, how “correlated” are they with
each other?

Question 9.13. Is there a nice discrete story that relates η-LRW to the cor-
responding η-DBM models — a story that somehow generalizes the relationship
between LERW and DLA described in this paper?

Question 9.14. One can define the Eden model on a uniformly random triangu-
lation by assigning an exponential weight to each edge, using the weights to define
a metric, and considering increasing balls in that metric. Can one show that the
randomness that arises from the exponential weights on edges does not significantly
change the law of the overall metric (at long distances) on the random planar map
(recall Figure 1.18)? How much does it change it typically? Is there a KPZ scaling
result for random planar maps, maybe with some other power in place of 1/3?
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Work in progress

We briefly mention three projects that the authors are actively working on:

1. A joint work with Bertrand Duplantier (announced some time ago) extend-
ing the quantum zipper results in [She10] to describe weldings of different
types of quantum wedges. One outcome of this work will be a Poissonian
description of the bubbles cut off by a quantum gravity zipper in the case
that κ ∈ (4, 8).

2. A joint work with Ewain Gwynne and Xin Sun on the phase transitions for
QLE, expanding on the ideas sketched in Section 8.2.

3. A work using the results of the paper with Duplantier to give a Poissonian
description of bubbles that appear in the QLE models that correspond to
κ ∈ (4, 8) (somewhat formalizing and extending the “slot machine” story).
This work will also study the γ2 = 8/3 case specifically in more detail.
The ultimate aim of this project is to rigorously construct the metric space
structure of the corresponding LQG surface and to show that the random
metric space obtained this way agrees in law with a form of the Brownian
map.
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Birkhäuser Verlag, Basel, 2006. MR2245542 (2008b:76055)

[Hal00] T. C. Halsey. Diffusion-limited aggregation: a model for pattern for-
mation. Physics Today, 53(11):36–41, 2000.

125

http://arxiv.org/abs/1206.1671
http://arxiv.org/abs/1212.0529
http://arxiv.org/abs/0901.0277
http://www.ams.org/mathscinet-getitem?mr=2501276
http://arxiv.org/abs/0808.1560
http://www.ams.org/mathscinet-getitem?mr=2819163
http://www.ams.org/mathscinet-getitem?mr=2819163
http://arxiv.org/abs/1012.4800
http://arxiv.org/abs/0712.3018
http://www.ams.org/mathscinet-getitem?mr=2525778
http://www.ams.org/mathscinet-getitem?mr=2525778
http://www.ams.org/mathscinet-getitem?mr=0136460
http://arxiv.org/abs/1206.0707
http://www.ams.org/mathscinet-getitem?mr=3010812
http://arxiv.org/abs/1101.1320
http://www.ams.org/mathscinet-getitem?mr=3090146
http://www.ams.org/mathscinet-getitem?mr=2245542


[Has01] M. B. Hastings. Fractal to nonfractal phase transition in the dielectric
breakdown model. Phys. Rev. Lett., 87:175502, Oct 2001.

[Has02] M. B. Hastings. Exact multifractal spectra for arbitrary Laplacian
random walks. Physical review letters, 88(5):055506, 2002. cond-
mat/0109304.

[HL98] M. B. Hastings and L. S. Levitov. Laplacian growth as
one-dimensional turbulence. Physica D: Nonlinear Phenomena,
116(1):244–252, 1998. cond-mat/9607021.

[HMP10] X. Hu, J. Miller, and Y. Peres. Thick points of the Gaussian free
field. Ann. Probab., 38(2):896–926, 2010. 0902.3842. MR2642894
(2011c:60117)

[HW65] J. M. Hammersley and D. J. A. Welsh. First-passage percolation,
subadditive processes, stochastic networks, and generalized renewal
theory. In Proc. Internat. Res. Semin., Statist. Lab., Univ. Califor-
nia, Berkeley, Calif, pages 61–110. Springer-Verlag, New York, 1965.
MR0198576 (33 #6731)

[JLS10] D. Jerison, L. Levine, and S. Sheffield. Internal DLA in Higher Di-
mensions. Elec. Journ. Prob., to appear, 2010. 1012.3453.

[JLS11] D. Jerison, L. Levine, and S. Sheffield. Internal DLA and the Gaussian
free field. Duke Math. Journ. to appear., 2011. 1101.0596.

[JLS12] D. Jerison, L. Levine, and S. Sheffield. Logarithmic fluctuations for
internal DLA. J. Amer. Math. Soc., 25(1):271–301, 2012. 1010.2483.
MR2833484 (2012i:60093)

[JS00] P. W. Jones and S. K. Smirnov. Removability theorems for Sobolev
functions and quasiconformal maps. Ark. Mat., 38(2):263–279, 2000.
MR1785402 (2001i:46049)

[JVST12] F. Johansson Viklund, A. Sola, and A. Turner. Scaling limits of
anisotropic Hastings-Levitov clusters. volume 48, pages 235–257,
2012. 0908.0086. MR2919205

[Kan07] N.-G. Kang. Boundary behavior of SLE. J. Amer. Math. Soc.,
20(1):185–210, 2007. MR2257400 (2008c:60095)

[Kes87] H. Kesten. Hitting probabilities of random walks on Zd. Stochastic
Process. Appl., 25(2):165–184, 1987. MR915132 (89a:60163)

126

http://arxiv.org/abs/cond-mat/0109304
http://arxiv.org/abs/cond-mat/0109304
http://arxiv.org/abs/cond-mat/9607021
http://arxiv.org/abs/0902.3842
http://www.ams.org/mathscinet-getitem?mr=2642894
http://www.ams.org/mathscinet-getitem?mr=2642894
http://www.ams.org/mathscinet-getitem?mr=0198576
http://arxiv.org/abs/1012.3453
http://arxiv.org/abs/1101.0596
http://arxiv.org/abs/1010.2483
http://www.ams.org/mathscinet-getitem?mr=2833484
http://www.ams.org/mathscinet-getitem?mr=1785402
http://arxiv.org/abs/0908.0086
http://www.ams.org/mathscinet-getitem?mr=2919205
http://www.ams.org/mathscinet-getitem?mr=2257400
http://www.ams.org/mathscinet-getitem?mr=915132


[KPZ86] M. Kardar, G. Parisi, and Y.-C. Zhang. Dynamic scaling of growing
interfaces. Phys. Rev. Lett., 56:889–892, Mar 1986.

[KPZ88] V. G. Knizhnik, A. M. Polyakov, and A. B. Zamolodchikov. Fractal
structure of 2D-quantum gravity. Modern Phys. Lett. A, 3(8):819–
826, 1988. MR947880 (89i:83039)

[KS91] I. Karatzas and S. E. Shreve. Brownian motion and stochastic calcu-
lus, volume 113 of Graduate Texts in Mathematics. Springer-Verlag,
New York, second edition, 1991. MR1121940 (92h:60127)

[Law05] G. F. Lawler. Conformally invariant processes in the plane, volume
114 of Mathematical Surveys and Monographs. American Mathemat-
ical Society, Providence, RI, 2005. MR2129588 (2006i:60003)

[Law06] G. F. Lawler. The Laplacian-b random walk and the Schramm-
Loewner evolution. Illinois J. Math., 50(1-4):701–746 (electronic),
2006. MR2247843 (2007k:60261)

[LBG92] G. F. Lawler, M. Bramson, and D. Griffeath. Internal diffusion lim-
ited aggregation. Ann. Probab., 20(4):2117–2140, 1992. MR1188055
(94a:60105)

[LEP86] J. Lyklema, C. Evertsz, and L. Pietronero. The Laplacian random
walk. EPL (Europhysics Letters), 2(2):77, 1986.

[LG07] J.-F. Le Gall. The topological structure of scaling limits of large
planar maps. Invent. Math., 169(3):621–670, 2007. math/0607567.
MR2336042 (2008i:60022)

[LG10] J.-F. Le Gall. Geodesics in large planar maps and in the Brownian
map. Acta Math., 205(2):287–360, 2010. 0804.3012. MR2746349
(2012b:60272)

[LG13] J.-F. Le Gall. Uniqueness and universality of the Brownian map. Ann.
Probab., 41(4):2880–2960, 2013. 1105.4842. MR3112934

[LGP08] J.-F. Le Gall and F. Paulin. Scaling limits of bipartite planar maps are
homeomorphic to the 2-sphere. Geom. Funct. Anal., 18(3):893–918,
2008. math/0612315. MR2438999 (2010a:60030)

[LSW03] G. Lawler, O. Schramm, and W. Werner. Conformal restriction: the
chordal case. J. Amer. Math. Soc., 16(4):917–955 (electronic), 2003.
math/0209343. MR1992830 (2004g:60130)

127

http://www.ams.org/mathscinet-getitem?mr=947880
http://www.ams.org/mathscinet-getitem?mr=1121940
http://www.ams.org/mathscinet-getitem?mr=2129588
http://www.ams.org/mathscinet-getitem?mr=2247843
http://www.ams.org/mathscinet-getitem?mr=1188055
http://www.ams.org/mathscinet-getitem?mr=1188055
http://arxiv.org/abs/math/0607567
http://www.ams.org/mathscinet-getitem?mr=2336042
http://arxiv.org/abs/0804.3012
http://www.ams.org/mathscinet-getitem?mr=2746349
http://www.ams.org/mathscinet-getitem?mr=2746349
http://arxiv.org/abs/1105.4842
http://www.ams.org/mathscinet-getitem?mr=3112934
http://arxiv.org/abs/math/0612315
http://www.ams.org/mathscinet-getitem?mr=2438999
http://arxiv.org/abs/math/0209343
http://www.ams.org/mathscinet-getitem?mr=1992830


[LSW04] G. F. Lawler, O. Schramm, and W. Werner. Conformal invariance
of planar loop-erased random walks and uniform spanning trees.
Ann. Probab., 32(1B):939–995, 2004. math/0112234. MR2044671
(2005f:82043)

[LYTZC12] D. Li, W. Yan-Ting, and O.-Y. Zhong-Can. Diffusion-limited aggrega-
tion with polygon particles. Communications in Theoretical Physics,
58(6):895, 2012. 1209.5958.

[MD86] P. Meakin and J. Deutch. The formation of surfaces by diffusion
limited annihilation. The Journal of chemical physics, 85:2320, 1986.

[Mea86] P. Meakin. Universality, nonuniversality, and the effects of anisotropy
on diffusion-limited aggregation. Physical Review A, 33(5):3371, 1986.

[Men12] A. Menshutin. Scaling in the diffusion limited aggregation model.
Phys. Rev. Lett., 108:015501, Jan 2012.

[Mie13] G. Miermont. The Brownian map is the scaling limit of uniform
random plane quadrangulations. Acta Math., 210(2):319–401, 2013.
1104.1606. MR3070569

[Mil10] J. Miller. Universality for SLE(4). ArXiv e-prints, October 2010,
1010.1356.

[MJ02] J. Mathiesen and M. H. Jensen. Tip splittings and phase transitions
in the dielectric breakdown model: Mapping to the diffusion-limited
aggregation model. Phys. Rev. Lett., 88:235505, May 2002.

[MJB08] J. Mathiesen, M. H. Jensen, and J. O. H. Bakke. Dimensions, maximal
growth sites, and optimization in the dielectric breakdown model.
Phys. Rev. E, 77:066203, Jun 2008.

[MM06] J.-F. Marckert and A. Mokkadem. Limit of normalized quadrangu-
lations: the Brownian map. Ann. Probab., 34(6):2144–2202, 2006.
math/0403398. MR2294979 (2007m:60092)

[MPST06] J. Mathiesen, I. Procaccia, H. L. Swinney, and M. Thrasher. The uni-
versality class of diffusion-limited aggregation and viscous fingering.
EPL (Europhysics Letters), 76(2):257, 2006. cond-mat/0512274.

[MS11] A. Y. Menshutin and L. Shchur. Morphological diagram of diffusion
driven aggregate growth in plane: Competition of anisotropy and ad-
hesion. Computer Physics Communications, 182(9):1819–1823, 2011.
1008.3449.

128

http://arxiv.org/abs/math/0112234
http://www.ams.org/mathscinet-getitem?mr=2044671
http://www.ams.org/mathscinet-getitem?mr=2044671
http://arxiv.org/abs/1209.5958
http://arxiv.org/abs/1104.1606
http://www.ams.org/mathscinet-getitem?mr=3070569
http://arxiv.org/abs/1010.1356
http://arxiv.org/abs/math/0403398
http://www.ams.org/mathscinet-getitem?mr=2294979
http://arxiv.org/abs/cond-mat/0512274
http://arxiv.org/abs/1008.3449


[MS12] J. Miller and S. Sheffield. Imaginary Geometry I: Interacting SLEs.
ArXiv e-prints, January 2012, 1201.1496.

[MS13] J. Miller and S. Sheffield. Imaginary geometry IV: interior rays, whole-
plane reversibility, and space-filling trees. ArXiv e-prints, February
2013, 1302.4738.

[Mul67] R. C. Mullin. On the enumeration of tree-rooted maps. Canad. J.
Math., 19:174–183, 1967. MR0205882 (34 #5708)

[NPW84] L. Niemeyer, L. Pietronero, and H. J. Wiesmann. Fractal dimension
of dielectric breakdown. Phys. Rev. Lett., 52(12):1033–1036, 1984.
MR736820 (85b:78031)

[NT12] J. Norris and A. Turner. Hastings-Levitov aggregation in the small-
particle limit. Comm. Math. Phys., 316(3):809–841, 2012. 1106.3546.
MR2993934

[Pol81a] A. M. Polyakov. Quantum geometry of bosonic strings. Phys. Lett.
B, 103(3):207–210, 1981. MR623209 (84h:81093a)

[Pol81b] A. M. Polyakov. Quantum geometry of fermionic strings. Phys. Lett.
B, 103(3):211–213, 1981. MR623210 (84h:81093b)

[Pol08] A. M. Polyakov. From Quarks to Strings. ArXiv e-prints, November
2008, 0812.0183.

[RS05] S. Rohde and O. Schramm. Basic properties of SLE. Ann. of Math.
(2), 161(2):883–924, 2005. math/0106036. MR2153402 (2006f:60093)

[RV11] R. Rhodes and V. Vargas. KPZ formula for log-infinitely divisible
multifractal random measures. ESAIM Probab. Stat., 15:358–371,
2011. 0807.1036. MR2870520

[RY99] D. Revuz and M. Yor. Continuous martingales and Brownian mo-
tion, volume 293 of Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences]. Springer-Verlag,
Berlin, third edition, 1999. MR1725357 (2000h:60050)

[RZ05] S. Rohde and M. Zinsmeister. Some remarks on Laplacian growth.
Topology Appl., 152(1-2):26–43, 2005. MR2160804 (2006j:60111)

[San00] L. M. Sander. Diffusion-limited aggregation: a kinetic critical phe-
nomenon? Contemporary Physics, 41(4):203–218, 2000.

129

http://arxiv.org/abs/1201.1496
http://arxiv.org/abs/1302.4738
http://www.ams.org/mathscinet-getitem?mr=0205882
http://www.ams.org/mathscinet-getitem?mr=736820
http://arxiv.org/abs/1106.3546
http://www.ams.org/mathscinet-getitem?mr=2993934
http://www.ams.org/mathscinet-getitem?mr=623209
http://www.ams.org/mathscinet-getitem?mr=623210
http://arxiv.org/abs/0812.0183
http://arxiv.org/abs/math/0106036
http://www.ams.org/mathscinet-getitem?mr=2153402
http://arxiv.org/abs/0807.1036
http://www.ams.org/mathscinet-getitem?mr=2870520
http://www.ams.org/mathscinet-getitem?mr=1725357
http://www.ams.org/mathscinet-getitem?mr=2160804


[Sch97] G. Schaeffer. Bijective census and random generation of Eulerian
planar maps with prescribed vertex degrees. Electron. J. Com-
bin., 4(1):Research Paper 20, 14 pp. (electronic), 1997. MR1465581
(98g:05074)

[Sch00] O. Schramm. Scaling limits of loop-erased random walks and uniform
spanning trees. Israel J. Math., 118:221–288, 2000. math/9904022.
MR1776084 (2001m:60227)

[Sch07] O. Schramm. Conformally invariant scaling limits: an overview and a
collection of problems. In International Congress of Mathematicians.
Vol. I, pages 513–543. Eur. Math. Soc., Zürich, 2007. math/0602151.
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